]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/arc.c
Fix unlink/xattr deadlock
[mirror_zfs-debian.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
23 */
24
34dc7c2f
BB
25/*
26 * DVA-based Adjustable Replacement Cache
27 *
28 * While much of the theory of operation used here is
29 * based on the self-tuning, low overhead replacement cache
30 * presented by Megiddo and Modha at FAST 2003, there are some
31 * significant differences:
32 *
33 * 1. The Megiddo and Modha model assumes any page is evictable.
34 * Pages in its cache cannot be "locked" into memory. This makes
35 * the eviction algorithm simple: evict the last page in the list.
36 * This also make the performance characteristics easy to reason
37 * about. Our cache is not so simple. At any given moment, some
38 * subset of the blocks in the cache are un-evictable because we
39 * have handed out a reference to them. Blocks are only evictable
40 * when there are no external references active. This makes
41 * eviction far more problematic: we choose to evict the evictable
42 * blocks that are the "lowest" in the list.
43 *
44 * There are times when it is not possible to evict the requested
45 * space. In these circumstances we are unable to adjust the cache
46 * size. To prevent the cache growing unbounded at these times we
47 * implement a "cache throttle" that slows the flow of new data
48 * into the cache until we can make space available.
49 *
50 * 2. The Megiddo and Modha model assumes a fixed cache size.
51 * Pages are evicted when the cache is full and there is a cache
52 * miss. Our model has a variable sized cache. It grows with
53 * high use, but also tries to react to memory pressure from the
54 * operating system: decreasing its size when system memory is
55 * tight.
56 *
57 * 3. The Megiddo and Modha model assumes a fixed page size. All
58 * elements of the cache are therefor exactly the same size. So
59 * when adjusting the cache size following a cache miss, its simply
60 * a matter of choosing a single page to evict. In our model, we
61 * have variable sized cache blocks (rangeing from 512 bytes to
62 * 128K bytes). We therefor choose a set of blocks to evict to make
63 * space for a cache miss that approximates as closely as possible
64 * the space used by the new block.
65 *
66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
67 * by N. Megiddo & D. Modha, FAST 2003
68 */
69
70/*
71 * The locking model:
72 *
73 * A new reference to a cache buffer can be obtained in two
74 * ways: 1) via a hash table lookup using the DVA as a key,
75 * or 2) via one of the ARC lists. The arc_read() interface
76 * uses method 1, while the internal arc algorithms for
77 * adjusting the cache use method 2. We therefor provide two
78 * types of locks: 1) the hash table lock array, and 2) the
79 * arc list locks.
80 *
81 * Buffers do not have their own mutexs, rather they rely on the
82 * hash table mutexs for the bulk of their protection (i.e. most
83 * fields in the arc_buf_hdr_t are protected by these mutexs).
84 *
85 * buf_hash_find() returns the appropriate mutex (held) when it
86 * locates the requested buffer in the hash table. It returns
87 * NULL for the mutex if the buffer was not in the table.
88 *
89 * buf_hash_remove() expects the appropriate hash mutex to be
90 * already held before it is invoked.
91 *
92 * Each arc state also has a mutex which is used to protect the
93 * buffer list associated with the state. When attempting to
94 * obtain a hash table lock while holding an arc list lock you
95 * must use: mutex_tryenter() to avoid deadlock. Also note that
96 * the active state mutex must be held before the ghost state mutex.
97 *
98 * Arc buffers may have an associated eviction callback function.
99 * This function will be invoked prior to removing the buffer (e.g.
100 * in arc_do_user_evicts()). Note however that the data associated
101 * with the buffer may be evicted prior to the callback. The callback
102 * must be made with *no locks held* (to prevent deadlock). Additionally,
103 * the users of callbacks must ensure that their private data is
104 * protected from simultaneous callbacks from arc_buf_evict()
105 * and arc_do_user_evicts().
106 *
107 * Note that the majority of the performance stats are manipulated
108 * with atomic operations.
109 *
110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
111 *
112 * - L2ARC buflist creation
113 * - L2ARC buflist eviction
114 * - L2ARC write completion, which walks L2ARC buflists
115 * - ARC header destruction, as it removes from L2ARC buflists
116 * - ARC header release, as it removes from L2ARC buflists
117 */
118
119#include <sys/spa.h>
120#include <sys/zio.h>
34dc7c2f
BB
121#include <sys/zfs_context.h>
122#include <sys/arc.h>
123#include <sys/refcount.h>
b128c09f 124#include <sys/vdev.h>
9babb374 125#include <sys/vdev_impl.h>
34dc7c2f
BB
126#ifdef _KERNEL
127#include <sys/vmsystm.h>
128#include <vm/anon.h>
129#include <sys/fs/swapnode.h>
130#include <sys/dnlc.h>
131#endif
132#include <sys/callb.h>
133#include <sys/kstat.h>
428870ff 134#include <zfs_fletcher.h>
34dc7c2f
BB
135
136static kmutex_t arc_reclaim_thr_lock;
137static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
138static uint8_t arc_thread_exit;
139
140extern int zfs_write_limit_shift;
141extern uint64_t zfs_write_limit_max;
b128c09f 142extern kmutex_t zfs_write_limit_lock;
34dc7c2f
BB
143
144#define ARC_REDUCE_DNLC_PERCENT 3
145uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
146
147typedef enum arc_reclaim_strategy {
148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
150} arc_reclaim_strategy_t;
151
152/* number of seconds before growing cache again */
153static int arc_grow_retry = 60;
154
d164b209
BB
155/* shift of arc_c for calculating both min and max arc_p */
156static int arc_p_min_shift = 4;
157
158/* log2(fraction of arc to reclaim) */
159static int arc_shrink_shift = 5;
160
34dc7c2f
BB
161/*
162 * minimum lifespan of a prefetch block in clock ticks
163 * (initialized in arc_init())
164 */
165static int arc_min_prefetch_lifespan;
166
167static int arc_dead;
168
b128c09f
BB
169/*
170 * The arc has filled available memory and has now warmed up.
171 */
172static boolean_t arc_warm;
173
34dc7c2f
BB
174/*
175 * These tunables are for performance analysis.
176 */
c28b2279
BB
177unsigned long zfs_arc_max = 0;
178unsigned long zfs_arc_min = 0;
179unsigned long zfs_arc_meta_limit = 0;
d164b209
BB
180int zfs_arc_grow_retry = 0;
181int zfs_arc_shrink_shift = 0;
182int zfs_arc_p_min_shift = 0;
6a8f9b6b 183int zfs_arc_reduce_dnlc_percent = 0;
34dc7c2f
BB
184
185/*
186 * Note that buffers can be in one of 6 states:
187 * ARC_anon - anonymous (discussed below)
188 * ARC_mru - recently used, currently cached
189 * ARC_mru_ghost - recentely used, no longer in cache
190 * ARC_mfu - frequently used, currently cached
191 * ARC_mfu_ghost - frequently used, no longer in cache
192 * ARC_l2c_only - exists in L2ARC but not other states
193 * When there are no active references to the buffer, they are
194 * are linked onto a list in one of these arc states. These are
195 * the only buffers that can be evicted or deleted. Within each
196 * state there are multiple lists, one for meta-data and one for
197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
198 * etc.) is tracked separately so that it can be managed more
199 * explicitly: favored over data, limited explicitly.
200 *
201 * Anonymous buffers are buffers that are not associated with
202 * a DVA. These are buffers that hold dirty block copies
203 * before they are written to stable storage. By definition,
204 * they are "ref'd" and are considered part of arc_mru
205 * that cannot be freed. Generally, they will aquire a DVA
206 * as they are written and migrate onto the arc_mru list.
207 *
208 * The ARC_l2c_only state is for buffers that are in the second
209 * level ARC but no longer in any of the ARC_m* lists. The second
210 * level ARC itself may also contain buffers that are in any of
211 * the ARC_m* states - meaning that a buffer can exist in two
212 * places. The reason for the ARC_l2c_only state is to keep the
213 * buffer header in the hash table, so that reads that hit the
214 * second level ARC benefit from these fast lookups.
215 */
216
217typedef struct arc_state {
218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
220 uint64_t arcs_size; /* total amount of data in this state */
221 kmutex_t arcs_mtx;
222} arc_state_t;
223
224/* The 6 states: */
225static arc_state_t ARC_anon;
226static arc_state_t ARC_mru;
227static arc_state_t ARC_mru_ghost;
228static arc_state_t ARC_mfu;
229static arc_state_t ARC_mfu_ghost;
230static arc_state_t ARC_l2c_only;
231
232typedef struct arc_stats {
233 kstat_named_t arcstat_hits;
234 kstat_named_t arcstat_misses;
235 kstat_named_t arcstat_demand_data_hits;
236 kstat_named_t arcstat_demand_data_misses;
237 kstat_named_t arcstat_demand_metadata_hits;
238 kstat_named_t arcstat_demand_metadata_misses;
239 kstat_named_t arcstat_prefetch_data_hits;
240 kstat_named_t arcstat_prefetch_data_misses;
241 kstat_named_t arcstat_prefetch_metadata_hits;
242 kstat_named_t arcstat_prefetch_metadata_misses;
243 kstat_named_t arcstat_mru_hits;
244 kstat_named_t arcstat_mru_ghost_hits;
245 kstat_named_t arcstat_mfu_hits;
246 kstat_named_t arcstat_mfu_ghost_hits;
247 kstat_named_t arcstat_deleted;
248 kstat_named_t arcstat_recycle_miss;
249 kstat_named_t arcstat_mutex_miss;
250 kstat_named_t arcstat_evict_skip;
428870ff
BB
251 kstat_named_t arcstat_evict_l2_cached;
252 kstat_named_t arcstat_evict_l2_eligible;
253 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
254 kstat_named_t arcstat_hash_elements;
255 kstat_named_t arcstat_hash_elements_max;
256 kstat_named_t arcstat_hash_collisions;
257 kstat_named_t arcstat_hash_chains;
258 kstat_named_t arcstat_hash_chain_max;
259 kstat_named_t arcstat_p;
260 kstat_named_t arcstat_c;
261 kstat_named_t arcstat_c_min;
262 kstat_named_t arcstat_c_max;
263 kstat_named_t arcstat_size;
264 kstat_named_t arcstat_hdr_size;
d164b209
BB
265 kstat_named_t arcstat_data_size;
266 kstat_named_t arcstat_other_size;
34dc7c2f
BB
267 kstat_named_t arcstat_l2_hits;
268 kstat_named_t arcstat_l2_misses;
269 kstat_named_t arcstat_l2_feeds;
270 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
271 kstat_named_t arcstat_l2_read_bytes;
272 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
273 kstat_named_t arcstat_l2_writes_sent;
274 kstat_named_t arcstat_l2_writes_done;
275 kstat_named_t arcstat_l2_writes_error;
276 kstat_named_t arcstat_l2_writes_hdr_miss;
277 kstat_named_t arcstat_l2_evict_lock_retry;
278 kstat_named_t arcstat_l2_evict_reading;
279 kstat_named_t arcstat_l2_free_on_write;
280 kstat_named_t arcstat_l2_abort_lowmem;
281 kstat_named_t arcstat_l2_cksum_bad;
282 kstat_named_t arcstat_l2_io_error;
283 kstat_named_t arcstat_l2_size;
284 kstat_named_t arcstat_l2_hdr_size;
285 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
286 kstat_named_t arcstat_memory_direct_count;
287 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
288 kstat_named_t arcstat_no_grow;
289 kstat_named_t arcstat_tempreserve;
290 kstat_named_t arcstat_loaned_bytes;
291 kstat_named_t arcstat_meta_used;
292 kstat_named_t arcstat_meta_limit;
293 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
294} arc_stats_t;
295
296static arc_stats_t arc_stats = {
297 { "hits", KSTAT_DATA_UINT64 },
298 { "misses", KSTAT_DATA_UINT64 },
299 { "demand_data_hits", KSTAT_DATA_UINT64 },
300 { "demand_data_misses", KSTAT_DATA_UINT64 },
301 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
302 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
303 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
304 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
305 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
306 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
307 { "mru_hits", KSTAT_DATA_UINT64 },
308 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
309 { "mfu_hits", KSTAT_DATA_UINT64 },
310 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
311 { "deleted", KSTAT_DATA_UINT64 },
312 { "recycle_miss", KSTAT_DATA_UINT64 },
313 { "mutex_miss", KSTAT_DATA_UINT64 },
314 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
315 { "evict_l2_cached", KSTAT_DATA_UINT64 },
316 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
317 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
318 { "hash_elements", KSTAT_DATA_UINT64 },
319 { "hash_elements_max", KSTAT_DATA_UINT64 },
320 { "hash_collisions", KSTAT_DATA_UINT64 },
321 { "hash_chains", KSTAT_DATA_UINT64 },
322 { "hash_chain_max", KSTAT_DATA_UINT64 },
323 { "p", KSTAT_DATA_UINT64 },
324 { "c", KSTAT_DATA_UINT64 },
325 { "c_min", KSTAT_DATA_UINT64 },
326 { "c_max", KSTAT_DATA_UINT64 },
327 { "size", KSTAT_DATA_UINT64 },
328 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
329 { "data_size", KSTAT_DATA_UINT64 },
330 { "other_size", KSTAT_DATA_UINT64 },
34dc7c2f
BB
331 { "l2_hits", KSTAT_DATA_UINT64 },
332 { "l2_misses", KSTAT_DATA_UINT64 },
333 { "l2_feeds", KSTAT_DATA_UINT64 },
334 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
335 { "l2_read_bytes", KSTAT_DATA_UINT64 },
336 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
337 { "l2_writes_sent", KSTAT_DATA_UINT64 },
338 { "l2_writes_done", KSTAT_DATA_UINT64 },
339 { "l2_writes_error", KSTAT_DATA_UINT64 },
340 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
341 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
342 { "l2_evict_reading", KSTAT_DATA_UINT64 },
343 { "l2_free_on_write", KSTAT_DATA_UINT64 },
344 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
345 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
346 { "l2_io_error", KSTAT_DATA_UINT64 },
347 { "l2_size", KSTAT_DATA_UINT64 },
348 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 349 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
350 { "memory_direct_count", KSTAT_DATA_UINT64 },
351 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
352 { "arc_no_grow", KSTAT_DATA_UINT64 },
353 { "arc_tempreserve", KSTAT_DATA_UINT64 },
354 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
355 { "arc_meta_used", KSTAT_DATA_UINT64 },
356 { "arc_meta_limit", KSTAT_DATA_UINT64 },
357 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
358};
359
360#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
361
362#define ARCSTAT_INCR(stat, val) \
363 atomic_add_64(&arc_stats.stat.value.ui64, (val));
364
428870ff 365#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
366#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
367
368#define ARCSTAT_MAX(stat, val) { \
369 uint64_t m; \
370 while ((val) > (m = arc_stats.stat.value.ui64) && \
371 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
372 continue; \
373}
374
375#define ARCSTAT_MAXSTAT(stat) \
376 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
377
378/*
379 * We define a macro to allow ARC hits/misses to be easily broken down by
380 * two separate conditions, giving a total of four different subtypes for
381 * each of hits and misses (so eight statistics total).
382 */
383#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
384 if (cond1) { \
385 if (cond2) { \
386 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
387 } else { \
388 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
389 } \
390 } else { \
391 if (cond2) { \
392 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
393 } else { \
394 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
395 } \
396 }
397
398kstat_t *arc_ksp;
428870ff 399static arc_state_t *arc_anon;
34dc7c2f
BB
400static arc_state_t *arc_mru;
401static arc_state_t *arc_mru_ghost;
402static arc_state_t *arc_mfu;
403static arc_state_t *arc_mfu_ghost;
404static arc_state_t *arc_l2c_only;
405
406/*
407 * There are several ARC variables that are critical to export as kstats --
408 * but we don't want to have to grovel around in the kstat whenever we wish to
409 * manipulate them. For these variables, we therefore define them to be in
410 * terms of the statistic variable. This assures that we are not introducing
411 * the possibility of inconsistency by having shadow copies of the variables,
412 * while still allowing the code to be readable.
413 */
414#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
415#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
416#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
417#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
418#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
419#define arc_no_grow ARCSTAT(arcstat_no_grow)
420#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
421#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
422#define arc_meta_used ARCSTAT(arcstat_meta_used)
423#define arc_meta_limit ARCSTAT(arcstat_meta_limit)
424#define arc_meta_max ARCSTAT(arcstat_meta_max)
34dc7c2f
BB
425
426typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
427
428typedef struct arc_callback arc_callback_t;
429
430struct arc_callback {
431 void *acb_private;
432 arc_done_func_t *acb_done;
34dc7c2f
BB
433 arc_buf_t *acb_buf;
434 zio_t *acb_zio_dummy;
435 arc_callback_t *acb_next;
436};
437
438typedef struct arc_write_callback arc_write_callback_t;
439
440struct arc_write_callback {
441 void *awcb_private;
442 arc_done_func_t *awcb_ready;
443 arc_done_func_t *awcb_done;
444 arc_buf_t *awcb_buf;
445};
446
447struct arc_buf_hdr {
448 /* protected by hash lock */
449 dva_t b_dva;
450 uint64_t b_birth;
451 uint64_t b_cksum0;
452
453 kmutex_t b_freeze_lock;
454 zio_cksum_t *b_freeze_cksum;
428870ff 455 void *b_thawed;
34dc7c2f
BB
456
457 arc_buf_hdr_t *b_hash_next;
458 arc_buf_t *b_buf;
459 uint32_t b_flags;
460 uint32_t b_datacnt;
461
462 arc_callback_t *b_acb;
463 kcondvar_t b_cv;
464
465 /* immutable */
466 arc_buf_contents_t b_type;
467 uint64_t b_size;
d164b209 468 uint64_t b_spa;
34dc7c2f
BB
469
470 /* protected by arc state mutex */
471 arc_state_t *b_state;
472 list_node_t b_arc_node;
473
474 /* updated atomically */
475 clock_t b_arc_access;
476
477 /* self protecting */
478 refcount_t b_refcnt;
479
480 l2arc_buf_hdr_t *b_l2hdr;
481 list_node_t b_l2node;
482};
483
484static arc_buf_t *arc_eviction_list;
485static kmutex_t arc_eviction_mtx;
486static arc_buf_hdr_t arc_eviction_hdr;
487static void arc_get_data_buf(arc_buf_t *buf);
488static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
489static int arc_evict_needed(arc_buf_contents_t type);
d164b209 490static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
34dc7c2f 491
428870ff
BB
492static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
493
34dc7c2f
BB
494#define GHOST_STATE(state) \
495 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
496 (state) == arc_l2c_only)
497
498/*
499 * Private ARC flags. These flags are private ARC only flags that will show up
500 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
501 * be passed in as arc_flags in things like arc_read. However, these flags
502 * should never be passed and should only be set by ARC code. When adding new
503 * public flags, make sure not to smash the private ones.
