]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Rexmit hint must be cleared instead of setting it
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
1da177e4
LT
107
108#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 112#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4
LT
113
114#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
115#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
116#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
117
4dc2665e
IJ
118#define IsSackFrto() (sysctl_tcp_frto == 0x2)
119
1da177e4
LT
120#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121
e905a9ed 122/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 123 * real world.
e905a9ed 124 */
40efc6fa
SH
125static void tcp_measure_rcv_mss(struct sock *sk,
126 const struct sk_buff *skb)
1da177e4 127{
463c84b9 128 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 129 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 130 unsigned int len;
1da177e4 131
e905a9ed 132 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
133
134 /* skb->len may jitter because of SACKs, even if peer
135 * sends good full-sized frames.
136 */
ff9b5e0f 137 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
138 if (len >= icsk->icsk_ack.rcv_mss) {
139 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
140 } else {
141 /* Otherwise, we make more careful check taking into account,
142 * that SACKs block is variable.
143 *
144 * "len" is invariant segment length, including TCP header.
145 */
9c70220b 146 len += skb->data - skb_transport_header(skb);
1da177e4
LT
147 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
148 /* If PSH is not set, packet should be
149 * full sized, provided peer TCP is not badly broken.
150 * This observation (if it is correct 8)) allows
151 * to handle super-low mtu links fairly.
152 */
153 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 154 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
155 /* Subtract also invariant (if peer is RFC compliant),
156 * tcp header plus fixed timestamp option length.
157 * Resulting "len" is MSS free of SACK jitter.
158 */
463c84b9
ACM
159 len -= tcp_sk(sk)->tcp_header_len;
160 icsk->icsk_ack.last_seg_size = len;
1da177e4 161 if (len == lss) {
463c84b9 162 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
163 return;
164 }
165 }
1ef9696c
AK
166 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
167 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
169 }
170}
171
463c84b9 172static void tcp_incr_quickack(struct sock *sk)
1da177e4 173{
463c84b9
ACM
174 struct inet_connection_sock *icsk = inet_csk(sk);
175 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
176
177 if (quickacks==0)
178 quickacks=2;
463c84b9
ACM
179 if (quickacks > icsk->icsk_ack.quick)
180 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
181}
182
463c84b9 183void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 184{
463c84b9
ACM
185 struct inet_connection_sock *icsk = inet_csk(sk);
186 tcp_incr_quickack(sk);
187 icsk->icsk_ack.pingpong = 0;
188 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
189}
190
191/* Send ACKs quickly, if "quick" count is not exhausted
192 * and the session is not interactive.
193 */
194
463c84b9 195static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 196{
463c84b9
ACM
197 const struct inet_connection_sock *icsk = inet_csk(sk);
198 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
199}
200
201/* Buffer size and advertised window tuning.
202 *
203 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
204 */
205
206static void tcp_fixup_sndbuf(struct sock *sk)
207{
208 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
209 sizeof(struct sk_buff);
210
211 if (sk->sk_sndbuf < 3 * sndmem)
212 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
213}
214
215/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
216 *
217 * All tcp_full_space() is split to two parts: "network" buffer, allocated
218 * forward and advertised in receiver window (tp->rcv_wnd) and
219 * "application buffer", required to isolate scheduling/application
220 * latencies from network.
221 * window_clamp is maximal advertised window. It can be less than
222 * tcp_full_space(), in this case tcp_full_space() - window_clamp
223 * is reserved for "application" buffer. The less window_clamp is
224 * the smoother our behaviour from viewpoint of network, but the lower
225 * throughput and the higher sensitivity of the connection to losses. 8)
226 *
227 * rcv_ssthresh is more strict window_clamp used at "slow start"
228 * phase to predict further behaviour of this connection.
229 * It is used for two goals:
230 * - to enforce header prediction at sender, even when application
231 * requires some significant "application buffer". It is check #1.
232 * - to prevent pruning of receive queue because of misprediction
233 * of receiver window. Check #2.
234 *
235 * The scheme does not work when sender sends good segments opening
caa20d9a 236 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
237 * in common situations. Otherwise, we have to rely on queue collapsing.
238 */
239
240/* Slow part of check#2. */
9e412ba7 241static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 242{
9e412ba7 243 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
244 /* Optimize this! */
245 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 246 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
247
248 while (tp->rcv_ssthresh <= window) {
249 if (truesize <= skb->len)
463c84b9 250 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
251
252 truesize >>= 1;
253 window >>= 1;
254 }
255 return 0;
256}
257
9e412ba7 258static void tcp_grow_window(struct sock *sk,
40efc6fa 259 struct sk_buff *skb)
1da177e4 260{
9e412ba7
IJ
261 struct tcp_sock *tp = tcp_sk(sk);
262
1da177e4
LT
263 /* Check #1 */
264 if (tp->rcv_ssthresh < tp->window_clamp &&
265 (int)tp->rcv_ssthresh < tcp_space(sk) &&
266 !tcp_memory_pressure) {
267 int incr;
268
269 /* Check #2. Increase window, if skb with such overhead
270 * will fit to rcvbuf in future.
271 */
272 if (tcp_win_from_space(skb->truesize) <= skb->len)
273 incr = 2*tp->advmss;
274 else
9e412ba7 275 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
276
277 if (incr) {
278 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 279 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
280 }
281 }
282}
283
284/* 3. Tuning rcvbuf, when connection enters established state. */
285
286static void tcp_fixup_rcvbuf(struct sock *sk)
287{
288 struct tcp_sock *tp = tcp_sk(sk);
289 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
290
291 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 292 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
293 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 */
295 while (tcp_win_from_space(rcvmem) < tp->advmss)
296 rcvmem += 128;
297 if (sk->sk_rcvbuf < 4 * rcvmem)
298 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
299}
300
caa20d9a 301/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
302 * established state.
303 */
304static void tcp_init_buffer_space(struct sock *sk)
305{
306 struct tcp_sock *tp = tcp_sk(sk);
307 int maxwin;
308
309 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
310 tcp_fixup_rcvbuf(sk);
311 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
312 tcp_fixup_sndbuf(sk);
313
314 tp->rcvq_space.space = tp->rcv_wnd;
315
316 maxwin = tcp_full_space(sk);
317
318 if (tp->window_clamp >= maxwin) {
319 tp->window_clamp = maxwin;
320
321 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
322 tp->window_clamp = max(maxwin -
323 (maxwin >> sysctl_tcp_app_win),
324 4 * tp->advmss);
325 }
326
327 /* Force reservation of one segment. */
328 if (sysctl_tcp_app_win &&
329 tp->window_clamp > 2 * tp->advmss &&
330 tp->window_clamp + tp->advmss > maxwin)
331 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
332
333 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
334 tp->snd_cwnd_stamp = tcp_time_stamp;
335}
336
1da177e4 337/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 338static void tcp_clamp_window(struct sock *sk)
1da177e4 339{
9e412ba7 340 struct tcp_sock *tp = tcp_sk(sk);
6687e988 341 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 342
6687e988 343 icsk->icsk_ack.quick = 0;
1da177e4 344
326f36e9
JH
345 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
346 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
347 !tcp_memory_pressure &&
348 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
349 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
350 sysctl_tcp_rmem[2]);
1da177e4 351 }
326f36e9 352 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 353 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
354}
355
40efc6fa
SH
356
357/* Initialize RCV_MSS value.
358 * RCV_MSS is an our guess about MSS used by the peer.
359 * We haven't any direct information about the MSS.
360 * It's better to underestimate the RCV_MSS rather than overestimate.
361 * Overestimations make us ACKing less frequently than needed.
362 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
363 */
364void tcp_initialize_rcv_mss(struct sock *sk)
365{
366 struct tcp_sock *tp = tcp_sk(sk);
367 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
368
369 hint = min(hint, tp->rcv_wnd/2);
370 hint = min(hint, TCP_MIN_RCVMSS);
371 hint = max(hint, TCP_MIN_MSS);
372
373 inet_csk(sk)->icsk_ack.rcv_mss = hint;
374}
375
1da177e4
LT
376/* Receiver "autotuning" code.
377 *
378 * The algorithm for RTT estimation w/o timestamps is based on
379 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
380 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
381 *
382 * More detail on this code can be found at
383 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
384 * though this reference is out of date. A new paper
385 * is pending.
386 */
387static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
388{
389 u32 new_sample = tp->rcv_rtt_est.rtt;
390 long m = sample;
391
392 if (m == 0)
393 m = 1;
394
395 if (new_sample != 0) {
396 /* If we sample in larger samples in the non-timestamp
397 * case, we could grossly overestimate the RTT especially
398 * with chatty applications or bulk transfer apps which
399 * are stalled on filesystem I/O.
400 *
401 * Also, since we are only going for a minimum in the
31f34269 402 * non-timestamp case, we do not smooth things out
caa20d9a 403 * else with timestamps disabled convergence takes too
1da177e4
LT
404 * long.
405 */
406 if (!win_dep) {
407 m -= (new_sample >> 3);
408 new_sample += m;
409 } else if (m < new_sample)
410 new_sample = m << 3;
411 } else {
caa20d9a 412 /* No previous measure. */
1da177e4
LT
413 new_sample = m << 3;
414 }
415
416 if (tp->rcv_rtt_est.rtt != new_sample)
417 tp->rcv_rtt_est.rtt = new_sample;
418}
419
420static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
421{
422 if (tp->rcv_rtt_est.time == 0)
423 goto new_measure;
424 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
425 return;
426 tcp_rcv_rtt_update(tp,
427 jiffies - tp->rcv_rtt_est.time,
428 1);
429
430new_measure:
431 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
432 tp->rcv_rtt_est.time = tcp_time_stamp;
433}
434
463c84b9 435static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 436{
463c84b9 437 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
438 if (tp->rx_opt.rcv_tsecr &&
439 (TCP_SKB_CB(skb)->end_seq -
463c84b9 440 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
441 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
442}
443
444/*
445 * This function should be called every time data is copied to user space.
446 * It calculates the appropriate TCP receive buffer space.
447 */
448void tcp_rcv_space_adjust(struct sock *sk)
449{
450 struct tcp_sock *tp = tcp_sk(sk);
451 int time;
452 int space;
e905a9ed 453
1da177e4
LT
454 if (tp->rcvq_space.time == 0)
455 goto new_measure;
e905a9ed 456
1da177e4
LT
457 time = tcp_time_stamp - tp->rcvq_space.time;
458 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
459 tp->rcv_rtt_est.rtt == 0)
460 return;
e905a9ed 461
1da177e4
LT
462 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
463
464 space = max(tp->rcvq_space.space, space);
465
466 if (tp->rcvq_space.space != space) {
467 int rcvmem;
468
469 tp->rcvq_space.space = space;
470
6fcf9412
JH
471 if (sysctl_tcp_moderate_rcvbuf &&
472 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
473 int new_clamp = space;
474
475 /* Receive space grows, normalize in order to
476 * take into account packet headers and sk_buff
477 * structure overhead.
478 */
479 space /= tp->advmss;
480 if (!space)
481 space = 1;
482 rcvmem = (tp->advmss + MAX_TCP_HEADER +
483 16 + sizeof(struct sk_buff));
484 while (tcp_win_from_space(rcvmem) < tp->advmss)
485 rcvmem += 128;
486 space *= rcvmem;
487 space = min(space, sysctl_tcp_rmem[2]);
488 if (space > sk->sk_rcvbuf) {
489 sk->sk_rcvbuf = space;
490
491 /* Make the window clamp follow along. */
492 tp->window_clamp = new_clamp;
493 }
494 }
495 }
e905a9ed 496
1da177e4
LT
497new_measure:
498 tp->rcvq_space.seq = tp->copied_seq;
499 tp->rcvq_space.time = tcp_time_stamp;
500}
501
502/* There is something which you must keep in mind when you analyze the
503 * behavior of the tp->ato delayed ack timeout interval. When a
504 * connection starts up, we want to ack as quickly as possible. The
505 * problem is that "good" TCP's do slow start at the beginning of data
506 * transmission. The means that until we send the first few ACK's the
507 * sender will sit on his end and only queue most of his data, because
508 * he can only send snd_cwnd unacked packets at any given time. For
509 * each ACK we send, he increments snd_cwnd and transmits more of his
510 * queue. -DaveM
511 */
9e412ba7 512static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 513{
9e412ba7 514 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 515 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
516 u32 now;
517
463c84b9 518 inet_csk_schedule_ack(sk);
1da177e4 519
463c84b9 520 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
521
522 tcp_rcv_rtt_measure(tp);
e905a9ed 523
1da177e4
LT
524 now = tcp_time_stamp;
525
463c84b9 526 if (!icsk->icsk_ack.ato) {
1da177e4
LT
527 /* The _first_ data packet received, initialize
528 * delayed ACK engine.
529 */
463c84b9
ACM
530 tcp_incr_quickack(sk);
531 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 532 } else {
463c84b9 533 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
534
535 if (m <= TCP_ATO_MIN/2) {
536 /* The fastest case is the first. */
463c84b9
ACM
537 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
538 } else if (m < icsk->icsk_ack.ato) {
539 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
540 if (icsk->icsk_ack.ato > icsk->icsk_rto)
541 icsk->icsk_ack.ato = icsk->icsk_rto;
542 } else if (m > icsk->icsk_rto) {
caa20d9a 543 /* Too long gap. Apparently sender failed to
1da177e4
LT
544 * restart window, so that we send ACKs quickly.
545 */
463c84b9 546 tcp_incr_quickack(sk);
1da177e4
LT
547 sk_stream_mem_reclaim(sk);
548 }
549 }
463c84b9 550 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
551
552 TCP_ECN_check_ce(tp, skb);
553
554 if (skb->len >= 128)
9e412ba7 555 tcp_grow_window(sk, skb);
1da177e4
LT
556}
557
05bb1fad
DM
558static u32 tcp_rto_min(struct sock *sk)
559{
560 struct dst_entry *dst = __sk_dst_get(sk);
561 u32 rto_min = TCP_RTO_MIN;
562
5c127c58 563 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
564 rto_min = dst->metrics[RTAX_RTO_MIN-1];
565 return rto_min;
566}
567
1da177e4
LT
568/* Called to compute a smoothed rtt estimate. The data fed to this
569 * routine either comes from timestamps, or from segments that were
570 * known _not_ to have been retransmitted [see Karn/Partridge
571 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
572 * piece by Van Jacobson.
573 * NOTE: the next three routines used to be one big routine.
574 * To save cycles in the RFC 1323 implementation it was better to break
575 * it up into three procedures. -- erics
576 */
2d2abbab 577static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 578{
6687e988 579 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
580 long m = mrtt; /* RTT */
581
1da177e4
LT
582 /* The following amusing code comes from Jacobson's
583 * article in SIGCOMM '88. Note that rtt and mdev
584 * are scaled versions of rtt and mean deviation.
e905a9ed 585 * This is designed to be as fast as possible
1da177e4
LT
586 * m stands for "measurement".
587 *
588 * On a 1990 paper the rto value is changed to:
589 * RTO = rtt + 4 * mdev
590 *
591 * Funny. This algorithm seems to be very broken.
592 * These formulae increase RTO, when it should be decreased, increase
31f34269 593 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
594 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
595 * does not matter how to _calculate_ it. Seems, it was trap
596 * that VJ failed to avoid. 8)
597 */
2de979bd 598 if (m == 0)
1da177e4
LT
599 m = 1;
600 if (tp->srtt != 0) {
601 m -= (tp->srtt >> 3); /* m is now error in rtt est */
602 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
603 if (m < 0) {
604 m = -m; /* m is now abs(error) */
605 m -= (tp->mdev >> 2); /* similar update on mdev */
606 /* This is similar to one of Eifel findings.
607 * Eifel blocks mdev updates when rtt decreases.
608 * This solution is a bit different: we use finer gain
609 * for mdev in this case (alpha*beta).
610 * Like Eifel it also prevents growth of rto,
611 * but also it limits too fast rto decreases,
612 * happening in pure Eifel.
613 */
614 if (m > 0)
615 m >>= 3;
616 } else {
617 m -= (tp->mdev >> 2); /* similar update on mdev */
618 }
619 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
620 if (tp->mdev > tp->mdev_max) {
621 tp->mdev_max = tp->mdev;
622 if (tp->mdev_max > tp->rttvar)
623 tp->rttvar = tp->mdev_max;
624 }
625 if (after(tp->snd_una, tp->rtt_seq)) {
626 if (tp->mdev_max < tp->rttvar)
627 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
628 tp->rtt_seq = tp->snd_nxt;
05bb1fad 629 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
630 }
631 } else {
632 /* no previous measure. */
633 tp->srtt = m<<3; /* take the measured time to be rtt */
634 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 635 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
636 tp->rtt_seq = tp->snd_nxt;
637 }
1da177e4
LT
638}
639
640/* Calculate rto without backoff. This is the second half of Van Jacobson's
641 * routine referred to above.
642 */
463c84b9 643static inline void tcp_set_rto(struct sock *sk)
1da177e4 644{
463c84b9 645 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
646 /* Old crap is replaced with new one. 8)
647 *
648 * More seriously:
649 * 1. If rtt variance happened to be less 50msec, it is hallucination.
650 * It cannot be less due to utterly erratic ACK generation made
651 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
652 * to do with delayed acks, because at cwnd>2 true delack timeout
653 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 654 * ACKs in some circumstances.
1da177e4 655 */
463c84b9 656 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
657
658 /* 2. Fixups made earlier cannot be right.
659 * If we do not estimate RTO correctly without them,
660 * all the algo is pure shit and should be replaced
caa20d9a 661 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
662 */
663}
664
665/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
666 * guarantees that rto is higher.
667 */
463c84b9 668static inline void tcp_bound_rto(struct sock *sk)
1da177e4 669{
463c84b9
ACM
670 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
672}
673
674/* Save metrics learned by this TCP session.
675 This function is called only, when TCP finishes successfully
676 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
677 */
678void tcp_update_metrics(struct sock *sk)
679{
680 struct tcp_sock *tp = tcp_sk(sk);
681 struct dst_entry *dst = __sk_dst_get(sk);
682
683 if (sysctl_tcp_nometrics_save)
684 return;
685
686 dst_confirm(dst);
687
688 if (dst && (dst->flags&DST_HOST)) {
6687e988 689 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
690 int m;
691
6687e988 692 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
693 /* This session failed to estimate rtt. Why?
694 * Probably, no packets returned in time.
695 * Reset our results.
696 */
697 if (!(dst_metric_locked(dst, RTAX_RTT)))
698 dst->metrics[RTAX_RTT-1] = 0;
699 return;
700 }
701
702 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
703
704 /* If newly calculated rtt larger than stored one,
705 * store new one. Otherwise, use EWMA. Remember,
706 * rtt overestimation is always better than underestimation.
