]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/dbuf.c
New upstream version 0.7.6
[mirror_zfs-debian.git] / module / zfs / dbuf.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ef3c1dea 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
cae5b340 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
c06d4368 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
e10b0808 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f 29#include <sys/zfs_context.h>
c28b2279 30#include <sys/arc.h>
34dc7c2f 31#include <sys/dmu.h>
a08ee875 32#include <sys/dmu_send.h>
34dc7c2f
BB
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
428870ff
BB
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
ea04106b
AX
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
46#include <sys/range_tree.h>
47#include <sys/trace_dbuf.h>
cae5b340
AX
48#include <sys/callb.h>
49#include <sys/abd.h>
34dc7c2f 50
fc5bb51f
BB
51struct dbuf_hold_impl_data {
52 /* Function arguments */
53 dnode_t *dh_dn;
54 uint8_t dh_level;
55 uint64_t dh_blkid;
cae5b340
AX
56 boolean_t dh_fail_sparse;
57 boolean_t dh_fail_uncached;
fc5bb51f
BB
58 void *dh_tag;
59 dmu_buf_impl_t **dh_dbp;
60 /* Local variables */
61 dmu_buf_impl_t *dh_db;
62 dmu_buf_impl_t *dh_parent;
63 blkptr_t *dh_bp;
64 int dh_err;
65 dbuf_dirty_record_t *dh_dr;
fc5bb51f
BB
66 int dh_depth;
67};
68
69static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
cae5b340
AX
70 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
71 boolean_t fail_uncached,
72 void *tag, dmu_buf_impl_t **dbp, int depth);
fc5bb51f
BB
73static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
74
cae5b340 75uint_t zfs_dbuf_evict_key;
a08ee875 76
a08ee875 77static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
b128c09f 78static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
34dc7c2f 79
e10b0808 80extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
cae5b340
AX
81 dmu_buf_evict_func_t *evict_func_sync,
82 dmu_buf_evict_func_t *evict_func_async,
83 dmu_buf_t **clear_on_evict_dbufp);
e10b0808 84
34dc7c2f
BB
85/*
86 * Global data structures and functions for the dbuf cache.
87 */
cae5b340 88static kmem_cache_t *dbuf_kmem_cache;
e10b0808 89static taskq_t *dbu_evict_taskq;
34dc7c2f 90
cae5b340
AX
91static kthread_t *dbuf_cache_evict_thread;
92static kmutex_t dbuf_evict_lock;
93static kcondvar_t dbuf_evict_cv;
94static boolean_t dbuf_evict_thread_exit;
95
96/*
97 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
98 * are not currently held but have been recently released. These dbufs
99 * are not eligible for arc eviction until they are aged out of the cache.
100 * Dbufs are added to the dbuf cache once the last hold is released. If a
101 * dbuf is later accessed and still exists in the dbuf cache, then it will
102 * be removed from the cache and later re-added to the head of the cache.
103 * Dbufs that are aged out of the cache will be immediately destroyed and
104 * become eligible for arc eviction.
105 */
106static multilist_t *dbuf_cache;
107static refcount_t dbuf_cache_size;
108unsigned long dbuf_cache_max_bytes = 100 * 1024 * 1024;
109
110/* Cap the size of the dbuf cache to log2 fraction of arc size. */
111int dbuf_cache_max_shift = 5;
112
113/*
114 * The dbuf cache uses a three-stage eviction policy:
115 * - A low water marker designates when the dbuf eviction thread
116 * should stop evicting from the dbuf cache.
117 * - When we reach the maximum size (aka mid water mark), we
118 * signal the eviction thread to run.
119 * - The high water mark indicates when the eviction thread
120 * is unable to keep up with the incoming load and eviction must
121 * happen in the context of the calling thread.
122 *
123 * The dbuf cache:
124 * (max size)
125 * low water mid water hi water
126 * +----------------------------------------+----------+----------+
127 * | | | |
128 * | | | |
129 * | | | |
130 * | | | |
131 * +----------------------------------------+----------+----------+
132 * stop signal evict
133 * evicting eviction directly
134 * thread
135 *
136 * The high and low water marks indicate the operating range for the eviction
137 * thread. The low water mark is, by default, 90% of the total size of the
138 * cache and the high water mark is at 110% (both of these percentages can be
139 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
140 * respectively). The eviction thread will try to ensure that the cache remains
141 * within this range by waking up every second and checking if the cache is
142 * above the low water mark. The thread can also be woken up by callers adding
143 * elements into the cache if the cache is larger than the mid water (i.e max
144 * cache size). Once the eviction thread is woken up and eviction is required,
145 * it will continue evicting buffers until it's able to reduce the cache size
146 * to the low water mark. If the cache size continues to grow and hits the high
147 * water mark, then callers adding elements to the cache will begin to evict
148 * directly from the cache until the cache is no longer above the high water
149 * mark.
150 */
151
152/*
153 * The percentage above and below the maximum cache size.
154 */
155uint_t dbuf_cache_hiwater_pct = 10;
156uint_t dbuf_cache_lowater_pct = 10;
157
34dc7c2f
BB
158/* ARGSUSED */
159static int
160dbuf_cons(void *vdb, void *unused, int kmflag)
161{
162 dmu_buf_impl_t *db = vdb;
163 bzero(db, sizeof (dmu_buf_impl_t));
164
165 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
166 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
cae5b340 167 multilist_link_init(&db->db_cache_link);
34dc7c2f 168 refcount_create(&db->db_holds);
cae5b340 169 multilist_link_init(&db->db_cache_link);
e10b0808 170
34dc7c2f
BB
171 return (0);
172}
173
174/* ARGSUSED */
175static void
176dbuf_dest(void *vdb, void *unused)
177{
178 dmu_buf_impl_t *db = vdb;
179 mutex_destroy(&db->db_mtx);
180 cv_destroy(&db->db_changed);
cae5b340 181 ASSERT(!multilist_link_active(&db->db_cache_link));
34dc7c2f
BB
182 refcount_destroy(&db->db_holds);
183}
184
185/*
186 * dbuf hash table routines
187 */
188static dbuf_hash_table_t dbuf_hash_table;
189
190static uint64_t dbuf_hash_count;
191
192static uint64_t
193dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
194{
195 uintptr_t osv = (uintptr_t)os;
196 uint64_t crc = -1ULL;
197
198 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
199 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
200 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
201 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
202 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
203 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
204 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
205
206 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
207
208 return (crc);
209}
210
34dc7c2f
BB
211#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
212 ((dbuf)->db.db_object == (obj) && \
213 (dbuf)->db_objset == (os) && \
214 (dbuf)->db_level == (level) && \
215 (dbuf)->db_blkid == (blkid))
216
217dmu_buf_impl_t *
e10b0808 218dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
34dc7c2f
BB
219{
220 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb
BB
221 uint64_t hv;
222 uint64_t idx;
34dc7c2f
BB
223 dmu_buf_impl_t *db;
224
cae5b340 225 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
226 idx = hv & h->hash_table_mask;
227
34dc7c2f
BB
228 mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
230 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
231 mutex_enter(&db->db_mtx);
232 if (db->db_state != DB_EVICTING) {
233 mutex_exit(DBUF_HASH_MUTEX(h, idx));
234 return (db);
235 }
236 mutex_exit(&db->db_mtx);
237 }
238 }
239 mutex_exit(DBUF_HASH_MUTEX(h, idx));
240 return (NULL);
241}
242
e10b0808
AX
243static dmu_buf_impl_t *
244dbuf_find_bonus(objset_t *os, uint64_t object)
245{
246 dnode_t *dn;
247 dmu_buf_impl_t *db = NULL;
248
249 if (dnode_hold(os, object, FTAG, &dn) == 0) {
250 rw_enter(&dn->dn_struct_rwlock, RW_READER);
251 if (dn->dn_bonus != NULL) {
252 db = dn->dn_bonus;
253 mutex_enter(&db->db_mtx);
254 }
255 rw_exit(&dn->dn_struct_rwlock);
256 dnode_rele(dn, FTAG);
257 }
258 return (db);
259}
260
34dc7c2f
BB
261/*
262 * Insert an entry into the hash table. If there is already an element
263 * equal to elem in the hash table, then the already existing element
264 * will be returned and the new element will not be inserted.
265 * Otherwise returns NULL.
266 */
267static dmu_buf_impl_t *
268dbuf_hash_insert(dmu_buf_impl_t *db)
269{
270 dbuf_hash_table_t *h = &dbuf_hash_table;
428870ff 271 objset_t *os = db->db_objset;
34dc7c2f
BB
272 uint64_t obj = db->db.db_object;
273 int level = db->db_level;
d6320ddb 274 uint64_t blkid, hv, idx;
34dc7c2f
BB
275 dmu_buf_impl_t *dbf;
276
d6320ddb 277 blkid = db->db_blkid;
cae5b340 278 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
279 idx = hv & h->hash_table_mask;
280
34dc7c2f
BB
281 mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 mutex_enter(&dbf->db_mtx);
285 if (dbf->db_state != DB_EVICTING) {
286 mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 return (dbf);
288 }
289 mutex_exit(&dbf->db_mtx);
290 }
291 }
292
293 mutex_enter(&db->db_mtx);
294 db->db_hash_next = h->hash_table[idx];
295 h->hash_table[idx] = db;
296 mutex_exit(DBUF_HASH_MUTEX(h, idx));
cae5b340 297 atomic_inc_64(&dbuf_hash_count);
34dc7c2f
BB
298
299 return (NULL);
300}
301
302/*
ea04106b 303 * Remove an entry from the hash table. It must be in the EVICTING state.
34dc7c2f
BB
304 */
305static void
306dbuf_hash_remove(dmu_buf_impl_t *db)
307{
308 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb 309 uint64_t hv, idx;
34dc7c2f
BB
310 dmu_buf_impl_t *dbf, **dbp;
311
cae5b340 312 hv = dbuf_hash(db->db_objset, db->db.db_object,
d6320ddb
BB
313 db->db_level, db->db_blkid);
314 idx = hv & h->hash_table_mask;
315
34dc7c2f 316 /*
cae5b340 317 * We mustn't hold db_mtx to maintain lock ordering:
34dc7c2f
BB
318 * DBUF_HASH_MUTEX > db_mtx.