504 */
505
506#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
507#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
508#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
509#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
510#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
511#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
512#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
513#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
514#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
515#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
516
517#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
518#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
519#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 520#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
521#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
522#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
523#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
524#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
525#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
526 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
527#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
528#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
529#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
530
531/*
532 * Other sizes
533 */
534
535#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
536#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
537
538/*
539 * Hash table routines
540 */
541
00b46022
BB
542#define HT_LOCK_ALIGN 64
543#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
544
545struct ht_lock {
546 kmutex_t ht_lock;
547#ifdef _KERNEL
00b46022 548 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
549#endif
550};
551
552#define BUF_LOCKS 256
553typedef struct buf_hash_table {
554 uint64_t ht_mask;
555 arc_buf_hdr_t **ht_table;
556 struct ht_lock ht_locks[BUF_LOCKS];
557} buf_hash_table_t;
558
559static buf_hash_table_t buf_hash_table;
560
561#define BUF_HASH_INDEX(spa, dva, birth) \
562 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
563#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
564#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
565#define HDR_LOCK(hdr) \
566 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
567
568uint64_t zfs_crc64_table[256];
569
570/*
571 * Level 2 ARC
572 */
573
574#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
d164b209
BB
575#define L2ARC_HEADROOM 2 /* num of writes */
576#define L2ARC_FEED_SECS 1 /* caching interval secs */
577#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
578
579#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
580#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
581
582/*
583 * L2ARC Performance Tunables
584 */
585uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
b128c09f 586uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
34dc7c2f
BB
587uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
588uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
d164b209 589uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
34dc7c2f 590boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
d164b209
BB
591boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
592boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
34dc7c2f
BB
593
594/*
595 * L2ARC Internals
596 */
597typedef struct l2arc_dev {
598 vdev_t *l2ad_vdev; /* vdev */
599 spa_t *l2ad_spa; /* spa */
600 uint64_t l2ad_hand; /* next write location */
601 uint64_t l2ad_write; /* desired write size, bytes */
b128c09f 602 uint64_t l2ad_boost; /* warmup write boost, bytes */
34dc7c2f
BB
603 uint64_t l2ad_start; /* first addr on device */
604 uint64_t l2ad_end; /* last addr on device */
605 uint64_t l2ad_evict; /* last addr eviction reached */
606 boolean_t l2ad_first; /* first sweep through */
d164b209 607 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
608 list_t *l2ad_buflist; /* buffer list */
609 list_node_t l2ad_node; /* device list node */
610} l2arc_dev_t;
611
612static list_t L2ARC_dev_list; /* device list */
613static list_t *l2arc_dev_list; /* device list pointer */
614static kmutex_t l2arc_dev_mtx; /* device list mutex */
615static l2arc_dev_t *l2arc_dev_last; /* last device used */
616static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
617static list_t L2ARC_free_on_write; /* free after write buf list */
618static list_t *l2arc_free_on_write; /* free after write list ptr */
619static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
620static uint64_t l2arc_ndev; /* number of devices */
621
622typedef struct l2arc_read_callback {
623 arc_buf_t *l2rcb_buf; /* read buffer */
624 spa_t *l2rcb_spa; /* spa */
625 blkptr_t l2rcb_bp; /* original blkptr */
626 zbookmark_t l2rcb_zb; /* original bookmark */
627 int l2rcb_flags; /* original flags */
628} l2arc_read_callback_t;
629
630typedef struct l2arc_write_callback {
631 l2arc_dev_t *l2wcb_dev; /* device info */
632 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
633} l2arc_write_callback_t;
634
635struct l2arc_buf_hdr {
636 /* protected by arc_buf_hdr mutex */
637 l2arc_dev_t *b_dev; /* L2ARC device */
9babb374 638 uint64_t b_daddr; /* disk address, offset byte */
34dc7c2f
BB
639};
640
641typedef struct l2arc_data_free {
642 /* protected by l2arc_free_on_write_mtx */
643 void *l2df_data;
644 size_t l2df_size;
645 void (*l2df_func)(void *, size_t);
646 list_node_t l2df_list_node;
647} l2arc_data_free_t;
648
649static kmutex_t l2arc_feed_thr_lock;
650static kcondvar_t l2arc_feed_thr_cv;
651static uint8_t l2arc_thread_exit;
652
653static void l2arc_read_done(zio_t *zio);
654static void l2arc_hdr_stat_add(void);
655static void l2arc_hdr_stat_remove(void);
656
657static uint64_t
d164b209 658buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 659{
34dc7c2f
BB
660 uint8_t *vdva = (uint8_t *)dva;
661 uint64_t crc = -1ULL;
662 int i;
663
664 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
665
666 for (i = 0; i < sizeof (dva_t); i++)
667 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
668
d164b209 669 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
670
671 return (crc);
672}
673
674#define BUF_EMPTY(buf) \
675 ((buf)->b_dva.dva_word[0] == 0 && \
676 (buf)->b_dva.dva_word[1] == 0 && \
677 (buf)->b_birth == 0)
678
679#define BUF_EQUAL(spa, dva, birth, buf) \
680 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
681 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
682 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
683
428870ff
BB
684static void
685buf_discard_identity(arc_buf_hdr_t *hdr)
686{
687 hdr->b_dva.dva_word[0] = 0;
688 hdr->b_dva.dva_word[1] = 0;
689 hdr->b_birth = 0;
690 hdr->b_cksum0 = 0;
691}
692
34dc7c2f 693static arc_buf_hdr_t *
d164b209 694buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
695{
696 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
697 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 arc_buf_hdr_t *buf;
699
700 mutex_enter(hash_lock);
701 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
702 buf = buf->b_hash_next) {
703 if (BUF_EQUAL(spa, dva, birth, buf)) {
704 *lockp = hash_lock;
705 return (buf);
706 }
707 }
708 mutex_exit(hash_lock);
709 *lockp = NULL;
710 return (NULL);
711}
712
713/*
714 * Insert an entry into the hash table. If there is already an element
715 * equal to elem in the hash table, then the already existing element
716 * will be returned and the new element will not be inserted.
717 * Otherwise returns NULL.
718 */
719static arc_buf_hdr_t *
720buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
721{
722 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
723 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
724 arc_buf_hdr_t *fbuf;
725 uint32_t i;
726
727 ASSERT(!HDR_IN_HASH_TABLE(buf));
728 *lockp = hash_lock;
729 mutex_enter(hash_lock);
730 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
731 fbuf = fbuf->b_hash_next, i++) {
732 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
733 return (fbuf);
734 }
735
736 buf->b_hash_next = buf_hash_table.ht_table[idx];
737 buf_hash_table.ht_table[idx] = buf;
738 buf->b_flags |= ARC_IN_HASH_TABLE;
739
740 /* collect some hash table performance data */
741 if (i > 0) {
742 ARCSTAT_BUMP(arcstat_hash_collisions);
743 if (i == 1)
744 ARCSTAT_BUMP(arcstat_hash_chains);
745
746 ARCSTAT_MAX(arcstat_hash_chain_max, i);
747 }
748
749 ARCSTAT_BUMP(arcstat_hash_elements);
750 ARCSTAT_MAXSTAT(arcstat_hash_elements);
751
752 return (NULL);
753}
754
755static void
756buf_hash_remove(arc_buf_hdr_t *buf)
757{
758 arc_buf_hdr_t *fbuf, **bufp;
759 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
760
761 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
762 ASSERT(HDR_IN_HASH_TABLE(buf));
763
764 bufp = &buf_hash_table.ht_table[idx];
765 while ((fbuf = *bufp) != buf) {
766 ASSERT(fbuf != NULL);
767 bufp = &fbuf->b_hash_next;
768 }
769 *bufp = buf->b_hash_next;
770 buf->b_hash_next = NULL;
771 buf->b_flags &= ~ARC_IN_HASH_TABLE;
772
773 /* collect some hash table performance data */
774 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
775
776 if (buf_hash_table.ht_table[idx] &&
777 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
778 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
779}
780
781/*
782 * Global data structures and functions for the buf kmem cache.
783 */
784static kmem_cache_t *hdr_cache;
785static kmem_cache_t *buf_cache;
786
787static void
788buf_fini(void)
789{
790 int i;
791
00b46022
BB
792#if defined(_KERNEL) && defined(HAVE_SPL)
793 /* Large allocations which do not require contiguous pages
794 * should be using vmem_free() in the linux kernel */
795 vmem_free(buf_hash_table.ht_table,
796 (buf_hash_table.ht_mask + 1) * sizeof (void *));
797#else
34dc7c2f
BB
798 kmem_free(buf_hash_table.ht_table,
799 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 800#endif
34dc7c2f
BB
801 for (i = 0; i < BUF_LOCKS; i++)
802 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
803 kmem_cache_destroy(hdr_cache);
804 kmem_cache_destroy(buf_cache);
805}
806
807/*
808 * Constructor callback - called when the cache is empty
809 * and a new buf is requested.
810 */
811/* ARGSUSED */
812static int
813hdr_cons(void *vbuf, void *unused, int kmflag)
814{
815 arc_buf_hdr_t *buf = vbuf;
816
817 bzero(buf, sizeof (arc_buf_hdr_t));
818 refcount_create(&buf->b_refcnt);
819 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
820 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
821 list_link_init(&buf->b_arc_node);
822 list_link_init(&buf->b_l2node);
d164b209 823 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 824
34dc7c2f
BB
825 return (0);
826}
827
b128c09f
BB
828/* ARGSUSED */
829static int
830buf_cons(void *vbuf, void *unused, int kmflag)
831{
832 arc_buf_t *buf = vbuf;
833
834 bzero(buf, sizeof (arc_buf_t));
428870ff
BB
835 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
836 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
d164b209
BB
837 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
838
b128c09f
BB
839 return (0);
840}
841
34dc7c2f
BB
842/*
843 * Destructor callback - called when a cached buf is
844 * no longer required.
845 */
846/* ARGSUSED */
847static void
848hdr_dest(void *vbuf, void *unused)
849{
850 arc_buf_hdr_t *buf = vbuf;
851
428870ff 852 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
853 refcount_destroy(&buf->b_refcnt);
854 cv_destroy(&buf->b_cv);
855 mutex_destroy(&buf->b_freeze_lock);
d164b209 856 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
857}
858
b128c09f
BB
859/* ARGSUSED */
860static void
861buf_dest(void *vbuf, void *unused)
862{
863 arc_buf_t *buf = vbuf;
864
428870ff
BB
865 mutex_destroy(&buf->b_evict_lock);
866 rw_destroy(&buf->b_data_lock);
d164b209 867 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
868}
869
34dc7c2f
BB
870/*
871 * Reclaim callback -- invoked when memory is low.
872 */
873/* ARGSUSED */
874static void
875hdr_recl(void *unused)
876{
877 dprintf("hdr_recl called\n");
878 /*
879 * umem calls the reclaim func when we destroy the buf cache,
880 * which is after we do arc_fini().
881 */
882 if (!arc_dead)
883 cv_signal(&arc_reclaim_thr_cv);
884}
885
886static void
887buf_init(void)
888{
889 uint64_t *ct;
890 uint64_t hsize = 1ULL << 12;
891 int i, j;
892
893 /*
894 * The hash table is big enough to fill all of physical memory
895 * with an average 64K block size. The table will take up
896 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
897 */
898 while (hsize * 65536 < physmem * PAGESIZE)
899 hsize <<= 1;
900retry:
901 buf_hash_table.ht_mask = hsize - 1;
00b46022
BB
902#if defined(_KERNEL) && defined(HAVE_SPL)
903 /* Large allocations which do not require contiguous pages
904 * should be using vmem_alloc() in the linux kernel */
905 buf_hash_table.ht_table =
906 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
907#else
34dc7c2f
BB
908 buf_hash_table.ht_table =
909 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 910#endif
34dc7c2f
BB
911 if (buf_hash_table.ht_table == NULL) {
912 ASSERT(hsize > (1ULL << 8));
913 hsize >>= 1;
914 goto retry;
915 }
916
917 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
918 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
919 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 920 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
921
922 for (i = 0; i < 256; i++)
923 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
924 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
925
926 for (i = 0; i < BUF_LOCKS; i++) {
927 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
928 NULL, MUTEX_DEFAULT, NULL);
929 }
930}
931
932#define ARC_MINTIME (hz>>4) /* 62 ms */
933
934static void
935arc_cksum_verify(arc_buf_t *buf)
936{
937 zio_cksum_t zc;
938
939 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
940 return;
941
942 mutex_enter(&buf->b_hdr->b_freeze_lock);
943 if (buf->b_hdr->b_freeze_cksum == NULL ||
944 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
945 mutex_exit(&buf->b_hdr->b_freeze_lock);
946 return;
947 }
948 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
949 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
950 panic("buffer modified while frozen!");
951 mutex_exit(&buf->b_hdr->b_freeze_lock);
952}
953
954static int
955arc_cksum_equal(arc_buf_t *buf)
956{
957 zio_cksum_t zc;
958 int equal;
959
960 mutex_enter(&buf->b_hdr->b_freeze_lock);
961 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
962 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
963 mutex_exit(&buf->b_hdr->b_freeze_lock);
964
965 return (equal);
966}
967
968static void
969arc_cksum_compute(arc_buf_t *buf, boolean_t force)
970{
971 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
972 return;
973
974 mutex_enter(&buf->b_hdr->b_freeze_lock);
975 if (buf->b_hdr->b_freeze_cksum != NULL) {
976 mutex_exit(&buf->b_hdr->b_freeze_lock);
977 return;
978 }
979 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
980 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
981 buf->b_hdr->b_freeze_cksum);
982 mutex_exit(&buf->b_hdr->b_freeze_lock);
983}
984
985void
986arc_buf_thaw(arc_buf_t *buf)
987{
988 if (zfs_flags & ZFS_DEBUG_MODIFY) {
989 if (buf->b_hdr->b_state != arc_anon)
990 panic("modifying non-anon buffer!");
991 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
992 panic("modifying buffer while i/o in progress!");
993 arc_cksum_verify(buf);
994 }
995
996 mutex_enter(&buf->b_hdr->b_freeze_lock);
997 if (buf->b_hdr->b_freeze_cksum != NULL) {
998 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
999 buf->b_hdr->b_freeze_cksum = NULL;
1000 }
428870ff
BB
1001
1002 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1003 if (buf->b_hdr->b_thawed)
1004 kmem_free(buf->b_hdr->b_thawed, 1);
1005 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1006 }
1007
34dc7c2f
BB
1008 mutex_exit(&buf->b_hdr->b_freeze_lock);
1009}
1010
1011void
1012arc_buf_freeze(arc_buf_t *buf)
1013{
428870ff
BB
1014 kmutex_t *hash_lock;
1015
34dc7c2f
BB
1016 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1017 return;
1018
428870ff
BB
1019 hash_lock = HDR_LOCK(buf->b_hdr);
1020 mutex_enter(hash_lock);
1021
34dc7c2f
BB
1022 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1023 buf->b_hdr->b_state == arc_anon);
1024 arc_cksum_compute(buf, B_FALSE);
428870ff 1025 mutex_exit(hash_lock);
34dc7c2f
BB
1026}
1027
1028static void
1029add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1030{
1031 ASSERT(MUTEX_HELD(hash_lock));
1032
1033 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1034 (ab->b_state != arc_anon)) {
1035 uint64_t delta = ab->b_size * ab->b_datacnt;
1036 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1037 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1038
1039 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1040 mutex_enter(&ab->b_state->arcs_mtx);
1041 ASSERT(list_link_active(&ab->b_arc_node));
1042 list_remove(list, ab);
1043 if (GHOST_STATE(ab->b_state)) {
1044 ASSERT3U(ab->b_datacnt, ==, 0);
1045 ASSERT3P(ab->b_buf, ==, NULL);
1046 delta = ab->b_size;
1047 }
1048 ASSERT(delta > 0);
1049 ASSERT3U(*size, >=, delta);
1050 atomic_add_64(size, -delta);
1051 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1052 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1053 if (ab->b_flags & ARC_PREFETCH)
1054 ab->b_flags &= ~ARC_PREFETCH;
1055 }
1056}
1057
1058static int
1059remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1060{
1061 int cnt;
1062 arc_state_t *state = ab->b_state;
1063
1064 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1065 ASSERT(!GHOST_STATE(state));
1066
1067 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1068 (state != arc_anon)) {
1069 uint64_t *size = &state->arcs_lsize[ab->b_type];
1070
1071 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1072 mutex_enter(&state->arcs_mtx);
1073 ASSERT(!list_link_active(&ab->b_arc_node));
1074 list_insert_head(&state->arcs_list[ab->b_type], ab);
1075 ASSERT(ab->b_datacnt > 0);
1076 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1077 mutex_exit(&state->arcs_mtx);
1078 }
1079 return (cnt);
1080}
1081
1082/*
1083 * Move the supplied buffer to the indicated state. The mutex
1084 * for the buffer must be held by the caller.
1085 */
1086static void
1087arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1088{
1089 arc_state_t *old_state = ab->b_state;
1090 int64_t refcnt = refcount_count(&ab->b_refcnt);
1091 uint64_t from_delta, to_delta;
1092
1093 ASSERT(MUTEX_HELD(hash_lock));
1094 ASSERT(new_state != old_state);
1095 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1096 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1097 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1098
1099 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1100
1101 /*
1102 * If this buffer is evictable, transfer it from the
1103 * old state list to the new state list.
1104 */
1105 if (refcnt == 0) {
1106 if (old_state != arc_anon) {
1107 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1108 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1109
1110 if (use_mutex)
1111 mutex_enter(&old_state->arcs_mtx);
1112
1113 ASSERT(list_link_active(&ab->b_arc_node));
1114 list_remove(&old_state->arcs_list[ab->b_type], ab);
1115
1116 /*
1117 * If prefetching out of the ghost cache,
428870ff 1118 * we will have a non-zero datacnt.