707 */
708 if (!(dst_metric_locked(dst, RTAX_RTT))) {
709 if (m <= 0)
710 dst->metrics[RTAX_RTT-1] = tp->srtt;
711 else
712 dst->metrics[RTAX_RTT-1] -= (m>>3);
713 }
714
715 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
716 if (m < 0)
717 m = -m;
718
719 /* Scale deviation to rttvar fixed point */
720 m >>= 1;
721 if (m < tp->mdev)
722 m = tp->mdev;
723
724 if (m >= dst_metric(dst, RTAX_RTTVAR))
725 dst->metrics[RTAX_RTTVAR-1] = m;
726 else
727 dst->metrics[RTAX_RTTVAR-1] -=
728 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
729 }
730
731 if (tp->snd_ssthresh >= 0xFFFF) {
732 /* Slow start still did not finish. */
733 if (dst_metric(dst, RTAX_SSTHRESH) &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
737 if (!dst_metric_locked(dst, RTAX_CWND) &&
738 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
739 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
740 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 741 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
742 /* Cong. avoidance phase, cwnd is reliable. */
743 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
744 dst->metrics[RTAX_SSTHRESH-1] =
745 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
746 if (!dst_metric_locked(dst, RTAX_CWND))
747 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
748 } else {
749 /* Else slow start did not finish, cwnd is non-sense,
750 ssthresh may be also invalid.
751 */
752 if (!dst_metric_locked(dst, RTAX_CWND))
753 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
754 if (dst->metrics[RTAX_SSTHRESH-1] &&
755 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
756 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
757 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
758 }
759
760 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
761 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
762 tp->reordering != sysctl_tcp_reordering)
763 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
764 }
765 }
766}
767
26722873
DM
768/* Numbers are taken from RFC3390.
769 *
770 * John Heffner states:
771 *
772 * The RFC specifies a window of no more than 4380 bytes
773 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
774 * is a bit misleading because they use a clamp at 4380 bytes
775 * rather than use a multiplier in the relevant range.
776 */
1da177e4
LT
777__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
778{
779 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
780
781 if (!cwnd) {
c1b4a7e6 782 if (tp->mss_cache > 1460)
1da177e4
LT
783 cwnd = 2;
784 else
c1b4a7e6 785 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
786 }
787 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
788}
789
40efc6fa 790/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 791void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
792{
793 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 794 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
795
796 tp->prior_ssthresh = 0;
797 tp->bytes_acked = 0;
e01f9d77 798 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 799 tp->undo_marker = 0;
3cfe3baa
IJ
800 if (set_ssthresh)
801 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
802 tp->snd_cwnd = min(tp->snd_cwnd,
803 tcp_packets_in_flight(tp) + 1U);
804 tp->snd_cwnd_cnt = 0;
805 tp->high_seq = tp->snd_nxt;
806 tp->snd_cwnd_stamp = tcp_time_stamp;
807 TCP_ECN_queue_cwr(tp);
808
809 tcp_set_ca_state(sk, TCP_CA_CWR);
810 }
811}
812
1da177e4
LT
813/* Initialize metrics on socket. */
814
815static void tcp_init_metrics(struct sock *sk)
816{
817 struct tcp_sock *tp = tcp_sk(sk);
818 struct dst_entry *dst = __sk_dst_get(sk);
819
820 if (dst == NULL)
821 goto reset;
822
823 dst_confirm(dst);
824
825 if (dst_metric_locked(dst, RTAX_CWND))
826 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
827 if (dst_metric(dst, RTAX_SSTHRESH)) {
828 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
829 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
830 tp->snd_ssthresh = tp->snd_cwnd_clamp;
831 }
832 if (dst_metric(dst, RTAX_REORDERING) &&
833 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
834 tp->rx_opt.sack_ok &= ~2;
835 tp->reordering = dst_metric(dst, RTAX_REORDERING);
836 }
837
838 if (dst_metric(dst, RTAX_RTT) == 0)
839 goto reset;
840
841 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
842 goto reset;
843
844 /* Initial rtt is determined from SYN,SYN-ACK.
845 * The segment is small and rtt may appear much
846 * less than real one. Use per-dst memory
847 * to make it more realistic.
848 *
849 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 850 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
851 * packets force peer to delay ACKs and calculation is correct too.
852 * The algorithm is adaptive and, provided we follow specs, it
853 * NEVER underestimate RTT. BUT! If peer tries to make some clever
854 * tricks sort of "quick acks" for time long enough to decrease RTT
855 * to low value, and then abruptly stops to do it and starts to delay
856 * ACKs, wait for troubles.
857 */
858 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
859 tp->srtt = dst_metric(dst, RTAX_RTT);
860 tp->rtt_seq = tp->snd_nxt;
861 }
862 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
863 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
864 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
865 }
463c84b9
ACM
866 tcp_set_rto(sk);
867 tcp_bound_rto(sk);
868 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
869 goto reset;
870 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
871 tp->snd_cwnd_stamp = tcp_time_stamp;
872 return;
873
874reset:
875 /* Play conservative. If timestamps are not
876 * supported, TCP will fail to recalculate correct
877 * rtt, if initial rto is too small. FORGET ALL AND RESET!
878 */
879 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
880 tp->srtt = 0;
881 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 882 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
883 }
884}
885
6687e988
ACM
886static void tcp_update_reordering(struct sock *sk, const int metric,
887 const int ts)
1da177e4 888{
6687e988 889 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
890 if (metric > tp->reordering) {
891 tp->reordering = min(TCP_MAX_REORDERING, metric);
892
893 /* This exciting event is worth to be remembered. 8) */
894 if (ts)
895 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
896 else if (IsReno(tp))
897 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
898 else if (IsFack(tp))
899 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
900 else
901 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
902#if FASTRETRANS_DEBUG > 1
903 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 904 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
905 tp->reordering,
906 tp->fackets_out,
907 tp->sacked_out,
908 tp->undo_marker ? tp->undo_retrans : 0);
909#endif
910 /* Disable FACK yet. */
911 tp->rx_opt.sack_ok &= ~2;
912 }
913}
914
915/* This procedure tags the retransmission queue when SACKs arrive.
916 *
917 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
918 * Packets in queue with these bits set are counted in variables
919 * sacked_out, retrans_out and lost_out, correspondingly.
920 *
921 * Valid combinations are:
922 * Tag InFlight Description
923 * 0 1 - orig segment is in flight.
924 * S 0 - nothing flies, orig reached receiver.
925 * L 0 - nothing flies, orig lost by net.
926 * R 2 - both orig and retransmit are in flight.
927 * L|R 1 - orig is lost, retransmit is in flight.
928 * S|R 1 - orig reached receiver, retrans is still in flight.
929 * (L|S|R is logically valid, it could occur when L|R is sacked,
930 * but it is equivalent to plain S and code short-curcuits it to S.
931 * L|S is logically invalid, it would mean -1 packet in flight 8))
932 *
933 * These 6 states form finite state machine, controlled by the following events:
934 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
935 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
936 * 3. Loss detection event of one of three flavors:
937 * A. Scoreboard estimator decided the packet is lost.
938 * A'. Reno "three dupacks" marks head of queue lost.
939 * A''. Its FACK modfication, head until snd.fack is lost.
940 * B. SACK arrives sacking data transmitted after never retransmitted
941 * hole was sent out.
942 * C. SACK arrives sacking SND.NXT at the moment, when the
943 * segment was retransmitted.
944 * 4. D-SACK added new rule: D-SACK changes any tag to S.
945 *
946 * It is pleasant to note, that state diagram turns out to be commutative,
947 * so that we are allowed not to be bothered by order of our actions,
948 * when multiple events arrive simultaneously. (see the function below).
949 *
950 * Reordering detection.
951 * --------------------
952 * Reordering metric is maximal distance, which a packet can be displaced
953 * in packet stream. With SACKs we can estimate it:
954 *
955 * 1. SACK fills old hole and the corresponding segment was not
956 * ever retransmitted -> reordering. Alas, we cannot use it
957 * when segment was retransmitted.
958 * 2. The last flaw is solved with D-SACK. D-SACK arrives
959 * for retransmitted and already SACKed segment -> reordering..
960 * Both of these heuristics are not used in Loss state, when we cannot
961 * account for retransmits accurately.
962 */
963static int
964tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
965{
6687e988 966 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 967 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
968 unsigned char *ptr = (skb_transport_header(ack_skb) +
969 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 970 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 971 struct sk_buff *cached_skb;
1da177e4
LT
972 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
973 int reord = tp->packets_out;
974 int prior_fackets;
975 u32 lost_retrans = 0;
976 int flag = 0;
7769f406 977 int found_dup_sack = 0;
fda03fbb 978 int cached_fack_count;
1da177e4 979 int i;
fda03fbb 980 int first_sack_index;
1da177e4 981
d738cd8f 982 if (!tp->sacked_out) {
1da177e4 983 tp->fackets_out = 0;
d738cd8f
IJ
984 tp->highest_sack = tp->snd_una;
985 }
1da177e4
LT
986 prior_fackets = tp->fackets_out;
987
6f74651a
BE
988 /* Check for D-SACK. */
989 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
49ff4bb4 990 flag |= FLAG_DSACKING_ACK;
7769f406 991 found_dup_sack = 1;
6f74651a
BE
992 tp->rx_opt.sack_ok |= 4;
993 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
994 } else if (num_sacks > 1 &&
995 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
996 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
49ff4bb4 997 flag |= FLAG_DSACKING_ACK;
7769f406 998 found_dup_sack = 1;
6f74651a
BE
999 tp->rx_opt.sack_ok |= 4;
1000 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1001 }
1002
1003 /* D-SACK for already forgotten data...
1004 * Do dumb counting. */
7769f406 1005 if (found_dup_sack &&
6f74651a
BE
1006 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
1007 after(ntohl(sp[0].end_seq), tp->undo_marker))
1008 tp->undo_retrans--;
1009
1010 /* Eliminate too old ACKs, but take into
1011 * account more or less fresh ones, they can
1012 * contain valid SACK info.
1013 */
1014 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1015 return 0;
1016
6a438bbe
SH
1017 /* SACK fastpath:
1018 * if the only SACK change is the increase of the end_seq of
1019 * the first block then only apply that SACK block
1020 * and use retrans queue hinting otherwise slowpath */
1021 flag = 1;
6f74651a
BE
1022 for (i = 0; i < num_sacks; i++) {
1023 __be32 start_seq = sp[i].start_seq;
1024 __be32 end_seq = sp[i].end_seq;
6a438bbe 1025
6f74651a 1026 if (i == 0) {
6a438bbe
SH
1027 if (tp->recv_sack_cache[i].start_seq != start_seq)
1028 flag = 0;
1029 } else {
1030 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1031 (tp->recv_sack_cache[i].end_seq != end_seq))
1032 flag = 0;
1033 }
1034 tp->recv_sack_cache[i].start_seq = start_seq;
1035 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1036 }
8a3c3a97
BE
1037 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1038 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1039 tp->recv_sack_cache[i].start_seq = 0;
1040 tp->recv_sack_cache[i].end_seq = 0;
1041 }
6a438bbe 1042
fda03fbb 1043 first_sack_index = 0;
6a438bbe
SH
1044 if (flag)
1045 num_sacks = 1;
1046 else {
1047 int j;
1048 tp->fastpath_skb_hint = NULL;
1049
1050 /* order SACK blocks to allow in order walk of the retrans queue */
1051 for (i = num_sacks-1; i > 0; i--) {
1052 for (j = 0; j < i; j++){
1053 if (after(ntohl(sp[j].start_seq),
1054 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1055 struct tcp_sack_block_wire tmp;
1056
1057 tmp = sp[j];
1058 sp[j] = sp[j+1];
1059 sp[j+1] = tmp;
fda03fbb
BE
1060
1061 /* Track where the first SACK block goes to */
1062 if (j == first_sack_index)
1063 first_sack_index = j+1;
6a438bbe
SH
1064 }
1065
1066 }
1067 }
1068 }
1069
1070 /* clear flag as used for different purpose in following code */
1071 flag = 0;
1072
fda03fbb
BE
1073 /* Use SACK fastpath hint if valid */
1074 cached_skb = tp->fastpath_skb_hint;
1075 cached_fack_count = tp->fastpath_cnt_hint;
1076 if (!cached_skb) {
fe067e8a 1077 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1078 cached_fack_count = 0;
1079 }
1080
6a438bbe
SH
1081 for (i=0; i<num_sacks; i++, sp++) {
1082 struct sk_buff *skb;
1083 __u32 start_seq = ntohl(sp->start_seq);
1084 __u32 end_seq = ntohl(sp->end_seq);
1085 int fack_count;
7769f406 1086 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1087
fda03fbb
BE
1088 skb = cached_skb;
1089 fack_count = cached_fack_count;
1da177e4
LT
1090
1091 /* Event "B" in the comment above. */
1092 if (after(end_seq, tp->high_seq))
1093 flag |= FLAG_DATA_LOST;
1094
fe067e8a 1095 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1096 int in_sack, pcount;
1097 u8 sacked;
1da177e4 1098
fe067e8a
DM
1099 if (skb == tcp_send_head(sk))
1100 break;
1101
fda03fbb
BE
1102 cached_skb = skb;
1103 cached_fack_count = fack_count;
1104 if (i == first_sack_index) {
1105 tp->fastpath_skb_hint = skb;
1106 tp->fastpath_cnt_hint = fack_count;
1107 }
6a438bbe 1108
1da177e4
LT
1109 /* The retransmission queue is always in order, so
1110 * we can short-circuit the walk early.
1111 */
6475be16 1112 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1113 break;
1114
3c05d92e
HX
1115 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1116 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1117
6475be16
DM
1118 pcount = tcp_skb_pcount(skb);
1119
3c05d92e
HX
1120 if (pcount > 1 && !in_sack &&
1121 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1122 unsigned int pkt_len;
1123
3c05d92e
HX
1124 in_sack = !after(start_seq,
1125 TCP_SKB_CB(skb)->seq);
1126
1127 if (!in_sack)
6475be16
DM
1128 pkt_len = (start_seq -
1129 TCP_SKB_CB(skb)->seq);
1130 else
1131 pkt_len = (end_seq -
1132 TCP_SKB_CB(skb)->seq);
7967168c 1133 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1134 break;
1135 pcount = tcp_skb_pcount(skb);
1136 }
1137
1138 fack_count += pcount;
1da177e4 1139
6475be16
DM
1140 sacked = TCP_SKB_CB(skb)->sacked;
1141
1da177e4
LT
1142 /* Account D-SACK for retransmitted packet. */
1143 if ((dup_sack && in_sack) &&
1144 (sacked & TCPCB_RETRANS) &&
1145 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1146 tp->undo_retrans--;
1147
1148 /* The frame is ACKed. */
1149 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1150 if (sacked&TCPCB_RETRANS) {
1151 if ((dup_sack && in_sack) &&
1152 (sacked&TCPCB_SACKED_ACKED))
1153 reord = min(fack_count, reord);
1154 } else {
1155 /* If it was in a hole, we detected reordering. */
1156 if (fack_count < prior_fackets &&
1157 !(sacked&TCPCB_SACKED_ACKED))
1158 reord = min(fack_count, reord);
1159 }
1160
1161 /* Nothing to do; acked frame is about to be dropped. */
1162 continue;
1163 }
1164
1165 if ((sacked&TCPCB_SACKED_RETRANS) &&
1166 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1167 (!lost_retrans || after(end_seq, lost_retrans)))
1168 lost_retrans = end_seq;
1169
1170 if (!in_sack)
1171 continue;
1172
1173 if (!(sacked&TCPCB_SACKED_ACKED)) {
1174 if (sacked & TCPCB_SACKED_RETRANS) {
1175 /* If the segment is not tagged as lost,
1176 * we do not clear RETRANS, believing
1177 * that retransmission is still in flight.
1178 */
1179 if (sacked & TCPCB_LOST) {
1180 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1181 tp->lost_out -= tcp_skb_pcount(skb);
1182 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1183
1184 /* clear lost hint */
1185 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1186 }
1187 } else {
1188 /* New sack for not retransmitted frame,
1189 * which was in hole. It is reordering.
1190 */
1191 if (!(sacked & TCPCB_RETRANS) &&
1192 fack_count < prior_fackets)
1193 reord = min(fack_count, reord);
1194
1195 if (sacked & TCPCB_LOST) {
1196 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1197 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1198
1199 /* clear lost hint */
1200 tp->retransmit_skb_hint = NULL;
1da177e4 1201 }
4dc2665e
IJ
1202 /* SACK enhanced F-RTO detection.
1203 * Set flag if and only if non-rexmitted
1204 * segments below frto_highmark are
1205 * SACKed (RFC4138; Appendix B).
1206 * Clearing correct due to in-order walk
1207 */
1208 if (after(end_seq, tp->frto_highmark)) {
1209 flag &= ~FLAG_ONLY_ORIG_SACKED;
1210 } else {
1211 if (!(sacked & TCPCB_RETRANS))
1212 flag |= FLAG_ONLY_ORIG_SACKED;
1213 }
1da177e4
LT
1214 }
1215
1216 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1217 flag |= FLAG_DATA_SACKED;
1218 tp->sacked_out += tcp_skb_pcount(skb);
1219
1220 if (fack_count > tp->fackets_out)
1221 tp->fackets_out = fack_count;
d738cd8f
IJ
1222
1223 if (after(TCP_SKB_CB(skb)->seq,
1224 tp->highest_sack))
1225 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1226 } else {
1227 if (dup_sack && (sacked&TCPCB_RETRANS))
1228 reord = min(fack_count, reord);
1229 }
1230
1231 /* D-SACK. We can detect redundant retransmission
1232 * in S|R and plain R frames and clear it.
1233 * undo_retrans is decreased above, L|R frames
1234 * are accounted above as well.
1235 */
1236 if (dup_sack &&
1237 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1238 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1239 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1240 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1241 }
1242 }
1243 }
1244
1245 /* Check for lost retransmit. This superb idea is
1246 * borrowed from "ratehalving". Event "C".
1247 * Later note: FACK people cheated me again 8),
1248 * we have to account for reordering! Ugly,
1249 * but should help.