319 */
320 ASSERT(refcount_is_zero(&db->db_holds));
321 ASSERT(db->db_state == DB_EVICTING);
322 ASSERT(!MUTEX_HELD(&db->db_mtx));
323
324 mutex_enter(DBUF_HASH_MUTEX(h, idx));
325 dbp = &h->hash_table[idx];
326 while ((dbf = *dbp) != db) {
327 dbp = &dbf->db_hash_next;
328 ASSERT(dbf != NULL);
329 }
330 *dbp = db->db_hash_next;
331 db->db_hash_next = NULL;
332 mutex_exit(DBUF_HASH_MUTEX(h, idx));
cae5b340 333 atomic_dec_64(&dbuf_hash_count);
34dc7c2f
BB
334}
335
e10b0808
AX
336typedef enum {
337 DBVU_EVICTING,
338 DBVU_NOT_EVICTING
339} dbvu_verify_type_t;
340
341static void
342dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
343{
344#ifdef ZFS_DEBUG
345 int64_t holds;
346
347 if (db->db_user == NULL)
348 return;
349
350 /* Only data blocks support the attachment of user data. */
351 ASSERT(db->db_level == 0);
352
353 /* Clients must resolve a dbuf before attaching user data. */
354 ASSERT(db->db.db_data != NULL);
355 ASSERT3U(db->db_state, ==, DB_CACHED);
356
357 holds = refcount_count(&db->db_holds);
358 if (verify_type == DBVU_EVICTING) {
359 /*
360 * Immediate eviction occurs when holds == dirtycnt.
361 * For normal eviction buffers, holds is zero on
362 * eviction, except when dbuf_fix_old_data() calls
363 * dbuf_clear_data(). However, the hold count can grow
364 * during eviction even though db_mtx is held (see
365 * dmu_bonus_hold() for an example), so we can only
366 * test the generic invariant that holds >= dirtycnt.
367 */
368 ASSERT3U(holds, >=, db->db_dirtycnt);
369 } else {
370 if (db->db_user_immediate_evict == TRUE)
371 ASSERT3U(holds, >=, db->db_dirtycnt);
372 else
373 ASSERT3U(holds, >, 0);
374 }
375#endif
376}
377
34dc7c2f
BB
378static void
379dbuf_evict_user(dmu_buf_impl_t *db)
380{
e10b0808
AX
381 dmu_buf_user_t *dbu = db->db_user;
382
34dc7c2f
BB
383 ASSERT(MUTEX_HELD(&db->db_mtx));
384
e10b0808 385 if (dbu == NULL)
34dc7c2f
BB
386 return;
387
e10b0808
AX
388 dbuf_verify_user(db, DBVU_EVICTING);
389 db->db_user = NULL;
390
391#ifdef ZFS_DEBUG
392 if (dbu->dbu_clear_on_evict_dbufp != NULL)
393 *dbu->dbu_clear_on_evict_dbufp = NULL;
394#endif
395
396 /*
cae5b340
AX
397 * There are two eviction callbacks - one that we call synchronously
398 * and one that we invoke via a taskq. The async one is useful for
399 * avoiding lock order reversals and limiting stack depth.
400 *
401 * Note that if we have a sync callback but no async callback,
402 * it's likely that the sync callback will free the structure
403 * containing the dbu. In that case we need to take care to not
404 * dereference dbu after calling the sync evict func.
e10b0808 405 */
cae5b340
AX
406 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
407
408 if (dbu->dbu_evict_func_sync != NULL)
409 dbu->dbu_evict_func_sync(dbu);
410
411 if (has_async) {
412 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
413 dbu, 0, &dbu->dbu_tqent);
414 }
34dc7c2f
BB
415}
416
572e2857
BB
417boolean_t
418dbuf_is_metadata(dmu_buf_impl_t *db)
419{
ea04106b
AX
420 /*
421 * Consider indirect blocks and spill blocks to be meta data.
422 */
423 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
424 return (B_TRUE);
425 } else {
426 boolean_t is_metadata;
427
428 DB_DNODE_ENTER(db);
9ae529ec 429 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
572e2857
BB
430 DB_DNODE_EXIT(db);
431
432 return (is_metadata);
433 }
434}
435
cae5b340
AX
436
437/*
438 * This function *must* return indices evenly distributed between all
439 * sublists of the multilist. This is needed due to how the dbuf eviction
440 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
441 * distributed between all sublists and uses this assumption when
442 * deciding which sublist to evict from and how much to evict from it.
443 */
444unsigned int
445dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
34dc7c2f 446{
cae5b340 447 dmu_buf_impl_t *db = obj;
34dc7c2f 448
cae5b340
AX
449 /*
450 * The assumption here, is the hash value for a given
451 * dmu_buf_impl_t will remain constant throughout it's lifetime
452 * (i.e. it's objset, object, level and blkid fields don't change).
453 * Thus, we don't need to store the dbuf's sublist index
454 * on insertion, as this index can be recalculated on removal.
455 *
456 * Also, the low order bits of the hash value are thought to be
457 * distributed evenly. Otherwise, in the case that the multilist
458 * has a power of two number of sublists, each sublists' usage
459 * would not be evenly distributed.
460 */
461 return (dbuf_hash(db->db_objset, db->db.db_object,
462 db->db_level, db->db_blkid) %
463 multilist_get_num_sublists(ml));
34dc7c2f
BB
464}
465
8ec27e97
AX
466static inline unsigned long
467dbuf_cache_target_bytes(void)
468{
469 return MIN(dbuf_cache_max_bytes,
470 arc_target_bytes() >> dbuf_cache_max_shift);
471}
472
cae5b340
AX
473static inline boolean_t
474dbuf_cache_above_hiwater(void)
475{
8ec27e97
AX
476 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
477
cae5b340 478 uint64_t dbuf_cache_hiwater_bytes =
8ec27e97 479 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100;
cae5b340
AX
480
481 return (refcount_count(&dbuf_cache_size) >
8ec27e97 482 dbuf_cache_target + dbuf_cache_hiwater_bytes);
cae5b340
AX
483}
484
485static inline boolean_t
486dbuf_cache_above_lowater(void)
487{
8ec27e97
AX
488 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
489
cae5b340 490 uint64_t dbuf_cache_lowater_bytes =
8ec27e97 491 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100;
cae5b340
AX
492
493 return (refcount_count(&dbuf_cache_size) >
8ec27e97 494 dbuf_cache_target - dbuf_cache_lowater_bytes);
cae5b340
AX
495}
496
497/*
498 * Evict the oldest eligible dbuf from the dbuf cache.
499 */
500static void
501dbuf_evict_one(void)
502{
503 int idx = multilist_get_random_index(dbuf_cache);
504 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
505 dmu_buf_impl_t *db;
506 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
507
508 /*
509 * Set the thread's tsd to indicate that it's processing evictions.
510 * Once a thread stops evicting from the dbuf cache it will
511 * reset its tsd to NULL.
512 */
513 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
514 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
515
516 db = multilist_sublist_tail(mls);
517 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
518 db = multilist_sublist_prev(mls, db);
519 }
520
521 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
522 multilist_sublist_t *, mls);
523
524 if (db != NULL) {
525 multilist_sublist_remove(mls, db);
526 multilist_sublist_unlock(mls);
527 (void) refcount_remove_many(&dbuf_cache_size,
528 db->db.db_size, db);
529 dbuf_destroy(db);
530 } else {
531 multilist_sublist_unlock(mls);
532 }
533 (void) tsd_set(zfs_dbuf_evict_key, NULL);
534}
535
536/*
537 * The dbuf evict thread is responsible for aging out dbufs from the
538 * cache. Once the cache has reached it's maximum size, dbufs are removed
539 * and destroyed. The eviction thread will continue running until the size
540 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
541 * out of the cache it is destroyed and becomes eligible for arc eviction.
542 */
543static void
544dbuf_evict_thread(void)
545{
546 callb_cpr_t cpr;
547
548 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
549
550 mutex_enter(&dbuf_evict_lock);
551 while (!dbuf_evict_thread_exit) {
552 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
553 CALLB_CPR_SAFE_BEGIN(&cpr);
554 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
555 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
556 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
557 }
558 mutex_exit(&dbuf_evict_lock);
559
560 /*
561 * Keep evicting as long as we're above the low water mark
562 * for the cache. We do this without holding the locks to
563 * minimize lock contention.
564 */
565 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
566 dbuf_evict_one();
567 }
568
569 mutex_enter(&dbuf_evict_lock);
570 }
571
572 dbuf_evict_thread_exit = B_FALSE;
573 cv_broadcast(&dbuf_evict_cv);
574 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
575 thread_exit();
576}
577
578/*
579 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
580 * If the dbuf cache is at its high water mark, then evict a dbuf from the
581 * dbuf cache using the callers context.
582 */
583static void
584dbuf_evict_notify(void)
585{
586
587 /*
588 * We use thread specific data to track when a thread has
589 * started processing evictions. This allows us to avoid deeply
590 * nested stacks that would have a call flow similar to this:
591 *
592 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
593 * ^ |
594 * | |
595 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
596 *
597 * The dbuf_eviction_thread will always have its tsd set until
598 * that thread exits. All other threads will only set their tsd
599 * if they are participating in the eviction process. This only
600 * happens if the eviction thread is unable to process evictions
601 * fast enough. To keep the dbuf cache size in check, other threads
602 * can evict from the dbuf cache directly. Those threads will set
603 * their tsd values so that we ensure that they only evict one dbuf
604 * from the dbuf cache.
605 */
606 if (tsd_get(zfs_dbuf_evict_key) != NULL)
607 return;
608
609 /*
610 * We check if we should evict without holding the dbuf_evict_lock,
611 * because it's OK to occasionally make the wrong decision here,
612 * and grabbing the lock results in massive lock contention.