34dc7c2f
BB
1119 */
1120 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1121 /* ghost elements have a ghost size */
1122 ASSERT(ab->b_buf == NULL);
1123 from_delta = ab->b_size;
1124 }
1125 ASSERT3U(*size, >=, from_delta);
1126 atomic_add_64(size, -from_delta);
1127
1128 if (use_mutex)
1129 mutex_exit(&old_state->arcs_mtx);
1130 }
1131 if (new_state != arc_anon) {
1132 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1133 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1134
1135 if (use_mutex)
1136 mutex_enter(&new_state->arcs_mtx);
1137
1138 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1139
1140 /* ghost elements have a ghost size */
1141 if (GHOST_STATE(new_state)) {
1142 ASSERT(ab->b_datacnt == 0);
1143 ASSERT(ab->b_buf == NULL);
1144 to_delta = ab->b_size;
1145 }
1146 atomic_add_64(size, to_delta);
1147
1148 if (use_mutex)
1149 mutex_exit(&new_state->arcs_mtx);
1150 }
1151 }
1152
1153 ASSERT(!BUF_EMPTY(ab));
428870ff 1154 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1155 buf_hash_remove(ab);
34dc7c2f
BB
1156
1157 /* adjust state sizes */
1158 if (to_delta)
1159 atomic_add_64(&new_state->arcs_size, to_delta);
1160 if (from_delta) {
1161 ASSERT3U(old_state->arcs_size, >=, from_delta);
1162 atomic_add_64(&old_state->arcs_size, -from_delta);
1163 }
1164 ab->b_state = new_state;
1165
1166 /* adjust l2arc hdr stats */
1167 if (new_state == arc_l2c_only)
1168 l2arc_hdr_stat_add();
1169 else if (old_state == arc_l2c_only)
1170 l2arc_hdr_stat_remove();
1171}
1172
1173void
d164b209 1174arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1175{
d164b209
BB
1176 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1177
1178 switch (type) {
e75c13c3
BB
1179 default:
1180 break;
d164b209
BB
1181 case ARC_SPACE_DATA:
1182 ARCSTAT_INCR(arcstat_data_size, space);
1183 break;
1184 case ARC_SPACE_OTHER:
1185 ARCSTAT_INCR(arcstat_other_size, space);
1186 break;
1187 case ARC_SPACE_HDRS:
1188 ARCSTAT_INCR(arcstat_hdr_size, space);
1189 break;
1190 case ARC_SPACE_L2HDRS:
1191 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1192 break;
1193 }
1194
34dc7c2f
BB
1195 atomic_add_64(&arc_meta_used, space);
1196 atomic_add_64(&arc_size, space);
1197}
1198
1199void
d164b209 1200arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1201{
d164b209
BB
1202 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1203
1204 switch (type) {
e75c13c3
BB
1205 default:
1206 break;
d164b209
BB
1207 case ARC_SPACE_DATA:
1208 ARCSTAT_INCR(arcstat_data_size, -space);
1209 break;
1210 case ARC_SPACE_OTHER:
1211 ARCSTAT_INCR(arcstat_other_size, -space);
1212 break;
1213 case ARC_SPACE_HDRS:
1214 ARCSTAT_INCR(arcstat_hdr_size, -space);
1215 break;
1216 case ARC_SPACE_L2HDRS:
1217 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1218 break;
1219 }
1220
34dc7c2f
BB
1221 ASSERT(arc_meta_used >= space);
1222 if (arc_meta_max < arc_meta_used)
1223 arc_meta_max = arc_meta_used;
1224 atomic_add_64(&arc_meta_used, -space);
1225 ASSERT(arc_size >= space);
1226 atomic_add_64(&arc_size, -space);
1227}
1228
1229void *
1230arc_data_buf_alloc(uint64_t size)
1231{
1232 if (arc_evict_needed(ARC_BUFC_DATA))
1233 cv_signal(&arc_reclaim_thr_cv);
1234 atomic_add_64(&arc_size, size);
1235 return (zio_data_buf_alloc(size));
1236}
1237
1238void
1239arc_data_buf_free(void *buf, uint64_t size)
1240{
1241 zio_data_buf_free(buf, size);
1242 ASSERT(arc_size >= size);
1243 atomic_add_64(&arc_size, -size);
1244}
1245
1246arc_buf_t *
1247arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1248{
1249 arc_buf_hdr_t *hdr;
1250 arc_buf_t *buf;
1251
1252 ASSERT3U(size, >, 0);
1253 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1254 ASSERT(BUF_EMPTY(hdr));
1255 hdr->b_size = size;
1256 hdr->b_type = type;
d164b209 1257 hdr->b_spa = spa_guid(spa);
34dc7c2f
BB
1258 hdr->b_state = arc_anon;
1259 hdr->b_arc_access = 0;
1260 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1261 buf->b_hdr = hdr;
1262 buf->b_data = NULL;
1263 buf->b_efunc = NULL;
1264 buf->b_private = NULL;
1265 buf->b_next = NULL;
1266 hdr->b_buf = buf;
1267 arc_get_data_buf(buf);
1268 hdr->b_datacnt = 1;
1269 hdr->b_flags = 0;
1270 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1271 (void) refcount_add(&hdr->b_refcnt, tag);
1272
1273 return (buf);
1274}
1275
9babb374
BB
1276static char *arc_onloan_tag = "onloan";
1277
1278/*
1279 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1280 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1281 * buffers must be returned to the arc before they can be used by the DMU or
1282 * freed.
1283 */
1284arc_buf_t *
1285arc_loan_buf(spa_t *spa, int size)
1286{
1287 arc_buf_t *buf;
1288
1289 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1290
1291 atomic_add_64(&arc_loaned_bytes, size);
1292 return (buf);
1293}
1294
1295/*
1296 * Return a loaned arc buffer to the arc.
1297 */
1298void
1299arc_return_buf(arc_buf_t *buf, void *tag)
1300{
1301 arc_buf_hdr_t *hdr = buf->b_hdr;
1302
9babb374 1303 ASSERT(buf->b_data != NULL);
428870ff
BB
1304 (void) refcount_add(&hdr->b_refcnt, tag);
1305 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1306
1307 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1308}
1309
428870ff
BB
1310/* Detach an arc_buf from a dbuf (tag) */
1311void
1312arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1313{
1314 arc_buf_hdr_t *hdr;
1315
1316 ASSERT(buf->b_data != NULL);
1317 hdr = buf->b_hdr;
1318 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1319 (void) refcount_remove(&hdr->b_refcnt, tag);
1320 buf->b_efunc = NULL;
1321 buf->b_private = NULL;
1322
1323 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1324}
1325
34dc7c2f
BB
1326static arc_buf_t *
1327arc_buf_clone(arc_buf_t *from)
1328{
1329 arc_buf_t *buf;
1330 arc_buf_hdr_t *hdr = from->b_hdr;
1331 uint64_t size = hdr->b_size;
1332
428870ff
BB
1333 ASSERT(hdr->b_state != arc_anon);
1334
34dc7c2f
BB
1335 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1336 buf->b_hdr = hdr;
1337 buf->b_data = NULL;
1338 buf->b_efunc = NULL;
1339 buf->b_private = NULL;
1340 buf->b_next = hdr->b_buf;
1341 hdr->b_buf = buf;
1342 arc_get_data_buf(buf);
1343 bcopy(from->b_data, buf->b_data, size);
1344 hdr->b_datacnt += 1;
1345 return (buf);
1346}
1347
1348void
1349arc_buf_add_ref(arc_buf_t *buf, void* tag)
1350{
1351 arc_buf_hdr_t *hdr;
1352 kmutex_t *hash_lock;
1353
1354 /*
b128c09f
BB
1355 * Check to see if this buffer is evicted. Callers
1356 * must verify b_data != NULL to know if the add_ref
1357 * was successful.
34dc7c2f 1358 */
428870ff 1359 mutex_enter(&buf->b_evict_lock);
b128c09f 1360 if (buf->b_data == NULL) {
428870ff 1361 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1362 return;
1363 }
428870ff 1364 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1365 mutex_enter(hash_lock);
428870ff
BB
1366 hdr = buf->b_hdr;
1367 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1368 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1369
34dc7c2f
BB
1370 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1371 add_reference(hdr, hash_lock, tag);
d164b209 1372 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1373 arc_access(hdr, hash_lock);
1374 mutex_exit(hash_lock);
1375 ARCSTAT_BUMP(arcstat_hits);
1376 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1377 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1378 data, metadata, hits);
1379}
1380
1381/*
1382 * Free the arc data buffer. If it is an l2arc write in progress,
1383 * the buffer is placed on l2arc_free_on_write to be freed later.
1384 */
1385static void
1386arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1387 void *data, size_t size)
1388{
1389 if (HDR_L2_WRITING(hdr)) {
1390 l2arc_data_free_t *df;
1391 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1392 df->l2df_data = data;
1393 df->l2df_size = size;
1394 df->l2df_func = free_func;
1395 mutex_enter(&l2arc_free_on_write_mtx);
1396 list_insert_head(l2arc_free_on_write, df);
1397 mutex_exit(&l2arc_free_on_write_mtx);
1398 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1399 } else {
1400 free_func(data, size);
1401 }
1402}
1403
1404static void
1405arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1406{
1407 arc_buf_t **bufp;
1408
1409 /* free up data associated with the buf */
1410 if (buf->b_data) {
1411 arc_state_t *state = buf->b_hdr->b_state;
1412 uint64_t size = buf->b_hdr->b_size;
1413 arc_buf_contents_t type = buf->b_hdr->b_type;
1414
1415 arc_cksum_verify(buf);
428870ff 1416
34dc7c2f
BB
1417 if (!recycle) {
1418 if (type == ARC_BUFC_METADATA) {
1419 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1420 buf->b_data, size);
d164b209 1421 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1422 } else {
1423 ASSERT(type == ARC_BUFC_DATA);
1424 arc_buf_data_free(buf->b_hdr,
1425 zio_data_buf_free, buf->b_data, size);
d164b209 1426 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1427 atomic_add_64(&arc_size, -size);
1428 }
1429 }
1430 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1431 uint64_t *cnt = &state->arcs_lsize[type];
1432
1433 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1434 ASSERT(state != arc_anon);
1435
1436 ASSERT3U(*cnt, >=, size);
1437 atomic_add_64(cnt, -size);
1438 }
1439 ASSERT3U(state->arcs_size, >=, size);
1440 atomic_add_64(&state->arcs_size, -size);
1441 buf->b_data = NULL;
1442 ASSERT(buf->b_hdr->b_datacnt > 0);
1443 buf->b_hdr->b_datacnt -= 1;
1444 }
1445
1446 /* only remove the buf if requested */
1447 if (!all)
1448 return;
1449
1450 /* remove the buf from the hdr list */
1451 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1452 continue;
1453 *bufp = buf->b_next;
428870ff 1454 buf->b_next = NULL;
34dc7c2f
BB
1455
1456 ASSERT(buf->b_efunc == NULL);
1457
1458 /* clean up the buf */
1459 buf->b_hdr = NULL;
1460 kmem_cache_free(buf_cache, buf);
1461}
1462
1463static void
1464arc_hdr_destroy(arc_buf_hdr_t *hdr)
1465{
d6320ddb
BB
1466 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1467
34dc7c2f
BB
1468 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1469 ASSERT3P(hdr->b_state, ==, arc_anon);
1470 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1471
428870ff
BB
1472 if (l2hdr != NULL) {
1473 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1474 /*
1475 * To prevent arc_free() and l2arc_evict() from
1476 * attempting to free the same buffer at the same time,
1477 * a FREE_IN_PROGRESS flag is given to arc_free() to
1478 * give it priority. l2arc_evict() can't destroy this
1479 * header while we are waiting on l2arc_buflist_mtx.
1480 *
1481 * The hdr may be removed from l2ad_buflist before we
1482 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1483 */
1484 if (!buflist_held) {
34dc7c2f 1485 mutex_enter(&l2arc_buflist_mtx);
428870ff 1486 l2hdr = hdr->b_l2hdr;
34dc7c2f 1487 }
428870ff
BB
1488
1489 if (l2hdr != NULL) {
1490 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1491 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1492 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1493 if (hdr->b_state == arc_l2c_only)
1494 l2arc_hdr_stat_remove();
1495 hdr->b_l2hdr = NULL;
1496 }
1497
1498 if (!buflist_held)
1499 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1500 }
1501
1502 if (!BUF_EMPTY(hdr)) {
1503 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1504 buf_discard_identity(hdr);
34dc7c2f
BB
1505 }
1506 while (hdr->b_buf) {
1507 arc_buf_t *buf = hdr->b_buf;
1508
1509 if (buf->b_efunc) {
1510 mutex_enter(&arc_eviction_mtx);
428870ff 1511 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1512 ASSERT(buf->b_hdr != NULL);
1513 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1514 hdr->b_buf = buf->b_next;
1515 buf->b_hdr = &arc_eviction_hdr;
1516 buf->b_next = arc_eviction_list;
1517 arc_eviction_list = buf;
428870ff 1518 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1519 mutex_exit(&arc_eviction_mtx);
1520 } else {
1521 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1522 }
1523 }
1524 if (hdr->b_freeze_cksum != NULL) {
1525 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1526 hdr->b_freeze_cksum = NULL;
1527 }
428870ff
BB
1528 if (hdr->b_thawed) {
1529 kmem_free(hdr->b_thawed, 1);
1530 hdr->b_thawed = NULL;
1531 }
34dc7c2f
BB
1532
1533 ASSERT(!list_link_active(&hdr->b_arc_node));
1534 ASSERT3P(hdr->b_hash_next, ==, NULL);
1535 ASSERT3P(hdr->b_acb, ==, NULL);
1536 kmem_cache_free(hdr_cache, hdr);
1537}
1538
1539void
1540arc_buf_free(arc_buf_t *buf, void *tag)
1541{
1542 arc_buf_hdr_t *hdr = buf->b_hdr;
1543 int hashed = hdr->b_state != arc_anon;
1544
1545 ASSERT(buf->b_efunc == NULL);
1546 ASSERT(buf->b_data != NULL);
1547
1548 if (hashed) {
1549 kmutex_t *hash_lock = HDR_LOCK(hdr);
1550
1551 mutex_enter(hash_lock);
428870ff
BB
1552 hdr = buf->b_hdr;
1553 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1554
34dc7c2f 1555 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1556 if (hdr->b_datacnt > 1) {
34dc7c2f 1557 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1558 } else {
1559 ASSERT(buf == hdr->b_buf);
1560 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1561 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1562 }
34dc7c2f
BB
1563 mutex_exit(hash_lock);
1564 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1565 int destroy_hdr;
1566 /*
1567 * We are in the middle of an async write. Don't destroy
1568 * this buffer unless the write completes before we finish
1569 * decrementing the reference count.
1570 */
1571 mutex_enter(&arc_eviction_mtx);
1572 (void) remove_reference(hdr, NULL, tag);
1573 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1574 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1575 mutex_exit(&arc_eviction_mtx);
1576 if (destroy_hdr)
1577 arc_hdr_destroy(hdr);
1578 } else {
428870ff 1579 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1580 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1581 else
34dc7c2f 1582 arc_hdr_destroy(hdr);
34dc7c2f
BB
1583 }
1584}
1585
1586int
1587arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1588{
1589 arc_buf_hdr_t *hdr = buf->b_hdr;
1590 kmutex_t *hash_lock = HDR_LOCK(hdr);
1591 int no_callback = (buf->b_efunc == NULL);
1592
1593 if (hdr->b_state == arc_anon) {
428870ff 1594 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1595 arc_buf_free(buf, tag);
1596 return (no_callback);
1597 }
1598
1599 mutex_enter(hash_lock);
428870ff
BB
1600 hdr = buf->b_hdr;
1601 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1602 ASSERT(hdr->b_state != arc_anon);
1603 ASSERT(buf->b_data != NULL);
1604
1605 (void) remove_reference(hdr, hash_lock, tag);
1606 if (hdr->b_datacnt > 1) {
1607 if (no_callback)
1608 arc_buf_destroy(buf, FALSE, TRUE);
1609 } else if (no_callback) {
1610 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1611 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1612 hdr->b_flags |= ARC_BUF_AVAILABLE;
1613 }
1614 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1615 refcount_is_zero(&hdr->b_refcnt));
1616 mutex_exit(hash_lock);
1617 return (no_callback);
1618}
1619
1620int
1621arc_buf_size(arc_buf_t *buf)
1622{
1623 return (buf->b_hdr->b_size);
1624}
1625
1626/*
1627 * Evict buffers from list until we've removed the specified number of
1628 * bytes. Move the removed buffers to the appropriate evict state.
1629 * If the recycle flag is set, then attempt to "recycle" a buffer:
1630 * - look for a buffer to evict that is `bytes' long.
1631 * - return the data block from this buffer rather than freeing it.
1632 * This flag is used by callers that are trying to make space for a
1633 * new buffer in a full arc cache.
1634 *
1635 * This function makes a "best effort". It skips over any buffers
1636 * it can't get a hash_lock on, and so may not catch all candidates.
1637 * It may also return without evicting as much space as requested.
1638 */
1639static void *
d164b209 1640arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1641 arc_buf_contents_t type)
1642{
1643 arc_state_t *evicted_state;
1644 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1645 arc_buf_hdr_t *ab, *ab_prev = NULL;
1646 list_t *list = &state->arcs_list[type];
1647 kmutex_t *hash_lock;
1648 boolean_t have_lock;
1649 void *stolen = NULL;
1650
1651 ASSERT(state == arc_mru || state == arc_mfu);
1652
1653 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1654
1655 mutex_enter(&state->arcs_mtx);
1656 mutex_enter(&evicted_state->arcs_mtx);
1657
1658 for (ab = list_tail(list); ab; ab = ab_prev) {
1659 ab_prev = list_prev(list, ab);
1660 /* prefetch buffers have a minimum lifespan */
1661 if (HDR_IO_IN_PROGRESS(ab) ||
1662 (spa && ab->b_spa != spa) ||
1663 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff
BB
1664 ddi_get_lbolt() - ab->b_arc_access <
1665 arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1666 skipped++;
1667 continue;
1668 }
1669 /* "lookahead" for better eviction candidate */
1670 if (recycle && ab->b_size != bytes &&
1671 ab_prev && ab_prev->b_size == bytes)
1672 continue;
1673 hash_lock = HDR_LOCK(ab);
1674 have_lock = MUTEX_HELD(hash_lock);
1675 if (have_lock || mutex_tryenter(hash_lock)) {
1676 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1677 ASSERT(ab->b_datacnt > 0);
1678 while (ab->b_buf) {
1679 arc_buf_t *buf = ab->b_buf;
428870ff 1680 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1681 missed += 1;
1682 break;
1683 }
34dc7c2f
BB
1684 if (buf->b_data) {
1685 bytes_evicted += ab->b_size;
1686 if (recycle && ab->b_type == type &&
1687 ab->b_size == bytes &&
1688 !HDR_L2_WRITING(ab)) {
1689 stolen = buf->b_data;
1690 recycle = FALSE;
1691 }
1692 }
1693 if (buf->b_efunc) {
1694 mutex_enter(&arc_eviction_mtx);
1695 arc_buf_destroy(buf,
1696 buf->b_data == stolen, FALSE);
1697 ab->b_buf = buf->b_next;
1698 buf->b_hdr = &arc_eviction_hdr;
1699 buf->b_next = arc_eviction_list;
1700 arc_eviction_list = buf;
1701 mutex_exit(&arc_eviction_mtx);
428870ff 1702 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1703 } else {
428870ff 1704 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1705 arc_buf_destroy(buf,
1706 buf->b_data == stolen, TRUE);
1707 }
1708 }
428870ff
BB
1709
1710 if (ab->b_l2hdr) {
1711 ARCSTAT_INCR(arcstat_evict_l2_cached,
1712 ab->b_size);
1713 } else {
1714 if (l2arc_write_eligible(ab->b_spa, ab)) {
1715 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1716 ab->b_size);
1717 } else {
1718 ARCSTAT_INCR(
1719 arcstat_evict_l2_ineligible,
1720 ab->b_size);
1721 }
1722 }
1723
b128c09f
BB
1724 if (ab->b_datacnt == 0) {
1725 arc_change_state(evicted_state, ab, hash_lock);
1726 ASSERT(HDR_IN_HASH_TABLE(ab));
1727 ab->b_flags |= ARC_IN_HASH_TABLE;
1728 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1729 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1730 }
34dc7c2f
BB
1731 if (!have_lock)
1732 mutex_exit(hash_lock);
1733 if (bytes >= 0 && bytes_evicted >= bytes)
1734 break;
1735 } else {
1736 missed += 1;
1737 }
1738 }
1739
1740 mutex_exit(&evicted_state->arcs_mtx);
1741 mutex_exit(&state->arcs_mtx);
1742
1743 if (bytes_evicted < bytes)
3f504482 1744 dprintf("only evicted %lld bytes from %x\n",
34dc7c2f
BB
1745 (longlong_t)bytes_evicted, state);
1746
1747 if (skipped)
1748 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1749
1750 if (missed)
1751 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1752
1753 /*
1754 * We have just evicted some date into the ghost state, make
1755 * sure we also adjust the ghost state size if necessary.
1756 */
1757 if (arc_no_grow &&
1758 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1759 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1760 arc_mru_ghost->arcs_size - arc_c;
1761
1762 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1763 int64_t todelete =
1764 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
b8864a23 1765 arc_evict_ghost(arc_mru_ghost, 0, todelete);
34dc7c2f
BB
1766 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1767 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1768 arc_mru_ghost->arcs_size +
1769 arc_mfu_ghost->arcs_size - arc_c);
b8864a23 1770 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
34dc7c2f
BB
1771 }
1772 }
1773
1774 return (stolen);
1775}
1776
1777/*
1778 * Remove buffers from list until we've removed the specified number of
1779 * bytes. Destroy the buffers that are removed.