1250 */
6687e988 1251 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1252 struct sk_buff *skb;
1253
fe067e8a
DM
1254 tcp_for_write_queue(skb, sk) {
1255 if (skb == tcp_send_head(sk))
1256 break;
1da177e4
LT
1257 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1258 break;
1259 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1260 continue;
1261 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1262 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1263 (IsFack(tp) ||
1264 !before(lost_retrans,
1265 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1266 tp->mss_cache))) {
1da177e4
LT
1267 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1268 tp->retrans_out -= tcp_skb_pcount(skb);
1269
6a438bbe
SH
1270 /* clear lost hint */
1271 tp->retransmit_skb_hint = NULL;
1272
1da177e4
LT
1273 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1274 tp->lost_out += tcp_skb_pcount(skb);
1275 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1276 flag |= FLAG_DATA_SACKED;
1277 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1278 }
1279 }
1280 }
1281 }
1282
1283 tp->left_out = tp->sacked_out + tp->lost_out;
1284
288035f9 1285 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1286 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1287 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1288
1289#if FASTRETRANS_DEBUG > 0
1290 BUG_TRAP((int)tp->sacked_out >= 0);
1291 BUG_TRAP((int)tp->lost_out >= 0);
1292 BUG_TRAP((int)tp->retrans_out >= 0);
1293 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1294#endif
1295 return flag;
1296}
1297
575ee714
IJ
1298/* F-RTO can only be used if TCP has never retransmitted anything other than
1299 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
30935cf4 1300 */
46d0de4e 1301int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1302{
1303 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1304 struct sk_buff *skb;
1305
575ee714 1306 if (!sysctl_tcp_frto)
46d0de4e 1307 return 0;
bdaae17d 1308
4dc2665e
IJ
1309 if (IsSackFrto())
1310 return 1;
1311
46d0de4e
IJ
1312 /* Avoid expensive walking of rexmit queue if possible */
1313 if (tp->retrans_out > 1)
1314 return 0;
1315
fe067e8a
DM
1316 skb = tcp_write_queue_head(sk);
1317 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1318 tcp_for_write_queue_from(skb, sk) {
1319 if (skb == tcp_send_head(sk))
1320 break;
46d0de4e
IJ
1321 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1322 return 0;
1323 /* Short-circuit when first non-SACKed skb has been checked */
1324 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1325 break;
1326 }
1327 return 1;
bdaae17d
IJ
1328}
1329
30935cf4
IJ
1330/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1331 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1332 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1333 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1334 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1335 * bits are handled if the Loss state is really to be entered (in
1336 * tcp_enter_frto_loss).
7487c48c
IJ
1337 *
1338 * Do like tcp_enter_loss() would; when RTO expires the second time it
1339 * does:
1340 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1341 */
1342void tcp_enter_frto(struct sock *sk)
1343{
6687e988 1344 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1345 struct tcp_sock *tp = tcp_sk(sk);
1346 struct sk_buff *skb;
1347
7487c48c 1348 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1349 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1350 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1351 !icsk->icsk_retransmits)) {
6687e988 1352 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1353 /* Our state is too optimistic in ssthresh() call because cwnd
1354 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1355 * recovery has not yet completed. Pattern would be this: RTO,
1356 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1357 * up here twice).
1358 * RFC4138 should be more specific on what to do, even though
1359 * RTO is quite unlikely to occur after the first Cumulative ACK
1360 * due to back-off and complexity of triggering events ...
1361 */
1362 if (tp->frto_counter) {
1363 u32 stored_cwnd;
1364 stored_cwnd = tp->snd_cwnd;
1365 tp->snd_cwnd = 2;
1366 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1367 tp->snd_cwnd = stored_cwnd;
1368 } else {
1369 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1370 }
1371 /* ... in theory, cong.control module could do "any tricks" in
1372 * ssthresh(), which means that ca_state, lost bits and lost_out
1373 * counter would have to be faked before the call occurs. We
1374 * consider that too expensive, unlikely and hacky, so modules
1375 * using these in ssthresh() must deal these incompatibility
1376 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1377 */
6687e988 1378 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1379 }
1380
1da177e4
LT
1381 tp->undo_marker = tp->snd_una;
1382 tp->undo_retrans = 0;
1383
fe067e8a 1384 skb = tcp_write_queue_head(sk);
d1a54c6a 1385 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1386 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1387 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4
LT
1388 }
1389 tcp_sync_left_out(tp);
1390
4dc2665e
IJ
1391 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1392 * The last condition is necessary at least in tp->frto_counter case.
1393 */
1394 if (IsSackFrto() && (tp->frto_counter ||
1395 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1396 after(tp->high_seq, tp->snd_una)) {
1397 tp->frto_highmark = tp->high_seq;
1398 } else {
1399 tp->frto_highmark = tp->snd_nxt;
1400 }
7b0eb22b
IJ
1401 tcp_set_ca_state(sk, TCP_CA_Disorder);
1402 tp->high_seq = tp->snd_nxt;
7487c48c 1403 tp->frto_counter = 1;
1da177e4
LT
1404}
1405
1406/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1407 * which indicates that we should follow the traditional RTO recovery,
1408 * i.e. mark everything lost and do go-back-N retransmission.
1409 */
d1a54c6a 1410static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1411{
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 struct sk_buff *skb;
1414 int cnt = 0;
1415
1416 tp->sacked_out = 0;
1417 tp->lost_out = 0;
1418 tp->fackets_out = 0;
d1a54c6a 1419 tp->retrans_out = 0;
1da177e4 1420
fe067e8a
DM
1421 tcp_for_write_queue(skb, sk) {
1422 if (skb == tcp_send_head(sk))
1423 break;
1da177e4 1424 cnt += tcp_skb_pcount(skb);
d1a54c6a
IJ
1425 /*
1426 * Count the retransmission made on RTO correctly (only when
1427 * waiting for the first ACK and did not get it)...
1428 */
1429 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1430 /* For some reason this R-bit might get cleared? */
1431 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1432 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1433 /* ...enter this if branch just for the first segment */
1434 flag |= FLAG_DATA_ACKED;
1435 } else {
1436 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1437 }
1da177e4
LT
1438 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1439
1440 /* Do not mark those segments lost that were
1441 * forward transmitted after RTO
1442 */
1443 if (!after(TCP_SKB_CB(skb)->end_seq,
1444 tp->frto_highmark)) {
1445 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1446 tp->lost_out += tcp_skb_pcount(skb);
1447 }
1448 } else {
1449 tp->sacked_out += tcp_skb_pcount(skb);
1450 tp->fackets_out = cnt;
1451 }
1452 }
1453 tcp_sync_left_out(tp);
1454
95c4922b 1455 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1456 tp->snd_cwnd_cnt = 0;
1457 tp->snd_cwnd_stamp = tcp_time_stamp;
1458 tp->undo_marker = 0;
1459 tp->frto_counter = 0;
1460
1461 tp->reordering = min_t(unsigned int, tp->reordering,
1462 sysctl_tcp_reordering);
6687e988 1463 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1464 tp->high_seq = tp->frto_highmark;
1465 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1466
1467 clear_all_retrans_hints(tp);
1da177e4
LT
1468}
1469
1470void tcp_clear_retrans(struct tcp_sock *tp)
1471{
1472 tp->left_out = 0;
1473 tp->retrans_out = 0;
1474
1475 tp->fackets_out = 0;
1476 tp->sacked_out = 0;
1477 tp->lost_out = 0;
1478
1479 tp->undo_marker = 0;
1480 tp->undo_retrans = 0;
1481}
1482
1483/* Enter Loss state. If "how" is not zero, forget all SACK information
1484 * and reset tags completely, otherwise preserve SACKs. If receiver
1485 * dropped its ofo queue, we will know this due to reneging detection.
1486 */
1487void tcp_enter_loss(struct sock *sk, int how)
1488{
6687e988 1489 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1490 struct tcp_sock *tp = tcp_sk(sk);
1491 struct sk_buff *skb;
1492 int cnt = 0;
1493
1494 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1495 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1496 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1497 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1498 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1499 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1500 }
1501 tp->snd_cwnd = 1;
1502 tp->snd_cwnd_cnt = 0;
1503 tp->snd_cwnd_stamp = tcp_time_stamp;
1504
9772efb9 1505 tp->bytes_acked = 0;
1da177e4
LT
1506 tcp_clear_retrans(tp);
1507
1508 /* Push undo marker, if it was plain RTO and nothing
1509 * was retransmitted. */
1510 if (!how)
1511 tp->undo_marker = tp->snd_una;
1512
fe067e8a
DM
1513 tcp_for_write_queue(skb, sk) {
1514 if (skb == tcp_send_head(sk))
1515 break;
1da177e4
LT
1516 cnt += tcp_skb_pcount(skb);
1517 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1518 tp->undo_marker = 0;
1519 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1520 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1521 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1522 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1523 tp->lost_out += tcp_skb_pcount(skb);
1524 } else {
1525 tp->sacked_out += tcp_skb_pcount(skb);
1526 tp->fackets_out = cnt;
1527 }
1528 }
1529 tcp_sync_left_out(tp);
1530
1531 tp->reordering = min_t(unsigned int, tp->reordering,
1532 sysctl_tcp_reordering);
6687e988 1533 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1534 tp->high_seq = tp->snd_nxt;
1535 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1536 /* Abort FRTO algorithm if one is in progress */
1537 tp->frto_counter = 0;
6a438bbe
SH
1538
1539 clear_all_retrans_hints(tp);
1da177e4
LT
1540}
1541
463c84b9 1542static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1543{
1544 struct sk_buff *skb;
1545
1546 /* If ACK arrived pointing to a remembered SACK,
1547 * it means that our remembered SACKs do not reflect
1548 * real state of receiver i.e.
1549 * receiver _host_ is heavily congested (or buggy).
1550 * Do processing similar to RTO timeout.
1551 */
fe067e8a 1552 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1553 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1554 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1555 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1556
1557 tcp_enter_loss(sk, 1);
6687e988 1558 icsk->icsk_retransmits++;
fe067e8a 1559 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1560 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1561 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1562 return 1;
1563 }
1564 return 0;
1565}
1566
1567static inline int tcp_fackets_out(struct tcp_sock *tp)
1568{
1569 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1570}
1571
463c84b9 1572static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1573{
463c84b9 1574 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1575}
1576
9e412ba7 1577static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1578{
9e412ba7
IJ
1579 struct tcp_sock *tp = tcp_sk(sk);
1580
1da177e4 1581 return tp->packets_out &&
fe067e8a 1582 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1583}
1584
1585/* Linux NewReno/SACK/FACK/ECN state machine.
1586 * --------------------------------------
1587 *
1588 * "Open" Normal state, no dubious events, fast path.
1589 * "Disorder" In all the respects it is "Open",
1590 * but requires a bit more attention. It is entered when
1591 * we see some SACKs or dupacks. It is split of "Open"
1592 * mainly to move some processing from fast path to slow one.
1593 * "CWR" CWND was reduced due to some Congestion Notification event.
1594 * It can be ECN, ICMP source quench, local device congestion.
1595 * "Recovery" CWND was reduced, we are fast-retransmitting.
1596 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1597 *
1598 * tcp_fastretrans_alert() is entered:
1599 * - each incoming ACK, if state is not "Open"
1600 * - when arrived ACK is unusual, namely:
1601 * * SACK
1602 * * Duplicate ACK.
1603 * * ECN ECE.
1604 *
1605 * Counting packets in flight is pretty simple.
1606 *
1607 * in_flight = packets_out - left_out + retrans_out
1608 *
1609 * packets_out is SND.NXT-SND.UNA counted in packets.
1610 *
1611 * retrans_out is number of retransmitted segments.
1612 *
1613 * left_out is number of segments left network, but not ACKed yet.
1614 *
1615 * left_out = sacked_out + lost_out
1616 *
1617 * sacked_out: Packets, which arrived to receiver out of order
1618 * and hence not ACKed. With SACKs this number is simply
1619 * amount of SACKed data. Even without SACKs
1620 * it is easy to give pretty reliable estimate of this number,
1621 * counting duplicate ACKs.
1622 *
1623 * lost_out: Packets lost by network. TCP has no explicit
1624 * "loss notification" feedback from network (for now).
1625 * It means that this number can be only _guessed_.
1626 * Actually, it is the heuristics to predict lossage that
1627 * distinguishes different algorithms.
1628 *
1629 * F.e. after RTO, when all the queue is considered as lost,
1630 * lost_out = packets_out and in_flight = retrans_out.
1631 *
1632 * Essentially, we have now two algorithms counting
1633 * lost packets.
1634 *
1635 * FACK: It is the simplest heuristics. As soon as we decided
1636 * that something is lost, we decide that _all_ not SACKed
1637 * packets until the most forward SACK are lost. I.e.
1638 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1639 * It is absolutely correct estimate, if network does not reorder
1640 * packets. And it loses any connection to reality when reordering
1641 * takes place. We use FACK by default until reordering
1642 * is suspected on the path to this destination.
1643 *
1644 * NewReno: when Recovery is entered, we assume that one segment
1645 * is lost (classic Reno). While we are in Recovery and
1646 * a partial ACK arrives, we assume that one more packet
1647 * is lost (NewReno). This heuristics are the same in NewReno
1648 * and SACK.
1649 *
1650 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1651 * deflation etc. CWND is real congestion window, never inflated, changes
1652 * only according to classic VJ rules.
1653 *
1654 * Really tricky (and requiring careful tuning) part of algorithm
1655 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1656 * The first determines the moment _when_ we should reduce CWND and,
1657 * hence, slow down forward transmission. In fact, it determines the moment
1658 * when we decide that hole is caused by loss, rather than by a reorder.
1659 *
1660 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1661 * holes, caused by lost packets.
1662 *
1663 * And the most logically complicated part of algorithm is undo
1664 * heuristics. We detect false retransmits due to both too early
1665 * fast retransmit (reordering) and underestimated RTO, analyzing
1666 * timestamps and D-SACKs. When we detect that some segments were
1667 * retransmitted by mistake and CWND reduction was wrong, we undo
1668 * window reduction and abort recovery phase. This logic is hidden
1669 * inside several functions named tcp_try_undo_<something>.
1670 */
1671
1672/* This function decides, when we should leave Disordered state
1673 * and enter Recovery phase, reducing congestion window.
1674 *
1675 * Main question: may we further continue forward transmission
1676 * with the same cwnd?
1677 */
9e412ba7 1678static int tcp_time_to_recover(struct sock *sk)
1da177e4 1679{
9e412ba7 1680 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1681 __u32 packets_out;
1682
52c63f1e
IJ
1683 /* Do not perform any recovery during FRTO algorithm */
1684 if (tp->frto_counter)
1685 return 0;
1686
1da177e4
LT
1687 /* Trick#1: The loss is proven. */
1688 if (tp->lost_out)
1689 return 1;
1690
1691 /* Not-A-Trick#2 : Classic rule... */
1692 if (tcp_fackets_out(tp) > tp->reordering)
1693 return 1;
1694
1695 /* Trick#3 : when we use RFC2988 timer restart, fast
1696 * retransmit can be triggered by timeout of queue head.
1697 */
9e412ba7 1698 if (tcp_head_timedout(sk))
1da177e4
LT
1699 return 1;
1700
1701 /* Trick#4: It is still not OK... But will it be useful to delay
1702 * recovery more?
1703 */
1704 packets_out = tp->packets_out;
1705 if (packets_out <= tp->reordering &&
1706 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1707 !tcp_may_send_now(sk)) {
1da177e4
LT
1708 /* We have nothing to send. This connection is limited
1709 * either by receiver window or by application.
1710 */
1711 return 1;
1712 }
1713
1714 return 0;
1715}
1716
1717/* If we receive more dupacks than we expected counting segments
1718 * in assumption of absent reordering, interpret this as reordering.
1719 * The only another reason could be bug in receiver TCP.
1720 */
6687e988 1721static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1722{
6687e988 1723 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1724 u32 holes;
1725
1726 holes = max(tp->lost_out, 1U);
1727 holes = min(holes, tp->packets_out);
1728
1729 if ((tp->sacked_out + holes) > tp->packets_out) {
1730 tp->sacked_out = tp->packets_out - holes;
6687e988 1731 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1732 }
1733}
1734
1735/* Emulate SACKs for SACKless connection: account for a new dupack. */
1736
6687e988 1737static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1738{
6687e988 1739 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1740 tp->sacked_out++;
6687e988 1741 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1742 tcp_sync_left_out(tp);
1743}
1744
1745/* Account for ACK, ACKing some data in Reno Recovery phase. */
1746
9e412ba7 1747static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1da177e4 1748{
9e412ba7
IJ
1749 struct tcp_sock *tp = tcp_sk(sk);
1750
1da177e4
LT
1751 if (acked > 0) {
1752 /* One ACK acked hole. The rest eat duplicate ACKs. */
1753 if (acked-1 >= tp->sacked_out)
1754 tp->sacked_out = 0;
1755 else
1756 tp->sacked_out -= acked-1;
1757 }
6687e988 1758 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1759 tcp_sync_left_out(tp);
1760}
1761
1762static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1763{
1764 tp->sacked_out = 0;
1765 tp->left_out = tp->lost_out;
1766}
1767
d8f4f223
IJ
1768/* RFC: This is from the original, I doubt that this is necessary at all:
1769 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1770 * retransmitted past LOST markings in the first place? I'm not fully sure
1771 * about undo and end of connection cases, which can cause R without L?
1772 */
1773static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1774 struct sk_buff *skb)
1775{
1776 if ((tp->retransmit_skb_hint != NULL) &&
1777 before(TCP_SKB_CB(skb)->seq,
1778 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1779 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1780}
1781
1da177e4 1782/* Mark head of queue up as lost. */
9e412ba7 1783static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1784 int packets, u32 high_seq)
1785{
9e412ba7 1786 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1787 struct sk_buff *skb;
6a438bbe 1788 int cnt;
1da177e4 1789
6a438bbe
SH
1790 BUG_TRAP(packets <= tp->packets_out);
1791 if (tp->lost_skb_hint) {
1792 skb = tp->lost_skb_hint;
1793 cnt = tp->lost_cnt_hint;
1794 } else {
fe067e8a 1795 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1796 cnt = 0;
1797 }
1da177e4 1798
fe067e8a
DM
1799 tcp_for_write_queue_from(skb, sk) {
1800 if (skb == tcp_send_head(sk))
1801 break;
6a438bbe
SH
1802 /* TODO: do this better */
1803 /* this is not the most efficient way to do this... */
1804 tp->lost_skb_hint = skb;
1805 tp->lost_cnt_hint = cnt;
1806 cnt += tcp_skb_pcount(skb);
1807 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1808 break;
1809 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1810 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1811 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1812 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1813 }
1814 }
1815 tcp_sync_left_out(tp);
1816}
1817
1818/* Account newly detected lost packet(s) */
1819
9e412ba7 1820static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1821{
9e412ba7
IJ
1822 struct tcp_sock *tp = tcp_sk(sk);
1823
1da177e4
LT
1824 if (IsFack(tp)) {
1825 int lost = tp->fackets_out - tp->reordering;
1826 if (lost <= 0)
1827 lost = 1;
9e412ba7 1828 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1829 } else {
9e412ba7 1830 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1831 }
1832
1833 /* New heuristics: it is possible only after we switched
1834 * to restart timer each time when something is ACKed.
1835 * Hence, we can detect timed out packets during fast
1836 * retransmit without falling to slow start.
1837 */
9e412ba7 1838 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
1839 struct sk_buff *skb;
1840
6a438bbe 1841 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 1842 : tcp_write_queue_head(sk);
6a438bbe 1843
fe067e8a
DM
1844 tcp_for_write_queue_from(skb, sk) {
1845 if (skb == tcp_send_head(sk))
1846 break;
6a438bbe
SH
1847 if (!tcp_skb_timedout(sk, skb))
1848 break;
1849
1850 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1851 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1852 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1853 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1854 }
1855 }
6a438bbe
SH
1856
1857 tp->scoreboard_skb_hint = skb;
1858
1da177e4
LT
1859 tcp_sync_left_out(tp);
1860 }
1861}
1862
1863/* CWND moderation, preventing bursts due to too big ACKs
1864 * in dubious situations.