613 */
8ec27e97 614 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
cae5b340
AX
615 if (dbuf_cache_above_hiwater())
616 dbuf_evict_one();
617 cv_signal(&dbuf_evict_cv);
618 }
619}
620
621
622
34dc7c2f
BB
623void
624dbuf_init(void)
625{
626 uint64_t hsize = 1ULL << 16;
627 dbuf_hash_table_t *h = &dbuf_hash_table;
628 int i;
629
630 /*
631 * The hash table is big enough to fill all of physical memory
e10b0808
AX
632 * with an average block size of zfs_arc_average_blocksize (default 8K).
633 * By default, the table will take up
634 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 635 */
e10b0808 636 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
637 hsize <<= 1;
638
639retry:
640 h->hash_table_mask = hsize - 1;
00b46022 641#if defined(_KERNEL) && defined(HAVE_SPL)
a08ee875
LG
642 /*
643 * Large allocations which do not require contiguous pages
644 * should be using vmem_alloc() in the linux kernel
645 */
ea04106b 646 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
00b46022 647#else
34dc7c2f 648 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
00b46022 649#endif
34dc7c2f
BB
650 if (h->hash_table == NULL) {
651 /* XXX - we should really return an error instead of assert */
652 ASSERT(hsize > (1ULL << 10));
653 hsize >>= 1;
654 goto retry;
655 }
656
cae5b340 657 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
34dc7c2f
BB
658 sizeof (dmu_buf_impl_t),
659 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
660
661 for (i = 0; i < DBUF_MUTEXES; i++)
662 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
a08ee875
LG
663
664 dbuf_stats_init(h);
e10b0808 665
cae5b340
AX
666 /*
667 * Setup the parameters for the dbuf cache. We cap the size of the
668 * dbuf cache to 1/32nd (default) of the size of the ARC.
669 */
670 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
8ec27e97 671 arc_target_bytes() >> dbuf_cache_max_shift);
cae5b340 672
e10b0808
AX
673 /*
674 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
675 * configuration is not required.
676 */
677 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
cae5b340
AX
678
679 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
680 offsetof(dmu_buf_impl_t, db_cache_link),
681 dbuf_cache_multilist_index_func);
682 refcount_create(&dbuf_cache_size);
683
684 tsd_create(&zfs_dbuf_evict_key, NULL);
685 dbuf_evict_thread_exit = B_FALSE;
686 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
687 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
688 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
689 NULL, 0, &p0, TS_RUN, minclsyspri);
34dc7c2f
BB
690}
691
692void
693dbuf_fini(void)
694{
695 dbuf_hash_table_t *h = &dbuf_hash_table;
696 int i;
697
a08ee875
LG
698 dbuf_stats_destroy();
699
34dc7c2f
BB
700 for (i = 0; i < DBUF_MUTEXES; i++)
701 mutex_destroy(&h->hash_mutexes[i]);
00b46022 702#if defined(_KERNEL) && defined(HAVE_SPL)
a08ee875
LG
703 /*
704 * Large allocations which do not require contiguous pages
705 * should be using vmem_free() in the linux kernel
706 */
00b46022
BB
707 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
708#else
34dc7c2f 709 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
00b46022 710#endif
cae5b340 711 kmem_cache_destroy(dbuf_kmem_cache);
e10b0808 712 taskq_destroy(dbu_evict_taskq);
cae5b340
AX
713
714 mutex_enter(&dbuf_evict_lock);
715 dbuf_evict_thread_exit = B_TRUE;
716 while (dbuf_evict_thread_exit) {
717 cv_signal(&dbuf_evict_cv);
718 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
719 }
720 mutex_exit(&dbuf_evict_lock);
721 tsd_destroy(&zfs_dbuf_evict_key);
722
723 mutex_destroy(&dbuf_evict_lock);
724 cv_destroy(&dbuf_evict_cv);
725
726 refcount_destroy(&dbuf_cache_size);
727 multilist_destroy(dbuf_cache);
34dc7c2f
BB
728}
729
730/*
731 * Other stuff.
732 */
733
734#ifdef ZFS_DEBUG
735static void
736dbuf_verify(dmu_buf_impl_t *db)
737{
572e2857 738 dnode_t *dn;
428870ff 739 dbuf_dirty_record_t *dr;
34dc7c2f
BB
740
741 ASSERT(MUTEX_HELD(&db->db_mtx));
742
743 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
744 return;
745
746 ASSERT(db->db_objset != NULL);
572e2857
BB
747 DB_DNODE_ENTER(db);
748 dn = DB_DNODE(db);
34dc7c2f
BB
749 if (dn == NULL) {
750 ASSERT(db->db_parent == NULL);
751 ASSERT(db->db_blkptr == NULL);
752 } else {
753 ASSERT3U(db->db.db_object, ==, dn->dn_object);
754 ASSERT3P(db->db_objset, ==, dn->dn_objset);
755 ASSERT3U(db->db_level, <, dn->dn_nlevels);
572e2857
BB
756 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
757 db->db_blkid == DMU_SPILL_BLKID ||
e10b0808 758 !avl_is_empty(&dn->dn_dbufs));
34dc7c2f 759 }
428870ff
BB
760 if (db->db_blkid == DMU_BONUS_BLKID) {
761 ASSERT(dn != NULL);
762 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
763 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
764 } else if (db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f 765 ASSERT(dn != NULL);
c06d4368 766 ASSERT0(db->db.db_offset);
34dc7c2f
BB
767 } else {
768 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
769 }
770
428870ff
BB
771 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
772 ASSERT(dr->dr_dbuf == db);
773
774 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
775 ASSERT(dr->dr_dbuf == db);
776
b128c09f
BB
777 /*
778 * We can't assert that db_size matches dn_datablksz because it
779 * can be momentarily different when another thread is doing
780 * dnode_set_blksz().
781 */
782 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
428870ff 783 dr = db->db_data_pending;
b128c09f
BB
784 /*
785 * It should only be modified in syncing context, so
786 * make sure we only have one copy of the data.
787 */
788 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
34dc7c2f
BB
789 }
790
791 /* verify db->db_blkptr */
792 if (db->db_blkptr) {
793 if (db->db_parent == dn->dn_dbuf) {
794 /* db is pointed to by the dnode */
795 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
9babb374 796 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
34dc7c2f
BB
797 ASSERT(db->db_parent == NULL);
798 else
799 ASSERT(db->db_parent != NULL);
428870ff
BB
800 if (db->db_blkid != DMU_SPILL_BLKID)
801 ASSERT3P(db->db_blkptr, ==,
802 &dn->dn_phys->dn_blkptr[db->db_blkid]);
34dc7c2f
BB
803 } else {
804 /* db is pointed to by an indirect block */
1fde1e37 805 ASSERTV(int epb = db->db_parent->db.db_size >>
cae5b340 806 SPA_BLKPTRSHIFT);
34dc7c2f
BB
807 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
808 ASSERT3U(db->db_parent->db.db_object, ==,
809 db->db.db_object);
810 /*
811 * dnode_grow_indblksz() can make this fail if we don't
812 * have the struct_rwlock. XXX indblksz no longer
813 * grows. safe to do this now?
814 */
572e2857 815 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
34dc7c2f
BB
816 ASSERT3P(db->db_blkptr, ==,
817 ((blkptr_t *)db->db_parent->db.db_data +
818 db->db_blkid % epb));
819 }
820 }
821 }
822 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
428870ff
BB
823 (db->db_buf == NULL || db->db_buf->b_data) &&
824 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
34dc7c2f
BB
825 db->db_state != DB_FILL && !dn->dn_free_txg) {
826 /*
827 * If the blkptr isn't set but they have nonzero data,
828 * it had better be dirty, otherwise we'll lose that
829 * data when we evict this buffer.
cae5b340
AX
830 *
831 * There is an exception to this rule for indirect blocks; in
832 * this case, if the indirect block is a hole, we fill in a few
833 * fields on each of the child blocks (importantly, birth time)
834 * to prevent hole birth times from being lost when you
835 * partially fill in a hole.
34dc7c2f
BB
836 */
837 if (db->db_dirtycnt == 0) {
cae5b340
AX
838 if (db->db_level == 0) {
839 uint64_t *buf = db->db.db_data;
840 int i;
34dc7c2f 841
cae5b340
AX
842 for (i = 0; i < db->db.db_size >> 3; i++) {
843 ASSERT(buf[i] == 0);
844 }
845 } else {
846 int i;
847 blkptr_t *bps = db->db.db_data;
848 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
849 db->db.db_size);
850 /*
851 * We want to verify that all the blkptrs in the
852 * indirect block are holes, but we may have
853 * automatically set up a few fields for them.
854 * We iterate through each blkptr and verify
855 * they only have those fields set.
856 */
857 for (i = 0;
858 i < db->db.db_size / sizeof (blkptr_t);
859 i++) {
860 blkptr_t *bp = &bps[i];
861 ASSERT(ZIO_CHECKSUM_IS_ZERO(
862 &bp->blk_cksum));
863 ASSERT(
864 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
865 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
866 DVA_IS_EMPTY(&bp->blk_dva[2]));
867 ASSERT0(bp->blk_fill);
868 ASSERT0(bp->blk_pad[0]);
869 ASSERT0(bp->blk_pad[1]);
870 ASSERT(!BP_IS_EMBEDDED(bp));
871 ASSERT(BP_IS_HOLE(bp));
872 ASSERT0(bp->blk_phys_birth);
873 }
34dc7c2f
BB
874 }
875 }
876 }
572e2857 877 DB_DNODE_EXIT(db);
34dc7c2f
BB
878}
879#endif
880
881static void
e10b0808 882dbuf_clear_data(dmu_buf_impl_t *db)
34dc7c2f
BB
883{
884 ASSERT(MUTEX_HELD(&db->db_mtx));
e10b0808 885 dbuf_evict_user(db);
cae5b340 886 ASSERT3P(db->db_buf, ==, NULL);
e10b0808
AX
887 db->db.db_data = NULL;
888 if (db->db_state != DB_NOFILL)
889 db->db_state = DB_UNCACHED;
34dc7c2f
BB
890}
891
892static void
893dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
894{
895 ASSERT(MUTEX_HELD(&db->db_mtx));
e10b0808
AX
896 ASSERT(buf != NULL);
897
34dc7c2f 898 db->db_buf = buf;
e10b0808
AX
899 ASSERT(buf->b_data != NULL);
900 db->db.db_data = buf->b_data;
34dc7c2f
BB
901}
902
428870ff
BB
903/*
904 * Loan out an arc_buf for read. Return the loaned arc_buf.