1780 */
1781static void
d164b209 1782arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
34dc7c2f
BB
1783{
1784 arc_buf_hdr_t *ab, *ab_prev;
2598c001 1785 arc_buf_hdr_t marker;
34dc7c2f
BB
1786 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1787 kmutex_t *hash_lock;
1788 uint64_t bytes_deleted = 0;
1789 uint64_t bufs_skipped = 0;
1790
1791 ASSERT(GHOST_STATE(state));
2598c001 1792 bzero(&marker, sizeof(marker));
34dc7c2f
BB
1793top:
1794 mutex_enter(&state->arcs_mtx);
1795 for (ab = list_tail(list); ab; ab = ab_prev) {
1796 ab_prev = list_prev(list, ab);
1797 if (spa && ab->b_spa != spa)
1798 continue;
572e2857
BB
1799
1800 /* ignore markers */
1801 if (ab->b_spa == 0)
1802 continue;
1803
34dc7c2f 1804 hash_lock = HDR_LOCK(ab);
428870ff
BB
1805 /* caller may be trying to modify this buffer, skip it */
1806 if (MUTEX_HELD(hash_lock))
1807 continue;
34dc7c2f
BB
1808 if (mutex_tryenter(hash_lock)) {
1809 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1810 ASSERT(ab->b_buf == NULL);
1811 ARCSTAT_BUMP(arcstat_deleted);
1812 bytes_deleted += ab->b_size;
1813
1814 if (ab->b_l2hdr != NULL) {
1815 /*
1816 * This buffer is cached on the 2nd Level ARC;
1817 * don't destroy the header.
1818 */
1819 arc_change_state(arc_l2c_only, ab, hash_lock);
1820 mutex_exit(hash_lock);
1821 } else {
1822 arc_change_state(arc_anon, ab, hash_lock);
1823 mutex_exit(hash_lock);
1824 arc_hdr_destroy(ab);
1825 }
1826
1827 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1828 if (bytes >= 0 && bytes_deleted >= bytes)
1829 break;
572e2857
BB
1830 } else if (bytes < 0) {
1831 /*
1832 * Insert a list marker and then wait for the
1833 * hash lock to become available. Once its
1834 * available, restart from where we left off.
1835 */
1836 list_insert_after(list, ab, &marker);
1837 mutex_exit(&state->arcs_mtx);
1838 mutex_enter(hash_lock);
1839 mutex_exit(hash_lock);
1840 mutex_enter(&state->arcs_mtx);
1841 ab_prev = list_prev(list, &marker);
1842 list_remove(list, &marker);
1843 } else
34dc7c2f 1844 bufs_skipped += 1;
34dc7c2f
BB
1845 }
1846 mutex_exit(&state->arcs_mtx);
1847
1848 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1849 (bytes < 0 || bytes_deleted < bytes)) {
1850 list = &state->arcs_list[ARC_BUFC_METADATA];
1851 goto top;
1852 }
1853
1854 if (bufs_skipped) {
1855 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1856 ASSERT(bytes >= 0);
1857 }
1858
1859 if (bytes_deleted < bytes)
3f504482 1860 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
1861 (longlong_t)bytes_deleted, state);
1862}
1863
1864static void
1865arc_adjust(void)
1866{
d164b209
BB
1867 int64_t adjustment, delta;
1868
1869 /*
1870 * Adjust MRU size
1871 */
34dc7c2f 1872
572e2857
BB
1873 adjustment = MIN((int64_t)(arc_size - arc_c),
1874 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1875 arc_p));
34dc7c2f 1876
d164b209
BB
1877 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1878 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
b8864a23 1879 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1880 adjustment -= delta;
34dc7c2f
BB
1881 }
1882
d164b209
BB
1883 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1884 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
b8864a23 1885 (void) arc_evict(arc_mru, 0, delta, FALSE,
34dc7c2f 1886 ARC_BUFC_METADATA);
34dc7c2f
BB
1887 }
1888
d164b209
BB
1889 /*
1890 * Adjust MFU size
1891 */
34dc7c2f 1892
d164b209
BB
1893 adjustment = arc_size - arc_c;
1894
1895 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1896 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
b8864a23 1897 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1898 adjustment -= delta;
34dc7c2f
BB
1899 }
1900
d164b209
BB
1901 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1902 int64_t delta = MIN(adjustment,
1903 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
b8864a23 1904 (void) arc_evict(arc_mfu, 0, delta, FALSE,
d164b209
BB
1905 ARC_BUFC_METADATA);
1906 }
34dc7c2f 1907
d164b209
BB
1908 /*
1909 * Adjust ghost lists
1910 */
34dc7c2f 1911
d164b209
BB
1912 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1913
1914 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1915 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
b8864a23 1916 arc_evict_ghost(arc_mru_ghost, 0, delta);
d164b209 1917 }
34dc7c2f 1918
d164b209
BB
1919 adjustment =
1920 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 1921
d164b209
BB
1922 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1923 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
b8864a23 1924 arc_evict_ghost(arc_mfu_ghost, 0, delta);
34dc7c2f
BB
1925 }
1926}
1927
1928static void
1929arc_do_user_evicts(void)
1930{
1931 mutex_enter(&arc_eviction_mtx);
1932 while (arc_eviction_list != NULL) {
1933 arc_buf_t *buf = arc_eviction_list;
1934 arc_eviction_list = buf->b_next;
428870ff 1935 mutex_enter(&buf->b_evict_lock);
34dc7c2f 1936 buf->b_hdr = NULL;
428870ff 1937 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1938 mutex_exit(&arc_eviction_mtx);
1939
1940 if (buf->b_efunc != NULL)
1941 VERIFY(buf->b_efunc(buf) == 0);
1942
1943 buf->b_efunc = NULL;
1944 buf->b_private = NULL;
1945 kmem_cache_free(buf_cache, buf);
1946 mutex_enter(&arc_eviction_mtx);
1947 }
1948 mutex_exit(&arc_eviction_mtx);
1949}
1950
1951/*
1952 * Flush all *evictable* data from the cache for the given spa.
1953 * NOTE: this will not touch "active" (i.e. referenced) data.
1954 */
1955void
1956arc_flush(spa_t *spa)
1957{
d164b209
BB
1958 uint64_t guid = 0;
1959
1960 if (spa)
1961 guid = spa_guid(spa);
1962
34dc7c2f 1963 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 1964 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
1965 if (spa)
1966 break;
1967 }
1968 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 1969 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
1970 if (spa)
1971 break;
1972 }
1973 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 1974 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
1975 if (spa)
1976 break;
1977 }
1978 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 1979 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
1980 if (spa)
1981 break;
1982 }
1983
d164b209
BB
1984 arc_evict_ghost(arc_mru_ghost, guid, -1);
1985 arc_evict_ghost(arc_mfu_ghost, guid, -1);
34dc7c2f
BB
1986
1987 mutex_enter(&arc_reclaim_thr_lock);
1988 arc_do_user_evicts();
1989 mutex_exit(&arc_reclaim_thr_lock);
1990 ASSERT(spa || arc_eviction_list == NULL);
1991}
1992
34dc7c2f
BB
1993void
1994arc_shrink(void)
1995{
1996 if (arc_c > arc_c_min) {
1997 uint64_t to_free;
1998
1999#ifdef _KERNEL
2000 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2001#else
2002 to_free = arc_c >> arc_shrink_shift;
2003#endif
2004 if (arc_c > arc_c_min + to_free)
2005 atomic_add_64(&arc_c, -to_free);
2006 else
2007 arc_c = arc_c_min;
2008
2009 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2010 if (arc_c > arc_size)
2011 arc_c = MAX(arc_size, arc_c_min);
2012 if (arc_p > arc_c)
2013 arc_p = (arc_c >> 1);
2014 ASSERT(arc_c >= arc_c_min);
2015 ASSERT((int64_t)arc_p >= 0);
2016 }
2017
2018 if (arc_size > arc_c)
2019 arc_adjust();
2020}
2021
2022static int
2023arc_reclaim_needed(void)
2024{
34dc7c2f 2025#ifdef _KERNEL
1fde1e37 2026 uint64_t extra;
34dc7c2f
BB
2027
2028 if (needfree)
2029 return (1);
2030
2031 /*
2032 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2033 */
2034 extra = desfree;
2035
2036 /*
2037 * check that we're out of range of the pageout scanner. It starts to
2038 * schedule paging if freemem is less than lotsfree and needfree.
2039 * lotsfree is the high-water mark for pageout, and needfree is the
2040 * number of needed free pages. We add extra pages here to make sure
2041 * the scanner doesn't start up while we're freeing memory.
2042 */
2043 if (freemem < lotsfree + needfree + extra)
2044 return (1);
2045
2046 /*
2047 * check to make sure that swapfs has enough space so that anon
2048 * reservations can still succeed. anon_resvmem() checks that the
2049 * availrmem is greater than swapfs_minfree, and the number of reserved
2050 * swap pages. We also add a bit of extra here just to prevent
2051 * circumstances from getting really dire.
2052 */
2053 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2054 return (1);
2055
2056#if defined(__i386)
2057 /*
2058 * If we're on an i386 platform, it's possible that we'll exhaust the
2059 * kernel heap space before we ever run out of available physical
2060 * memory. Most checks of the size of the heap_area compare against
2061 * tune.t_minarmem, which is the minimum available real memory that we
2062 * can have in the system. However, this is generally fixed at 25 pages
2063 * which is so low that it's useless. In this comparison, we seek to
2064 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2065 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2066 * free)
2067 */
2068 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2069 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2070 return (1);
2071#endif
2072
2073#else
2074 if (spa_get_random(100) == 0)
2075 return (1);
2076#endif
2077 return (0);
2078}
2079
2080static void
2081arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2082{
2083 size_t i;
2084 kmem_cache_t *prev_cache = NULL;
2085 kmem_cache_t *prev_data_cache = NULL;
2086 extern kmem_cache_t *zio_buf_cache[];
2087 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f 2088#ifdef _KERNEL
6a8f9b6b
BB
2089 int retry = 0;
2090
2091 while ((arc_meta_used >= arc_meta_limit) && (retry < 10)) {
34dc7c2f
BB
2092 /*
2093 * We are exceeding our meta-data cache limit.
2094 * Purge some DNLC entries to release holds on meta-data.
2095 */
2096 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
6a8f9b6b 2097 retry++;
34dc7c2f
BB
2098 }
2099#if defined(__i386)
2100 /*
2101 * Reclaim unused memory from all kmem caches.
2102 */
2103 kmem_reap();
2104#endif
2105#endif
2106
2107 /*
2108 * An aggressive reclamation will shrink the cache size as well as
2109 * reap free buffers from the arc kmem caches.
2110 */
2111 if (strat == ARC_RECLAIM_AGGR)
2112 arc_shrink();
2113
2114 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2115 if (zio_buf_cache[i] != prev_cache) {
2116 prev_cache = zio_buf_cache[i];
2117 kmem_cache_reap_now(zio_buf_cache[i]);
2118 }
2119 if (zio_data_buf_cache[i] != prev_data_cache) {
2120 prev_data_cache = zio_data_buf_cache[i];
2121 kmem_cache_reap_now(zio_data_buf_cache[i]);
2122 }
2123 }
2124 kmem_cache_reap_now(buf_cache);
2125 kmem_cache_reap_now(hdr_cache);
2126}
2127
2128static void
2129arc_reclaim_thread(void)
2130{
2131 clock_t growtime = 0;
2132 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2133 callb_cpr_t cpr;
2134
2135 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2136
2137 mutex_enter(&arc_reclaim_thr_lock);
2138 while (arc_thread_exit == 0) {
2139 if (arc_reclaim_needed()) {
2140
2141 if (arc_no_grow) {
2142 if (last_reclaim == ARC_RECLAIM_CONS) {
2143 last_reclaim = ARC_RECLAIM_AGGR;
2144 } else {
2145 last_reclaim = ARC_RECLAIM_CONS;
2146 }
2147 } else {
2148 arc_no_grow = TRUE;
2149 last_reclaim = ARC_RECLAIM_AGGR;
2150 membar_producer();
2151 }
2152
2153 /* reset the growth delay for every reclaim */
428870ff 2154 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
34dc7c2f
BB
2155
2156 arc_kmem_reap_now(last_reclaim);
b128c09f 2157 arc_warm = B_TRUE;
34dc7c2f 2158
428870ff 2159 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
34dc7c2f
BB
2160 arc_no_grow = FALSE;
2161 }
2162
6a8f9b6b
BB
2163 /* Keep meta data usage within limits */
2164 if (arc_meta_used >= arc_meta_limit)
2165 arc_kmem_reap_now(ARC_RECLAIM_CONS);
2166
572e2857 2167 arc_adjust();
34dc7c2f
BB
2168
2169 if (arc_eviction_list != NULL)
2170 arc_do_user_evicts();
2171
2172 /* block until needed, or one second, whichever is shorter */
2173 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2174 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2175 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f
BB
2176 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2177 }
2178
2179 arc_thread_exit = 0;
2180 cv_broadcast(&arc_reclaim_thr_cv);
2181 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2182 thread_exit();
2183}
2184
7cb67b45
BB
2185#ifdef _KERNEL
2186/*
2187 * Under Linux the arc shrinker may be called for synchronous (direct)
2188 * reclaim, or asynchronous (indirect) reclaim. When called by kswapd
2189 * for indirect reclaim we take a conservative approach and just reap
2190 * free slabs from the ARC caches. If this proves to be insufficient
2191 * direct reclaim will be trigger. In direct reclaim a more aggressive
2192 * strategy is used, data is evicted from the ARC and free slabs reaped.
2193 */
2194SPL_SHRINKER_CALLBACK_PROTO(arc_shrinker_func, cb, nr_to_scan, gfp_mask)
2195{
2196 arc_reclaim_strategy_t strategy;
2197 int arc_reclaim;
2198
7cb67b45 2199 /* Return number of reclaimable pages based on arc_shrink_shift */
3fd70ee6
BB
2200 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2201 >> arc_shrink_shift, 0);
7cb67b45
BB
2202 if (nr_to_scan == 0)
2203 return (arc_reclaim);
2204
3fd70ee6
BB
2205 /* Prevent reclaim below arc_c_min */
2206 if (arc_reclaim <= 0)
2207 return (-1);
2208
2209 /* Not allowed to perform filesystem reclaim */
2210 if (!(gfp_mask & __GFP_FS))
2211 return (-1);
2212
7cb67b45
BB
2213 /* Reclaim in progress */
2214 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2215 return (-1);
2216
2217 if (current_is_kswapd()) {
2218 strategy = ARC_RECLAIM_CONS;
2219 ARCSTAT_INCR(arcstat_memory_indirect_count, 1);
2220 } else {
2221 strategy = ARC_RECLAIM_AGGR;
2222 ARCSTAT_INCR(arcstat_memory_direct_count, 1);
2223 }
2224
2225 arc_kmem_reap_now(strategy);
3fd70ee6
BB
2226 arc_reclaim = MAX(btop(((int64_t)arc_size - (int64_t)arc_c_min))
2227 >> arc_shrink_shift, 0);
7cb67b45
BB
2228 mutex_exit(&arc_reclaim_thr_lock);
2229
2230 return (arc_reclaim);
2231}
2232
2233SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2234#endif /* _KERNEL */
2235
34dc7c2f
BB
2236/*
2237 * Adapt arc info given the number of bytes we are trying to add and
2238 * the state that we are comming from. This function is only called
2239 * when we are adding new content to the cache.
2240 */
2241static void
2242arc_adapt(int bytes, arc_state_t *state)
2243{
2244 int mult;
d164b209 2245 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
34dc7c2f
BB
2246
2247 if (state == arc_l2c_only)
2248 return;
2249
2250 ASSERT(bytes > 0);
2251 /*
2252 * Adapt the target size of the MRU list:
2253 * - if we just hit in the MRU ghost list, then increase
2254 * the target size of the MRU list.
2255 * - if we just hit in the MFU ghost list, then increase
2256 * the target size of the MFU list by decreasing the
2257 * target size of the MRU list.
2258 */
2259 if (state == arc_mru_ghost) {
2260 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2261 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2262 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2263
d164b209 2264 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2265 } else if (state == arc_mfu_ghost) {
d164b209
BB
2266 uint64_t delta;
2267
34dc7c2f
BB
2268 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2269 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2270 mult = MIN(mult, 10);
34dc7c2f 2271
d164b209
BB
2272 delta = MIN(bytes * mult, arc_p);
2273 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2274 }
2275 ASSERT((int64_t)arc_p >= 0);
2276
2277 if (arc_reclaim_needed()) {
2278 cv_signal(&arc_reclaim_thr_cv);
2279 return;
2280 }
2281
2282 if (arc_no_grow)
2283 return;
2284
2285 if (arc_c >= arc_c_max)
2286 return;
2287
2288 /*
2289 * If we're within (2 * maxblocksize) bytes of the target
2290 * cache size, increment the target cache size
2291 */
2292 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2293 atomic_add_64(&arc_c, (int64_t)bytes);
2294 if (arc_c > arc_c_max)
2295 arc_c = arc_c_max;
2296 else if (state == arc_anon)
2297 atomic_add_64(&arc_p, (int64_t)bytes);
2298 if (arc_p > arc_c)
2299 arc_p = arc_c;
2300 }
2301 ASSERT((int64_t)arc_p >= 0);
2302}
2303
2304/*
2305 * Check if the cache has reached its limits and eviction is required
2306 * prior to insert.
2307 */
2308static int
2309arc_evict_needed(arc_buf_contents_t type)
2310{
2311 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2312 return (1);
2313
2314#ifdef _KERNEL
2315 /*
2316 * If zio data pages are being allocated out of a separate heap segment,
2317 * then enforce that the size of available vmem for this area remains
2318 * above about 1/32nd free.
2319 */
2320 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2321 vmem_size(zio_arena, VMEM_FREE) <
2322 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2323 return (1);
2324#endif
2325
2326 if (arc_reclaim_needed())
2327 return (1);
2328
2329 return (arc_size > arc_c);
2330}
2331
2332/*
2333 * The buffer, supplied as the first argument, needs a data block.
2334 * So, if we are at cache max, determine which cache should be victimized.
2335 * We have the following cases:
2336 *
2337 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2338 * In this situation if we're out of space, but the resident size of the MFU is
2339 * under the limit, victimize the MFU cache to satisfy this insertion request.
2340 *
2341 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2342 * Here, we've used up all of the available space for the MRU, so we need to
2343 * evict from our own cache instead. Evict from the set of resident MRU
2344 * entries.
2345 *
2346 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2347 * c minus p represents the MFU space in the cache, since p is the size of the
2348 * cache that is dedicated to the MRU. In this situation there's still space on
2349 * the MFU side, so the MRU side needs to be victimized.
2350 *
2351 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2352 * MFU's resident set is consuming more space than it has been allotted. In
2353 * this situation, we must victimize our own cache, the MFU, for this insertion.
2354 */
2355static void
2356arc_get_data_buf(arc_buf_t *buf)
2357{
2358 arc_state_t *state = buf->b_hdr->b_state;
2359 uint64_t size = buf->b_hdr->b_size;
2360 arc_buf_contents_t type = buf->b_hdr->b_type;
2361
2362 arc_adapt(size, state);
2363
2364 /*
2365 * We have not yet reached cache maximum size,
2366 * just allocate a new buffer.
2367 */
2368 if (!arc_evict_needed(type)) {
2369 if (type == ARC_BUFC_METADATA) {
2370 buf->b_data = zio_buf_alloc(size);
d164b209 2371 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2372 } else {
2373 ASSERT(type == ARC_BUFC_DATA);
2374 buf->b_data = zio_data_buf_alloc(size);
d164b209 2375 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2376 atomic_add_64(&arc_size, size);
2377 }
2378 goto out;
2379 }
2380
2381 /*
2382 * If we are prefetching from the mfu ghost list, this buffer
2383 * will end up on the mru list; so steal space from there.