1865 */
1866static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1867{
1868 tp->snd_cwnd = min(tp->snd_cwnd,
1869 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1870 tp->snd_cwnd_stamp = tcp_time_stamp;
1871}
1872
72dc5b92
SH
1873/* Lower bound on congestion window is slow start threshold
1874 * unless congestion avoidance choice decides to overide it.
1875 */
1876static inline u32 tcp_cwnd_min(const struct sock *sk)
1877{
1878 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1879
1880 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1881}
1882
1da177e4 1883/* Decrease cwnd each second ack. */
1e757f99 1884static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 1885{
6687e988 1886 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1887 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 1888
49ff4bb4 1889 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
1e757f99
IJ
1890 (IsReno(tp) && !(flag&FLAG_NOT_DUP))) {
1891 tp->snd_cwnd_cnt = decr&1;
1892 decr >>= 1;
1da177e4 1893
1e757f99
IJ
1894 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1895 tp->snd_cwnd -= decr;
1da177e4 1896
1e757f99
IJ
1897 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1898 tp->snd_cwnd_stamp = tcp_time_stamp;
1899 }
1da177e4
LT
1900}
1901
1902/* Nothing was retransmitted or returned timestamp is less
1903 * than timestamp of the first retransmission.
1904 */
1905static inline int tcp_packet_delayed(struct tcp_sock *tp)
1906{
1907 return !tp->retrans_stamp ||
1908 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1909 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1910}
1911
1912/* Undo procedures. */
1913
1914#if FASTRETRANS_DEBUG > 1
9e412ba7 1915static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 1916{
9e412ba7 1917 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1918 struct inet_sock *inet = inet_sk(sk);
9e412ba7 1919
1da177e4
LT
1920 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1921 msg,
1922 NIPQUAD(inet->daddr), ntohs(inet->dport),
1923 tp->snd_cwnd, tp->left_out,
1924 tp->snd_ssthresh, tp->prior_ssthresh,
1925 tp->packets_out);
1926}
1927#else
1928#define DBGUNDO(x...) do { } while (0)
1929#endif
1930
6687e988 1931static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1932{
6687e988
ACM
1933 struct tcp_sock *tp = tcp_sk(sk);
1934
1da177e4 1935 if (tp->prior_ssthresh) {
6687e988
ACM
1936 const struct inet_connection_sock *icsk = inet_csk(sk);
1937
1938 if (icsk->icsk_ca_ops->undo_cwnd)
1939 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1940 else
1941 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1942
1943 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1944 tp->snd_ssthresh = tp->prior_ssthresh;
1945 TCP_ECN_withdraw_cwr(tp);
1946 }
1947 } else {
1948 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1949 }
1950 tcp_moderate_cwnd(tp);
1951 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1952
1953 /* There is something screwy going on with the retrans hints after
1954 an undo */
1955 clear_all_retrans_hints(tp);
1da177e4
LT
1956}
1957
1958static inline int tcp_may_undo(struct tcp_sock *tp)
1959{
1960 return tp->undo_marker &&
1961 (!tp->undo_retrans || tcp_packet_delayed(tp));
1962}
1963
1964/* People celebrate: "We love our President!" */
9e412ba7 1965static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 1966{
9e412ba7
IJ
1967 struct tcp_sock *tp = tcp_sk(sk);
1968
1da177e4
LT
1969 if (tcp_may_undo(tp)) {
1970 /* Happy end! We did not retransmit anything
1971 * or our original transmission succeeded.
1972 */
9e412ba7 1973 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
1974 tcp_undo_cwr(sk, 1);
1975 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1976 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1977 else
1978 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1979 tp->undo_marker = 0;
1980 }
1981 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1982 /* Hold old state until something *above* high_seq
1983 * is ACKed. For Reno it is MUST to prevent false
1984 * fast retransmits (RFC2582). SACK TCP is safe. */
1985 tcp_moderate_cwnd(tp);
1986 return 1;
1987 }
6687e988 1988 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1989 return 0;
1990}
1991
1992/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 1993static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 1994{
9e412ba7
IJ
1995 struct tcp_sock *tp = tcp_sk(sk);
1996
1da177e4 1997 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 1998 DBGUNDO(sk, "D-SACK");
6687e988 1999 tcp_undo_cwr(sk, 1);
1da177e4
LT
2000 tp->undo_marker = 0;
2001 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2002 }
2003}
2004
2005/* Undo during fast recovery after partial ACK. */
2006
9e412ba7 2007static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2008{
9e412ba7 2009 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2010 /* Partial ACK arrived. Force Hoe's retransmit. */
2011 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
2012
2013 if (tcp_may_undo(tp)) {
2014 /* Plain luck! Hole if filled with delayed
2015 * packet, rather than with a retransmit.
2016 */
2017 if (tp->retrans_out == 0)
2018 tp->retrans_stamp = 0;
2019
6687e988 2020 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2021
9e412ba7 2022 DBGUNDO(sk, "Hoe");
6687e988 2023 tcp_undo_cwr(sk, 0);
1da177e4
LT
2024 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2025
2026 /* So... Do not make Hoe's retransmit yet.
2027 * If the first packet was delayed, the rest
2028 * ones are most probably delayed as well.
2029 */
2030 failed = 0;
2031 }
2032 return failed;
2033}
2034
2035/* Undo during loss recovery after partial ACK. */
9e412ba7 2036static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2037{
9e412ba7
IJ
2038 struct tcp_sock *tp = tcp_sk(sk);
2039
1da177e4
LT
2040 if (tcp_may_undo(tp)) {
2041 struct sk_buff *skb;
fe067e8a
DM
2042 tcp_for_write_queue(skb, sk) {
2043 if (skb == tcp_send_head(sk))
2044 break;
1da177e4
LT
2045 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2046 }
6a438bbe
SH
2047
2048 clear_all_retrans_hints(tp);
2049
9e412ba7 2050 DBGUNDO(sk, "partial loss");
1da177e4
LT
2051 tp->lost_out = 0;
2052 tp->left_out = tp->sacked_out;
6687e988 2053 tcp_undo_cwr(sk, 1);
1da177e4 2054 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2055 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
2056 tp->undo_marker = 0;
2057 if (!IsReno(tp))
6687e988 2058 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2059 return 1;
2060 }
2061 return 0;
2062}
2063
6687e988 2064static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2065{
6687e988 2066 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2067 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2068 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2069 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2070}
2071
9e412ba7 2072static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2073{
9e412ba7
IJ
2074 struct tcp_sock *tp = tcp_sk(sk);
2075
af15cc7b 2076 tcp_sync_left_out(tp);
1da177e4
LT
2077
2078 if (tp->retrans_out == 0)
2079 tp->retrans_stamp = 0;
2080
2081 if (flag&FLAG_ECE)
3cfe3baa 2082 tcp_enter_cwr(sk, 1);
1da177e4 2083
6687e988 2084 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2085 int state = TCP_CA_Open;
2086
2087 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2088 state = TCP_CA_Disorder;
2089
6687e988
ACM
2090 if (inet_csk(sk)->icsk_ca_state != state) {
2091 tcp_set_ca_state(sk, state);
1da177e4
LT
2092 tp->high_seq = tp->snd_nxt;
2093 }
2094 tcp_moderate_cwnd(tp);
2095 } else {
1e757f99 2096 tcp_cwnd_down(sk, flag);
1da177e4
LT
2097 }
2098}
2099
5d424d5a
JH
2100static void tcp_mtup_probe_failed(struct sock *sk)
2101{
2102 struct inet_connection_sock *icsk = inet_csk(sk);
2103
2104 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2105 icsk->icsk_mtup.probe_size = 0;
2106}
2107
2108static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2109{
2110 struct tcp_sock *tp = tcp_sk(sk);
2111 struct inet_connection_sock *icsk = inet_csk(sk);
2112
2113 /* FIXME: breaks with very large cwnd */
2114 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2115 tp->snd_cwnd = tp->snd_cwnd *
2116 tcp_mss_to_mtu(sk, tp->mss_cache) /
2117 icsk->icsk_mtup.probe_size;
2118 tp->snd_cwnd_cnt = 0;
2119 tp->snd_cwnd_stamp = tcp_time_stamp;
2120 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2121
2122 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2123 icsk->icsk_mtup.probe_size = 0;
2124 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2125}
2126
2127
1da177e4
LT
2128/* Process an event, which can update packets-in-flight not trivially.
2129 * Main goal of this function is to calculate new estimate for left_out,
2130 * taking into account both packets sitting in receiver's buffer and
2131 * packets lost by network.
2132 *
2133 * Besides that it does CWND reduction, when packet loss is detected
2134 * and changes state of machine.
2135 *
2136 * It does _not_ decide what to send, it is made in function
2137 * tcp_xmit_retransmit_queue().
2138 */
2139static void
2e605294 2140tcp_fastretrans_alert(struct sock *sk, int prior_packets, int flag)
1da177e4 2141{
6687e988 2142 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2143 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2144 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2145 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2146 (tp->fackets_out > tp->reordering));
1da177e4
LT
2147
2148 /* Some technical things:
2149 * 1. Reno does not count dupacks (sacked_out) automatically. */
2150 if (!tp->packets_out)
2151 tp->sacked_out = 0;
e905a9ed 2152 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
2153 if (tp->sacked_out == 0)
2154 tp->fackets_out = 0;
2155
e905a9ed 2156 /* Now state machine starts.
1da177e4
LT
2157 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2158 if (flag&FLAG_ECE)
2159 tp->prior_ssthresh = 0;
2160
2161 /* B. In all the states check for reneging SACKs. */
463c84b9 2162 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2163 return;
2164
2165 /* C. Process data loss notification, provided it is valid. */
2166 if ((flag&FLAG_DATA_LOST) &&
2167 before(tp->snd_una, tp->high_seq) &&
6687e988 2168 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2169 tp->fackets_out > tp->reordering) {
9e412ba7 2170 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2171 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2172 }
2173
2174 /* D. Synchronize left_out to current state. */
2175 tcp_sync_left_out(tp);
2176
2177 /* E. Check state exit conditions. State can be terminated
2178 * when high_seq is ACKed. */
6687e988 2179 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2180 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2181 tp->retrans_stamp = 0;
2182 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2183 switch (icsk->icsk_ca_state) {
1da177e4 2184 case TCP_CA_Loss:
6687e988 2185 icsk->icsk_retransmits = 0;
9e412ba7 2186 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2187 return;
2188 break;
2189
2190 case TCP_CA_CWR:
2191 /* CWR is to be held something *above* high_seq
2192 * is ACKed for CWR bit to reach receiver. */
2193 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2194 tcp_complete_cwr(sk);
2195 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2196 }
2197 break;
2198
2199 case TCP_CA_Disorder:
9e412ba7 2200 tcp_try_undo_dsack(sk);
1da177e4
LT
2201 if (!tp->undo_marker ||
2202 /* For SACK case do not Open to allow to undo
2203 * catching for all duplicate ACKs. */
2204 IsReno(tp) || tp->snd_una != tp->high_seq) {
2205 tp->undo_marker = 0;
6687e988 2206 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2207 }
2208 break;
2209
2210 case TCP_CA_Recovery:
2211 if (IsReno(tp))
2212 tcp_reset_reno_sack(tp);
9e412ba7 2213 if (tcp_try_undo_recovery(sk))
1da177e4 2214 return;
6687e988 2215 tcp_complete_cwr(sk);
1da177e4
LT
2216 break;
2217 }
2218 }
2219
2220 /* F. Process state. */
6687e988 2221 switch (icsk->icsk_ca_state) {
1da177e4 2222 case TCP_CA_Recovery:
2e605294 2223 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
1da177e4 2224 if (IsReno(tp) && is_dupack)
6687e988 2225 tcp_add_reno_sack(sk);
1da177e4
LT
2226 } else {
2227 int acked = prior_packets - tp->packets_out;
2228 if (IsReno(tp))
9e412ba7 2229 tcp_remove_reno_sacks(sk, acked);
2e605294 2230 do_lost = tcp_try_undo_partial(sk, acked);
1da177e4
LT
2231 }
2232 break;
2233 case TCP_CA_Loss:
2234 if (flag&FLAG_DATA_ACKED)
6687e988 2235 icsk->icsk_retransmits = 0;
9e412ba7 2236 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2237 tcp_moderate_cwnd(tp);
2238 tcp_xmit_retransmit_queue(sk);
2239 return;
2240 }
6687e988 2241 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2242 return;
2243 /* Loss is undone; fall through to processing in Open state. */
2244 default:
2245 if (IsReno(tp)) {
2e605294 2246 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2247 tcp_reset_reno_sack(tp);
2248 if (is_dupack)
6687e988 2249 tcp_add_reno_sack(sk);
1da177e4
LT
2250 }
2251
6687e988 2252 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2253 tcp_try_undo_dsack(sk);
1da177e4 2254
9e412ba7
IJ
2255 if (!tcp_time_to_recover(sk)) {
2256 tcp_try_to_open(sk, flag);
1da177e4
LT
2257 return;
2258 }
2259
5d424d5a
JH
2260 /* MTU probe failure: don't reduce cwnd */
2261 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2262 icsk->icsk_mtup.probe_size &&
0e7b1368 2263 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2264 tcp_mtup_probe_failed(sk);
2265 /* Restores the reduction we did in tcp_mtup_probe() */
2266 tp->snd_cwnd++;
2267 tcp_simple_retransmit(sk);
2268 return;
2269 }
2270
1da177e4
LT
2271 /* Otherwise enter Recovery state */
2272
2273 if (IsReno(tp))
2274 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2275 else
2276 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2277
2278 tp->high_seq = tp->snd_nxt;
2279 tp->prior_ssthresh = 0;
2280 tp->undo_marker = tp->snd_una;
2281 tp->undo_retrans = tp->retrans_out;
2282
6687e988 2283 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2284 if (!(flag&FLAG_ECE))
6687e988
ACM
2285 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2286 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2287 TCP_ECN_queue_cwr(tp);
2288 }
2289
9772efb9 2290 tp->bytes_acked = 0;
1da177e4 2291 tp->snd_cwnd_cnt = 0;
6687e988 2292 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2293 }
2294
2e605294 2295 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2296 tcp_update_scoreboard(sk);
1e757f99 2297 tcp_cwnd_down(sk, flag);
1da177e4
LT
2298 tcp_xmit_retransmit_queue(sk);
2299}
2300
2301/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2302 * with this code. (Supersedes RFC1323)
1da177e4 2303 */
2d2abbab 2304static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2305{
1da177e4
LT
2306 /* RTTM Rule: A TSecr value received in a segment is used to
2307 * update the averaged RTT measurement only if the segment
2308 * acknowledges some new data, i.e., only if it advances the
2309 * left edge of the send window.
2310 *
2311 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2312 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2313 *
2314 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2315 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2316 * samples are accepted even from very old segments: f.e., when rtt=1
2317 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2318 * answer arrives rto becomes 120 seconds! If at least one of segments
2319 * in window is lost... Voila. --ANK (010210)
2320 */
463c84b9
ACM
2321 struct tcp_sock *tp = tcp_sk(sk);
2322 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2323 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2324 tcp_set_rto(sk);
2325 inet_csk(sk)->icsk_backoff = 0;
2326 tcp_bound_rto(sk);
1da177e4
LT
2327}
2328
2d2abbab 2329static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2330{
2331 /* We don't have a timestamp. Can only use
2332 * packets that are not retransmitted to determine
2333 * rtt estimates. Also, we must not reset the
2334 * backoff for rto until we get a non-retransmitted
2335 * packet. This allows us to deal with a situation
2336 * where the network delay has increased suddenly.
2337 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2338 */
2339
2340 if (flag & FLAG_RETRANS_DATA_ACKED)
2341 return;
2342
2d2abbab 2343 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2344 tcp_set_rto(sk);
2345 inet_csk(sk)->icsk_backoff = 0;
2346 tcp_bound_rto(sk);
1da177e4
LT
2347}
2348
463c84b9 2349static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2350 const s32 seq_rtt)
1da177e4 2351{
463c84b9 2352 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2353 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2354 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2355 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2356 else if (seq_rtt >= 0)
2d2abbab 2357 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2358}
2359
16751347 2360static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2361 u32 in_flight, int good)
1da177e4 2362{
6687e988 2363 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2364 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2365 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2366}
2367
1da177e4
LT
2368/* Restart timer after forward progress on connection.
2369 * RFC2988 recommends to restart timer to now+rto.
2370 */
2371
9e412ba7 2372static void tcp_ack_packets_out(struct sock *sk)
1da177e4 2373{
9e412ba7
IJ
2374 struct tcp_sock *tp = tcp_sk(sk);
2375
1da177e4 2376 if (!tp->packets_out) {
463c84b9 2377 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2378 } else {
3f421baa 2379 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2380 }
2381}
2382
1da177e4
LT
2383static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2384 __u32 now, __s32 *seq_rtt)
2385{
2386 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2387 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2388 __u32 seq = tp->snd_una;
2389 __u32 packets_acked;
2390 int acked = 0;
2391
2392 /* If we get here, the whole TSO packet has not been
2393 * acked.
2394 */
2395 BUG_ON(!after(scb->end_seq, seq));
2396
2397 packets_acked = tcp_skb_pcount(skb);
2398 if (tcp_trim_head(sk, skb, seq - scb->seq))
2399 return 0;
2400 packets_acked -= tcp_skb_pcount(skb);
2401
2402 if (packets_acked) {
2403 __u8 sacked = scb->sacked;
2404
2405 acked |= FLAG_DATA_ACKED;
2406 if (sacked) {
2407 if (sacked & TCPCB_RETRANS) {
2408 if (sacked & TCPCB_SACKED_RETRANS)
2409 tp->retrans_out -= packets_acked;
2410 acked |= FLAG_RETRANS_DATA_ACKED;
2411 *seq_rtt = -1;
2412 } else if (*seq_rtt < 0)
2413 *seq_rtt = now - scb->when;
2414 if (sacked & TCPCB_SACKED_ACKED)
2415 tp->sacked_out -= packets_acked;
2416 if (sacked & TCPCB_LOST)
2417 tp->lost_out -= packets_acked;
2418 if (sacked & TCPCB_URG) {
2419 if (tp->urg_mode &&
2420 !before(seq, tp->snd_up))
2421 tp->urg_mode = 0;
2422 }
2423 } else if (*seq_rtt < 0)
2424 *seq_rtt = now - scb->when;
2425
2426 if (tp->fackets_out) {
2427 __u32 dval = min(tp->fackets_out, packets_acked);
2428 tp->fackets_out -= dval;
2429 }
48611c47
IJ
2430 /* hint's skb might be NULL but we don't need to care */
2431 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2432 tp->fastpath_cnt_hint);
1da177e4
LT
2433 tp->packets_out -= packets_acked;
2434
2435 BUG_ON(tcp_skb_pcount(skb) == 0);
2436 BUG_ON(!before(scb->seq, scb->end_seq));
2437 }
2438
2439 return acked;
2440}
2441
1da177e4 2442/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2443static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2444{
2445 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2446 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2447 struct sk_buff *skb;
2448 __u32 now = tcp_time_stamp;
2449 int acked = 0;
6418204f 2450 int prior_packets = tp->packets_out;
1da177e4 2451 __s32 seq_rtt = -1;
b9ce204f 2452 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2453
fe067e8a
DM
2454 while ((skb = tcp_write_queue_head(sk)) &&
2455 skb != tcp_send_head(sk)) {
e905a9ed 2456 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2457 __u8 sacked = scb->sacked;
2458
2459 /* If our packet is before the ack sequence we can
2460 * discard it as it's confirmed to have arrived at
2461 * the other end.