905 */
906arc_buf_t *
907dbuf_loan_arcbuf(dmu_buf_impl_t *db)
908{
909 arc_buf_t *abuf;
910
cae5b340 911 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
428870ff
BB
912 mutex_enter(&db->db_mtx);
913 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
914 int blksz = db->db.db_size;
ea04106b 915 spa_t *spa = db->db_objset->os_spa;
572e2857 916
428870ff 917 mutex_exit(&db->db_mtx);
cae5b340 918 abuf = arc_loan_buf(spa, B_FALSE, blksz);
428870ff
BB
919 bcopy(db->db.db_data, abuf->b_data, blksz);
920 } else {
921 abuf = db->db_buf;
922 arc_loan_inuse_buf(abuf, db);
cae5b340 923 db->db_buf = NULL;
e10b0808 924 dbuf_clear_data(db);
428870ff
BB
925 mutex_exit(&db->db_mtx);
926 }
927 return (abuf);
928}
929
cae5b340
AX
930/*
931 * Calculate which level n block references the data at the level 0 offset
932 * provided.
933 */
34dc7c2f 934uint64_t
cae5b340 935dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
34dc7c2f 936{
cae5b340
AX
937 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
938 /*
939 * The level n blkid is equal to the level 0 blkid divided by
940 * the number of level 0s in a level n block.
941 *
942 * The level 0 blkid is offset >> datablkshift =
943 * offset / 2^datablkshift.
944 *
945 * The number of level 0s in a level n is the number of block
946 * pointers in an indirect block, raised to the power of level.
947 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
948 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
949 *
950 * Thus, the level n blkid is: offset /
951 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
952 * = offset / 2^(datablkshift + level *
953 * (indblkshift - SPA_BLKPTRSHIFT))
954 * = offset >> (datablkshift + level *
955 * (indblkshift - SPA_BLKPTRSHIFT))
956 */
957
958 const unsigned exp = dn->dn_datablkshift +
959 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
960
961 if (exp >= 8 * sizeof (offset)) {
962 /* This only happens on the highest indirection level */
963 ASSERT3U(level, ==, dn->dn_nlevels - 1);
964 return (0);
965 }
966
967 ASSERT3U(exp, <, 8 * sizeof (offset));
968
969 return (offset >> exp);
34dc7c2f
BB
970 } else {
971 ASSERT3U(offset, <, dn->dn_datablksz);
972 return (0);
973 }
974}
975
976static void
977dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
978{
979 dmu_buf_impl_t *db = vdb;
980
981 mutex_enter(&db->db_mtx);
982 ASSERT3U(db->db_state, ==, DB_READ);
983 /*
984 * All reads are synchronous, so we must have a hold on the dbuf
985 */
986 ASSERT(refcount_count(&db->db_holds) > 0);
987 ASSERT(db->db_buf == NULL);
988 ASSERT(db->db.db_data == NULL);
989 if (db->db_level == 0 && db->db_freed_in_flight) {
990 /* we were freed in flight; disregard any error */
991 arc_release(buf, db);
992 bzero(buf->b_data, db->db.db_size);
993 arc_buf_freeze(buf);
994 db->db_freed_in_flight = FALSE;
995 dbuf_set_data(db, buf);
996 db->db_state = DB_CACHED;
997 } else if (zio == NULL || zio->io_error == 0) {
998 dbuf_set_data(db, buf);
999 db->db_state = DB_CACHED;
1000 } else {
428870ff 1001 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 1002 ASSERT3P(db->db_buf, ==, NULL);
cae5b340 1003 arc_buf_destroy(buf, db);
34dc7c2f
BB
1004 db->db_state = DB_UNCACHED;
1005 }
1006 cv_broadcast(&db->db_changed);
428870ff 1007 dbuf_rele_and_unlock(db, NULL);
34dc7c2f
BB
1008}
1009
ea04106b 1010static int
cae5b340 1011dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
34dc7c2f 1012{
572e2857 1013 dnode_t *dn;
ea04106b 1014 zbookmark_phys_t zb;
e10b0808 1015 uint32_t aflags = ARC_FLAG_NOWAIT;
ea04106b 1016 int err;
34dc7c2f 1017
572e2857
BB
1018 DB_DNODE_ENTER(db);
1019 dn = DB_DNODE(db);
34dc7c2f
BB
1020 ASSERT(!refcount_is_zero(&db->db_holds));
1021 /* We need the struct_rwlock to prevent db_blkptr from changing. */
b128c09f 1022 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1023 ASSERT(MUTEX_HELD(&db->db_mtx));
1024 ASSERT(db->db_state == DB_UNCACHED);
1025 ASSERT(db->db_buf == NULL);
1026
428870ff 1027 if (db->db_blkid == DMU_BONUS_BLKID) {
cae5b340
AX
1028 /*
1029 * The bonus length stored in the dnode may be less than
1030 * the maximum available space in the bonus buffer.
1031 */
9babb374 1032 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
cae5b340 1033 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
34dc7c2f
BB
1034
1035 ASSERT3U(bonuslen, <=, db->db.db_size);
cae5b340
AX
1036 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1037 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1038 if (bonuslen < max_bonuslen)
1039 bzero(db->db.db_data, max_bonuslen);
9babb374
BB
1040 if (bonuslen)
1041 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
572e2857 1042 DB_DNODE_EXIT(db);
34dc7c2f
BB
1043 db->db_state = DB_CACHED;
1044 mutex_exit(&db->db_mtx);
ea04106b 1045 return (0);
34dc7c2f
BB
1046 }
1047
b128c09f
BB
1048 /*
1049 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1050 * processes the delete record and clears the bp while we are waiting
1051 * for the dn_mtx (resulting in a "no" from block_freed).
1052 */
1053 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1054 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1055 BP_IS_HOLE(db->db_blkptr)))) {
34dc7c2f
BB
1056 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1057
cae5b340
AX
1058 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1059 db->db.db_size));
34dc7c2f 1060 bzero(db->db.db_data, db->db.db_size);
cae5b340
AX
1061
1062 if (db->db_blkptr != NULL && db->db_level > 0 &&
1063 BP_IS_HOLE(db->db_blkptr) &&
1064 db->db_blkptr->blk_birth != 0) {
1065 blkptr_t *bps = db->db.db_data;
1066 int i;
1067 for (i = 0; i < ((1 <<
1068 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1069 i++) {
1070 blkptr_t *bp = &bps[i];
1071 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1072 1 << dn->dn_indblkshift);
1073 BP_SET_LSIZE(bp,
1074 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1075 dn->dn_datablksz :
1076 BP_GET_LSIZE(db->db_blkptr));
1077 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1078 BP_SET_LEVEL(bp,
1079 BP_GET_LEVEL(db->db_blkptr) - 1);
1080 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1081 }
1082 }
1083 DB_DNODE_EXIT(db);
34dc7c2f 1084 db->db_state = DB_CACHED;
34dc7c2f 1085 mutex_exit(&db->db_mtx);
ea04106b 1086 return (0);
34dc7c2f
BB
1087 }
1088
572e2857
BB
1089 DB_DNODE_EXIT(db);
1090
34dc7c2f
BB
1091 db->db_state = DB_READ;
1092 mutex_exit(&db->db_mtx);
1093
b128c09f 1094 if (DBUF_IS_L2CACHEABLE(db))
e10b0808 1095 aflags |= ARC_FLAG_L2CACHE;
b128c09f 1096
428870ff
BB
1097 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1098 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1099 db->db.db_object, db->db_level, db->db_blkid);
34dc7c2f
BB
1100
1101 dbuf_add_ref(db, NULL);
b128c09f 1102
ea04106b 1103 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
34dc7c2f 1104 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
cae5b340 1105 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
34dc7c2f 1106 &aflags, &zb);
ea04106b 1107
cae5b340
AX
1108 return (err);
1109}
1110
1111/*
1112 * This is our just-in-time copy function. It makes a copy of buffers that
1113 * have been modified in a previous transaction group before we access them in
1114 * the current active group.
1115 *
1116 * This function is used in three places: when we are dirtying a buffer for the
1117 * first time in a txg, when we are freeing a range in a dnode that includes
1118 * this buffer, and when we are accessing a buffer which was received compressed
1119 * and later referenced in a WRITE_BYREF record.
1120 *
1121 * Note that when we are called from dbuf_free_range() we do not put a hold on
1122 * the buffer, we just traverse the active dbuf list for the dnode.
1123 */
1124static void
1125dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1126{
1127 dbuf_dirty_record_t *dr = db->db_last_dirty;
1128
1129 ASSERT(MUTEX_HELD(&db->db_mtx));
1130 ASSERT(db->db.db_data != NULL);
1131 ASSERT(db->db_level == 0);
1132 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1133
1134 if (dr == NULL ||
1135 (dr->dt.dl.dr_data !=
1136 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1137 return;
1138
1139 /*
1140 * If the last dirty record for this dbuf has not yet synced
1141 * and its referencing the dbuf data, either:
1142 * reset the reference to point to a new copy,
1143 * or (if there a no active holders)
1144 * just null out the current db_data pointer.
1145 */
1146 ASSERT(dr->dr_txg >= txg - 2);
1147 if (db->db_blkid == DMU_BONUS_BLKID) {
1148 dnode_t *dn = DB_DNODE(db);
1149 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1150 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1151 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1152 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1153 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1154 int size = arc_buf_size(db->db_buf);
1155 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1156 spa_t *spa = db->db_objset->os_spa;
1157 enum zio_compress compress_type =
1158 arc_get_compression(db->db_buf);
1159
1160 if (compress_type == ZIO_COMPRESS_OFF) {
1161 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1162 } else {
1163 ASSERT3U(type, ==, ARC_BUFC_DATA);
1164 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1165 size, arc_buf_lsize(db->db_buf), compress_type);
1166 }
1167 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1168 } else {
1169 db->db_buf = NULL;
1170 dbuf_clear_data(db);
1171 }
34dc7c2f
BB
1172}
1173
1174int
1175dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1176{
1177 int err = 0;
ea04106b 1178 boolean_t prefetch;
572e2857 1179 dnode_t *dn;
34dc7c2f
BB
1180
1181 /*
1182 * We don't have to hold the mutex to check db_state because it
1183 * can't be freed while we have a hold on the buffer.