2384 */
2385 if (state == arc_mfu_ghost)
2386 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2387 else if (state == arc_mru_ghost)
2388 state = arc_mru;
2389
2390 if (state == arc_mru || state == arc_anon) {
2391 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2392 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2393 arc_p > mru_used) ? arc_mfu : arc_mru;
2394 } else {
2395 /* MFU cases */
2396 uint64_t mfu_space = arc_c - arc_p;
d164b209 2397 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2398 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2399 }
b8864a23 2400 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
34dc7c2f
BB
2401 if (type == ARC_BUFC_METADATA) {
2402 buf->b_data = zio_buf_alloc(size);
d164b209 2403 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2404 } else {
2405 ASSERT(type == ARC_BUFC_DATA);
2406 buf->b_data = zio_data_buf_alloc(size);
d164b209 2407 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2408 atomic_add_64(&arc_size, size);
2409 }
2410 ARCSTAT_BUMP(arcstat_recycle_miss);
2411 }
2412 ASSERT(buf->b_data != NULL);
2413out:
2414 /*
2415 * Update the state size. Note that ghost states have a
2416 * "ghost size" and so don't need to be updated.
2417 */
2418 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2419 arc_buf_hdr_t *hdr = buf->b_hdr;
2420
2421 atomic_add_64(&hdr->b_state->arcs_size, size);
2422 if (list_link_active(&hdr->b_arc_node)) {
2423 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2424 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2425 }
2426 /*
2427 * If we are growing the cache, and we are adding anonymous
2428 * data, and we have outgrown arc_p, update arc_p
2429 */
2430 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2431 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2432 arc_p = MIN(arc_c, arc_p + size);
2433 }
2434}
2435
2436/*
2437 * This routine is called whenever a buffer is accessed.
2438 * NOTE: the hash lock is dropped in this function.
2439 */
2440static void
2441arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2442{
428870ff
BB
2443 clock_t now;
2444
34dc7c2f
BB
2445 ASSERT(MUTEX_HELD(hash_lock));
2446
2447 if (buf->b_state == arc_anon) {
2448 /*
2449 * This buffer is not in the cache, and does not
2450 * appear in our "ghost" list. Add the new buffer
2451 * to the MRU state.
2452 */
2453
2454 ASSERT(buf->b_arc_access == 0);
428870ff 2455 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2456 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2457 arc_change_state(arc_mru, buf, hash_lock);
2458
2459 } else if (buf->b_state == arc_mru) {
428870ff
BB
2460 now = ddi_get_lbolt();
2461
34dc7c2f
BB
2462 /*
2463 * If this buffer is here because of a prefetch, then either:
2464 * - clear the flag if this is a "referencing" read
2465 * (any subsequent access will bump this into the MFU state).
2466 * or
2467 * - move the buffer to the head of the list if this is
2468 * another prefetch (to make it less likely to be evicted).
2469 */
2470 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2471 if (refcount_count(&buf->b_refcnt) == 0) {
2472 ASSERT(list_link_active(&buf->b_arc_node));
2473 } else {
2474 buf->b_flags &= ~ARC_PREFETCH;
2475 ARCSTAT_BUMP(arcstat_mru_hits);
2476 }
428870ff 2477 buf->b_arc_access = now;
34dc7c2f
BB
2478 return;
2479 }
2480
2481 /*
2482 * This buffer has been "accessed" only once so far,
2483 * but it is still in the cache. Move it to the MFU
2484 * state.
2485 */
428870ff 2486 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2487 /*
2488 * More than 125ms have passed since we
2489 * instantiated this buffer. Move it to the
2490 * most frequently used state.
2491 */
428870ff 2492 buf->b_arc_access = now;
34dc7c2f
BB
2493 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2494 arc_change_state(arc_mfu, buf, hash_lock);
2495 }
2496 ARCSTAT_BUMP(arcstat_mru_hits);
2497 } else if (buf->b_state == arc_mru_ghost) {
2498 arc_state_t *new_state;
2499 /*
2500 * This buffer has been "accessed" recently, but
2501 * was evicted from the cache. Move it to the
2502 * MFU state.
2503 */
2504
2505 if (buf->b_flags & ARC_PREFETCH) {
2506 new_state = arc_mru;
2507 if (refcount_count(&buf->b_refcnt) > 0)
2508 buf->b_flags &= ~ARC_PREFETCH;
2509 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2510 } else {
2511 new_state = arc_mfu;
2512 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2513 }
2514
428870ff 2515 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2516 arc_change_state(new_state, buf, hash_lock);
2517
2518 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2519 } else if (buf->b_state == arc_mfu) {
2520 /*
2521 * This buffer has been accessed more than once and is
2522 * still in the cache. Keep it in the MFU state.
2523 *
2524 * NOTE: an add_reference() that occurred when we did
2525 * the arc_read() will have kicked this off the list.
2526 * If it was a prefetch, we will explicitly move it to
2527 * the head of the list now.
2528 */
2529 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2530 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2531 ASSERT(list_link_active(&buf->b_arc_node));
2532 }
2533 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2534 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2535 } else if (buf->b_state == arc_mfu_ghost) {
2536 arc_state_t *new_state = arc_mfu;
2537 /*
2538 * This buffer has been accessed more than once but has
2539 * been evicted from the cache. Move it back to the
2540 * MFU state.
2541 */
2542
2543 if (buf->b_flags & ARC_PREFETCH) {
2544 /*
2545 * This is a prefetch access...
2546 * move this block back to the MRU state.
2547 */
2548 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2549 new_state = arc_mru;
2550 }
2551
428870ff 2552 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2553 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2554 arc_change_state(new_state, buf, hash_lock);
2555
2556 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2557 } else if (buf->b_state == arc_l2c_only) {
2558 /*
2559 * This buffer is on the 2nd Level ARC.
2560 */
2561
428870ff 2562 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2563 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2564 arc_change_state(arc_mfu, buf, hash_lock);
2565 } else {
2566 ASSERT(!"invalid arc state");
2567 }
2568}
2569
2570/* a generic arc_done_func_t which you can use */
2571/* ARGSUSED */
2572void
2573arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2574{
428870ff
BB
2575 if (zio == NULL || zio->io_error == 0)
2576 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
34dc7c2f
BB
2577 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2578}
2579
2580/* a generic arc_done_func_t */
2581void
2582arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2583{
2584 arc_buf_t **bufp = arg;
2585 if (zio && zio->io_error) {
2586 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2587 *bufp = NULL;
2588 } else {
2589 *bufp = buf;
428870ff 2590 ASSERT(buf->b_data);
34dc7c2f
BB
2591 }
2592}
2593
2594static void
2595arc_read_done(zio_t *zio)
2596{
2597 arc_buf_hdr_t *hdr, *found;
2598 arc_buf_t *buf;
2599 arc_buf_t *abuf; /* buffer we're assigning to callback */
2600 kmutex_t *hash_lock;
2601 arc_callback_t *callback_list, *acb;
2602 int freeable = FALSE;
2603
2604 buf = zio->io_private;
2605 hdr = buf->b_hdr;
2606
2607 /*
2608 * The hdr was inserted into hash-table and removed from lists
2609 * prior to starting I/O. We should find this header, since
2610 * it's in the hash table, and it should be legit since it's
2611 * not possible to evict it during the I/O. The only possible
2612 * reason for it not to be found is if we were freed during the
2613 * read.
2614 */
d164b209 2615 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2616 &hash_lock);
2617
2618 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2619 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2620 (found == hdr && HDR_L2_READING(hdr)));
2621
b128c09f 2622 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2623 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2624 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2625
2626 /* byteswap if necessary */
2627 callback_list = hdr->b_acb;
2628 ASSERT(callback_list != NULL);
428870ff 2629 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
b128c09f
BB
2630 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2631 byteswap_uint64_array :
2632 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2633 func(buf->b_data, hdr->b_size);
2634 }
34dc7c2f
BB
2635
2636 arc_cksum_compute(buf, B_FALSE);
2637
428870ff
BB
2638 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2639 /*
2640 * Only call arc_access on anonymous buffers. This is because
2641 * if we've issued an I/O for an evicted buffer, we've already
2642 * called arc_access (to prevent any simultaneous readers from
2643 * getting confused).
2644 */
2645 arc_access(hdr, hash_lock);
2646 }
2647
34dc7c2f
BB
2648 /* create copies of the data buffer for the callers */
2649 abuf = buf;
2650 for (acb = callback_list; acb; acb = acb->acb_next) {
2651 if (acb->acb_done) {
2652 if (abuf == NULL)
2653 abuf = arc_buf_clone(buf);
2654 acb->acb_buf = abuf;
2655 abuf = NULL;
2656 }
2657 }
2658 hdr->b_acb = NULL;
2659 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2660 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
2661 if (abuf == buf) {
2662 ASSERT(buf->b_efunc == NULL);
2663 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 2664 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 2665 }
34dc7c2f
BB
2666
2667 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2668
2669 if (zio->io_error != 0) {
2670 hdr->b_flags |= ARC_IO_ERROR;
2671 if (hdr->b_state != arc_anon)
2672 arc_change_state(arc_anon, hdr, hash_lock);
2673 if (HDR_IN_HASH_TABLE(hdr))
2674 buf_hash_remove(hdr);
2675 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
2676 }
2677
2678 /*
2679 * Broadcast before we drop the hash_lock to avoid the possibility
2680 * that the hdr (and hence the cv) might be freed before we get to
2681 * the cv_broadcast().
2682 */
2683 cv_broadcast(&hdr->b_cv);
2684
2685 if (hash_lock) {
34dc7c2f
BB
2686 mutex_exit(hash_lock);
2687 } else {
2688 /*
2689 * This block was freed while we waited for the read to
2690 * complete. It has been removed from the hash table and
2691 * moved to the anonymous state (so that it won't show up
2692 * in the cache).
2693 */
2694 ASSERT3P(hdr->b_state, ==, arc_anon);
2695 freeable = refcount_is_zero(&hdr->b_refcnt);
2696 }
2697
2698 /* execute each callback and free its structure */
2699 while ((acb = callback_list) != NULL) {
2700 if (acb->acb_done)
2701 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2702
2703 if (acb->acb_zio_dummy != NULL) {
2704 acb->acb_zio_dummy->io_error = zio->io_error;
2705 zio_nowait(acb->acb_zio_dummy);
2706 }
2707
2708 callback_list = acb->acb_next;
2709 kmem_free(acb, sizeof (arc_callback_t));
2710 }
2711
2712 if (freeable)
2713 arc_hdr_destroy(hdr);
2714}
2715
2716/*
2717 * "Read" the block block at the specified DVA (in bp) via the
2718 * cache. If the block is found in the cache, invoke the provided
2719 * callback immediately and return. Note that the `zio' parameter
2720 * in the callback will be NULL in this case, since no IO was
2721 * required. If the block is not in the cache pass the read request
2722 * on to the spa with a substitute callback function, so that the
2723 * requested block will be added to the cache.
2724 *
2725 * If a read request arrives for a block that has a read in-progress,
2726 * either wait for the in-progress read to complete (and return the
2727 * results); or, if this is a read with a "done" func, add a record
2728 * to the read to invoke the "done" func when the read completes,
2729 * and return; or just return.
2730 *
2731 * arc_read_done() will invoke all the requested "done" functions
2732 * for readers of this block.
b128c09f
BB
2733 *
2734 * Normal callers should use arc_read and pass the arc buffer and offset
2735 * for the bp. But if you know you don't need locking, you can use
2736 * arc_read_bp.
34dc7c2f
BB
2737 */
2738int
428870ff 2739arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
b128c09f
BB
2740 arc_done_func_t *done, void *private, int priority, int zio_flags,
2741 uint32_t *arc_flags, const zbookmark_t *zb)
2742{
2743 int err;
b128c09f 2744
428870ff
BB
2745 if (pbuf == NULL) {
2746 /*
2747 * XXX This happens from traverse callback funcs, for
2748 * the objset_phys_t block.
2749 */
2750 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2751 zio_flags, arc_flags, zb));
2752 }
2753
b128c09f
BB
2754 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2755 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
428870ff 2756 rw_enter(&pbuf->b_data_lock, RW_READER);
b128c09f
BB
2757
2758 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2759 zio_flags, arc_flags, zb);
428870ff 2760 rw_exit(&pbuf->b_data_lock);
9babb374 2761
b128c09f
BB
2762 return (err);
2763}
2764
2765int
428870ff 2766arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
b128c09f
BB
2767 arc_done_func_t *done, void *private, int priority, int zio_flags,
2768 uint32_t *arc_flags, const zbookmark_t *zb)
34dc7c2f
BB
2769{
2770 arc_buf_hdr_t *hdr;
d4ed6673 2771 arc_buf_t *buf = NULL;
34dc7c2f
BB
2772 kmutex_t *hash_lock;
2773 zio_t *rzio;
d164b209 2774 uint64_t guid = spa_guid(spa);
34dc7c2f
BB
2775
2776top:
428870ff
BB
2777 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2778 &hash_lock);
34dc7c2f
BB
2779 if (hdr && hdr->b_datacnt > 0) {
2780
2781 *arc_flags |= ARC_CACHED;
2782
2783 if (HDR_IO_IN_PROGRESS(hdr)) {
2784
2785 if (*arc_flags & ARC_WAIT) {
2786 cv_wait(&hdr->b_cv, hash_lock);
2787 mutex_exit(hash_lock);
2788 goto top;
2789 }
2790 ASSERT(*arc_flags & ARC_NOWAIT);
2791
2792 if (done) {
2793 arc_callback_t *acb = NULL;
2794
2795 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 2796 KM_PUSHPAGE);
34dc7c2f
BB
2797 acb->acb_done = done;
2798 acb->acb_private = private;
34dc7c2f
BB
2799 if (pio != NULL)
2800 acb->acb_zio_dummy = zio_null(pio,
d164b209 2801 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
2802
2803 ASSERT(acb->acb_done != NULL);
2804 acb->acb_next = hdr->b_acb;
2805 hdr->b_acb = acb;
2806 add_reference(hdr, hash_lock, private);
2807 mutex_exit(hash_lock);
2808 return (0);
2809 }
2810 mutex_exit(hash_lock);
2811 return (0);
2812 }
2813
2814 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2815
2816 if (done) {
2817 add_reference(hdr, hash_lock, private);
2818 /*
2819 * If this block is already in use, create a new
2820 * copy of the data so that we will be guaranteed
2821 * that arc_release() will always succeed.
2822 */
2823 buf = hdr->b_buf;
2824 ASSERT(buf);
2825 ASSERT(buf->b_data);
2826 if (HDR_BUF_AVAILABLE(hdr)) {
2827 ASSERT(buf->b_efunc == NULL);
2828 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2829 } else {
2830 buf = arc_buf_clone(buf);
2831 }
428870ff 2832
34dc7c2f
BB
2833 } else if (*arc_flags & ARC_PREFETCH &&
2834 refcount_count(&hdr->b_refcnt) == 0) {
2835 hdr->b_flags |= ARC_PREFETCH;
2836 }
2837 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2838 arc_access(hdr, hash_lock);
b128c09f
BB
2839 if (*arc_flags & ARC_L2CACHE)
2840 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2841 mutex_exit(hash_lock);
2842 ARCSTAT_BUMP(arcstat_hits);
2843 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2844 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2845 data, metadata, hits);
2846
2847 if (done)
2848 done(NULL, buf, private);
2849 } else {
2850 uint64_t size = BP_GET_LSIZE(bp);
2851 arc_callback_t *acb;
b128c09f 2852 vdev_t *vd = NULL;
e06be586 2853 uint64_t addr = -1;
d164b209 2854 boolean_t devw = B_FALSE;
34dc7c2f
BB
2855
2856 if (hdr == NULL) {
2857 /* this block is not in the cache */
2858 arc_buf_hdr_t *exists;
2859 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2860 buf = arc_buf_alloc(spa, size, private, type);
2861 hdr = buf->b_hdr;
2862 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 2863 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
2864 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2865 exists = buf_hash_insert(hdr, &hash_lock);
2866 if (exists) {
2867 /* somebody beat us to the hash insert */
2868 mutex_exit(hash_lock);
428870ff 2869 buf_discard_identity(hdr);
34dc7c2f
BB
2870 (void) arc_buf_remove_ref(buf, private);
2871 goto top; /* restart the IO request */
2872 }
2873 /* if this is a prefetch, we don't have a reference */
2874 if (*arc_flags & ARC_PREFETCH) {
2875 (void) remove_reference(hdr, hash_lock,
2876 private);
2877 hdr->b_flags |= ARC_PREFETCH;
2878 }
b128c09f
BB
2879 if (*arc_flags & ARC_L2CACHE)
2880 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2881 if (BP_GET_LEVEL(bp) > 0)
2882 hdr->b_flags |= ARC_INDIRECT;
2883 } else {
2884 /* this block is in the ghost cache */
2885 ASSERT(GHOST_STATE(hdr->b_state));
2886 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2887 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2888 ASSERT(hdr->b_buf == NULL);
2889
2890 /* if this is a prefetch, we don't have a reference */
2891 if (*arc_flags & ARC_PREFETCH)
2892 hdr->b_flags |= ARC_PREFETCH;
2893 else
2894 add_reference(hdr, hash_lock, private);
b128c09f
BB
2895 if (*arc_flags & ARC_L2CACHE)
2896 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2897 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2898 buf->b_hdr = hdr;
2899 buf->b_data = NULL;
2900 buf->b_efunc = NULL;
2901 buf->b_private = NULL;
2902 buf->b_next = NULL;
2903 hdr->b_buf = buf;
34dc7c2f
BB
2904 ASSERT(hdr->b_datacnt == 0);
2905 hdr->b_datacnt = 1;
428870ff
BB
2906 arc_get_data_buf(buf);
2907 arc_access(hdr, hash_lock);
34dc7c2f
BB
2908 }
2909
428870ff
BB
2910 ASSERT(!GHOST_STATE(hdr->b_state));
2911
691f6ac4 2912 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
2913 acb->acb_done = done;
2914 acb->acb_private = private;
34dc7c2f
BB
2915
2916 ASSERT(hdr->b_acb == NULL);
2917 hdr->b_acb = acb;
2918 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2919
b128c09f
BB
2920 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2921 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 2922 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
2923 addr = hdr->b_l2hdr->b_daddr;
2924 /*
2925 * Lock out device removal.
2926 */
2927 if (vdev_is_dead(vd) ||
2928 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2929 vd = NULL;
2930 }
2931
2932 mutex_exit(hash_lock);
2933
34dc7c2f 2934 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
2935 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2936 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
2937 ARCSTAT_BUMP(arcstat_misses);
2938 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2939 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2940 data, metadata, misses);
2941
d164b209 2942 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
2943 /*
2944 * Read from the L2ARC if the following are true:
b128c09f
BB
2945 * 1. The L2ARC vdev was previously cached.
2946 * 2. This buffer still has L2ARC metadata.
2947 * 3. This buffer isn't currently writing to the L2ARC.
2948 * 4. The L2ARC entry wasn't evicted, which may
2949 * also have invalidated the vdev.
d164b209 2950 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 2951 */
b128c09f 2952 if (hdr->b_l2hdr != NULL &&
d164b209
BB
2953 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2954 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
2955 l2arc_read_callback_t *cb;
2956
2957 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2958 ARCSTAT_BUMP(arcstat_l2_hits);
2959
34dc7c2f 2960 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 2961 KM_PUSHPAGE);
34dc7c2f
BB
2962 cb->l2rcb_buf = buf;
2963 cb->l2rcb_spa = spa;
2964 cb->l2rcb_bp = *bp;
2965 cb->l2rcb_zb = *zb;
b128c09f 2966 cb->l2rcb_flags = zio_flags;
34dc7c2f
BB
2967
2968 /*
b128c09f
BB
2969 * l2arc read. The SCL_L2ARC lock will be
2970 * released by l2arc_read_done().