2462 */
2463 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2464 if (tcp_skb_pcount(skb) > 1 &&
2465 after(tp->snd_una, scb->seq))
1da177e4
LT
2466 acked |= tcp_tso_acked(sk, skb,
2467 now, &seq_rtt);
2468 break;
2469 }
2470
2471 /* Initial outgoing SYN's get put onto the write_queue
2472 * just like anything else we transmit. It is not
2473 * true data, and if we misinform our callers that
2474 * this ACK acks real data, we will erroneously exit
2475 * connection startup slow start one packet too
2476 * quickly. This is severely frowned upon behavior.
2477 */
2478 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2479 acked |= FLAG_DATA_ACKED;
2480 } else {
2481 acked |= FLAG_SYN_ACKED;
2482 tp->retrans_stamp = 0;
2483 }
2484
5d424d5a
JH
2485 /* MTU probing checks */
2486 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2487 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2488 tcp_mtup_probe_success(sk, skb);
2489 }
2490 }
2491
1da177e4
LT
2492 if (sacked) {
2493 if (sacked & TCPCB_RETRANS) {
2de979bd 2494 if (sacked & TCPCB_SACKED_RETRANS)
1da177e4
LT
2495 tp->retrans_out -= tcp_skb_pcount(skb);
2496 acked |= FLAG_RETRANS_DATA_ACKED;
2497 seq_rtt = -1;
2d2abbab 2498 } else if (seq_rtt < 0) {
1da177e4 2499 seq_rtt = now - scb->when;
164891aa 2500 last_ackt = skb->tstamp;
a61bbcf2 2501 }
1da177e4
LT
2502 if (sacked & TCPCB_SACKED_ACKED)
2503 tp->sacked_out -= tcp_skb_pcount(skb);
2504 if (sacked & TCPCB_LOST)
2505 tp->lost_out -= tcp_skb_pcount(skb);
2506 if (sacked & TCPCB_URG) {
2507 if (tp->urg_mode &&
2508 !before(scb->end_seq, tp->snd_up))
2509 tp->urg_mode = 0;
2510 }
2d2abbab 2511 } else if (seq_rtt < 0) {
1da177e4 2512 seq_rtt = now - scb->when;
164891aa 2513 last_ackt = skb->tstamp;
2d2abbab 2514 }
1da177e4
LT
2515 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2516 tcp_packets_out_dec(tp, skb);
fe067e8a 2517 tcp_unlink_write_queue(skb, sk);
1da177e4 2518 sk_stream_free_skb(sk, skb);
6a438bbe 2519 clear_all_retrans_hints(tp);
1da177e4
LT
2520 }
2521
2522 if (acked&FLAG_ACKED) {
6418204f 2523 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2524 const struct tcp_congestion_ops *ca_ops
2525 = inet_csk(sk)->icsk_ca_ops;
2526
2d2abbab 2527 tcp_ack_update_rtt(sk, acked, seq_rtt);
9e412ba7 2528 tcp_ack_packets_out(sk);
317a76f9 2529
30cfd0ba
SH
2530 if (ca_ops->pkts_acked) {
2531 s32 rtt_us = -1;
2532
2533 /* Is the ACK triggering packet unambiguous? */
2534 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2535 /* High resolution needed and available? */
2536 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2537 !ktime_equal(last_ackt,
2538 net_invalid_timestamp()))
2539 rtt_us = ktime_us_delta(ktime_get_real(),
2540 last_ackt);
2541 else if (seq_rtt > 0)
2542 rtt_us = jiffies_to_usecs(seq_rtt);
2543 }
b9ce204f 2544
30cfd0ba
SH
2545 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2546 }
1da177e4
LT
2547 }
2548
2549#if FASTRETRANS_DEBUG > 0
2550 BUG_TRAP((int)tp->sacked_out >= 0);
2551 BUG_TRAP((int)tp->lost_out >= 0);
2552 BUG_TRAP((int)tp->retrans_out >= 0);
2553 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2554 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2555 if (tp->lost_out) {
2556 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2557 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2558 tp->lost_out = 0;
2559 }
2560 if (tp->sacked_out) {
2561 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2562 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2563 tp->sacked_out = 0;
2564 }
2565 if (tp->retrans_out) {
2566 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2567 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2568 tp->retrans_out = 0;
2569 }
2570 }
2571#endif
2572 *seq_rtt_p = seq_rtt;
2573 return acked;
2574}
2575
2576static void tcp_ack_probe(struct sock *sk)
2577{
463c84b9
ACM
2578 const struct tcp_sock *tp = tcp_sk(sk);
2579 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2580
2581 /* Was it a usable window open? */
2582
fe067e8a 2583 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2584 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2585 icsk->icsk_backoff = 0;
2586 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2587 /* Socket must be waked up by subsequent tcp_data_snd_check().
2588 * This function is not for random using!
2589 */
2590 } else {
463c84b9 2591 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2592 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2593 TCP_RTO_MAX);
1da177e4
LT
2594 }
2595}
2596
6687e988 2597static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2598{
2599 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2600 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2601}
2602
6687e988 2603static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2604{
6687e988 2605 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2606 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2607 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2608}
2609
2610/* Check that window update is acceptable.
2611 * The function assumes that snd_una<=ack<=snd_next.
2612 */
463c84b9
ACM
2613static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2614 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2615{
2616 return (after(ack, tp->snd_una) ||
2617 after(ack_seq, tp->snd_wl1) ||
2618 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2619}
2620
2621/* Update our send window.
2622 *
2623 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2624 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2625 */
9e412ba7
IJ
2626static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2627 u32 ack_seq)
1da177e4 2628{
9e412ba7 2629 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2630 int flag = 0;
aa8223c7 2631 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2632
aa8223c7 2633 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2634 nwin <<= tp->rx_opt.snd_wscale;
2635
2636 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2637 flag |= FLAG_WIN_UPDATE;
2638 tcp_update_wl(tp, ack, ack_seq);
2639
2640 if (tp->snd_wnd != nwin) {
2641 tp->snd_wnd = nwin;
2642
2643 /* Note, it is the only place, where
2644 * fast path is recovered for sending TCP.
2645 */
2ad41065 2646 tp->pred_flags = 0;
9e412ba7 2647 tcp_fast_path_check(sk);
1da177e4
LT
2648
2649 if (nwin > tp->max_window) {
2650 tp->max_window = nwin;
d83d8461 2651 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2652 }
2653 }
2654 }
2655
2656 tp->snd_una = ack;
2657
2658 return flag;
2659}
2660
9ead9a1d
IJ
2661/* A very conservative spurious RTO response algorithm: reduce cwnd and
2662 * continue in congestion avoidance.
2663 */
2664static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2665{
2666 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2667 tp->snd_cwnd_cnt = 0;
46323655 2668 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2669 tcp_moderate_cwnd(tp);
2670}
2671
3cfe3baa
IJ
2672/* A conservative spurious RTO response algorithm: reduce cwnd using
2673 * rate halving and continue in congestion avoidance.
2674 */
2675static void tcp_ratehalving_spur_to_response(struct sock *sk)
2676{
3cfe3baa 2677 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2678}
2679
e317f6f6 2680static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2681{
e317f6f6
IJ
2682 if (flag&FLAG_ECE)
2683 tcp_ratehalving_spur_to_response(sk);
2684 else
2685 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2686}
2687
30935cf4
IJ
2688/* F-RTO spurious RTO detection algorithm (RFC4138)
2689 *
6408d206
IJ
2690 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2691 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2692 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2693 * On First ACK, send two new segments out.
2694 * On Second ACK, RTO was likely spurious. Do spurious response (response
2695 * algorithm is not part of the F-RTO detection algorithm
2696 * given in RFC4138 but can be selected separately).
2697 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2698 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2699 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2700 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2701 *
2702 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2703 * original window even after we transmit two new data segments.
2704 *
4dc2665e
IJ
2705 * SACK version:
2706 * on first step, wait until first cumulative ACK arrives, then move to
2707 * the second step. In second step, the next ACK decides.
2708 *
30935cf4
IJ
2709 * F-RTO is implemented (mainly) in four functions:
2710 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2711 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2712 * called when tcp_use_frto() showed green light
2713 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2714 * - tcp_enter_frto_loss() is called if there is not enough evidence
2715 * to prove that the RTO is indeed spurious. It transfers the control
2716 * from F-RTO to the conventional RTO recovery
2717 */
2e605294 2718static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2719{
2720 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2721
1da177e4 2722 tcp_sync_left_out(tp);
e905a9ed 2723
7487c48c
IJ
2724 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2725 if (flag&FLAG_DATA_ACKED)
2726 inet_csk(sk)->icsk_retransmits = 0;
2727
95c4922b 2728 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2729 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2730 return 1;
95c4922b
IJ
2731 }
2732
4dc2665e
IJ
2733 if (!IsSackFrto() || IsReno(tp)) {
2734 /* RFC4138 shortcoming in step 2; should also have case c):
2735 * ACK isn't duplicate nor advances window, e.g., opposite dir
2736 * data, winupdate
2737 */
2e605294 2738 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2739 return 1;
2740
2741 if (!(flag&FLAG_DATA_ACKED)) {
2742 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2743 flag);
2744 return 1;
2745 }
2746 } else {
2747 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2748 /* Prevent sending of new data. */
2749 tp->snd_cwnd = min(tp->snd_cwnd,
2750 tcp_packets_in_flight(tp));
2751 return 1;
2752 }
6408d206 2753
d551e454 2754 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2755 (!(flag&FLAG_FORWARD_PROGRESS) ||
2756 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2757 /* RFC4138 shortcoming (see comment above) */
2758 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2759 return 1;
2760
2761 tcp_enter_frto_loss(sk, 3, flag);
2762 return 1;
2763 }
1da177e4
LT
2764 }
2765
2766 if (tp->frto_counter == 1) {
575ee714
IJ
2767 /* Sending of the next skb must be allowed or no FRTO */
2768 if (!tcp_send_head(sk) ||
2769 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2770 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2771 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2772 flag);
575ee714
IJ
2773 return 1;
2774 }
2775
1da177e4 2776 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2777 tp->frto_counter = 2;
7c9a4a5b 2778 return 1;
d551e454 2779 } else {
3cfe3baa
IJ
2780 switch (sysctl_tcp_frto_response) {
2781 case 2:
e317f6f6 2782 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2783 break;
2784 case 1:
2785 tcp_conservative_spur_to_response(tp);
2786 break;
2787 default:
2788 tcp_ratehalving_spur_to_response(sk);
2789 break;
3ff50b79 2790 }
94d0ea77 2791 tp->frto_counter = 0;
1da177e4 2792 }
7c9a4a5b 2793 return 0;
1da177e4
LT
2794}
2795
1da177e4
LT
2796/* This routine deals with incoming acks, but not outgoing ones. */
2797static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2798{
6687e988 2799 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 u32 prior_snd_una = tp->snd_una;
2802 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2803 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2804 u32 prior_in_flight;
2805 s32 seq_rtt;
2806 int prior_packets;
7c9a4a5b 2807 int frto_cwnd = 0;
1da177e4
LT
2808
2809 /* If the ack is newer than sent or older than previous acks
2810 * then we can probably ignore it.
2811 */
2812 if (after(ack, tp->snd_nxt))
2813 goto uninteresting_ack;
2814
2815 if (before(ack, prior_snd_una))
2816 goto old_ack;
2817
2e605294
IJ
2818 if (after(ack, prior_snd_una))
2819 flag |= FLAG_SND_UNA_ADVANCED;
2820
3fdf3f0c
DO
2821 if (sysctl_tcp_abc) {
2822 if (icsk->icsk_ca_state < TCP_CA_CWR)
2823 tp->bytes_acked += ack - prior_snd_una;
2824 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2825 /* we assume just one segment left network */
2826 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2827 }
9772efb9 2828
1da177e4
LT
2829 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2830 /* Window is constant, pure forward advance.
2831 * No more checks are required.
2832 * Note, we use the fact that SND.UNA>=SND.WL2.
2833 */
2834 tcp_update_wl(tp, ack, ack_seq);
2835 tp->snd_una = ack;
1da177e4
LT
2836 flag |= FLAG_WIN_UPDATE;
2837
6687e988 2838 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2839
1da177e4
LT
2840 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2841 } else {
2842 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2843 flag |= FLAG_DATA;
2844 else
2845 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2846
9e412ba7 2847 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2848
2849 if (TCP_SKB_CB(skb)->sacked)
2850 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2851
aa8223c7 2852 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
2853 flag |= FLAG_ECE;
2854
6687e988 2855 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2856 }
2857
2858 /* We passed data and got it acked, remove any soft error
2859 * log. Something worked...
2860 */
2861 sk->sk_err_soft = 0;
2862 tp->rcv_tstamp = tcp_time_stamp;
2863 prior_packets = tp->packets_out;
2864 if (!prior_packets)
2865 goto no_queue;
2866
2867 prior_in_flight = tcp_packets_in_flight(tp);
2868
2869 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2870 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2871
2872 if (tp->frto_counter)
2e605294 2873 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 2874
6687e988 2875 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2876 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
2877 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2878 tcp_may_raise_cwnd(sk, flag))
16751347 2879 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2e605294 2880 tcp_fastretrans_alert(sk, prior_packets, flag);
1da177e4 2881 } else {
7c9a4a5b 2882 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 2883 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
2884 }
2885
2886 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2887 dst_confirm(sk->sk_dst_cache);
2888
2889 return 1;
2890
2891no_queue:
6687e988 2892 icsk->icsk_probes_out = 0;
1da177e4
LT
2893
2894 /* If this ack opens up a zero window, clear backoff. It was
2895 * being used to time the probes, and is probably far higher than
2896 * it needs to be for normal retransmission.
2897 */
fe067e8a 2898 if (tcp_send_head(sk))
1da177e4
LT
2899 tcp_ack_probe(sk);
2900 return 1;
2901
2902old_ack:
2903 if (TCP_SKB_CB(skb)->sacked)
2904 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2905
2906uninteresting_ack:
2907 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2908 return 0;
2909}
2910
2911
2912/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2913 * But, this can also be called on packets in the established flow when
2914 * the fast version below fails.
2915 */
2916void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2917{
2918 unsigned char *ptr;
aa8223c7 2919 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
2920 int length=(th->doff*4)-sizeof(struct tcphdr);
2921
2922 ptr = (unsigned char *)(th + 1);
2923 opt_rx->saw_tstamp = 0;
2924
2de979bd 2925 while (length > 0) {
e905a9ed 2926 int opcode=*ptr++;
1da177e4
LT
2927 int opsize;
2928
2929 switch (opcode) {
2930 case TCPOPT_EOL:
2931 return;
2932 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2933 length--;
2934 continue;
2935 default:
2936 opsize=*ptr++;
2937 if (opsize < 2) /* "silly options" */
2938 return;
2939 if (opsize > length)
2940 return; /* don't parse partial options */
2de979bd 2941 switch (opcode) {
1da177e4 2942 case TCPOPT_MSS:
2de979bd 2943 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2944 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2945 if (in_mss) {
2946 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2947 in_mss = opt_rx->user_mss;
2948 opt_rx->mss_clamp = in_mss;
2949 }
2950 }
2951 break;
2952 case TCPOPT_WINDOW:
2de979bd 2953 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
2954 if (sysctl_tcp_window_scaling) {
2955 __u8 snd_wscale = *(__u8 *) ptr;
2956 opt_rx->wscale_ok = 1;
2957 if (snd_wscale > 14) {
2de979bd 2958 if (net_ratelimit())
1da177e4
LT
2959 printk(KERN_INFO "tcp_parse_options: Illegal window "
2960 "scaling value %d >14 received.\n",
2961 snd_wscale);
2962 snd_wscale = 14;
2963 }
2964 opt_rx->snd_wscale = snd_wscale;
2965 }
2966 break;
2967 case TCPOPT_TIMESTAMP:
2de979bd 2968 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
2969 if ((estab && opt_rx->tstamp_ok) ||
2970 (!estab && sysctl_tcp_timestamps)) {
2971 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2972 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2973 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2974 }
2975 }
2976 break;
2977 case TCPOPT_SACK_PERM:
2de979bd 2978 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
2979 if (sysctl_tcp_sack) {
2980 opt_rx->sack_ok = 1;
2981 tcp_sack_reset(opt_rx);
2982 }
2983 }
2984 break;
2985
2986 case TCPOPT_SACK:
2de979bd 2987 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
2988 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2989 opt_rx->sack_ok) {
2990 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2991 }
d7ea5b91 2992 break;
cfb6eeb4
YH
2993#ifdef CONFIG_TCP_MD5SIG
2994 case TCPOPT_MD5SIG:
2995 /*
2996 * The MD5 Hash has already been
2997 * checked (see tcp_v{4,6}_do_rcv()).
2998 */
2999 break;
3000#endif
3ff50b79
SH
3001 }
3002
e905a9ed
YH
3003 ptr+=opsize-2;
3004 length-=opsize;
3ff50b79 3005 }
1da177e4
LT
3006 }
3007}
3008
3009/* Fast parse options. This hopes to only see timestamps.
3010 * If it is wrong it falls back on tcp_parse_options().
3011 */
40efc6fa
SH
3012static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3013 struct tcp_sock *tp)
1da177e4
LT
3014{
3015 if (th->doff == sizeof(struct tcphdr)>>2) {
3016 tp->rx_opt.saw_tstamp = 0;
3017 return 0;
3018 } else if (tp->rx_opt.tstamp_ok &&
3019 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3020 __be32 *ptr = (__be32 *)(th + 1);
3021 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3022 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3023 tp->rx_opt.saw_tstamp = 1;
3024 ++ptr;
3025 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3026 ++ptr;
3027 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3028 return 1;
3029 }
3030 }
3031 tcp_parse_options(skb, &tp->rx_opt, 1);
3032 return 1;
3033}
3034
3035static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3036{
3037 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3038 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3039}
3040
3041static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3042{
3043 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3044 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3045 * extra check below makes sure this can only happen
3046 * for pure ACK frames. -DaveM
3047 *
3048 * Not only, also it occurs for expired timestamps.