1184 */
1185 ASSERT(!refcount_is_zero(&db->db_holds));
1186
b128c09f 1187 if (db->db_state == DB_NOFILL)
a08ee875 1188 return (SET_ERROR(EIO));
b128c09f 1189
572e2857
BB
1190 DB_DNODE_ENTER(db);
1191 dn = DB_DNODE(db);
34dc7c2f 1192 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857 1193 rw_enter(&dn->dn_struct_rwlock, RW_READER);
34dc7c2f 1194
428870ff 1195 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
572e2857 1196 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
b128c09f 1197 DBUF_IS_CACHEABLE(db);
34dc7c2f
BB
1198
1199 mutex_enter(&db->db_mtx);
1200 if (db->db_state == DB_CACHED) {
cae5b340
AX
1201 /*
1202 * If the arc buf is compressed, we need to decompress it to
1203 * read the data. This could happen during the "zfs receive" of
1204 * a stream which is compressed and deduplicated.
1205 */
1206 if (db->db_buf != NULL &&
1207 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1208 dbuf_fix_old_data(db,
1209 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1210 err = arc_decompress(db->db_buf);
1211 dbuf_set_data(db, db->db_buf);
1212 }
34dc7c2f
BB
1213 mutex_exit(&db->db_mtx);
1214 if (prefetch)
cae5b340 1215 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1216 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1217 rw_exit(&dn->dn_struct_rwlock);
1218 DB_DNODE_EXIT(db);
34dc7c2f 1219 } else if (db->db_state == DB_UNCACHED) {
572e2857 1220 spa_t *spa = dn->dn_objset->os_spa;
cae5b340 1221 boolean_t need_wait = B_FALSE;
572e2857 1222
cae5b340
AX
1223 if (zio == NULL &&
1224 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
572e2857 1225 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
cae5b340
AX
1226 need_wait = B_TRUE;
1227 }
1228 err = dbuf_read_impl(db, zio, flags);
34dc7c2f
BB
1229
1230 /* dbuf_read_impl has dropped db_mtx for us */
1231
ea04106b 1232 if (!err && prefetch)
cae5b340 1233 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f
BB
1234
1235 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1236 rw_exit(&dn->dn_struct_rwlock);
1237 DB_DNODE_EXIT(db);
34dc7c2f 1238
cae5b340 1239 if (!err && need_wait)
34dc7c2f
BB
1240 err = zio_wait(zio);
1241 } else {
a08ee875
LG
1242 /*
1243 * Another reader came in while the dbuf was in flight
1244 * between UNCACHED and CACHED. Either a writer will finish
1245 * writing the buffer (sending the dbuf to CACHED) or the
1246 * first reader's request will reach the read_done callback
1247 * and send the dbuf to CACHED. Otherwise, a failure
1248 * occurred and the dbuf went to UNCACHED.
1249 */
34dc7c2f
BB
1250 mutex_exit(&db->db_mtx);
1251 if (prefetch)
cae5b340 1252 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
34dc7c2f 1253 if ((flags & DB_RF_HAVESTRUCT) == 0)
572e2857
BB
1254 rw_exit(&dn->dn_struct_rwlock);
1255 DB_DNODE_EXIT(db);
34dc7c2f 1256
a08ee875 1257 /* Skip the wait per the caller's request. */
34dc7c2f
BB
1258 mutex_enter(&db->db_mtx);
1259 if ((flags & DB_RF_NEVERWAIT) == 0) {
1260 while (db->db_state == DB_READ ||
1261 db->db_state == DB_FILL) {
1262 ASSERT(db->db_state == DB_READ ||
1263 (flags & DB_RF_HAVESTRUCT) == 0);
ea04106b
AX
1264 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1265 db, zio_t *, zio);
34dc7c2f
BB
1266 cv_wait(&db->db_changed, &db->db_mtx);
1267 }
1268 if (db->db_state == DB_UNCACHED)
a08ee875 1269 err = SET_ERROR(EIO);
34dc7c2f
BB
1270 }
1271 mutex_exit(&db->db_mtx);
1272 }
1273
34dc7c2f
BB
1274 return (err);
1275}
1276
1277static void
1278dbuf_noread(dmu_buf_impl_t *db)
1279{
1280 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 1281 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
1282 mutex_enter(&db->db_mtx);
1283 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1284 cv_wait(&db->db_changed, &db->db_mtx);
1285 if (db->db_state == DB_UNCACHED) {
1286 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
ea04106b 1287 spa_t *spa = db->db_objset->os_spa;
34dc7c2f
BB
1288
1289 ASSERT(db->db_buf == NULL);
1290 ASSERT(db->db.db_data == NULL);
cae5b340 1291 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
34dc7c2f 1292 db->db_state = DB_FILL;
b128c09f 1293 } else if (db->db_state == DB_NOFILL) {
e10b0808 1294 dbuf_clear_data(db);
34dc7c2f
BB
1295 } else {
1296 ASSERT3U(db->db_state, ==, DB_CACHED);
1297 }
1298 mutex_exit(&db->db_mtx);
1299}
1300
34dc7c2f
BB
1301void
1302dbuf_unoverride(dbuf_dirty_record_t *dr)
1303{
1304 dmu_buf_impl_t *db = dr->dr_dbuf;
428870ff 1305 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
34dc7c2f
BB
1306 uint64_t txg = dr->dr_txg;
1307
1308 ASSERT(MUTEX_HELD(&db->db_mtx));
cae5b340
AX
1309 /*
1310 * This assert is valid because dmu_sync() expects to be called by
1311 * a zilog's get_data while holding a range lock. This call only
1312 * comes from dbuf_dirty() callers who must also hold a range lock.
1313 */
34dc7c2f
BB
1314 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1315 ASSERT(db->db_level == 0);
1316
428870ff 1317 if (db->db_blkid == DMU_BONUS_BLKID ||
34dc7c2f
BB
1318 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1319 return;
1320
428870ff
BB
1321 ASSERT(db->db_data_pending != dr);
1322
34dc7c2f 1323 /* free this block */
ea04106b
AX
1324 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1325 zio_free(db->db_objset->os_spa, txg, bp);
428870ff 1326
34dc7c2f 1327 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
a08ee875
LG
1328 dr->dt.dl.dr_nopwrite = B_FALSE;
1329
34dc7c2f
BB
1330 /*
1331 * Release the already-written buffer, so we leave it in
1332 * a consistent dirty state. Note that all callers are
1333 * modifying the buffer, so they will immediately do
1334 * another (redundant) arc_release(). Therefore, leave
1335 * the buf thawed to save the effort of freezing &
1336 * immediately re-thawing it.
1337 */
1338 arc_release(dr->dt.dl.dr_data, db);
1339}
1340
b128c09f
BB
1341/*
1342 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1343 * data blocks in the free range, so that any future readers will find
ea04106b 1344 * empty blocks.
b128c09f 1345 */
34dc7c2f 1346void
e10b0808
AX
1347dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1348 dmu_tx_t *tx)
34dc7c2f 1349{
e10b0808 1350 dmu_buf_impl_t *db_search;
34dc7c2f
BB
1351 dmu_buf_impl_t *db, *db_next;
1352 uint64_t txg = tx->tx_txg;
e10b0808 1353 avl_index_t where;
e10b0808 1354
cae5b340
AX
1355 if (end_blkid > dn->dn_maxblkid &&
1356 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
e10b0808
AX
1357 end_blkid = dn->dn_maxblkid;
1358 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
34dc7c2f 1359
e10b0808
AX
1360 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1361 db_search->db_level = 0;
1362 db_search->db_blkid = start_blkid;
1363 db_search->db_state = DB_SEARCH;
a08ee875 1364
34dc7c2f 1365 mutex_enter(&dn->dn_dbufs_mtx);
e10b0808
AX
1366 db = avl_find(&dn->dn_dbufs, db_search, &where);
1367 ASSERT3P(db, ==, NULL);
cae5b340 1368
e10b0808
AX
1369 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1370
1371 for (; db != NULL; db = db_next) {
1372 db_next = AVL_NEXT(&dn->dn_dbufs, db);
428870ff 1373 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
b128c09f 1374
e10b0808
AX
1375 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1376 break;
1377 }
1378 ASSERT3U(db->db_blkid, >=, start_blkid);
34dc7c2f
BB
1379
1380 /* found a level 0 buffer in the range */
a08ee875
LG
1381 mutex_enter(&db->db_mtx);
1382 if (dbuf_undirty(db, tx)) {
1383 /* mutex has been dropped and dbuf destroyed */
34dc7c2f 1384 continue;
a08ee875 1385 }
34dc7c2f 1386
34dc7c2f 1387 if (db->db_state == DB_UNCACHED ||
b128c09f 1388 db->db_state == DB_NOFILL ||
34dc7c2f
BB
1389 db->db_state == DB_EVICTING) {
1390 ASSERT(db->db.db_data == NULL);
1391 mutex_exit(&db->db_mtx);
1392 continue;
1393 }
1394 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1395 /* will be handled in dbuf_read_done or dbuf_rele */
1396 db->db_freed_in_flight = TRUE;
1397 mutex_exit(&db->db_mtx);
1398 continue;
1399 }
1400 if (refcount_count(&db->db_holds) == 0) {
1401 ASSERT(db->db_buf);
cae5b340 1402 dbuf_destroy(db);
34dc7c2f
BB
1403 continue;
1404 }
1405 /* The dbuf is referenced */
1406
1407 if (db->db_last_dirty != NULL) {
1408 dbuf_dirty_record_t *dr = db->db_last_dirty;
1409
1410 if (dr->dr_txg == txg) {
1411 /*
1412 * This buffer is "in-use", re-adjust the file
1413 * size to reflect that this buffer may
1414 * contain new data when we sync.