34dc7c2f
BB
2971 */
2972 rzio = zio_read_phys(pio, vd, addr, size,
2973 buf->b_data, ZIO_CHECKSUM_OFF,
b128c09f
BB
2974 l2arc_read_done, cb, priority, zio_flags |
2975 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2976 ZIO_FLAG_DONT_PROPAGATE |
2977 ZIO_FLAG_DONT_RETRY, B_FALSE);
34dc7c2f
BB
2978 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2979 zio_t *, rzio);
d164b209 2980 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
34dc7c2f 2981
b128c09f
BB
2982 if (*arc_flags & ARC_NOWAIT) {
2983 zio_nowait(rzio);
2984 return (0);
2985 }
34dc7c2f 2986
b128c09f
BB
2987 ASSERT(*arc_flags & ARC_WAIT);
2988 if (zio_wait(rzio) == 0)
2989 return (0);
2990
2991 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
2992 } else {
2993 DTRACE_PROBE1(l2arc__miss,
2994 arc_buf_hdr_t *, hdr);
2995 ARCSTAT_BUMP(arcstat_l2_misses);
2996 if (HDR_L2_WRITING(hdr))
2997 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 2998 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 2999 }
d164b209
BB
3000 } else {
3001 if (vd != NULL)
3002 spa_config_exit(spa, SCL_L2ARC, vd);
3003 if (l2arc_ndev != 0) {
3004 DTRACE_PROBE1(l2arc__miss,
3005 arc_buf_hdr_t *, hdr);
3006 ARCSTAT_BUMP(arcstat_l2_misses);
3007 }
34dc7c2f 3008 }
34dc7c2f
BB
3009
3010 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3011 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f
BB
3012
3013 if (*arc_flags & ARC_WAIT)
3014 return (zio_wait(rzio));
3015
3016 ASSERT(*arc_flags & ARC_NOWAIT);
3017 zio_nowait(rzio);
3018 }
3019 return (0);
3020}
3021
34dc7c2f
BB
3022void
3023arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3024{
3025 ASSERT(buf->b_hdr != NULL);
3026 ASSERT(buf->b_hdr->b_state != arc_anon);
3027 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3028 ASSERT(buf->b_efunc == NULL);
3029 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3030
34dc7c2f
BB
3031 buf->b_efunc = func;
3032 buf->b_private = private;
3033}
3034
3035/*
3036 * This is used by the DMU to let the ARC know that a buffer is
3037 * being evicted, so the ARC should clean up. If this arc buf
3038 * is not yet in the evicted state, it will be put there.
3039 */
3040int
3041arc_buf_evict(arc_buf_t *buf)
3042{
3043 arc_buf_hdr_t *hdr;
3044 kmutex_t *hash_lock;
3045 arc_buf_t **bufp;
3046
428870ff 3047 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3048 hdr = buf->b_hdr;
3049 if (hdr == NULL) {
3050 /*
3051 * We are in arc_do_user_evicts().
3052 */
3053 ASSERT(buf->b_data == NULL);
428870ff 3054 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3055 return (0);
b128c09f
BB
3056 } else if (buf->b_data == NULL) {
3057 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 3058 /*
b128c09f
BB
3059 * We are on the eviction list; process this buffer now
3060 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3061 */
b128c09f 3062 buf->b_efunc = NULL;
428870ff 3063 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
3064 VERIFY(copy.b_efunc(&copy) == 0);
3065 return (1);
34dc7c2f 3066 }
b128c09f
BB
3067 hash_lock = HDR_LOCK(hdr);
3068 mutex_enter(hash_lock);
428870ff
BB
3069 hdr = buf->b_hdr;
3070 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3071
34dc7c2f
BB
3072 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3073 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3074
3075 /*
3076 * Pull this buffer off of the hdr
3077 */
3078 bufp = &hdr->b_buf;
3079 while (*bufp != buf)
3080 bufp = &(*bufp)->b_next;
3081 *bufp = buf->b_next;
3082
3083 ASSERT(buf->b_data != NULL);
3084 arc_buf_destroy(buf, FALSE, FALSE);
3085
3086 if (hdr->b_datacnt == 0) {
3087 arc_state_t *old_state = hdr->b_state;
3088 arc_state_t *evicted_state;
3089
428870ff 3090 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
3091 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3092
3093 evicted_state =
3094 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3095
3096 mutex_enter(&old_state->arcs_mtx);
3097 mutex_enter(&evicted_state->arcs_mtx);
3098
3099 arc_change_state(evicted_state, hdr, hash_lock);
3100 ASSERT(HDR_IN_HASH_TABLE(hdr));
3101 hdr->b_flags |= ARC_IN_HASH_TABLE;
3102 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3103
3104 mutex_exit(&evicted_state->arcs_mtx);
3105 mutex_exit(&old_state->arcs_mtx);
3106 }
3107 mutex_exit(hash_lock);
428870ff 3108 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3109
3110 VERIFY(buf->b_efunc(buf) == 0);
3111 buf->b_efunc = NULL;
3112 buf->b_private = NULL;
3113 buf->b_hdr = NULL;
428870ff 3114 buf->b_next = NULL;
34dc7c2f
BB
3115 kmem_cache_free(buf_cache, buf);
3116 return (1);
3117}
3118
3119/*
3120 * Release this buffer from the cache. This must be done
3121 * after a read and prior to modifying the buffer contents.
3122 * If the buffer has more than one reference, we must make
b128c09f 3123 * a new hdr for the buffer.
34dc7c2f
BB
3124 */
3125void
3126arc_release(arc_buf_t *buf, void *tag)
3127{
b128c09f 3128 arc_buf_hdr_t *hdr;
428870ff 3129 kmutex_t *hash_lock = NULL;
b128c09f 3130 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3131 uint64_t buf_size = 0;
34dc7c2f 3132
428870ff
BB
3133 /*
3134 * It would be nice to assert that if it's DMU metadata (level >
3135 * 0 || it's the dnode file), then it must be syncing context.
3136 * But we don't know that information at this level.
3137 */
3138
3139 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3140 hdr = buf->b_hdr;
3141
34dc7c2f
BB
3142 /* this buffer is not on any list */
3143 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3144
3145 if (hdr->b_state == arc_anon) {
3146 /* this buffer is already released */
34dc7c2f 3147 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3148 } else {
3149 hash_lock = HDR_LOCK(hdr);
3150 mutex_enter(hash_lock);
428870ff
BB
3151 hdr = buf->b_hdr;
3152 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3153 }
3154
b128c09f
BB
3155 l2hdr = hdr->b_l2hdr;
3156 if (l2hdr) {
3157 mutex_enter(&l2arc_buflist_mtx);
3158 hdr->b_l2hdr = NULL;
3159 buf_size = hdr->b_size;
3160 }
3161
34dc7c2f
BB
3162 /*
3163 * Do we have more than one buf?
3164 */
b128c09f 3165 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3166 arc_buf_hdr_t *nhdr;
3167 arc_buf_t **bufp;
3168 uint64_t blksz = hdr->b_size;
d164b209 3169 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3170 arc_buf_contents_t type = hdr->b_type;
3171 uint32_t flags = hdr->b_flags;
3172
b128c09f 3173 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3174 /*
428870ff
BB
3175 * Pull the data off of this hdr and attach it to
3176 * a new anonymous hdr.
34dc7c2f
BB
3177 */
3178 (void) remove_reference(hdr, hash_lock, tag);
3179 bufp = &hdr->b_buf;
3180 while (*bufp != buf)
3181 bufp = &(*bufp)->b_next;
428870ff 3182 *bufp = buf->b_next;
34dc7c2f
BB
3183 buf->b_next = NULL;
3184
3185 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3186 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3187 if (refcount_is_zero(&hdr->b_refcnt)) {
3188 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3189 ASSERT3U(*size, >=, hdr->b_size);
3190 atomic_add_64(size, -hdr->b_size);
3191 }
3192 hdr->b_datacnt -= 1;
34dc7c2f
BB
3193 arc_cksum_verify(buf);
3194
3195 mutex_exit(hash_lock);
3196
3197 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3198 nhdr->b_size = blksz;
3199 nhdr->b_spa = spa;
3200 nhdr->b_type = type;
3201 nhdr->b_buf = buf;
3202 nhdr->b_state = arc_anon;
3203 nhdr->b_arc_access = 0;
3204 nhdr->b_flags = flags & ARC_L2_WRITING;
3205 nhdr->b_l2hdr = NULL;
3206 nhdr->b_datacnt = 1;
3207 nhdr->b_freeze_cksum = NULL;
3208 (void) refcount_add(&nhdr->b_refcnt, tag);
3209 buf->b_hdr = nhdr;
428870ff 3210 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3211 atomic_add_64(&arc_anon->arcs_size, blksz);
3212 } else {
428870ff 3213 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3214 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3215 ASSERT(!list_link_active(&hdr->b_arc_node));
3216 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3217 if (hdr->b_state != arc_anon)
3218 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3219 hdr->b_arc_access = 0;
428870ff
BB
3220 if (hash_lock)
3221 mutex_exit(hash_lock);
34dc7c2f 3222
428870ff 3223 buf_discard_identity(hdr);
34dc7c2f
BB
3224 arc_buf_thaw(buf);
3225 }
3226 buf->b_efunc = NULL;
3227 buf->b_private = NULL;
3228
3229 if (l2hdr) {
3230 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3231 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3232 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3233 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3234 }
34dc7c2f
BB
3235}
3236
428870ff
BB
3237/*
3238 * Release this buffer. If it does not match the provided BP, fill it
3239 * with that block's contents.
3240 */
3241/* ARGSUSED */
3242int
3243arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3244 zbookmark_t *zb)
3245{
3246 arc_release(buf, tag);
3247 return (0);
3248}
3249
34dc7c2f
BB
3250int
3251arc_released(arc_buf_t *buf)
3252{
b128c09f
BB
3253 int released;
3254
428870ff 3255 mutex_enter(&buf->b_evict_lock);
b128c09f 3256 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3257 mutex_exit(&buf->b_evict_lock);
b128c09f 3258 return (released);
34dc7c2f
BB
3259}
3260
3261int
3262arc_has_callback(arc_buf_t *buf)
3263{
b128c09f
BB
3264 int callback;
3265
428870ff 3266 mutex_enter(&buf->b_evict_lock);
b128c09f 3267 callback = (buf->b_efunc != NULL);
428870ff 3268 mutex_exit(&buf->b_evict_lock);
b128c09f 3269 return (callback);
34dc7c2f
BB
3270}
3271
3272#ifdef ZFS_DEBUG
3273int
3274arc_referenced(arc_buf_t *buf)
3275{
b128c09f
BB
3276 int referenced;
3277
428870ff 3278 mutex_enter(&buf->b_evict_lock);
b128c09f 3279 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3280 mutex_exit(&buf->b_evict_lock);
b128c09f 3281 return (referenced);
34dc7c2f
BB
3282}
3283#endif
3284
3285static void
3286arc_write_ready(zio_t *zio)
3287{
3288 arc_write_callback_t *callback = zio->io_private;
3289 arc_buf_t *buf = callback->awcb_buf;
3290 arc_buf_hdr_t *hdr = buf->b_hdr;
3291
b128c09f
BB
3292 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3293 callback->awcb_ready(zio, buf, callback->awcb_private);
3294
34dc7c2f
BB
3295 /*
3296 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3297 * attempt, so we need to thaw and re-compute the cksum.
3298 * It is the responsibility of the callback to handle the
3299 * accounting for any re-write attempt.
34dc7c2f
BB
3300 */
3301 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3302 mutex_enter(&hdr->b_freeze_lock);
3303 if (hdr->b_freeze_cksum != NULL) {
3304 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3305 hdr->b_freeze_cksum = NULL;
3306 }
3307 mutex_exit(&hdr->b_freeze_lock);
3308 }
3309 arc_cksum_compute(buf, B_FALSE);
3310 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3311}
3312
3313static void
3314arc_write_done(zio_t *zio)
3315{
3316 arc_write_callback_t *callback = zio->io_private;
3317 arc_buf_t *buf = callback->awcb_buf;
3318 arc_buf_hdr_t *hdr = buf->b_hdr;
3319
428870ff
BB
3320 ASSERT(hdr->b_acb == NULL);
3321
3322 if (zio->io_error == 0) {
3323 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3324 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3325 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3326 } else {
3327 ASSERT(BUF_EMPTY(hdr));
3328 }
34dc7c2f 3329
34dc7c2f
BB
3330 /*
3331 * If the block to be written was all-zero, we may have
3332 * compressed it away. In this case no write was performed
428870ff
BB
3333 * so there will be no dva/birth/checksum. The buffer must
3334 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3335 */
3336 if (!BUF_EMPTY(hdr)) {
3337 arc_buf_hdr_t *exists;
3338 kmutex_t *hash_lock;
3339
428870ff
BB
3340 ASSERT(zio->io_error == 0);
3341
34dc7c2f
BB
3342 arc_cksum_verify(buf);
3343
3344 exists = buf_hash_insert(hdr, &hash_lock);
3345 if (exists) {
3346 /*
3347 * This can only happen if we overwrite for
3348 * sync-to-convergence, because we remove
3349 * buffers from the hash table when we arc_free().
3350 */
428870ff
BB
3351 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3352 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3353 panic("bad overwrite, hdr=%p exists=%p",
3354 (void *)hdr, (void *)exists);
3355 ASSERT(refcount_is_zero(&exists->b_refcnt));
3356 arc_change_state(arc_anon, exists, hash_lock);
3357 mutex_exit(hash_lock);
3358 arc_hdr_destroy(exists);
3359 exists = buf_hash_insert(hdr, &hash_lock);
3360 ASSERT3P(exists, ==, NULL);
3361 } else {
3362 /* Dedup */
3363 ASSERT(hdr->b_datacnt == 1);
3364 ASSERT(hdr->b_state == arc_anon);
3365 ASSERT(BP_GET_DEDUP(zio->io_bp));
3366 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3367 }
34dc7c2f
BB
3368 }
3369 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3370 /* if it's not anon, we are doing a scrub */
428870ff 3371 if (!exists && hdr->b_state == arc_anon)
b128c09f 3372 arc_access(hdr, hash_lock);
34dc7c2f 3373 mutex_exit(hash_lock);
34dc7c2f
BB
3374 } else {
3375 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3376 }
3377
428870ff
BB
3378 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3379 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3380
3381 kmem_free(callback, sizeof (arc_write_callback_t));
3382}
3383
3384zio_t *
428870ff
BB
3385arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3386 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3387 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3388 int priority, int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3389{
3390 arc_buf_hdr_t *hdr = buf->b_hdr;
3391 arc_write_callback_t *callback;
b128c09f 3392 zio_t *zio;
34dc7c2f 3393
b128c09f 3394 ASSERT(ready != NULL);
428870ff 3395 ASSERT(done != NULL);
34dc7c2f
BB
3396 ASSERT(!HDR_IO_ERROR(hdr));
3397 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3398 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3399 if (l2arc)
3400 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3401 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3402 callback->awcb_ready = ready;
3403 callback->awcb_done = done;
3404 callback->awcb_private = private;
3405 callback->awcb_buf = buf;
b128c09f 3406
428870ff 3407 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
b128c09f 3408 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
34dc7c2f
BB
3409
3410 return (zio);
3411}
3412
34dc7c2f 3413static int
9babb374 3414arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
34dc7c2f
BB
3415{
3416#ifdef _KERNEL
34dc7c2f
BB
3417 uint64_t available_memory = ptob(freemem);
3418 static uint64_t page_load = 0;
3419 static uint64_t last_txg = 0;
3420
3421#if defined(__i386)
3422 available_memory =
3423 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3424#endif
3425 if (available_memory >= zfs_write_limit_max)
3426 return (0);
3427
3428 if (txg > last_txg) {
3429 last_txg = txg;
3430 page_load = 0;
3431 }
3432 /*
3433 * If we are in pageout, we know that memory is already tight,
3434 * the arc is already going to be evicting, so we just want to
3435 * continue to let page writes occur as quickly as possible.
3436 */
3437 if (curproc == proc_pageout) {
3438 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3439 return (ERESTART);
3440 /* Note: reserve is inflated, so we deflate */
3441 page_load += reserve / 8;
3442 return (0);
3443 } else if (page_load > 0 && arc_reclaim_needed()) {
3444 /* memory is low, delay before restarting */
3445 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3446 return (EAGAIN);
3447 }
3448 page_load = 0;
3449
3450 if (arc_size > arc_c_min) {
3451 uint64_t evictable_memory =
3452 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3453 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3454 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3455 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3456 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3457 }
3458
3459 if (inflight_data > available_memory / 4) {
3460 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3461 return (ERESTART);
3462 }
3463#endif
3464 return (0);
3465}
3466
3467void
3468arc_tempreserve_clear(uint64_t reserve)
3469{
3470 atomic_add_64(&arc_tempreserve, -reserve);
3471 ASSERT((int64_t)arc_tempreserve >= 0);
3472}
3473
3474int
3475arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3476{
3477 int error;
9babb374 3478 uint64_t anon_size;
34dc7c2f
BB
3479
3480#ifdef ZFS_DEBUG
3481 /*
3482 * Once in a while, fail for no reason. Everything should cope.
3483 */
3484 if (spa_get_random(10000) == 0) {
3485 dprintf("forcing random failure\n");
3486 return (ERESTART);
3487 }
3488#endif
3489 if (reserve > arc_c/4 && !arc_no_grow)
3490 arc_c = MIN(arc_c_max, reserve * 4);
3491 if (reserve > arc_c)
3492 return (ENOMEM);
3493
9babb374
BB
3494 /*
3495 * Don't count loaned bufs as in flight dirty data to prevent long
3496 * network delays from blocking transactions that are ready to be
3497 * assigned to a txg.
3498 */
3499 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3500
34dc7c2f
BB
3501 /*
3502 * Writes will, almost always, require additional memory allocations
3503 * in order to compress/encrypt/etc the data. We therefor need to
3504 * make sure that there is sufficient available memory for this.
3505 */
c65aa5b2 3506 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
34dc7c2f
BB
3507 return (error);
3508
3509 /*
3510 * Throttle writes when the amount of dirty data in the cache
3511 * gets too large. We try to keep the cache less than half full
3512 * of dirty blocks so that our sync times don't grow too large.
3513 * Note: if two requests come in concurrently, we might let them
3514 * both succeed, when one of them should fail. Not a huge deal.
3515 */
9babb374
BB
3516
3517 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3518 anon_size > arc_c / 4) {
34dc7c2f
BB
3519 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3520 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3521 arc_tempreserve>>10,
3522 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3523 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3524 reserve>>10, arc_c>>10);
3525 return (ERESTART);
3526 }
3527 atomic_add_64(&arc_tempreserve, reserve);
3528 return (0);
3529}
3530
3531void
3532arc_init(void)
3533{
3534 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3535 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3536
3537 /* Convert seconds to clock ticks */
3538 arc_min_prefetch_lifespan = 1 * hz;
3539
3540 /* Start out with 1/8 of all memory */
3541 arc_c = physmem * PAGESIZE / 8;
3542
3543#ifdef _KERNEL
3544 /*
3545 * On architectures where the physical memory can be larger
3546 * than the addressable space (intel in 32-bit mode), we may
3547 * need to limit the cache to 1/8 of VM size.
3548 */
3549 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
3550 /*
3551 * Register a shrinker to support synchronous (direct) memory
3552 * reclaim from the arc. This is done to prevent kswapd from
3553 * swapping out pages when it is preferable to shrink the arc.