3049 */
3050
2de979bd 3051 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3052 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3053 tcp_store_ts_recent(tp);
3054 }
3055}
3056
3057/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3058 *
3059 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3060 * it can pass through stack. So, the following predicate verifies that
3061 * this segment is not used for anything but congestion avoidance or
3062 * fast retransmit. Moreover, we even are able to eliminate most of such
3063 * second order effects, if we apply some small "replay" window (~RTO)
3064 * to timestamp space.
3065 *
3066 * All these measures still do not guarantee that we reject wrapped ACKs
3067 * on networks with high bandwidth, when sequence space is recycled fastly,
3068 * but it guarantees that such events will be very rare and do not affect
3069 * connection seriously. This doesn't look nice, but alas, PAWS is really
3070 * buggy extension.
3071 *
3072 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3073 * states that events when retransmit arrives after original data are rare.
3074 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3075 * the biggest problem on large power networks even with minor reordering.
3076 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3077 * up to bandwidth of 18Gigabit/sec. 8) ]
3078 */
3079
463c84b9 3080static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3081{
463c84b9 3082 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3083 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3084 u32 seq = TCP_SKB_CB(skb)->seq;
3085 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3086
3087 return (/* 1. Pure ACK with correct sequence number. */
3088 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3089
3090 /* 2. ... and duplicate ACK. */
3091 ack == tp->snd_una &&
3092
3093 /* 3. ... and does not update window. */
3094 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3095
3096 /* 4. ... and sits in replay window. */
463c84b9 3097 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3098}
3099
463c84b9 3100static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3101{
463c84b9 3102 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3103 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3104 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3105 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3106}
3107
3108/* Check segment sequence number for validity.
3109 *
3110 * Segment controls are considered valid, if the segment
3111 * fits to the window after truncation to the window. Acceptability
3112 * of data (and SYN, FIN, of course) is checked separately.
3113 * See tcp_data_queue(), for example.
3114 *
3115 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3116 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3117 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3118 * (borrowed from freebsd)
3119 */
3120
3121static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3122{
3123 return !before(end_seq, tp->rcv_wup) &&
3124 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3125}
3126
3127/* When we get a reset we do this. */
3128static void tcp_reset(struct sock *sk)
3129{
3130 /* We want the right error as BSD sees it (and indeed as we do). */
3131 switch (sk->sk_state) {
3132 case TCP_SYN_SENT:
3133 sk->sk_err = ECONNREFUSED;
3134 break;
3135 case TCP_CLOSE_WAIT:
3136 sk->sk_err = EPIPE;
3137 break;
3138 case TCP_CLOSE:
3139 return;
3140 default:
3141 sk->sk_err = ECONNRESET;
3142 }
3143
3144 if (!sock_flag(sk, SOCK_DEAD))
3145 sk->sk_error_report(sk);
3146
3147 tcp_done(sk);
3148}
3149
3150/*
3151 * Process the FIN bit. This now behaves as it is supposed to work
3152 * and the FIN takes effect when it is validly part of sequence
3153 * space. Not before when we get holes.
3154 *
3155 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3156 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3157 * TIME-WAIT)
3158 *
3159 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3160 * close and we go into CLOSING (and later onto TIME-WAIT)
3161 *
3162 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3163 */
3164static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3165{
3166 struct tcp_sock *tp = tcp_sk(sk);
3167
463c84b9 3168 inet_csk_schedule_ack(sk);
1da177e4
LT
3169
3170 sk->sk_shutdown |= RCV_SHUTDOWN;
3171 sock_set_flag(sk, SOCK_DONE);
3172
3173 switch (sk->sk_state) {
3174 case TCP_SYN_RECV:
3175 case TCP_ESTABLISHED:
3176 /* Move to CLOSE_WAIT */
3177 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3178 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3179 break;
3180
3181 case TCP_CLOSE_WAIT:
3182 case TCP_CLOSING:
3183 /* Received a retransmission of the FIN, do
3184 * nothing.
3185 */
3186 break;
3187 case TCP_LAST_ACK:
3188 /* RFC793: Remain in the LAST-ACK state. */
3189 break;
3190
3191 case TCP_FIN_WAIT1:
3192 /* This case occurs when a simultaneous close
3193 * happens, we must ack the received FIN and
3194 * enter the CLOSING state.
3195 */
3196 tcp_send_ack(sk);
3197 tcp_set_state(sk, TCP_CLOSING);
3198 break;
3199 case TCP_FIN_WAIT2:
3200 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3201 tcp_send_ack(sk);
3202 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3203 break;
3204 default:
3205 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3206 * cases we should never reach this piece of code.
3207 */
3208 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3209 __FUNCTION__, sk->sk_state);
3210 break;
3ff50b79 3211 }
1da177e4
LT
3212
3213 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3214 * Probably, we should reset in this case. For now drop them.
3215 */
3216 __skb_queue_purge(&tp->out_of_order_queue);
3217 if (tp->rx_opt.sack_ok)
3218 tcp_sack_reset(&tp->rx_opt);
3219 sk_stream_mem_reclaim(sk);
3220
3221 if (!sock_flag(sk, SOCK_DEAD)) {
3222 sk->sk_state_change(sk);
3223
3224 /* Do not send POLL_HUP for half duplex close. */
3225 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3226 sk->sk_state == TCP_CLOSE)
3227 sk_wake_async(sk, 1, POLL_HUP);
3228 else
3229 sk_wake_async(sk, 1, POLL_IN);
3230 }
3231}
3232
40efc6fa 3233static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3234{
3235 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3236 if (before(seq, sp->start_seq))
3237 sp->start_seq = seq;
3238 if (after(end_seq, sp->end_seq))
3239 sp->end_seq = end_seq;
3240 return 1;
3241 }
3242 return 0;
3243}
3244
40efc6fa 3245static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3246{
3247 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3248 if (before(seq, tp->rcv_nxt))
3249 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3250 else
3251 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3252
3253 tp->rx_opt.dsack = 1;
3254 tp->duplicate_sack[0].start_seq = seq;
3255 tp->duplicate_sack[0].end_seq = end_seq;
3256 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3257 }
3258}
3259
40efc6fa 3260static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3261{
3262 if (!tp->rx_opt.dsack)
3263 tcp_dsack_set(tp, seq, end_seq);
3264 else
3265 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3266}
3267
3268static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3269{
3270 struct tcp_sock *tp = tcp_sk(sk);
3271
3272 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3273 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3274 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3275 tcp_enter_quickack_mode(sk);
1da177e4
LT
3276
3277 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3278 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3279
3280 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3281 end_seq = tp->rcv_nxt;
3282 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3283 }
3284 }
3285
3286 tcp_send_ack(sk);
3287}
3288
3289/* These routines update the SACK block as out-of-order packets arrive or
3290 * in-order packets close up the sequence space.
3291 */
3292static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3293{
3294 int this_sack;
3295 struct tcp_sack_block *sp = &tp->selective_acks[0];
3296 struct tcp_sack_block *swalk = sp+1;
3297
3298 /* See if the recent change to the first SACK eats into
3299 * or hits the sequence space of other SACK blocks, if so coalesce.
3300 */
3301 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3302 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3303 int i;
3304
3305 /* Zap SWALK, by moving every further SACK up by one slot.
3306 * Decrease num_sacks.
3307 */
3308 tp->rx_opt.num_sacks--;
3309 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3310 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3311 sp[i] = sp[i+1];
3312 continue;
3313 }
3314 this_sack++, swalk++;
3315 }
3316}
3317
40efc6fa 3318static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3319{
3320 __u32 tmp;
3321
3322 tmp = sack1->start_seq;
3323 sack1->start_seq = sack2->start_seq;
3324 sack2->start_seq = tmp;
3325
3326 tmp = sack1->end_seq;
3327 sack1->end_seq = sack2->end_seq;
3328 sack2->end_seq = tmp;
3329}
3330
3331static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3332{
3333 struct tcp_sock *tp = tcp_sk(sk);
3334 struct tcp_sack_block *sp = &tp->selective_acks[0];
3335 int cur_sacks = tp->rx_opt.num_sacks;
3336 int this_sack;
3337
3338 if (!cur_sacks)
3339 goto new_sack;
3340
3341 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3342 if (tcp_sack_extend(sp, seq, end_seq)) {
3343 /* Rotate this_sack to the first one. */
3344 for (; this_sack>0; this_sack--, sp--)
3345 tcp_sack_swap(sp, sp-1);
3346 if (cur_sacks > 1)
3347 tcp_sack_maybe_coalesce(tp);
3348 return;
3349 }
3350 }
3351
3352 /* Could not find an adjacent existing SACK, build a new one,
3353 * put it at the front, and shift everyone else down. We
3354 * always know there is at least one SACK present already here.
3355 *
3356 * If the sack array is full, forget about the last one.
3357 */
3358 if (this_sack >= 4) {
3359 this_sack--;
3360 tp->rx_opt.num_sacks--;
3361 sp--;
3362 }
2de979bd 3363 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3364 *sp = *(sp-1);
3365
3366new_sack:
3367 /* Build the new head SACK, and we're done. */
3368 sp->start_seq = seq;
3369 sp->end_seq = end_seq;
3370 tp->rx_opt.num_sacks++;
3371 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3372}
3373
3374/* RCV.NXT advances, some SACKs should be eaten. */
3375
3376static void tcp_sack_remove(struct tcp_sock *tp)
3377{
3378 struct tcp_sack_block *sp = &tp->selective_acks[0];
3379 int num_sacks = tp->rx_opt.num_sacks;
3380 int this_sack;
3381
3382 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3383 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3384 tp->rx_opt.num_sacks = 0;
3385 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3386 return;
3387 }
3388
2de979bd 3389 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3390 /* Check if the start of the sack is covered by RCV.NXT. */
3391 if (!before(tp->rcv_nxt, sp->start_seq)) {
3392 int i;
3393
3394 /* RCV.NXT must cover all the block! */
3395 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3396
3397 /* Zap this SACK, by moving forward any other SACKS. */
3398 for (i=this_sack+1; i < num_sacks; i++)
3399 tp->selective_acks[i-1] = tp->selective_acks[i];
3400 num_sacks--;
3401 continue;
3402 }
3403 this_sack++;
3404 sp++;
3405 }
3406 if (num_sacks != tp->rx_opt.num_sacks) {
3407 tp->rx_opt.num_sacks = num_sacks;
3408 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3409 }
3410}
3411
3412/* This one checks to see if we can put data from the
3413 * out_of_order queue into the receive_queue.
3414 */
3415static void tcp_ofo_queue(struct sock *sk)
3416{
3417 struct tcp_sock *tp = tcp_sk(sk);
3418 __u32 dsack_high = tp->rcv_nxt;
3419 struct sk_buff *skb;
3420
3421 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3422 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3423 break;
3424
3425 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3426 __u32 dsack = dsack_high;
3427 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3428 dsack_high = TCP_SKB_CB(skb)->end_seq;
3429 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3430 }
3431
3432 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3433 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3434 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3435 __kfree_skb(skb);
3436 continue;
3437 }
3438 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3439 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3440 TCP_SKB_CB(skb)->end_seq);
3441
8728b834 3442 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3443 __skb_queue_tail(&sk->sk_receive_queue, skb);
3444 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3445 if (tcp_hdr(skb)->fin)
3446 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3447 }
3448}
3449
3450static int tcp_prune_queue(struct sock *sk);
3451
3452static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3453{
aa8223c7 3454 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3455 struct tcp_sock *tp = tcp_sk(sk);
3456 int eaten = -1;
3457
3458 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3459 goto drop;
3460
1da177e4
LT
3461 __skb_pull(skb, th->doff*4);
3462
3463 TCP_ECN_accept_cwr(tp, skb);
3464
3465 if (tp->rx_opt.dsack) {
3466 tp->rx_opt.dsack = 0;
3467 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3468 4 - tp->rx_opt.tstamp_ok);
3469 }
3470
3471 /* Queue data for delivery to the user.
3472 * Packets in sequence go to the receive queue.
3473 * Out of sequence packets to the out_of_order_queue.
3474 */
3475 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3476 if (tcp_receive_window(tp) == 0)
3477 goto out_of_window;
3478
3479 /* Ok. In sequence. In window. */
3480 if (tp->ucopy.task == current &&
3481 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3482 sock_owned_by_user(sk) && !tp->urg_data) {
3483 int chunk = min_t(unsigned int, skb->len,
3484 tp->ucopy.len);
3485
3486 __set_current_state(TASK_RUNNING);
3487
3488 local_bh_enable();
3489 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3490 tp->ucopy.len -= chunk;
3491 tp->copied_seq += chunk;
3492 eaten = (chunk == skb->len && !th->fin);
3493 tcp_rcv_space_adjust(sk);
3494 }
3495 local_bh_disable();
3496 }
3497
3498 if (eaten <= 0) {
3499queue_and_out:
3500 if (eaten < 0 &&
3501 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3502 !sk_stream_rmem_schedule(sk, skb))) {
3503 if (tcp_prune_queue(sk) < 0 ||
3504 !sk_stream_rmem_schedule(sk, skb))
3505 goto drop;
3506 }
3507 sk_stream_set_owner_r(skb, sk);
3508 __skb_queue_tail(&sk->sk_receive_queue, skb);
3509 }
3510 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3511 if (skb->len)
9e412ba7 3512 tcp_event_data_recv(sk, skb);
2de979bd 3513 if (th->fin)
1da177e4
LT
3514 tcp_fin(skb, sk, th);
3515
b03efcfb 3516 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3517 tcp_ofo_queue(sk);
3518
3519 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3520 * gap in queue is filled.
3521 */
b03efcfb 3522 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3523 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3524 }
3525
3526 if (tp->rx_opt.num_sacks)
3527 tcp_sack_remove(tp);
3528
9e412ba7 3529 tcp_fast_path_check(sk);
1da177e4
LT
3530
3531 if (eaten > 0)
3532 __kfree_skb(skb);
3533 else if (!sock_flag(sk, SOCK_DEAD))
3534 sk->sk_data_ready(sk, 0);
3535 return;
3536 }
3537
3538 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3539 /* A retransmit, 2nd most common case. Force an immediate ack. */
3540 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3541 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3542
3543out_of_window:
463c84b9
ACM
3544 tcp_enter_quickack_mode(sk);
3545 inet_csk_schedule_ack(sk);
1da177e4
LT
3546drop:
3547 __kfree_skb(skb);
3548 return;
3549 }
3550
3551 /* Out of window. F.e. zero window probe. */
3552 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3553 goto out_of_window;
3554
463c84b9 3555 tcp_enter_quickack_mode(sk);
1da177e4
LT
3556
3557 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3558 /* Partial packet, seq < rcv_next < end_seq */
3559 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3560 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3561 TCP_SKB_CB(skb)->end_seq);
3562
3563 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3564
1da177e4
LT
3565 /* If window is closed, drop tail of packet. But after
3566 * remembering D-SACK for its head made in previous line.
3567 */
3568 if (!tcp_receive_window(tp))
3569 goto out_of_window;
3570 goto queue_and_out;
3571 }
3572
3573 TCP_ECN_check_ce(tp, skb);
3574
3575 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3576 !sk_stream_rmem_schedule(sk, skb)) {
3577 if (tcp_prune_queue(sk) < 0 ||
3578 !sk_stream_rmem_schedule(sk, skb))
3579 goto drop;
3580 }
3581
3582 /* Disable header prediction. */
3583 tp->pred_flags = 0;
463c84b9 3584 inet_csk_schedule_ack(sk);
1da177e4
LT
3585
3586 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3587 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3588
3589 sk_stream_set_owner_r(skb, sk);
3590
3591 if (!skb_peek(&tp->out_of_order_queue)) {
3592 /* Initial out of order segment, build 1 SACK. */
3593 if (tp->rx_opt.sack_ok) {
3594 tp->rx_opt.num_sacks = 1;
3595 tp->rx_opt.dsack = 0;
3596 tp->rx_opt.eff_sacks = 1;
3597 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3598 tp->selective_acks[0].end_seq =
3599 TCP_SKB_CB(skb)->end_seq;
3600 }
3601 __skb_queue_head(&tp->out_of_order_queue,skb);
3602 } else {
3603 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3604 u32 seq = TCP_SKB_CB(skb)->seq;
3605 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3606
3607 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3608 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3609
3610 if (!tp->rx_opt.num_sacks ||
3611 tp->selective_acks[0].end_seq != seq)
3612 goto add_sack;
3613
3614 /* Common case: data arrive in order after hole. */
3615 tp->selective_acks[0].end_seq = end_seq;
3616 return;
3617 }
3618
3619 /* Find place to insert this segment. */
3620 do {
3621 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3622 break;
3623 } while ((skb1 = skb1->prev) !=
3624 (struct sk_buff*)&tp->out_of_order_queue);
3625
3626 /* Do skb overlap to previous one? */
3627 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3628 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3629 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3630 /* All the bits are present. Drop. */
3631 __kfree_skb(skb);
3632 tcp_dsack_set(tp, seq, end_seq);
3633 goto add_sack;
3634 }
3635 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3636 /* Partial overlap. */
3637 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3638 } else {
3639 skb1 = skb1->prev;
3640 }
3641 }
3642 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3643
1da177e4
LT
3644 /* And clean segments covered by new one as whole. */
3645 while ((skb1 = skb->next) !=
3646 (struct sk_buff*)&tp->out_of_order_queue &&
3647 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3648 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3649 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3650 break;
3651 }
8728b834 3652 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3653 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3654 __kfree_skb(skb1);
3655 }
3656
3657add_sack:
3658 if (tp->rx_opt.sack_ok)
3659 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3660 }
3661}
3662
3663/* Collapse contiguous sequence of skbs head..tail with
3664 * sequence numbers start..end.
3665 * Segments with FIN/SYN are not collapsed (only because this
3666 * simplifies code)
3667 */
3668static void
8728b834
DM
3669tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3670 struct sk_buff *head, struct sk_buff *tail,
3671 u32 start, u32 end)
1da177e4
LT
3672{
3673 struct sk_buff *skb;
3674
caa20d9a 3675 /* First, check that queue is collapsible and find
1da177e4
LT
3676 * the point where collapsing can be useful. */
3677 for (skb = head; skb != tail; ) {
3678 /* No new bits? It is possible on ofo queue. */
3679 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3680 struct sk_buff *next = skb->next;
8728b834 3681 __skb_unlink(skb, list);
1da177e4
LT
3682 __kfree_skb(skb);
3683 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3684 skb = next;
3685 continue;
3686 }
3687
3688 /* The first skb to collapse is:
3689 * - not SYN/FIN and
3690 * - bloated or contains data before "start" or
3691 * overlaps to the next one.