1415 */
428870ff
BB
1416 if (db->db_blkid != DMU_SPILL_BLKID &&
1417 db->db_blkid > dn->dn_maxblkid)
34dc7c2f
BB
1418 dn->dn_maxblkid = db->db_blkid;
1419 dbuf_unoverride(dr);
1420 } else {
1421 /*
1422 * This dbuf is not dirty in the open context.
1423 * Either uncache it (if its not referenced in
1424 * the open context) or reset its contents to
1425 * empty.
1426 */
1427 dbuf_fix_old_data(db, txg);
1428 }
1429 }
1430 /* clear the contents if its cached */
1431 if (db->db_state == DB_CACHED) {
1432 ASSERT(db->db.db_data != NULL);
1433 arc_release(db->db_buf, db);
1434 bzero(db->db.db_data, db->db.db_size);
1435 arc_buf_freeze(db->db_buf);
1436 }
1437
1438 mutex_exit(&db->db_mtx);
1439 }
e10b0808 1440
e10b0808 1441 kmem_free(db_search, sizeof (dmu_buf_impl_t));
34dc7c2f
BB
1442 mutex_exit(&dn->dn_dbufs_mtx);
1443}
1444
34dc7c2f
BB
1445void
1446dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1447{
1448 arc_buf_t *buf, *obuf;
1449 int osize = db->db.db_size;
1450 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
572e2857 1451 dnode_t *dn;
34dc7c2f 1452
428870ff 1453 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 1454
572e2857
BB
1455 DB_DNODE_ENTER(db);
1456 dn = DB_DNODE(db);
1457
34dc7c2f 1458 /* XXX does *this* func really need the lock? */
572e2857 1459 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
34dc7c2f
BB
1460
1461 /*
ea04106b 1462 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
34dc7c2f
BB
1463 * is OK, because there can be no other references to the db
1464 * when we are changing its size, so no concurrent DB_FILL can
1465 * be happening.
1466 */
1467 /*
1468 * XXX we should be doing a dbuf_read, checking the return
1469 * value and returning that up to our callers
1470 */
ea04106b 1471 dmu_buf_will_dirty(&db->db, tx);
34dc7c2f
BB
1472
1473 /* create the data buffer for the new block */
cae5b340 1474 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
34dc7c2f
BB
1475
1476 /* copy old block data to the new block */
1477 obuf = db->db_buf;
1478 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1479 /* zero the remainder */
1480 if (size > osize)
1481 bzero((uint8_t *)buf->b_data + osize, size - osize);
1482
1483 mutex_enter(&db->db_mtx);
1484 dbuf_set_data(db, buf);
cae5b340 1485 arc_buf_destroy(obuf, db);
34dc7c2f
BB
1486 db->db.db_size = size;
1487
1488 if (db->db_level == 0) {
1489 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1490 db->db_last_dirty->dt.dl.dr_data = buf;
1491 }
1492 mutex_exit(&db->db_mtx);
1493
cae5b340 1494 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
572e2857 1495 DB_DNODE_EXIT(db);
34dc7c2f
BB
1496}
1497
428870ff
BB
1498void
1499dbuf_release_bp(dmu_buf_impl_t *db)
1500{
ea04106b 1501 ASSERTV(objset_t *os = db->db_objset);
428870ff
BB
1502
1503 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1504 ASSERT(arc_released(os->os_phys_buf) ||
1505 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1506 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1507
c06d4368 1508 (void) arc_release(db->db_buf, db);
428870ff
BB
1509}
1510
cae5b340
AX
1511/*
1512 * We already have a dirty record for this TXG, and we are being
1513 * dirtied again.
1514 */
1515static void
1516dbuf_redirty(dbuf_dirty_record_t *dr)
1517{
1518 dmu_buf_impl_t *db = dr->dr_dbuf;
1519
1520 ASSERT(MUTEX_HELD(&db->db_mtx));
1521
1522 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1523 /*
1524 * If this buffer has already been written out,
1525 * we now need to reset its state.
1526 */
1527 dbuf_unoverride(dr);
1528 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1529 db->db_state != DB_NOFILL) {
1530 /* Already released on initial dirty, so just thaw. */
1531 ASSERT(arc_released(db->db_buf));
1532 arc_buf_thaw(db->db_buf);
1533 }
1534 }
1535}
1536
34dc7c2f
BB
1537dbuf_dirty_record_t *
1538dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1539{
572e2857
BB
1540 dnode_t *dn;
1541 objset_t *os;
34dc7c2f
BB
1542 dbuf_dirty_record_t **drp, *dr;
1543 int drop_struct_lock = FALSE;
1544 int txgoff = tx->tx_txg & TXG_MASK;
1545
1546 ASSERT(tx->tx_txg != 0);
1547 ASSERT(!refcount_is_zero(&db->db_holds));
1548 DMU_TX_DIRTY_BUF(tx, db);
1549
572e2857
BB
1550 DB_DNODE_ENTER(db);
1551 dn = DB_DNODE(db);
34dc7c2f
BB
1552 /*
1553 * Shouldn't dirty a regular buffer in syncing context. Private
1554 * objects may be dirtied in syncing context, but only if they
1555 * were already pre-dirtied in open context.
34dc7c2f 1556 */
cae5b340
AX
1557#ifdef DEBUG
1558 if (dn->dn_objset->os_dsl_dataset != NULL) {
1559 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1560 RW_READER, FTAG);
1561 }
34dc7c2f
BB
1562 ASSERT(!dmu_tx_is_syncing(tx) ||
1563 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
9babb374
BB
1564 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1565 dn->dn_objset->os_dsl_dataset == NULL);
cae5b340
AX
1566 if (dn->dn_objset->os_dsl_dataset != NULL)
1567 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1568#endif
34dc7c2f
BB
1569 /*
1570 * We make this assert for private objects as well, but after we
1571 * check if we're already dirty. They are allowed to re-dirty
1572 * in syncing context.
1573 */
1574 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1575 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1576 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1577
1578 mutex_enter(&db->db_mtx);
1579 /*
1580 * XXX make this true for indirects too? The problem is that
1581 * transactions created with dmu_tx_create_assigned() from
1582 * syncing context don't bother holding ahead.
1583 */
1584 ASSERT(db->db_level != 0 ||
b128c09f
BB
1585 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1586 db->db_state == DB_NOFILL);
34dc7c2f
BB
1587
1588 mutex_enter(&dn->dn_mtx);
1589 /*
1590 * Don't set dirtyctx to SYNC if we're just modifying this as we
1591 * initialize the objset.
1592 */
cae5b340
AX
1593 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1594 if (dn->dn_objset->os_dsl_dataset != NULL) {
1595 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1596 RW_READER, FTAG);
1597 }
1598 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1599 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1600 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1601 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1602 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1603 }
1604 if (dn->dn_objset->os_dsl_dataset != NULL) {
1605 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1606 FTAG);
1607 }
34dc7c2f
BB
1608 }
1609 mutex_exit(&dn->dn_mtx);
1610
428870ff
BB
1611 if (db->db_blkid == DMU_SPILL_BLKID)
1612 dn->dn_have_spill = B_TRUE;
1613
34dc7c2f
BB
1614 /*
1615 * If this buffer is already dirty, we're done.
1616 */
1617 drp = &db->db_last_dirty;
1618 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1619 db->db.db_object == DMU_META_DNODE_OBJECT);
1620 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1621 drp = &dr->dr_next;
1622 if (dr && dr->dr_txg == tx->tx_txg) {
572e2857
BB
1623 DB_DNODE_EXIT(db);
1624
cae5b340 1625 dbuf_redirty(dr);
34dc7c2f
BB
1626 mutex_exit(&db->db_mtx);
1627 return (dr);
1628 }
1629
1630 /*
1631 * Only valid if not already dirty.
1632 */
9babb374
BB
1633 ASSERT(dn->dn_object == 0 ||
1634 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
34dc7c2f
BB
1635 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1636
1637 ASSERT3U(dn->dn_nlevels, >, db->db_level);
34dc7c2f
BB
1638
1639 /*
1640 * We should only be dirtying in syncing context if it's the
9babb374
BB
1641 * mos or we're initializing the os or it's a special object.
1642 * However, we are allowed to dirty in syncing context provided
1643 * we already dirtied it in open context. Hence we must make
1644 * this assertion only if we're not already dirty.
34dc7c2f 1645 */
572e2857 1646 os = dn->dn_objset;
cae5b340
AX
1647 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1648#ifdef DEBUG
1649 if (dn->dn_objset->os_dsl_dataset != NULL)
1650 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
9babb374
BB
1651 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1652 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
cae5b340
AX
1653 if (dn->dn_objset->os_dsl_dataset != NULL)
1654 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1655#endif
34dc7c2f
BB
1656 ASSERT(db->db.db_size != 0);
1657
1658 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1659
428870ff 1660 if (db->db_blkid != DMU_BONUS_BLKID) {
cae5b340 1661 dmu_objset_willuse_space(os, db->db.db_size, tx);
34dc7c2f
BB
1662 }
1663
1664 /*
1665 * If this buffer is dirty in an old transaction group we need
1666 * to make a copy of it so that the changes we make in this
1667 * transaction group won't leak out when we sync the older txg.
1668 */
ea04106b 1669 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
98f72a53 1670 list_link_init(&dr->dr_dirty_node);
34dc7c2f
BB
1671 if (db->db_level == 0) {
1672 void *data_old = db->db_buf;
1673
b128c09f 1674 if (db->db_state != DB_NOFILL) {
428870ff 1675 if (db->db_blkid == DMU_BONUS_BLKID) {
b128c09f
BB
1676 dbuf_fix_old_data(db, tx->tx_txg);
1677 data_old = db->db.db_data;
1678 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1679 /*
1680 * Release the data buffer from the cache so
1681 * that we can modify it without impacting
1682 * possible other users of this cached data
1683 * block. Note that indirect blocks and
1684 * private objects are not released until the
1685 * syncing state (since they are only modified
1686 * then).