3554 */
3555 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
3556#endif
3557
3558 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3559 arc_c_min = MAX(arc_c / 4, 64<<20);
3560 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3561 if (arc_c * 8 >= 1<<30)
3562 arc_c_max = (arc_c * 8) - (1<<30);
3563 else
3564 arc_c_max = arc_c_min;
3565 arc_c_max = MAX(arc_c * 6, arc_c_max);
3566
3567 /*
3568 * Allow the tunables to override our calculations if they are
3569 * reasonable (ie. over 64MB)
3570 */
3571 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3572 arc_c_max = zfs_arc_max;
3573 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3574 arc_c_min = zfs_arc_min;
3575
3576 arc_c = arc_c_max;
3577 arc_p = (arc_c >> 1);
3578
3579 /* limit meta-data to 1/4 of the arc capacity */
3580 arc_meta_limit = arc_c_max / 4;
1834f2d8 3581 arc_meta_max = 0;
34dc7c2f
BB
3582
3583 /* Allow the tunable to override if it is reasonable */
3584 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3585 arc_meta_limit = zfs_arc_meta_limit;
3586
3587 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3588 arc_c_min = arc_meta_limit / 2;
3589
d164b209
BB
3590 if (zfs_arc_grow_retry > 0)
3591 arc_grow_retry = zfs_arc_grow_retry;
3592
3593 if (zfs_arc_shrink_shift > 0)
3594 arc_shrink_shift = zfs_arc_shrink_shift;
3595
3596 if (zfs_arc_p_min_shift > 0)
3597 arc_p_min_shift = zfs_arc_p_min_shift;
3598
6a8f9b6b
BB
3599 if (zfs_arc_reduce_dnlc_percent > 0)
3600 arc_reduce_dnlc_percent = zfs_arc_reduce_dnlc_percent;
3601
34dc7c2f
BB
3602 /* if kmem_flags are set, lets try to use less memory */
3603 if (kmem_debugging())
3604 arc_c = arc_c / 2;
3605 if (arc_c < arc_c_min)
3606 arc_c = arc_c_min;
3607
3608 arc_anon = &ARC_anon;
3609 arc_mru = &ARC_mru;
3610 arc_mru_ghost = &ARC_mru_ghost;
3611 arc_mfu = &ARC_mfu;
3612 arc_mfu_ghost = &ARC_mfu_ghost;
3613 arc_l2c_only = &ARC_l2c_only;
3614 arc_size = 0;
3615
3616 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3617 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3618 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3619 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3620 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3621 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3622
3623 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3624 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3625 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3626 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3627 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3628 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3629 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3630 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3631 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3632 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3633 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3634 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3635 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3636 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3637 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3638 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3639 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3640 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3641 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3642 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3643
3644 buf_init();
3645
3646 arc_thread_exit = 0;
3647 arc_eviction_list = NULL;
3648 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3649 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3650
3651 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3652 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3653
3654 if (arc_ksp != NULL) {
3655 arc_ksp->ks_data = &arc_stats;
3656 kstat_install(arc_ksp);
3657 }
3658
3659 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3660 TS_RUN, minclsyspri);
3661
3662 arc_dead = FALSE;
b128c09f 3663 arc_warm = B_FALSE;
34dc7c2f
BB
3664
3665 if (zfs_write_limit_max == 0)
b128c09f 3666 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
34dc7c2f
BB
3667 else
3668 zfs_write_limit_shift = 0;
b128c09f 3669 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3670}
3671
3672void
3673arc_fini(void)
3674{
3675 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
3676#ifdef _KERNEL
3677 spl_unregister_shrinker(&arc_shrinker);
3678#endif /* _KERNEL */
3679
34dc7c2f
BB
3680 arc_thread_exit = 1;
3681 while (arc_thread_exit != 0)
3682 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3683 mutex_exit(&arc_reclaim_thr_lock);
3684
3685 arc_flush(NULL);
3686
3687 arc_dead = TRUE;
3688
3689 if (arc_ksp != NULL) {
3690 kstat_delete(arc_ksp);
3691 arc_ksp = NULL;
3692 }
3693
3694 mutex_destroy(&arc_eviction_mtx);
3695 mutex_destroy(&arc_reclaim_thr_lock);
3696 cv_destroy(&arc_reclaim_thr_cv);
3697
3698 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3699 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3700 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3701 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3702 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3703 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3704 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3705 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3706
3707 mutex_destroy(&arc_anon->arcs_mtx);
3708 mutex_destroy(&arc_mru->arcs_mtx);
3709 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3710 mutex_destroy(&arc_mfu->arcs_mtx);
3711 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 3712 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f 3713
b128c09f
BB
3714 mutex_destroy(&zfs_write_limit_lock);
3715
34dc7c2f 3716 buf_fini();
9babb374
BB
3717
3718 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
3719}
3720
3721/*
3722 * Level 2 ARC
3723 *
3724 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3725 * It uses dedicated storage devices to hold cached data, which are populated
3726 * using large infrequent writes. The main role of this cache is to boost
3727 * the performance of random read workloads. The intended L2ARC devices
3728 * include short-stroked disks, solid state disks, and other media with
3729 * substantially faster read latency than disk.
3730 *
3731 * +-----------------------+
3732 * | ARC |
3733 * +-----------------------+
3734 * | ^ ^
3735 * | | |
3736 * l2arc_feed_thread() arc_read()
3737 * | | |
3738 * | l2arc read |
3739 * V | |
3740 * +---------------+ |
3741 * | L2ARC | |
3742 * +---------------+ |
3743 * | ^ |
3744 * l2arc_write() | |
3745 * | | |
3746 * V | |
3747 * +-------+ +-------+
3748 * | vdev | | vdev |
3749 * | cache | | cache |
3750 * +-------+ +-------+
3751 * +=========+ .-----.
3752 * : L2ARC : |-_____-|
3753 * : devices : | Disks |
3754 * +=========+ `-_____-'
3755 *
3756 * Read requests are satisfied from the following sources, in order:
3757 *
3758 * 1) ARC
3759 * 2) vdev cache of L2ARC devices
3760 * 3) L2ARC devices
3761 * 4) vdev cache of disks
3762 * 5) disks
3763 *
3764 * Some L2ARC device types exhibit extremely slow write performance.
3765 * To accommodate for this there are some significant differences between
3766 * the L2ARC and traditional cache design:
3767 *
3768 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3769 * the ARC behave as usual, freeing buffers and placing headers on ghost
3770 * lists. The ARC does not send buffers to the L2ARC during eviction as
3771 * this would add inflated write latencies for all ARC memory pressure.
3772 *
3773 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3774 * It does this by periodically scanning buffers from the eviction-end of
3775 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3776 * not already there. It scans until a headroom of buffers is satisfied,
3777 * which itself is a buffer for ARC eviction. The thread that does this is
3778 * l2arc_feed_thread(), illustrated below; example sizes are included to
3779 * provide a better sense of ratio than this diagram:
3780 *
3781 * head --> tail
3782 * +---------------------+----------+
3783 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3784 * +---------------------+----------+ | o L2ARC eligible
3785 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3786 * +---------------------+----------+ |
3787 * 15.9 Gbytes ^ 32 Mbytes |
3788 * headroom |
3789 * l2arc_feed_thread()
3790 * |
3791 * l2arc write hand <--[oooo]--'
3792 * | 8 Mbyte
3793 * | write max
3794 * V
3795 * +==============================+
3796 * L2ARC dev |####|#|###|###| |####| ... |
3797 * +==============================+
3798 * 32 Gbytes
3799 *
3800 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3801 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3802 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3803 * safe to say that this is an uncommon case, since buffers at the end of
3804 * the ARC lists have moved there due to inactivity.
3805 *
3806 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3807 * then the L2ARC simply misses copying some buffers. This serves as a
3808 * pressure valve to prevent heavy read workloads from both stalling the ARC
3809 * with waits and clogging the L2ARC with writes. This also helps prevent
3810 * the potential for the L2ARC to churn if it attempts to cache content too
3811 * quickly, such as during backups of the entire pool.
3812 *
b128c09f
BB
3813 * 5. After system boot and before the ARC has filled main memory, there are
3814 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3815 * lists can remain mostly static. Instead of searching from tail of these
3816 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3817 * for eligible buffers, greatly increasing its chance of finding them.
3818 *
3819 * The L2ARC device write speed is also boosted during this time so that
3820 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3821 * there are no L2ARC reads, and no fear of degrading read performance
3822 * through increased writes.
3823 *
3824 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
3825 * the vdev queue can aggregate them into larger and fewer writes. Each
3826 * device is written to in a rotor fashion, sweeping writes through
3827 * available space then repeating.
3828 *
b128c09f 3829 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
3830 * write buffers back to disk based storage.
3831 *
b128c09f 3832 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
3833 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3834 *
3835 * The performance of the L2ARC can be tweaked by a number of tunables, which
3836 * may be necessary for different workloads:
3837 *
3838 * l2arc_write_max max write bytes per interval
b128c09f 3839 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
3840 * l2arc_noprefetch skip caching prefetched buffers
3841 * l2arc_headroom number of max device writes to precache
3842 * l2arc_feed_secs seconds between L2ARC writing
3843 *
3844 * Tunables may be removed or added as future performance improvements are
3845 * integrated, and also may become zpool properties.
d164b209
BB
3846 *
3847 * There are three key functions that control how the L2ARC warms up:
3848 *
3849 * l2arc_write_eligible() check if a buffer is eligible to cache
3850 * l2arc_write_size() calculate how much to write
3851 * l2arc_write_interval() calculate sleep delay between writes
3852 *
3853 * These three functions determine what to write, how much, and how quickly
3854 * to send writes.
34dc7c2f
BB
3855 */
3856
d164b209
BB
3857static boolean_t
3858l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3859{
3860 /*
3861 * A buffer is *not* eligible for the L2ARC if it:
3862 * 1. belongs to a different spa.
428870ff
BB
3863 * 2. is already cached on the L2ARC.
3864 * 3. has an I/O in progress (it may be an incomplete read).
3865 * 4. is flagged not eligible (zfs property).
d164b209 3866 */
428870ff 3867 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
3868 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3869 return (B_FALSE);
3870
3871 return (B_TRUE);
3872}
3873
3874static uint64_t
3875l2arc_write_size(l2arc_dev_t *dev)
3876{
3877 uint64_t size;
3878
3879 size = dev->l2ad_write;
3880
3881 if (arc_warm == B_FALSE)
3882 size += dev->l2ad_boost;
3883
3884 return (size);
3885
3886}
3887
3888static clock_t
3889l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3890{
428870ff 3891 clock_t interval, next, now;
d164b209
BB
3892
3893 /*
3894 * If the ARC lists are busy, increase our write rate; if the
3895 * lists are stale, idle back. This is achieved by checking
3896 * how much we previously wrote - if it was more than half of
3897 * what we wanted, schedule the next write much sooner.
3898 */
3899 if (l2arc_feed_again && wrote > (wanted / 2))
3900 interval = (hz * l2arc_feed_min_ms) / 1000;
3901 else
3902 interval = hz * l2arc_feed_secs;
3903
428870ff
BB
3904 now = ddi_get_lbolt();
3905 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
3906
3907 return (next);
3908}
3909
34dc7c2f
BB
3910static void
3911l2arc_hdr_stat_add(void)
3912{
3913 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3914 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3915}
3916
3917static void
3918l2arc_hdr_stat_remove(void)
3919{
3920 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3921 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3922}
3923
3924/*
3925 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 3926 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
3927 */
3928static l2arc_dev_t *
3929l2arc_dev_get_next(void)
3930{
b128c09f 3931 l2arc_dev_t *first, *next = NULL;
34dc7c2f 3932
b128c09f
BB
3933 /*
3934 * Lock out the removal of spas (spa_namespace_lock), then removal
3935 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3936 * both locks will be dropped and a spa config lock held instead.
3937 */
3938 mutex_enter(&spa_namespace_lock);
3939 mutex_enter(&l2arc_dev_mtx);
3940
3941 /* if there are no vdevs, there is nothing to do */
3942 if (l2arc_ndev == 0)
3943 goto out;
3944
3945 first = NULL;
3946 next = l2arc_dev_last;
3947 do {
3948 /* loop around the list looking for a non-faulted vdev */
3949 if (next == NULL) {
34dc7c2f 3950 next = list_head(l2arc_dev_list);
b128c09f
BB
3951 } else {
3952 next = list_next(l2arc_dev_list, next);
3953 if (next == NULL)
3954 next = list_head(l2arc_dev_list);
3955 }
3956
3957 /* if we have come back to the start, bail out */
3958 if (first == NULL)
3959 first = next;
3960 else if (next == first)
3961 break;
3962
3963 } while (vdev_is_dead(next->l2ad_vdev));
3964
3965 /* if we were unable to find any usable vdevs, return NULL */
3966 if (vdev_is_dead(next->l2ad_vdev))
3967 next = NULL;
34dc7c2f
BB
3968
3969 l2arc_dev_last = next;
3970
b128c09f
BB
3971out:
3972 mutex_exit(&l2arc_dev_mtx);
3973
3974 /*
3975 * Grab the config lock to prevent the 'next' device from being
3976 * removed while we are writing to it.
3977 */
3978 if (next != NULL)
3979 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3980 mutex_exit(&spa_namespace_lock);
3981
34dc7c2f
BB
3982 return (next);
3983}
3984
b128c09f
BB
3985/*
3986 * Free buffers that were tagged for destruction.
3987 */
3988static void
0bc8fd78 3989l2arc_do_free_on_write(void)
b128c09f
BB
3990{
3991 list_t *buflist;
3992 l2arc_data_free_t *df, *df_prev;
3993
3994 mutex_enter(&l2arc_free_on_write_mtx);
3995 buflist = l2arc_free_on_write;
3996
3997 for (df = list_tail(buflist); df; df = df_prev) {
3998 df_prev = list_prev(buflist, df);
3999 ASSERT(df->l2df_data != NULL);
4000 ASSERT(df->l2df_func != NULL);
4001 df->l2df_func(df->l2df_data, df->l2df_size);
4002 list_remove(buflist, df);
4003 kmem_free(df, sizeof (l2arc_data_free_t));
4004 }
4005
4006 mutex_exit(&l2arc_free_on_write_mtx);
4007}
4008
34dc7c2f
BB
4009/*
4010 * A write to a cache device has completed. Update all headers to allow
4011 * reads from these buffers to begin.
4012 */
4013static void
4014l2arc_write_done(zio_t *zio)
4015{
4016 l2arc_write_callback_t *cb;
4017 l2arc_dev_t *dev;
4018 list_t *buflist;
34dc7c2f 4019 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4020 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
4021 kmutex_t *hash_lock;
4022
4023 cb = zio->io_private;
4024 ASSERT(cb != NULL);
4025 dev = cb->l2wcb_dev;
4026 ASSERT(dev != NULL);
4027 head = cb->l2wcb_head;
4028 ASSERT(head != NULL);
4029 buflist = dev->l2ad_buflist;
4030 ASSERT(buflist != NULL);
4031 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4032 l2arc_write_callback_t *, cb);
4033
4034 if (zio->io_error != 0)
4035 ARCSTAT_BUMP(arcstat_l2_writes_error);
4036
4037 mutex_enter(&l2arc_buflist_mtx);
4038
4039 /*
4040 * All writes completed, or an error was hit.
4041 */
4042 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4043 ab_prev = list_prev(buflist, ab);
4044
4045 hash_lock = HDR_LOCK(ab);
4046 if (!mutex_tryenter(hash_lock)) {
4047 /*
4048 * This buffer misses out. It may be in a stage
4049 * of eviction. Its ARC_L2_WRITING flag will be
4050 * left set, denying reads to this buffer.
4051 */
4052 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4053 continue;
4054 }
4055
4056 if (zio->io_error != 0) {
4057 /*
b128c09f 4058 * Error - drop L2ARC entry.
34dc7c2f 4059 */
b128c09f
BB
4060 list_remove(buflist, ab);
4061 abl2 = ab->b_l2hdr;
34dc7c2f 4062 ab->b_l2hdr = NULL;
b128c09f
BB
4063 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4064 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4065 }
4066
4067 /*
4068 * Allow ARC to begin reads to this L2ARC entry.
4069 */
4070 ab->b_flags &= ~ARC_L2_WRITING;
4071
4072 mutex_exit(hash_lock);
4073 }
4074
4075 atomic_inc_64(&l2arc_writes_done);
4076 list_remove(buflist, head);
4077 kmem_cache_free(hdr_cache, head);
4078 mutex_exit(&l2arc_buflist_mtx);
4079
b128c09f 4080 l2arc_do_free_on_write();
34dc7c2f
BB
4081
4082 kmem_free(cb, sizeof (l2arc_write_callback_t));
4083}
4084
4085/*
4086 * A read to a cache device completed. Validate buffer contents before
4087 * handing over to the regular ARC routines.
4088 */
4089static void
4090l2arc_read_done(zio_t *zio)
4091{
4092 l2arc_read_callback_t *cb;
4093 arc_buf_hdr_t *hdr;
4094 arc_buf_t *buf;
34dc7c2f 4095 kmutex_t *hash_lock;
b128c09f
BB
4096 int equal;
4097
4098 ASSERT(zio->io_vd != NULL);
4099 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4100
4101 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4102
4103 cb = zio->io_private;
4104 ASSERT(cb != NULL);
4105 buf = cb->l2rcb_buf;
4106 ASSERT(buf != NULL);
34dc7c2f 4107
428870ff 4108 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4109 mutex_enter(hash_lock);
428870ff
BB
4110 hdr = buf->b_hdr;
4111 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
4112
4113 /*
4114 * Check this survived the L2ARC journey.
4115 */
4116 equal = arc_cksum_equal(buf);
4117 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4118 mutex_exit(hash_lock);
4119 zio->io_private = buf;
b128c09f
BB
4120 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4121 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4122 arc_read_done(zio);
4123 } else {
4124 mutex_exit(hash_lock);
4125 /*
4126 * Buffer didn't survive caching. Increment stats and
4127 * reissue to the original storage device.
4128 */
b128c09f 4129 if (zio->io_error != 0) {
34dc7c2f 4130 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f
BB
4131 } else {
4132 zio->io_error = EIO;
4133 }
34dc7c2f
BB
4134 if (!equal)
4135 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4136
34dc7c2f 4137 /*
b128c09f
BB
4138 * If there's no waiter, issue an async i/o to the primary
4139 * storage now. If there *is* a waiter, the caller must
4140 * issue the i/o in a context where it's OK to block.
34dc7c2f 4141 */
d164b209
BB
4142 if (zio->io_waiter == NULL) {
4143 zio_t *pio = zio_unique_parent(zio);
4144
4145 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4146
4147 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4148 buf->b_data, zio->io_size, arc_read_done, buf,
4149 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4150 }
34dc7c2f
BB
4151 }
4152
4153 kmem_free(cb, sizeof (l2arc_read_callback_t));
4154}
4155
4156/*
4157 * This is the list priority from which the L2ARC will search for pages to
4158 * cache. This is used within loops (0..3) to cycle through lists in the
4159 * desired order. This order can have a significant effect on cache
4160 * performance.
4161 *
4162 * Currently the metadata lists are hit first, MFU then MRU, followed by
4163 * the data lists. This function returns a locked list, and also returns
4164 * the lock pointer.
4165 */
4166static list_t *
4167l2arc_list_locked(int list_num, kmutex_t **lock)
4168{
d4ed6673 4169 list_t *list = NULL;
34dc7c2f
BB
4170
4171 ASSERT(list_num >= 0 && list_num <= 3);
4172
4173 switch (list_num) {
4174 case 0:
4175 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4176 *lock = &arc_mfu->arcs_mtx;
4177 break;
4178 case 1:
4179 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4180 *lock = &arc_mru->arcs_mtx;
4181 break;
4182 case 2:
4183 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4184 *lock = &arc_mfu->arcs_mtx;
4185 break;
4186 case 3:
4187 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4188 *lock = &arc_mru->arcs_mtx;
4189 break;
4190 }
4191
4192 ASSERT(!(MUTEX_HELD(*lock)));
4193 mutex_enter(*lock);
4194 return (list);
4195}
4196
4197/*
4198 * Evict buffers from the device write hand to the distance specified in
4199 * bytes. This distance may span populated buffers, it may span nothing.