3692 */
aa8223c7 3693 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3694 (tcp_win_from_space(skb->truesize) > skb->len ||
3695 before(TCP_SKB_CB(skb)->seq, start) ||
3696 (skb->next != tail &&
3697 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3698 break;
3699
3700 /* Decided to skip this, advance start seq. */
3701 start = TCP_SKB_CB(skb)->end_seq;
3702 skb = skb->next;
3703 }
aa8223c7 3704 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3705 return;
3706
3707 while (before(start, end)) {
3708 struct sk_buff *nskb;
3709 int header = skb_headroom(skb);
3710 int copy = SKB_MAX_ORDER(header, 0);
3711
3712 /* Too big header? This can happen with IPv6. */
3713 if (copy < 0)
3714 return;
3715 if (end-start < copy)
3716 copy = end-start;
3717 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3718 if (!nskb)
3719 return;
c51957da 3720
98e399f8 3721 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3722 skb_set_network_header(nskb, (skb_network_header(skb) -
3723 skb->head));
3724 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3725 skb->head));
1da177e4
LT
3726 skb_reserve(nskb, header);
3727 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3728 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3729 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3730 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3731 sk_stream_set_owner_r(nskb, sk);
3732
3733 /* Copy data, releasing collapsed skbs. */
3734 while (copy > 0) {
3735 int offset = start - TCP_SKB_CB(skb)->seq;
3736 int size = TCP_SKB_CB(skb)->end_seq - start;
3737
09a62660 3738 BUG_ON(offset < 0);
1da177e4
LT
3739 if (size > 0) {
3740 size = min(copy, size);
3741 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3742 BUG();
3743 TCP_SKB_CB(nskb)->end_seq += size;
3744 copy -= size;
3745 start += size;
3746 }
3747 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3748 struct sk_buff *next = skb->next;
8728b834 3749 __skb_unlink(skb, list);
1da177e4
LT
3750 __kfree_skb(skb);
3751 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3752 skb = next;
aa8223c7
ACM
3753 if (skb == tail ||
3754 tcp_hdr(skb)->syn ||
3755 tcp_hdr(skb)->fin)
1da177e4
LT
3756 return;
3757 }
3758 }
3759 }
3760}
3761
3762/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3763 * and tcp_collapse() them until all the queue is collapsed.
3764 */
3765static void tcp_collapse_ofo_queue(struct sock *sk)
3766{
3767 struct tcp_sock *tp = tcp_sk(sk);
3768 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3769 struct sk_buff *head;
3770 u32 start, end;
3771
3772 if (skb == NULL)
3773 return;
3774
3775 start = TCP_SKB_CB(skb)->seq;
3776 end = TCP_SKB_CB(skb)->end_seq;
3777 head = skb;
3778
3779 for (;;) {
3780 skb = skb->next;
3781
3782 /* Segment is terminated when we see gap or when
3783 * we are at the end of all the queue. */
3784 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3785 after(TCP_SKB_CB(skb)->seq, end) ||
3786 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3787 tcp_collapse(sk, &tp->out_of_order_queue,
3788 head, skb, start, end);
1da177e4
LT
3789 head = skb;
3790 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3791 break;
3792 /* Start new segment */
3793 start = TCP_SKB_CB(skb)->seq;
3794 end = TCP_SKB_CB(skb)->end_seq;
3795 } else {
3796 if (before(TCP_SKB_CB(skb)->seq, start))
3797 start = TCP_SKB_CB(skb)->seq;
3798 if (after(TCP_SKB_CB(skb)->end_seq, end))
3799 end = TCP_SKB_CB(skb)->end_seq;
3800 }
3801 }
3802}
3803
3804/* Reduce allocated memory if we can, trying to get
3805 * the socket within its memory limits again.
3806 *
3807 * Return less than zero if we should start dropping frames
3808 * until the socket owning process reads some of the data
3809 * to stabilize the situation.
3810 */
3811static int tcp_prune_queue(struct sock *sk)
3812{
e905a9ed 3813 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3814
3815 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3816
3817 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3818
3819 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3820 tcp_clamp_window(sk);
1da177e4
LT
3821 else if (tcp_memory_pressure)
3822 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3823
3824 tcp_collapse_ofo_queue(sk);
8728b834
DM
3825 tcp_collapse(sk, &sk->sk_receive_queue,
3826 sk->sk_receive_queue.next,
1da177e4
LT
3827 (struct sk_buff*)&sk->sk_receive_queue,
3828 tp->copied_seq, tp->rcv_nxt);
3829 sk_stream_mem_reclaim(sk);
3830
3831 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3832 return 0;
3833
3834 /* Collapsing did not help, destructive actions follow.
3835 * This must not ever occur. */
3836
3837 /* First, purge the out_of_order queue. */
b03efcfb
DM
3838 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3839 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3840 __skb_queue_purge(&tp->out_of_order_queue);
3841
3842 /* Reset SACK state. A conforming SACK implementation will
3843 * do the same at a timeout based retransmit. When a connection
3844 * is in a sad state like this, we care only about integrity
3845 * of the connection not performance.
3846 */
3847 if (tp->rx_opt.sack_ok)
3848 tcp_sack_reset(&tp->rx_opt);
3849 sk_stream_mem_reclaim(sk);
3850 }
3851
3852 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3853 return 0;
3854
3855 /* If we are really being abused, tell the caller to silently
3856 * drop receive data on the floor. It will get retransmitted
3857 * and hopefully then we'll have sufficient space.
3858 */
3859 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3860
3861 /* Massive buffer overcommit. */
3862 tp->pred_flags = 0;
3863 return -1;
3864}
3865
3866
3867/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3868 * As additional protections, we do not touch cwnd in retransmission phases,
3869 * and if application hit its sndbuf limit recently.
3870 */
3871void tcp_cwnd_application_limited(struct sock *sk)
3872{
3873 struct tcp_sock *tp = tcp_sk(sk);
3874
6687e988 3875 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3876 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3877 /* Limited by application or receiver window. */
d254bcdb
IJ
3878 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3879 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3880 if (win_used < tp->snd_cwnd) {
6687e988 3881 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3882 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3883 }
3884 tp->snd_cwnd_used = 0;
3885 }
3886 tp->snd_cwnd_stamp = tcp_time_stamp;
3887}
3888
9e412ba7 3889static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 3890{
9e412ba7
IJ
3891 struct tcp_sock *tp = tcp_sk(sk);
3892
0d9901df
DM
3893 /* If the user specified a specific send buffer setting, do
3894 * not modify it.
3895 */
3896 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3897 return 0;
3898
3899 /* If we are under global TCP memory pressure, do not expand. */
3900 if (tcp_memory_pressure)
3901 return 0;
3902
3903 /* If we are under soft global TCP memory pressure, do not expand. */
3904 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3905 return 0;
3906
3907 /* If we filled the congestion window, do not expand. */
3908 if (tp->packets_out >= tp->snd_cwnd)
3909 return 0;
3910
3911 return 1;
3912}
1da177e4
LT
3913
3914/* When incoming ACK allowed to free some skb from write_queue,
3915 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3916 * on the exit from tcp input handler.
3917 *
3918 * PROBLEM: sndbuf expansion does not work well with largesend.
3919 */
3920static void tcp_new_space(struct sock *sk)
3921{
3922 struct tcp_sock *tp = tcp_sk(sk);
3923
9e412ba7 3924 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 3925 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3926 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3927 demanded = max_t(unsigned int, tp->snd_cwnd,
3928 tp->reordering + 1);
3929 sndmem *= 2*demanded;
3930 if (sndmem > sk->sk_sndbuf)
3931 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3932 tp->snd_cwnd_stamp = tcp_time_stamp;
3933 }
3934
3935 sk->sk_write_space(sk);
3936}
3937
40efc6fa 3938static void tcp_check_space(struct sock *sk)
1da177e4
LT
3939{
3940 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3941 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3942 if (sk->sk_socket &&
3943 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3944 tcp_new_space(sk);
3945 }
3946}
3947
9e412ba7 3948static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 3949{
9e412ba7 3950 tcp_push_pending_frames(sk);
1da177e4
LT
3951 tcp_check_space(sk);
3952}
3953
3954/*
3955 * Check if sending an ack is needed.
3956 */
3957static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3958{
3959 struct tcp_sock *tp = tcp_sk(sk);
3960
3961 /* More than one full frame received... */
463c84b9 3962 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3963 /* ... and right edge of window advances far enough.
3964 * (tcp_recvmsg() will send ACK otherwise). Or...
3965 */
3966 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3967 /* We ACK each frame or... */
463c84b9 3968 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3969 /* We have out of order data. */
3970 (ofo_possible &&
3971 skb_peek(&tp->out_of_order_queue))) {
3972 /* Then ack it now */
3973 tcp_send_ack(sk);
3974 } else {
3975 /* Else, send delayed ack. */
3976 tcp_send_delayed_ack(sk);
3977 }
3978}
3979
40efc6fa 3980static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3981{
463c84b9 3982 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3983 /* We sent a data segment already. */
3984 return;
3985 }
3986 __tcp_ack_snd_check(sk, 1);
3987}
3988
3989/*
3990 * This routine is only called when we have urgent data
caa20d9a 3991 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3992 * moved inline now as tcp_urg is only called from one
3993 * place. We handle URGent data wrong. We have to - as
3994 * BSD still doesn't use the correction from RFC961.
3995 * For 1003.1g we should support a new option TCP_STDURG to permit
3996 * either form (or just set the sysctl tcp_stdurg).
3997 */
e905a9ed 3998
1da177e4
LT
3999static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4000{
4001 struct tcp_sock *tp = tcp_sk(sk);
4002 u32 ptr = ntohs(th->urg_ptr);
4003
4004 if (ptr && !sysctl_tcp_stdurg)
4005 ptr--;
4006 ptr += ntohl(th->seq);
4007
4008 /* Ignore urgent data that we've already seen and read. */
4009 if (after(tp->copied_seq, ptr))
4010 return;
4011
4012 /* Do not replay urg ptr.
4013 *
4014 * NOTE: interesting situation not covered by specs.
4015 * Misbehaving sender may send urg ptr, pointing to segment,
4016 * which we already have in ofo queue. We are not able to fetch
4017 * such data and will stay in TCP_URG_NOTYET until will be eaten
4018 * by recvmsg(). Seems, we are not obliged to handle such wicked
4019 * situations. But it is worth to think about possibility of some
4020 * DoSes using some hypothetical application level deadlock.
4021 */
4022 if (before(ptr, tp->rcv_nxt))
4023 return;
4024
4025 /* Do we already have a newer (or duplicate) urgent pointer? */
4026 if (tp->urg_data && !after(ptr, tp->urg_seq))
4027 return;
4028
4029 /* Tell the world about our new urgent pointer. */
4030 sk_send_sigurg(sk);
4031
4032 /* We may be adding urgent data when the last byte read was
4033 * urgent. To do this requires some care. We cannot just ignore
4034 * tp->copied_seq since we would read the last urgent byte again
4035 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4036 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4037 *
4038 * NOTE. Double Dutch. Rendering to plain English: author of comment
4039 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4040 * and expect that both A and B disappear from stream. This is _wrong_.
4041 * Though this happens in BSD with high probability, this is occasional.
4042 * Any application relying on this is buggy. Note also, that fix "works"
4043 * only in this artificial test. Insert some normal data between A and B and we will
4044 * decline of BSD again. Verdict: it is better to remove to trap
4045 * buggy users.
4046 */
4047 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4048 !sock_flag(sk, SOCK_URGINLINE) &&
4049 tp->copied_seq != tp->rcv_nxt) {
4050 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4051 tp->copied_seq++;
4052 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4053 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4054 __kfree_skb(skb);
4055 }
4056 }
4057
4058 tp->urg_data = TCP_URG_NOTYET;
4059 tp->urg_seq = ptr;
4060
4061 /* Disable header prediction. */
4062 tp->pred_flags = 0;
4063}
4064
4065/* This is the 'fast' part of urgent handling. */
4066static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4067{
4068 struct tcp_sock *tp = tcp_sk(sk);
4069
4070 /* Check if we get a new urgent pointer - normally not. */
4071 if (th->urg)
4072 tcp_check_urg(sk,th);
4073
4074 /* Do we wait for any urgent data? - normally not... */
4075 if (tp->urg_data == TCP_URG_NOTYET) {
4076 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4077 th->syn;
4078
e905a9ed 4079 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4080 if (ptr < skb->len) {
4081 u8 tmp;
4082 if (skb_copy_bits(skb, ptr, &tmp, 1))
4083 BUG();
4084 tp->urg_data = TCP_URG_VALID | tmp;
4085 if (!sock_flag(sk, SOCK_DEAD))
4086 sk->sk_data_ready(sk, 0);
4087 }
4088 }
4089}
4090
4091static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4092{
4093 struct tcp_sock *tp = tcp_sk(sk);
4094 int chunk = skb->len - hlen;
4095 int err;
4096
4097 local_bh_enable();
60476372 4098 if (skb_csum_unnecessary(skb))
1da177e4
LT
4099 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4100 else
4101 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4102 tp->ucopy.iov);
4103
4104 if (!err) {
4105 tp->ucopy.len -= chunk;
4106 tp->copied_seq += chunk;
4107 tcp_rcv_space_adjust(sk);
4108 }
4109
4110 local_bh_disable();
4111 return err;
4112}
4113
b51655b9 4114static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4115{
b51655b9 4116 __sum16 result;
1da177e4
LT
4117
4118 if (sock_owned_by_user(sk)) {
4119 local_bh_enable();
4120 result = __tcp_checksum_complete(skb);
4121 local_bh_disable();
4122 } else {
4123 result = __tcp_checksum_complete(skb);
4124 }
4125 return result;
4126}
4127
40efc6fa 4128static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4129{
60476372 4130 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4131 __tcp_checksum_complete_user(sk, skb);
4132}
4133
1a2449a8
CL
4134#ifdef CONFIG_NET_DMA
4135static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4136{
4137 struct tcp_sock *tp = tcp_sk(sk);
4138 int chunk = skb->len - hlen;
4139 int dma_cookie;
4140 int copied_early = 0;
4141
4142 if (tp->ucopy.wakeup)
e905a9ed 4143 return 0;
1a2449a8
CL
4144
4145 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4146 tp->ucopy.dma_chan = get_softnet_dma();
4147
60476372 4148 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4149
4150 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4151 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4152
4153 if (dma_cookie < 0)
4154 goto out;
4155
4156 tp->ucopy.dma_cookie = dma_cookie;
4157 copied_early = 1;
4158
4159 tp->ucopy.len -= chunk;
4160 tp->copied_seq += chunk;
4161 tcp_rcv_space_adjust(sk);
4162
4163 if ((tp->ucopy.len == 0) ||
aa8223c7 4164 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4165 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4166 tp->ucopy.wakeup = 1;
4167 sk->sk_data_ready(sk, 0);
4168 }
4169 } else if (chunk > 0) {
4170 tp->ucopy.wakeup = 1;
4171 sk->sk_data_ready(sk, 0);
4172 }
4173out:
4174 return copied_early;
4175}
4176#endif /* CONFIG_NET_DMA */
4177
1da177e4 4178/*
e905a9ed 4179 * TCP receive function for the ESTABLISHED state.
1da177e4 4180 *
e905a9ed 4181 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4182 * disabled when:
4183 * - A zero window was announced from us - zero window probing
e905a9ed 4184 * is only handled properly in the slow path.
1da177e4
LT
4185 * - Out of order segments arrived.
4186 * - Urgent data is expected.
4187 * - There is no buffer space left
4188 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4189 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4190 * - Data is sent in both directions. Fast path only supports pure senders
4191 * or pure receivers (this means either the sequence number or the ack
4192 * value must stay constant)
4193 * - Unexpected TCP option.
4194 *
e905a9ed 4195 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4196 * receive procedure patterned after RFC793 to handle all cases.
4197 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4198 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4199 * tcp_data_queue when everything is OK.
4200 */
4201int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4202 struct tcphdr *th, unsigned len)
4203{
4204 struct tcp_sock *tp = tcp_sk(sk);
4205
4206 /*
4207 * Header prediction.
e905a9ed 4208 * The code loosely follows the one in the famous
1da177e4 4209 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4210 *
4211 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4212 * on a device interrupt, to call tcp_recv function
4213 * on the receive process context and checksum and copy
4214 * the buffer to user space. smart...
4215 *
e905a9ed 4216 * Our current scheme is not silly either but we take the
1da177e4
LT
4217 * extra cost of the net_bh soft interrupt processing...
4218 * We do checksum and copy also but from device to kernel.
4219 */
4220
4221 tp->rx_opt.saw_tstamp = 0;
4222
4223 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4224 * if header_prediction is to be made
1da177e4
LT
4225 * 'S' will always be tp->tcp_header_len >> 2
4226 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4227 * turn it off (when there are holes in the receive
1da177e4
LT
4228 * space for instance)
4229 * PSH flag is ignored.
4230 */
4231
4232 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4233 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4234 int tcp_header_len = tp->tcp_header_len;
4235
4236 /* Timestamp header prediction: tcp_header_len
4237 * is automatically equal to th->doff*4 due to pred_flags
4238 * match.
4239 */
4240
4241 /* Check timestamp */
4242 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4243 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4244
4245 /* No? Slow path! */
4f3608b7 4246 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4247 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4248 goto slow_path;
4249
4250 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4251 ++ptr;
1da177e4
LT
4252 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4253 ++ptr;
4254 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4255
4256 /* If PAWS failed, check it more carefully in slow path */
4257 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4258 goto slow_path;
4259
4260 /* DO NOT update ts_recent here, if checksum fails
4261 * and timestamp was corrupted part, it will result
4262 * in a hung connection since we will drop all
4263 * future packets due to the PAWS test.
4264 */
4265 }
4266
4267 if (len <= tcp_header_len) {
4268 /* Bulk data transfer: sender */
4269 if (len == tcp_header_len) {
4270 /* Predicted packet is in window by definition.
4271 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4272 * Hence, check seq<=rcv_wup reduces to:
4273 */
4274 if (tcp_header_len ==
4275 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4276 tp->rcv_nxt == tp->rcv_wup)
4277 tcp_store_ts_recent(tp);
4278
1da177e4
LT
4279 /* We know that such packets are checksummed
4280 * on entry.
4281 */
4282 tcp_ack(sk, skb, 0);
e905a9ed 4283 __kfree_skb(skb);
9e412ba7 4284 tcp_data_snd_check(sk);
1da177e4
LT
4285 return 0;
4286 } else { /* Header too small */
4287 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4288 goto discard;
4289 }
4290 } else {
4291 int eaten = 0;
1a2449a8 4292 int copied_early = 0;
1da177e4 4293
1a2449a8
CL
4294 if (tp->copied_seq == tp->rcv_nxt &&
4295 len - tcp_header_len <= tp->ucopy.len) {
4296#ifdef CONFIG_NET_DMA
4297 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4298 copied_early = 1;
4299 eaten = 1;
4300 }
4301#endif
4302 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4303 __set_current_state(TASK_RUNNING);
1da177e4 4304
1a2449a8
CL
4305 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4306 eaten = 1;
4307 }
4308 if (eaten) {
1da177e4
LT
4309 /* Predicted packet is in window by definition.