1687 */
1688 arc_release(db->db_buf, db);
1689 dbuf_fix_old_data(db, tx->tx_txg);
1690 data_old = db->db_buf;
1691 }
1692 ASSERT(data_old != NULL);
34dc7c2f 1693 }
34dc7c2f
BB
1694 dr->dt.dl.dr_data = data_old;
1695 } else {
cae5b340 1696 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f
BB
1697 list_create(&dr->dt.di.dr_children,
1698 sizeof (dbuf_dirty_record_t),
1699 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1700 }
a08ee875
LG
1701 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1702 dr->dr_accounted = db->db.db_size;
34dc7c2f
BB
1703 dr->dr_dbuf = db;
1704 dr->dr_txg = tx->tx_txg;
1705 dr->dr_next = *drp;
1706 *drp = dr;
1707
1708 /*
1709 * We could have been freed_in_flight between the dbuf_noread
1710 * and dbuf_dirty. We win, as though the dbuf_noread() had
1711 * happened after the free.
1712 */
428870ff
BB
1713 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1714 db->db_blkid != DMU_SPILL_BLKID) {
34dc7c2f 1715 mutex_enter(&dn->dn_mtx);
ea04106b
AX
1716 if (dn->dn_free_ranges[txgoff] != NULL) {
1717 range_tree_clear(dn->dn_free_ranges[txgoff],
1718 db->db_blkid, 1);
1719 }
34dc7c2f
BB
1720 mutex_exit(&dn->dn_mtx);
1721 db->db_freed_in_flight = FALSE;
1722 }
1723
1724 /*
1725 * This buffer is now part of this txg
1726 */
1727 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1728 db->db_dirtycnt += 1;
1729 ASSERT3U(db->db_dirtycnt, <=, 3);
1730
1731 mutex_exit(&db->db_mtx);
1732
428870ff
BB
1733 if (db->db_blkid == DMU_BONUS_BLKID ||
1734 db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f
BB
1735 mutex_enter(&dn->dn_mtx);
1736 ASSERT(!list_link_active(&dr->dr_dirty_node));
1737 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1738 mutex_exit(&dn->dn_mtx);
1739 dnode_setdirty(dn, tx);
572e2857 1740 DB_DNODE_EXIT(db);
34dc7c2f 1741 return (dr);
34dc7c2f
BB
1742 }
1743
cae5b340
AX
1744 /*
1745 * The dn_struct_rwlock prevents db_blkptr from changing
1746 * due to a write from syncing context completing
1747 * while we are running, so we want to acquire it before
1748 * looking at db_blkptr.
1749 */
34dc7c2f
BB
1750 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1751 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1752 drop_struct_lock = TRUE;
1753 }
1754
cae5b340
AX
1755 /*
1756 * We need to hold the dn_struct_rwlock to make this assertion,
1757 * because it protects dn_phys / dn_next_nlevels from changing.
1758 */
1759 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1760 dn->dn_phys->dn_nlevels > db->db_level ||
1761 dn->dn_next_nlevels[txgoff] > db->db_level ||
1762 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1763 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1764
1765 /*
1766 * If we are overwriting a dedup BP, then unless it is snapshotted,
1767 * when we get to syncing context we will need to decrement its
1768 * refcount in the DDT. Prefetch the relevant DDT block so that
1769 * syncing context won't have to wait for the i/o.
1770 */
1771 ddt_prefetch(os->os_spa, db->db_blkptr);
1772
b128c09f
BB
1773 if (db->db_level == 0) {
1774 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1775 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1776 }
1777
34dc7c2f
BB
1778 if (db->db_level+1 < dn->dn_nlevels) {
1779 dmu_buf_impl_t *parent = db->db_parent;
1780 dbuf_dirty_record_t *di;
1781 int parent_held = FALSE;
1782
1783 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1784 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1785
1786 parent = dbuf_hold_level(dn, db->db_level+1,
1787 db->db_blkid >> epbs, FTAG);
428870ff 1788 ASSERT(parent != NULL);
34dc7c2f
BB
1789 parent_held = TRUE;
1790 }
1791 if (drop_struct_lock)
1792 rw_exit(&dn->dn_struct_rwlock);
1793 ASSERT3U(db->db_level+1, ==, parent->db_level);
1794 di = dbuf_dirty(parent, tx);
1795 if (parent_held)
1796 dbuf_rele(parent, FTAG);
1797
1798 mutex_enter(&db->db_mtx);
a08ee875
LG
1799 /*
1800 * Since we've dropped the mutex, it's possible that
1801 * dbuf_undirty() might have changed this out from under us.
1802 */
34dc7c2f
BB
1803 if (db->db_last_dirty == dr ||
1804 dn->dn_object == DMU_META_DNODE_OBJECT) {
1805 mutex_enter(&di->dt.di.dr_mtx);
1806 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1807 ASSERT(!list_link_active(&dr->dr_dirty_node));
1808 list_insert_tail(&di->dt.di.dr_children, dr);
1809 mutex_exit(&di->dt.di.dr_mtx);
1810 dr->dr_parent = di;
1811 }
1812 mutex_exit(&db->db_mtx);
1813 } else {
1814 ASSERT(db->db_level+1 == dn->dn_nlevels);
1815 ASSERT(db->db_blkid < dn->dn_nblkptr);
572e2857 1816 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
1817 mutex_enter(&dn->dn_mtx);
1818 ASSERT(!list_link_active(&dr->dr_dirty_node));
1819 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1820 mutex_exit(&dn->dn_mtx);
1821 if (drop_struct_lock)
1822 rw_exit(&dn->dn_struct_rwlock);
1823 }
1824
1825 dnode_setdirty(dn, tx);
572e2857 1826 DB_DNODE_EXIT(db);
34dc7c2f
BB
1827 return (dr);
1828}
1829
a08ee875
LG
1830/*
1831 * Undirty a buffer in the transaction group referenced by the given
1832 * transaction. Return whether this evicted the dbuf.
1833 */
1834static boolean_t
34dc7c2f
BB
1835dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1836{
572e2857 1837 dnode_t *dn;
34dc7c2f
BB
1838 uint64_t txg = tx->tx_txg;
1839 dbuf_dirty_record_t *dr, **drp;
1840
1841 ASSERT(txg != 0);
e10b0808
AX
1842
1843 /*
1844 * Due to our use of dn_nlevels below, this can only be called
1845 * in open context, unless we are operating on the MOS.
1846 * From syncing context, dn_nlevels may be different from the
1847 * dn_nlevels used when dbuf was dirtied.
1848 */
1849 ASSERT(db->db_objset ==
1850 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1851 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
428870ff 1852 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
a08ee875
LG
1853 ASSERT0(db->db_level);
1854 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f 1855
34dc7c2f
BB
1856 /*
1857 * If this buffer is not dirty, we're done.
1858 */
1859 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1860 if (dr->dr_txg <= txg)
1861 break;
a08ee875
LG
1862 if (dr == NULL || dr->dr_txg < txg)
1863 return (B_FALSE);
34dc7c2f 1864 ASSERT(dr->dr_txg == txg);
428870ff 1865 ASSERT(dr->dr_dbuf == db);
34dc7c2f 1866
572e2857
BB
1867 DB_DNODE_ENTER(db);
1868 dn = DB_DNODE(db);
1869
34dc7c2f
BB
1870 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1871
1872 ASSERT(db->db.db_size != 0);
1873
e10b0808
AX
1874 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1875 dr->dr_accounted, txg);
34dc7c2f
BB
1876
1877 *drp = dr->dr_next;
1878
ef3c1dea
GR
1879 /*
1880 * Note that there are three places in dbuf_dirty()
1881 * where this dirty record may be put on a list.
1882 * Make sure to do a list_remove corresponding to
1883 * every one of those list_insert calls.
1884 */
34dc7c2f
BB
1885 if (dr->dr_parent) {
1886 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1887 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1888 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
ef3c1dea 1889 } else if (db->db_blkid == DMU_SPILL_BLKID ||
e10b0808 1890 db->db_level + 1 == dn->dn_nlevels) {
b128c09f 1891 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
1892 mutex_enter(&dn->dn_mtx);
1893 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1894 mutex_exit(&dn->dn_mtx);
1895 }
572e2857 1896 DB_DNODE_EXIT(db);
34dc7c2f 1897
a08ee875
LG
1898 if (db->db_state != DB_NOFILL) {
1899 dbuf_unoverride(dr);
34dc7c2f 1900
34dc7c2f 1901 ASSERT(db->db_buf != NULL);
a08ee875
LG
1902 ASSERT(dr->dt.dl.dr_data != NULL);
1903 if (dr->dt.dl.dr_data != db->db_buf)
cae5b340 1904 arc_buf_destroy(dr->dt.dl.dr_data, db);
34dc7c2f 1905 }
e10b0808 1906
34dc7c2f
BB
1907 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1908
1909 ASSERT(db->db_dirtycnt > 0);
1910 db->db_dirtycnt -= 1;
1911
1912 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
cae5b340
AX
1913 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1914 dbuf_destroy(db);
a08ee875 1915 return (B_TRUE);
34dc7c2f
BB
1916 }
1917
a08ee875 1918 return (B_FALSE);
34dc7c2f
BB
1919}
1920
34dc7c2f 1921void
ea04106b 1922dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
34dc7c2f 1923{
ea04106b 1924 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 1925 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
cae5b340 1926 dbuf_dirty_record_t *dr;
34dc7c2f
BB
1927
1928 ASSERT(tx->tx_txg != 0);
1929 ASSERT(!refcount_is_zero(&db->db_holds));
1930
cae5b340
AX
1931 /*
1932 * Quick check for dirtyness. For already dirty blocks, this
1933 * reduces runtime of this function by >90%, and overall performance
1934 * by 50% for some workloads (e.g. file deletion with indirect blocks
1935 * cached).
1936 */
1937 mutex_enter(&db->db_mtx);
1938
1939 for (dr = db->db_last_dirty;
1940 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1941 /*
1942 * It's possible that it is already dirty but not cached,
1943 * because there are some calls to dbuf_dirty() that don't
1944 * go through dmu_buf_will_dirty().