4200 * This is clearing a region on the L2ARC device ready for writing.
4201 * If the 'all' boolean is set, every buffer is evicted.
4202 */
4203static void
4204l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4205{
4206 list_t *buflist;
4207 l2arc_buf_hdr_t *abl2;
4208 arc_buf_hdr_t *ab, *ab_prev;
4209 kmutex_t *hash_lock;
4210 uint64_t taddr;
4211
34dc7c2f
BB
4212 buflist = dev->l2ad_buflist;
4213
4214 if (buflist == NULL)
4215 return;
4216
4217 if (!all && dev->l2ad_first) {
4218 /*
4219 * This is the first sweep through the device. There is
4220 * nothing to evict.
4221 */
4222 return;
4223 }
4224
b128c09f 4225 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4226 /*
4227 * When nearing the end of the device, evict to the end
4228 * before the device write hand jumps to the start.
4229 */
4230 taddr = dev->l2ad_end;
4231 } else {
4232 taddr = dev->l2ad_hand + distance;
4233 }
4234 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4235 uint64_t, taddr, boolean_t, all);
4236
4237top:
4238 mutex_enter(&l2arc_buflist_mtx);
4239 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4240 ab_prev = list_prev(buflist, ab);
4241
4242 hash_lock = HDR_LOCK(ab);
4243 if (!mutex_tryenter(hash_lock)) {
4244 /*
4245 * Missed the hash lock. Retry.
4246 */
4247 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4248 mutex_exit(&l2arc_buflist_mtx);
4249 mutex_enter(hash_lock);
4250 mutex_exit(hash_lock);
4251 goto top;
4252 }
4253
4254 if (HDR_L2_WRITE_HEAD(ab)) {
4255 /*
4256 * We hit a write head node. Leave it for
4257 * l2arc_write_done().
4258 */
4259 list_remove(buflist, ab);
4260 mutex_exit(hash_lock);
4261 continue;
4262 }
4263
4264 if (!all && ab->b_l2hdr != NULL &&
4265 (ab->b_l2hdr->b_daddr > taddr ||
4266 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4267 /*
4268 * We've evicted to the target address,
4269 * or the end of the device.
4270 */
4271 mutex_exit(hash_lock);
4272 break;
4273 }
4274
4275 if (HDR_FREE_IN_PROGRESS(ab)) {
4276 /*
4277 * Already on the path to destruction.
4278 */
4279 mutex_exit(hash_lock);
4280 continue;
4281 }
4282
4283 if (ab->b_state == arc_l2c_only) {
4284 ASSERT(!HDR_L2_READING(ab));
4285 /*
4286 * This doesn't exist in the ARC. Destroy.
4287 * arc_hdr_destroy() will call list_remove()
4288 * and decrement arcstat_l2_size.
4289 */
4290 arc_change_state(arc_anon, ab, hash_lock);
4291 arc_hdr_destroy(ab);
4292 } else {
b128c09f
BB
4293 /*
4294 * Invalidate issued or about to be issued
4295 * reads, since we may be about to write
4296 * over this location.
4297 */
4298 if (HDR_L2_READING(ab)) {
4299 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4300 ab->b_flags |= ARC_L2_EVICTED;
4301 }
4302
34dc7c2f
BB
4303 /*
4304 * Tell ARC this no longer exists in L2ARC.
4305 */
4306 if (ab->b_l2hdr != NULL) {
4307 abl2 = ab->b_l2hdr;
4308 ab->b_l2hdr = NULL;
4309 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4310 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4311 }
4312 list_remove(buflist, ab);
4313
4314 /*
4315 * This may have been leftover after a
4316 * failed write.
4317 */
4318 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4319 }
4320 mutex_exit(hash_lock);
4321 }
4322 mutex_exit(&l2arc_buflist_mtx);
4323
428870ff 4324 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4325 dev->l2ad_evict = taddr;
4326}
4327
4328/*
4329 * Find and write ARC buffers to the L2ARC device.
4330 *
4331 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4332 * for reading until they have completed writing.
4333 */
d164b209 4334static uint64_t
b128c09f 4335l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f
BB
4336{
4337 arc_buf_hdr_t *ab, *ab_prev, *head;
4338 l2arc_buf_hdr_t *hdrl2;
4339 list_t *list;
b128c09f 4340 uint64_t passed_sz, write_sz, buf_sz, headroom;
34dc7c2f 4341 void *buf_data;
d4ed6673 4342 kmutex_t *hash_lock, *list_lock = NULL;
34dc7c2f
BB
4343 boolean_t have_lock, full;
4344 l2arc_write_callback_t *cb;
4345 zio_t *pio, *wzio;
d164b209 4346 uint64_t guid = spa_guid(spa);
d6320ddb 4347 int try;
34dc7c2f 4348
34dc7c2f
BB
4349 ASSERT(dev->l2ad_vdev != NULL);
4350
4351 pio = NULL;
4352 write_sz = 0;
4353 full = B_FALSE;
4354 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4355 head->b_flags |= ARC_L2_WRITE_HEAD;
4356
4357 /*
4358 * Copy buffers for L2ARC writing.
4359 */
4360 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4361 for (try = 0; try <= 3; try++) {
34dc7c2f
BB
4362 list = l2arc_list_locked(try, &list_lock);
4363 passed_sz = 0;
4364
b128c09f
BB
4365 /*
4366 * L2ARC fast warmup.
4367 *
4368 * Until the ARC is warm and starts to evict, read from the
4369 * head of the ARC lists rather than the tail.
4370 */
4371 headroom = target_sz * l2arc_headroom;
4372 if (arc_warm == B_FALSE)
4373 ab = list_head(list);
4374 else
4375 ab = list_tail(list);
4376
4377 for (; ab; ab = ab_prev) {
4378 if (arc_warm == B_FALSE)
4379 ab_prev = list_next(list, ab);
4380 else
4381 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4382
4383 hash_lock = HDR_LOCK(ab);
4384 have_lock = MUTEX_HELD(hash_lock);
4385 if (!have_lock && !mutex_tryenter(hash_lock)) {
4386 /*
4387 * Skip this buffer rather than waiting.
4388 */
4389 continue;
4390 }
4391
4392 passed_sz += ab->b_size;
4393 if (passed_sz > headroom) {
4394 /*
4395 * Searched too far.
4396 */
4397 mutex_exit(hash_lock);
4398 break;
4399 }
4400
d164b209 4401 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4402 mutex_exit(hash_lock);
4403 continue;
4404 }
4405
4406 if ((write_sz + ab->b_size) > target_sz) {
4407 full = B_TRUE;
4408 mutex_exit(hash_lock);
4409 break;
4410 }
4411
34dc7c2f
BB
4412 if (pio == NULL) {
4413 /*
4414 * Insert a dummy header on the buflist so
4415 * l2arc_write_done() can find where the
4416 * write buffers begin without searching.
4417 */
4418 list_insert_head(dev->l2ad_buflist, head);
4419
4420 cb = kmem_alloc(
4421 sizeof (l2arc_write_callback_t), KM_SLEEP);
4422 cb->l2wcb_dev = dev;
4423 cb->l2wcb_head = head;
4424 pio = zio_root(spa, l2arc_write_done, cb,
4425 ZIO_FLAG_CANFAIL);
4426 }
4427
4428 /*
4429 * Create and add a new L2ARC header.
4430 */
4431 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4432 hdrl2->b_dev = dev;
4433 hdrl2->b_daddr = dev->l2ad_hand;
4434
4435 ab->b_flags |= ARC_L2_WRITING;
4436 ab->b_l2hdr = hdrl2;
4437 list_insert_head(dev->l2ad_buflist, ab);
4438 buf_data = ab->b_buf->b_data;
4439 buf_sz = ab->b_size;
4440
4441 /*
4442 * Compute and store the buffer cksum before
4443 * writing. On debug the cksum is verified first.
4444 */
4445 arc_cksum_verify(ab->b_buf);
4446 arc_cksum_compute(ab->b_buf, B_TRUE);
4447
4448 mutex_exit(hash_lock);
4449
4450 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4451 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4452 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4453 ZIO_FLAG_CANFAIL, B_FALSE);
4454
4455 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4456 zio_t *, wzio);
4457 (void) zio_nowait(wzio);
4458
b128c09f
BB
4459 /*
4460 * Keep the clock hand suitably device-aligned.
4461 */
4462 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4463
34dc7c2f
BB
4464 write_sz += buf_sz;
4465 dev->l2ad_hand += buf_sz;
4466 }
4467
4468 mutex_exit(list_lock);
4469
4470 if (full == B_TRUE)
4471 break;
4472 }
4473 mutex_exit(&l2arc_buflist_mtx);
4474
4475 if (pio == NULL) {
4476 ASSERT3U(write_sz, ==, 0);
4477 kmem_cache_free(hdr_cache, head);
d164b209 4478 return (0);
34dc7c2f
BB
4479 }
4480
4481 ASSERT3U(write_sz, <=, target_sz);
4482 ARCSTAT_BUMP(arcstat_l2_writes_sent);
d164b209 4483 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
34dc7c2f 4484 ARCSTAT_INCR(arcstat_l2_size, write_sz);
428870ff 4485 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
34dc7c2f
BB
4486
4487 /*
4488 * Bump device hand to the device start if it is approaching the end.
4489 * l2arc_evict() will already have evicted ahead for this case.
4490 */
b128c09f 4491 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
4492 vdev_space_update(dev->l2ad_vdev,
4493 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
4494 dev->l2ad_hand = dev->l2ad_start;
4495 dev->l2ad_evict = dev->l2ad_start;
4496 dev->l2ad_first = B_FALSE;
4497 }
4498
d164b209 4499 dev->l2ad_writing = B_TRUE;
34dc7c2f 4500 (void) zio_wait(pio);
d164b209
BB
4501 dev->l2ad_writing = B_FALSE;
4502
4503 return (write_sz);
34dc7c2f
BB
4504}
4505
4506/*
4507 * This thread feeds the L2ARC at regular intervals. This is the beating
4508 * heart of the L2ARC.
4509 */
4510static void
4511l2arc_feed_thread(void)
4512{
4513 callb_cpr_t cpr;
4514 l2arc_dev_t *dev;
4515 spa_t *spa;
d164b209 4516 uint64_t size, wrote;
428870ff 4517 clock_t begin, next = ddi_get_lbolt();
34dc7c2f
BB
4518
4519 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4520
4521 mutex_enter(&l2arc_feed_thr_lock);
4522
4523 while (l2arc_thread_exit == 0) {
34dc7c2f 4524 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
4525 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4526 &l2arc_feed_thr_lock, next);
34dc7c2f 4527 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 4528 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
4529
4530 /*
b128c09f 4531 * Quick check for L2ARC devices.
34dc7c2f
BB
4532 */
4533 mutex_enter(&l2arc_dev_mtx);
4534 if (l2arc_ndev == 0) {
4535 mutex_exit(&l2arc_dev_mtx);
4536 continue;
4537 }
b128c09f 4538 mutex_exit(&l2arc_dev_mtx);
428870ff 4539 begin = ddi_get_lbolt();
34dc7c2f
BB
4540
4541 /*
b128c09f
BB
4542 * This selects the next l2arc device to write to, and in
4543 * doing so the next spa to feed from: dev->l2ad_spa. This
4544 * will return NULL if there are now no l2arc devices or if
4545 * they are all faulted.
4546 *
4547 * If a device is returned, its spa's config lock is also
4548 * held to prevent device removal. l2arc_dev_get_next()
4549 * will grab and release l2arc_dev_mtx.
34dc7c2f 4550 */
b128c09f 4551 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 4552 continue;
b128c09f
BB
4553
4554 spa = dev->l2ad_spa;
4555 ASSERT(spa != NULL);
34dc7c2f 4556
572e2857
BB
4557 /*
4558 * If the pool is read-only then force the feed thread to
4559 * sleep a little longer.
4560 */
4561 if (!spa_writeable(spa)) {
4562 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4563 spa_config_exit(spa, SCL_L2ARC, dev);
4564 continue;
4565 }
4566
34dc7c2f 4567 /*
b128c09f 4568 * Avoid contributing to memory pressure.
34dc7c2f 4569 */
b128c09f
BB
4570 if (arc_reclaim_needed()) {
4571 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4572 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4573 continue;
4574 }
b128c09f 4575
34dc7c2f
BB
4576 ARCSTAT_BUMP(arcstat_l2_feeds);
4577
d164b209 4578 size = l2arc_write_size(dev);
b128c09f 4579
34dc7c2f
BB
4580 /*
4581 * Evict L2ARC buffers that will be overwritten.
4582 */
b128c09f 4583 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
4584
4585 /*
4586 * Write ARC buffers.
4587 */
d164b209
BB
4588 wrote = l2arc_write_buffers(spa, dev, size);
4589
4590 /*
4591 * Calculate interval between writes.
4592 */
4593 next = l2arc_write_interval(begin, size, wrote);
b128c09f 4594 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4595 }
4596
4597 l2arc_thread_exit = 0;
4598 cv_broadcast(&l2arc_feed_thr_cv);
4599 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4600 thread_exit();
4601}
4602
b128c09f
BB
4603boolean_t
4604l2arc_vdev_present(vdev_t *vd)
4605{
4606 l2arc_dev_t *dev;
4607
4608 mutex_enter(&l2arc_dev_mtx);
4609 for (dev = list_head(l2arc_dev_list); dev != NULL;
4610 dev = list_next(l2arc_dev_list, dev)) {
4611 if (dev->l2ad_vdev == vd)
4612 break;
4613 }
4614 mutex_exit(&l2arc_dev_mtx);
4615
4616 return (dev != NULL);
4617}
4618
34dc7c2f
BB
4619/*
4620 * Add a vdev for use by the L2ARC. By this point the spa has already
4621 * validated the vdev and opened it.
4622 */
4623void
9babb374 4624l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
4625{
4626 l2arc_dev_t *adddev;
4627
b128c09f
BB
4628 ASSERT(!l2arc_vdev_present(vd));
4629
34dc7c2f
BB
4630 /*
4631 * Create a new l2arc device entry.
4632 */
4633 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4634 adddev->l2ad_spa = spa;
4635 adddev->l2ad_vdev = vd;
4636 adddev->l2ad_write = l2arc_write_max;
b128c09f 4637 adddev->l2ad_boost = l2arc_write_boost;
9babb374
BB
4638 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4639 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
4640 adddev->l2ad_hand = adddev->l2ad_start;
4641 adddev->l2ad_evict = adddev->l2ad_start;
4642 adddev->l2ad_first = B_TRUE;
d164b209 4643 adddev->l2ad_writing = B_FALSE;
98f72a53 4644 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
4645 ASSERT3U(adddev->l2ad_write, >, 0);
4646
4647 /*
4648 * This is a list of all ARC buffers that are still valid on the
4649 * device.
4650 */
4651 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4652 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4653 offsetof(arc_buf_hdr_t, b_l2node));
4654
428870ff 4655 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
4656
4657 /*
4658 * Add device to global list
4659 */
4660 mutex_enter(&l2arc_dev_mtx);
4661 list_insert_head(l2arc_dev_list, adddev);
4662 atomic_inc_64(&l2arc_ndev);
4663 mutex_exit(&l2arc_dev_mtx);
4664}
4665
4666/*
4667 * Remove a vdev from the L2ARC.
4668 */
4669void
4670l2arc_remove_vdev(vdev_t *vd)
4671{
4672 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4673
34dc7c2f
BB
4674 /*
4675 * Find the device by vdev
4676 */
4677 mutex_enter(&l2arc_dev_mtx);
4678 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4679 nextdev = list_next(l2arc_dev_list, dev);
4680 if (vd == dev->l2ad_vdev) {
4681 remdev = dev;
4682 break;
4683 }
4684 }
4685 ASSERT(remdev != NULL);
4686
4687 /*
4688 * Remove device from global list
4689 */
4690 list_remove(l2arc_dev_list, remdev);
4691 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
4692 atomic_dec_64(&l2arc_ndev);
4693 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
4694
4695 /*
4696 * Clear all buflists and ARC references. L2ARC device flush.
4697 */
4698 l2arc_evict(remdev, 0, B_TRUE);
4699 list_destroy(remdev->l2ad_buflist);
4700 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4701 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
4702}
4703
4704void
b128c09f 4705l2arc_init(void)
34dc7c2f
BB
4706{
4707 l2arc_thread_exit = 0;
4708 l2arc_ndev = 0;
4709 l2arc_writes_sent = 0;
4710 l2arc_writes_done = 0;
4711
4712 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4713 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4714 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4715 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4716 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4717
4718 l2arc_dev_list = &L2ARC_dev_list;
4719 l2arc_free_on_write = &L2ARC_free_on_write;
4720 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4721 offsetof(l2arc_dev_t, l2ad_node));
4722 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4723 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
4724}
4725
4726void
b128c09f 4727l2arc_fini(void)
34dc7c2f 4728{
b128c09f
BB
4729 /*
4730 * This is called from dmu_fini(), which is called from spa_fini();
4731 * Because of this, we can assume that all l2arc devices have
4732 * already been removed when the pools themselves were removed.
4733 */
4734
4735 l2arc_do_free_on_write();
34dc7c2f
BB
4736
4737 mutex_destroy(&l2arc_feed_thr_lock);
4738 cv_destroy(&l2arc_feed_thr_cv);
4739 mutex_destroy(&l2arc_dev_mtx);
4740 mutex_destroy(&l2arc_buflist_mtx);
4741 mutex_destroy(&l2arc_free_on_write_mtx);
4742
4743 list_destroy(l2arc_dev_list);
4744 list_destroy(l2arc_free_on_write);
4745}
b128c09f
BB
4746
4747void
4748l2arc_start(void)
4749{
fb5f0bc8 4750 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4751 return;
4752
4753 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4754 TS_RUN, minclsyspri);
4755}
4756
4757void
4758l2arc_stop(void)
4759{
fb5f0bc8 4760 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4761 return;
4762
4763 mutex_enter(&l2arc_feed_thr_lock);
4764 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4765 l2arc_thread_exit = 1;
4766 while (l2arc_thread_exit != 0)
4767 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4768 mutex_exit(&l2arc_feed_thr_lock);
4769}
c28b2279
BB
4770
4771#if defined(_KERNEL) && defined(HAVE_SPL)
4772EXPORT_SYMBOL(arc_read);
4773EXPORT_SYMBOL(arc_buf_remove_ref);
4774EXPORT_SYMBOL(arc_getbuf_func);
4775
c409e464
BB
4776module_param(zfs_arc_min, ulong, 0444);
4777MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 4778
c409e464
BB
4779module_param(zfs_arc_max, ulong, 0444);
4780MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 4781
c409e464 4782module_param(zfs_arc_meta_limit, ulong, 0444);
c28b2279 4783MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 4784
c409e464
BB
4785module_param(zfs_arc_reduce_dnlc_percent, int, 0444);
4786MODULE_PARM_DESC(zfs_arc_reduce_dnlc_percent, "Meta reclaim percentage");
4787
4788module_param(zfs_arc_grow_retry, int, 0444);
4789MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
4790
4791module_param(zfs_arc_shrink_shift, int, 0444);
4792MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
4793
4794module_param(zfs_arc_p_min_shift, int, 0444);
4795MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
4796
c28b2279 4797#endif