4310 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4311 * Hence, check seq<=rcv_wup reduces to:
4312 */
4313 if (tcp_header_len ==
4314 (sizeof(struct tcphdr) +
4315 TCPOLEN_TSTAMP_ALIGNED) &&
4316 tp->rcv_nxt == tp->rcv_wup)
4317 tcp_store_ts_recent(tp);
4318
463c84b9 4319 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4320
4321 __skb_pull(skb, tcp_header_len);
4322 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4323 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4324 }
1a2449a8
CL
4325 if (copied_early)
4326 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4327 }
4328 if (!eaten) {
4329 if (tcp_checksum_complete_user(sk, skb))
4330 goto csum_error;
4331
4332 /* Predicted packet is in window by definition.
4333 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4334 * Hence, check seq<=rcv_wup reduces to:
4335 */
4336 if (tcp_header_len ==
4337 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4338 tp->rcv_nxt == tp->rcv_wup)
4339 tcp_store_ts_recent(tp);
4340
463c84b9 4341 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4342
4343 if ((int)skb->truesize > sk->sk_forward_alloc)
4344 goto step5;
4345
4346 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4347
4348 /* Bulk data transfer: receiver */
4349 __skb_pull(skb,tcp_header_len);
4350 __skb_queue_tail(&sk->sk_receive_queue, skb);
4351 sk_stream_set_owner_r(skb, sk);
4352 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4353 }
4354
9e412ba7 4355 tcp_event_data_recv(sk, skb);
1da177e4
LT
4356
4357 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4358 /* Well, only one small jumplet in fast path... */
4359 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4360 tcp_data_snd_check(sk);
463c84b9 4361 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4362 goto no_ack;
4363 }
4364
31432412 4365 __tcp_ack_snd_check(sk, 0);
1da177e4 4366no_ack:
1a2449a8
CL
4367#ifdef CONFIG_NET_DMA
4368 if (copied_early)
4369 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4370 else
4371#endif
1da177e4
LT
4372 if (eaten)
4373 __kfree_skb(skb);
4374 else
4375 sk->sk_data_ready(sk, 0);
4376 return 0;
4377 }
4378 }
4379
4380slow_path:
4381 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4382 goto csum_error;
4383
4384 /*
4385 * RFC1323: H1. Apply PAWS check first.
4386 */
4387 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4388 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4389 if (!th->rst) {
4390 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4391 tcp_send_dupack(sk, skb);
4392 goto discard;
4393 }
4394 /* Resets are accepted even if PAWS failed.
4395
4396 ts_recent update must be made after we are sure
4397 that the packet is in window.
4398 */
4399 }
4400
4401 /*
4402 * Standard slow path.
4403 */
4404
4405 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4406 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4407 * (RST) segments are validated by checking their SEQ-fields."
4408 * And page 69: "If an incoming segment is not acceptable,
4409 * an acknowledgment should be sent in reply (unless the RST bit
4410 * is set, if so drop the segment and return)".
4411 */
4412 if (!th->rst)
4413 tcp_send_dupack(sk, skb);
4414 goto discard;
4415 }
4416
2de979bd 4417 if (th->rst) {
1da177e4
LT
4418 tcp_reset(sk);
4419 goto discard;
4420 }
4421
4422 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4423
4424 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4425 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4426 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4427 tcp_reset(sk);
4428 return 1;
4429 }
4430
4431step5:
2de979bd 4432 if (th->ack)
1da177e4
LT
4433 tcp_ack(sk, skb, FLAG_SLOWPATH);
4434
463c84b9 4435 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4436
4437 /* Process urgent data. */
4438 tcp_urg(sk, skb, th);
4439
4440 /* step 7: process the segment text */
4441 tcp_data_queue(sk, skb);
4442
9e412ba7 4443 tcp_data_snd_check(sk);
1da177e4
LT
4444 tcp_ack_snd_check(sk);
4445 return 0;
4446
4447csum_error:
4448 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4449
4450discard:
4451 __kfree_skb(skb);
4452 return 0;
4453}
4454
4455static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4456 struct tcphdr *th, unsigned len)
4457{
4458 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4459 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4460 int saved_clamp = tp->rx_opt.mss_clamp;
4461
4462 tcp_parse_options(skb, &tp->rx_opt, 0);
4463
4464 if (th->ack) {
4465 /* rfc793:
4466 * "If the state is SYN-SENT then
4467 * first check the ACK bit
4468 * If the ACK bit is set
4469 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4470 * a reset (unless the RST bit is set, if so drop
4471 * the segment and return)"
4472 *
4473 * We do not send data with SYN, so that RFC-correct
4474 * test reduces to:
4475 */
4476 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4477 goto reset_and_undo;
4478
4479 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4480 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4481 tcp_time_stamp)) {
4482 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4483 goto reset_and_undo;
4484 }
4485
4486 /* Now ACK is acceptable.
4487 *
4488 * "If the RST bit is set
4489 * If the ACK was acceptable then signal the user "error:
4490 * connection reset", drop the segment, enter CLOSED state,
4491 * delete TCB, and return."
4492 */
4493
4494 if (th->rst) {
4495 tcp_reset(sk);
4496 goto discard;
4497 }
4498
4499 /* rfc793:
4500 * "fifth, if neither of the SYN or RST bits is set then
4501 * drop the segment and return."
4502 *
4503 * See note below!
4504 * --ANK(990513)
4505 */
4506 if (!th->syn)
4507 goto discard_and_undo;
4508
4509 /* rfc793:
4510 * "If the SYN bit is on ...
4511 * are acceptable then ...
4512 * (our SYN has been ACKed), change the connection
4513 * state to ESTABLISHED..."
4514 */
4515
4516 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4517
4518 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4519 tcp_ack(sk, skb, FLAG_SLOWPATH);
4520
4521 /* Ok.. it's good. Set up sequence numbers and
4522 * move to established.
4523 */
4524 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4525 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4526
4527 /* RFC1323: The window in SYN & SYN/ACK segments is
4528 * never scaled.
4529 */
4530 tp->snd_wnd = ntohs(th->window);
4531 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4532
4533 if (!tp->rx_opt.wscale_ok) {
4534 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4535 tp->window_clamp = min(tp->window_clamp, 65535U);
4536 }
4537
4538 if (tp->rx_opt.saw_tstamp) {
4539 tp->rx_opt.tstamp_ok = 1;
4540 tp->tcp_header_len =
4541 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4542 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4543 tcp_store_ts_recent(tp);
4544 } else {
4545 tp->tcp_header_len = sizeof(struct tcphdr);
4546 }
4547
4548 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4549 tp->rx_opt.sack_ok |= 2;
4550
5d424d5a 4551 tcp_mtup_init(sk);
d83d8461 4552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4553 tcp_initialize_rcv_mss(sk);
4554
4555 /* Remember, tcp_poll() does not lock socket!
4556 * Change state from SYN-SENT only after copied_seq
4557 * is initialized. */
4558 tp->copied_seq = tp->rcv_nxt;
e16aa207 4559 smp_mb();
1da177e4
LT
4560 tcp_set_state(sk, TCP_ESTABLISHED);
4561
6b877699
VY
4562 security_inet_conn_established(sk, skb);
4563
1da177e4 4564 /* Make sure socket is routed, for correct metrics. */
8292a17a 4565 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4566
4567 tcp_init_metrics(sk);
4568
6687e988 4569 tcp_init_congestion_control(sk);
317a76f9 4570
1da177e4
LT
4571 /* Prevent spurious tcp_cwnd_restart() on first data
4572 * packet.
4573 */
4574 tp->lsndtime = tcp_time_stamp;
4575
4576 tcp_init_buffer_space(sk);
4577
4578 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4579 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4580
4581 if (!tp->rx_opt.snd_wscale)
4582 __tcp_fast_path_on(tp, tp->snd_wnd);
4583 else
4584 tp->pred_flags = 0;
4585
4586 if (!sock_flag(sk, SOCK_DEAD)) {
4587 sk->sk_state_change(sk);
4588 sk_wake_async(sk, 0, POLL_OUT);
4589 }
4590
295f7324
ACM
4591 if (sk->sk_write_pending ||
4592 icsk->icsk_accept_queue.rskq_defer_accept ||
4593 icsk->icsk_ack.pingpong) {
1da177e4
LT
4594 /* Save one ACK. Data will be ready after
4595 * several ticks, if write_pending is set.
4596 *
4597 * It may be deleted, but with this feature tcpdumps
4598 * look so _wonderfully_ clever, that I was not able
4599 * to stand against the temptation 8) --ANK
4600 */
463c84b9 4601 inet_csk_schedule_ack(sk);
295f7324
ACM
4602 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4603 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4604 tcp_incr_quickack(sk);
4605 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4606 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4607 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4608
4609discard:
4610 __kfree_skb(skb);
4611 return 0;
4612 } else {
4613 tcp_send_ack(sk);
4614 }
4615 return -1;
4616 }
4617
4618 /* No ACK in the segment */
4619
4620 if (th->rst) {
4621 /* rfc793:
4622 * "If the RST bit is set
4623 *
4624 * Otherwise (no ACK) drop the segment and return."
4625 */
4626
4627 goto discard_and_undo;
4628 }
4629
4630 /* PAWS check. */
4631 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4632 goto discard_and_undo;
4633
4634 if (th->syn) {
4635 /* We see SYN without ACK. It is attempt of
4636 * simultaneous connect with crossed SYNs.
4637 * Particularly, it can be connect to self.
4638 */
4639 tcp_set_state(sk, TCP_SYN_RECV);
4640
4641 if (tp->rx_opt.saw_tstamp) {
4642 tp->rx_opt.tstamp_ok = 1;
4643 tcp_store_ts_recent(tp);
4644 tp->tcp_header_len =
4645 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4646 } else {
4647 tp->tcp_header_len = sizeof(struct tcphdr);
4648 }
4649
4650 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4651 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4652
4653 /* RFC1323: The window in SYN & SYN/ACK segments is
4654 * never scaled.
4655 */
4656 tp->snd_wnd = ntohs(th->window);
4657 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4658 tp->max_window = tp->snd_wnd;
4659
4660 TCP_ECN_rcv_syn(tp, th);
1da177e4 4661
5d424d5a 4662 tcp_mtup_init(sk);
d83d8461 4663 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4664 tcp_initialize_rcv_mss(sk);
4665
4666
4667 tcp_send_synack(sk);
4668#if 0
4669 /* Note, we could accept data and URG from this segment.
4670 * There are no obstacles to make this.
4671 *
4672 * However, if we ignore data in ACKless segments sometimes,
4673 * we have no reasons to accept it sometimes.
4674 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4675 * is not flawless. So, discard packet for sanity.
4676 * Uncomment this return to process the data.
4677 */
4678 return -1;
4679#else
4680 goto discard;
4681#endif
4682 }
4683 /* "fifth, if neither of the SYN or RST bits is set then
4684 * drop the segment and return."
4685 */
4686
4687discard_and_undo:
4688 tcp_clear_options(&tp->rx_opt);
4689 tp->rx_opt.mss_clamp = saved_clamp;
4690 goto discard;
4691
4692reset_and_undo:
4693 tcp_clear_options(&tp->rx_opt);
4694 tp->rx_opt.mss_clamp = saved_clamp;
4695 return 1;
4696}
4697
4698
4699/*
4700 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4701 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4702 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4703 * address independent.
4704 */
e905a9ed 4705
1da177e4
LT
4706int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4707 struct tcphdr *th, unsigned len)
4708{
4709 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4710 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4711 int queued = 0;
4712
4713 tp->rx_opt.saw_tstamp = 0;
4714
4715 switch (sk->sk_state) {
4716 case TCP_CLOSE:
4717 goto discard;
4718
4719 case TCP_LISTEN:
2de979bd 4720 if (th->ack)
1da177e4
LT
4721 return 1;
4722
2de979bd 4723 if (th->rst)
1da177e4
LT
4724 goto discard;
4725
2de979bd 4726 if (th->syn) {
8292a17a 4727 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4728 return 1;
4729
e905a9ed
YH
4730 /* Now we have several options: In theory there is
4731 * nothing else in the frame. KA9Q has an option to
1da177e4 4732 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4733 * syn up to the [to be] advertised window and
4734 * Solaris 2.1 gives you a protocol error. For now
4735 * we just ignore it, that fits the spec precisely
1da177e4
LT
4736 * and avoids incompatibilities. It would be nice in
4737 * future to drop through and process the data.
4738 *
e905a9ed 4739 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4740 * queue this data.
4741 * But, this leaves one open to an easy denial of
e905a9ed 4742 * service attack, and SYN cookies can't defend
1da177e4 4743 * against this problem. So, we drop the data
fb7e2399
MN
4744 * in the interest of security over speed unless
4745 * it's still in use.
1da177e4 4746 */
fb7e2399
MN
4747 kfree_skb(skb);
4748 return 0;
1da177e4
LT
4749 }
4750 goto discard;
4751
4752 case TCP_SYN_SENT:
1da177e4
LT
4753 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4754 if (queued >= 0)
4755 return queued;
4756
4757 /* Do step6 onward by hand. */
4758 tcp_urg(sk, skb, th);
4759 __kfree_skb(skb);
9e412ba7 4760 tcp_data_snd_check(sk);
1da177e4
LT
4761 return 0;
4762 }
4763
4764 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4765 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4766 if (!th->rst) {
4767 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4768 tcp_send_dupack(sk, skb);
4769 goto discard;
4770 }
4771 /* Reset is accepted even if it did not pass PAWS. */
4772 }
4773
4774 /* step 1: check sequence number */
4775 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4776 if (!th->rst)
4777 tcp_send_dupack(sk, skb);
4778 goto discard;
4779 }
4780
4781 /* step 2: check RST bit */
2de979bd 4782 if (th->rst) {
1da177e4
LT
4783 tcp_reset(sk);
4784 goto discard;
4785 }
4786
4787 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4788
4789 /* step 3: check security and precedence [ignored] */
4790
4791 /* step 4:
4792 *
4793 * Check for a SYN in window.
4794 */
4795 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4796 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4797 tcp_reset(sk);
4798 return 1;
4799 }
4800
4801 /* step 5: check the ACK field */
4802 if (th->ack) {
4803 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4804
2de979bd 4805 switch (sk->sk_state) {
1da177e4
LT
4806 case TCP_SYN_RECV:
4807 if (acceptable) {
4808 tp->copied_seq = tp->rcv_nxt;
e16aa207 4809 smp_mb();
1da177e4
LT
4810 tcp_set_state(sk, TCP_ESTABLISHED);
4811 sk->sk_state_change(sk);
4812
4813 /* Note, that this wakeup is only for marginal
4814 * crossed SYN case. Passively open sockets
4815 * are not waked up, because sk->sk_sleep ==
4816 * NULL and sk->sk_socket == NULL.
4817 */
4818 if (sk->sk_socket) {
4819 sk_wake_async(sk,0,POLL_OUT);
4820 }
4821
4822 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4823 tp->snd_wnd = ntohs(th->window) <<
4824 tp->rx_opt.snd_wscale;
4825 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4826 TCP_SKB_CB(skb)->seq);
4827
4828 /* tcp_ack considers this ACK as duplicate
4829 * and does not calculate rtt.
4830 * Fix it at least with timestamps.
4831 */
4832 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4833 !tp->srtt)
2d2abbab 4834 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4835
4836 if (tp->rx_opt.tstamp_ok)
4837 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4838
4839 /* Make sure socket is routed, for
4840 * correct metrics.
4841 */
8292a17a 4842 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4843
4844 tcp_init_metrics(sk);
4845
6687e988 4846 tcp_init_congestion_control(sk);
317a76f9 4847
1da177e4
LT
4848 /* Prevent spurious tcp_cwnd_restart() on
4849 * first data packet.
4850 */
4851 tp->lsndtime = tcp_time_stamp;
4852
5d424d5a 4853 tcp_mtup_init(sk);
1da177e4
LT
4854 tcp_initialize_rcv_mss(sk);
4855 tcp_init_buffer_space(sk);
4856 tcp_fast_path_on(tp);
4857 } else {
4858 return 1;
4859 }
4860 break;
4861
4862 case TCP_FIN_WAIT1:
4863 if (tp->snd_una == tp->write_seq) {
4864 tcp_set_state(sk, TCP_FIN_WAIT2);
4865 sk->sk_shutdown |= SEND_SHUTDOWN;
4866 dst_confirm(sk->sk_dst_cache);
4867
4868 if (!sock_flag(sk, SOCK_DEAD))
4869 /* Wake up lingering close() */
4870 sk->sk_state_change(sk);
4871 else {
4872 int tmo;
4873
4874 if (tp->linger2 < 0 ||
4875 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4876 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4877 tcp_done(sk);
4878 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4879 return 1;
4880 }
4881
463c84b9 4882 tmo = tcp_fin_time(sk);
1da177e4 4883 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4884 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4885 } else if (th->fin || sock_owned_by_user(sk)) {
4886 /* Bad case. We could lose such FIN otherwise.
4887 * It is not a big problem, but it looks confusing
4888 * and not so rare event. We still can lose it now,
4889 * if it spins in bh_lock_sock(), but it is really
4890 * marginal case.
4891 */
463c84b9 4892 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4893 } else {
4894 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4895 goto discard;
4896 }
4897 }
4898 }
4899 break;
4900
4901 case TCP_CLOSING:
4902 if (tp->snd_una == tp->write_seq) {
4903 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4904 goto discard;
4905 }
4906 break;
4907
4908 case TCP_LAST_ACK:
4909 if (tp->snd_una == tp->write_seq) {
4910 tcp_update_metrics(sk);
4911 tcp_done(sk);
4912 goto discard;
4913 }
4914 break;
4915 }
4916 } else
4917 goto discard;
4918
4919 /* step 6: check the URG bit */
4920 tcp_urg(sk, skb, th);
4921
4922 /* step 7: process the segment text */
4923 switch (sk->sk_state) {
4924 case TCP_CLOSE_WAIT:
4925 case TCP_CLOSING:
4926 case TCP_LAST_ACK:
4927 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4928 break;
4929 case TCP_FIN_WAIT1:
4930 case TCP_FIN_WAIT2:
4931 /* RFC 793 says to queue data in these states,
e905a9ed 4932 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4933 * BSD 4.4 also does reset.
4934 */
4935 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4936 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4937 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4938 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4939 tcp_reset(sk);
4940 return 1;
4941 }
4942 }
4943 /* Fall through */
e905a9ed 4944 case TCP_ESTABLISHED:
1da177e4
LT
4945 tcp_data_queue(sk, skb);
4946 queued = 1;
4947 break;
4948 }
4949
4950 /* tcp_data could move socket to TIME-WAIT */
4951 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 4952 tcp_data_snd_check(sk);
1da177e4
LT
4953 tcp_ack_snd_check(sk);
4954 }
4955
e905a9ed 4956 if (!queued) {
1da177e4
LT
4957discard:
4958 __kfree_skb(skb);
4959 }
4960 return 0;
4961}
4962
4963EXPORT_SYMBOL(sysctl_tcp_ecn);
4964EXPORT_SYMBOL(sysctl_tcp_reordering);
4965EXPORT_SYMBOL(tcp_parse_options);
4966EXPORT_SYMBOL(tcp_rcv_established);
4967EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4968EXPORT_SYMBOL(tcp_initialize_rcv_mss);