1945 */
1946 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1947 /* This dbuf is already dirty and cached. */
1948 dbuf_redirty(dr);
1949 mutex_exit(&db->db_mtx);
1950 return;
1951 }
1952 }
1953 mutex_exit(&db->db_mtx);
1954
572e2857
BB
1955 DB_DNODE_ENTER(db);
1956 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
34dc7c2f 1957 rf |= DB_RF_HAVESTRUCT;
572e2857 1958 DB_DNODE_EXIT(db);
34dc7c2f
BB
1959 (void) dbuf_read(db, NULL, rf);
1960 (void) dbuf_dirty(db, tx);
1961}
1962
b128c09f
BB
1963void
1964dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1965{
1966 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1967
1968 db->db_state = DB_NOFILL;
1969
1970 dmu_buf_will_fill(db_fake, tx);
1971}
1972
34dc7c2f
BB
1973void
1974dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1975{
1976 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1977
428870ff 1978 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
1979 ASSERT(tx->tx_txg != 0);
1980 ASSERT(db->db_level == 0);
1981 ASSERT(!refcount_is_zero(&db->db_holds));
1982
1983 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1984 dmu_tx_private_ok(tx));
1985
1986 dbuf_noread(db);
1987 (void) dbuf_dirty(db, tx);
1988}
1989
1990#pragma weak dmu_buf_fill_done = dbuf_fill_done
1991/* ARGSUSED */
1992void
1993dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1994{
1995 mutex_enter(&db->db_mtx);
1996 DBUF_VERIFY(db);
1997
1998 if (db->db_state == DB_FILL) {
1999 if (db->db_level == 0 && db->db_freed_in_flight) {
428870ff 2000 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2001 /* we were freed while filling */
2002 /* XXX dbuf_undirty? */
2003 bzero(db->db.db_data, db->db.db_size);
2004 db->db_freed_in_flight = FALSE;
2005 }
2006 db->db_state = DB_CACHED;
2007 cv_broadcast(&db->db_changed);
2008 }
2009 mutex_exit(&db->db_mtx);
2010}
2011
ea04106b
AX
2012void
2013dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2014 bp_embedded_type_t etype, enum zio_compress comp,
2015 int uncompressed_size, int compressed_size, int byteorder,
2016 dmu_tx_t *tx)
2017{
2018 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2019 struct dirty_leaf *dl;
2020 dmu_object_type_t type;
2021
cae5b340
AX
2022 if (etype == BP_EMBEDDED_TYPE_DATA) {
2023 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2024 SPA_FEATURE_EMBEDDED_DATA));
2025 }
2026
ea04106b
AX
2027 DB_DNODE_ENTER(db);
2028 type = DB_DNODE(db)->dn_type;
2029 DB_DNODE_EXIT(db);
2030
2031 ASSERT0(db->db_level);
2032 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2033
2034 dmu_buf_will_not_fill(dbuf, tx);
2035
2036 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2037 dl = &db->db_last_dirty->dt.dl;
2038 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2039 data, comp, uncompressed_size, compressed_size);
2040 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2041 BP_SET_TYPE(&dl->dr_overridden_by, type);
2042 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2043 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2044
2045 dl->dr_override_state = DR_OVERRIDDEN;
2046 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2047}
2048
9babb374
BB
2049/*
2050 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2051 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2052 */
2053void
2054dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2055{
2056 ASSERT(!refcount_is_zero(&db->db_holds));
428870ff 2057 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
9babb374 2058 ASSERT(db->db_level == 0);
cae5b340 2059 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
9babb374 2060 ASSERT(buf != NULL);
cae5b340 2061 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
9babb374
BB
2062 ASSERT(tx->tx_txg != 0);
2063
2064 arc_return_buf(buf, db);
2065 ASSERT(arc_released(buf));
2066
2067 mutex_enter(&db->db_mtx);
2068
2069 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2070 cv_wait(&db->db_changed, &db->db_mtx);
2071
2072 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2073
2074 if (db->db_state == DB_CACHED &&
2075 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2076 mutex_exit(&db->db_mtx);
2077 (void) dbuf_dirty(db, tx);
2078 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
cae5b340 2079 arc_buf_destroy(buf, db);
428870ff 2080 xuio_stat_wbuf_copied();
9babb374
BB
2081 return;
2082 }
2083
428870ff 2084 xuio_stat_wbuf_nocopy();
9babb374
BB
2085 if (db->db_state == DB_CACHED) {
2086 dbuf_dirty_record_t *dr = db->db_last_dirty;
2087
2088 ASSERT(db->db_buf != NULL);
2089 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2090 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2091 if (!arc_released(db->db_buf)) {
2092 ASSERT(dr->dt.dl.dr_override_state ==
2093 DR_OVERRIDDEN);
2094 arc_release(db->db_buf, db);
2095 }
2096 dr->dt.dl.dr_data = buf;
cae5b340 2097 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2098 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2099 arc_release(db->db_buf, db);
cae5b340 2100 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2101 }
2102 db->db_buf = NULL;
2103 }
2104 ASSERT(db->db_buf == NULL);
2105 dbuf_set_data(db, buf);
2106 db->db_state = DB_FILL;
2107 mutex_exit(&db->db_mtx);
2108 (void) dbuf_dirty(db, tx);
ea04106b 2109 dmu_buf_fill_done(&db->db, tx);
9babb374
BB
2110}
2111
34dc7c2f 2112void
cae5b340 2113dbuf_destroy(dmu_buf_impl_t *db)
34dc7c2f 2114{
572e2857 2115 dnode_t *dn;
34dc7c2f 2116 dmu_buf_impl_t *parent = db->db_parent;
572e2857 2117 dmu_buf_impl_t *dndb;
34dc7c2f
BB
2118
2119 ASSERT(MUTEX_HELD(&db->db_mtx));
2120 ASSERT(refcount_is_zero(&db->db_holds));
2121
cae5b340
AX
2122 if (db->db_buf != NULL) {
2123 arc_buf_destroy(db->db_buf, db);
2124 db->db_buf = NULL;
2125 }
34dc7c2f 2126
cae5b340
AX
2127 if (db->db_blkid == DMU_BONUS_BLKID) {
2128 int slots = DB_DNODE(db)->dn_num_slots;
2129 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
34dc7c2f 2130 ASSERT(db->db.db_data != NULL);
cae5b340
AX
2131 kmem_free(db->db.db_data, bonuslen);
2132 arc_space_return(bonuslen, ARC_SPACE_BONUS);
34dc7c2f
BB
2133 db->db_state = DB_UNCACHED;
2134 }
2135
cae5b340
AX
2136 dbuf_clear_data(db);
2137
2138 if (multilist_link_active(&db->db_cache_link)) {
2139 multilist_remove(dbuf_cache, db);
2140 (void) refcount_remove_many(&dbuf_cache_size,
2141 db->db.db_size, db);
2142 }
2143
b128c09f 2144 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
2145 ASSERT(db->db_data_pending == NULL);
2146
2147 db->db_state = DB_EVICTING;
2148 db->db_blkptr = NULL;
2149
cae5b340
AX
2150 /*
2151 * Now that db_state is DB_EVICTING, nobody else can find this via
2152 * the hash table. We can now drop db_mtx, which allows us to
2153 * acquire the dn_dbufs_mtx.
2154 */
2155 mutex_exit(&db->db_mtx);
2156
572e2857
BB
2157 DB_DNODE_ENTER(db);
2158 dn = DB_DNODE(db);
2159 dndb = dn->dn_dbuf;
cae5b340
AX
2160 if (db->db_blkid != DMU_BONUS_BLKID) {
2161 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2162 if (needlock)
2163 mutex_enter(&dn->dn_dbufs_mtx);
e10b0808 2164 avl_remove(&dn->dn_dbufs, db);
ea04106b 2165 atomic_dec_32(&dn->dn_dbufs_count);
572e2857
BB
2166 membar_producer();
2167 DB_DNODE_EXIT(db);
cae5b340
AX
2168 if (needlock)
2169 mutex_exit(&dn->dn_dbufs_mtx);
572e2857
BB
2170 /*
2171 * Decrementing the dbuf count means that the hold corresponding
2172 * to the removed dbuf is no longer discounted in dnode_move(),
2173 * so the dnode cannot be moved until after we release the hold.
2174 * The membar_producer() ensures visibility of the decremented
2175 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2176 * release any lock.
2177 */
34dc7c2f 2178 dnode_rele(dn, db);
572e2857 2179 db->db_dnode_handle = NULL;
cae5b340
AX
2180
2181 dbuf_hash_remove(db);
572e2857
BB
2182 } else {
2183 DB_DNODE_EXIT(db);
34dc7c2f
BB
2184 }
2185
cae5b340
AX
2186 ASSERT(refcount_is_zero(&db->db_holds));
2187
2188 db->db_parent = NULL;
34dc7c2f 2189
cae5b340
AX
2190 ASSERT(db->db_buf == NULL);
2191 ASSERT(db->db.db_data == NULL);
2192 ASSERT(db->db_hash_next == NULL);
2193 ASSERT(db->db_blkptr == NULL);
2194 ASSERT(db->db_data_pending == NULL);
2195 ASSERT(!multilist_link_active(&db->db_cache_link));
2196
2197 kmem_cache_free(dbuf_kmem_cache, db);
2198 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2199
2200 /*
572e2857 2201 * If this dbuf is referenced from an indirect dbuf,
34dc7c2f
BB
2202 * decrement the ref count on the indirect dbuf.
2203 */
2204 if (parent && parent != dndb)
2205 dbuf_rele(parent, db);
2206}
2207
cae5b340
AX
2208/*
2209 * Note: While bpp will always be updated if the function returns success,
2210 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2211 * this happens when the dnode is the meta-dnode, or a userused or groupused
2212 * object.
2213 */
bf701a83
BB
2214__attribute__((always_inline))
2215static inline int
34dc7c2f 2216dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
fc5bb51f 2217 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
34dc7c2f
BB
2218{
2219 int nlevels, epbs;
2220
2221 *parentp = NULL;
2222 *bpp = NULL;
2223
428870ff
BB
2224 ASSERT(blkid != DMU_BONUS_BLKID);
2225
2226 if (blkid == DMU_SPILL_BLKID) {
2227 mutex_enter(&dn->dn_mtx);
2228 if (dn->dn_have_spill &&
2229 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
cae5b340 2230 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
2231 else
2232 *bpp = NULL;
2233 dbuf_add_ref(dn->dn_dbuf, NULL);
2234 *parentp = dn->dn_dbuf;
2235 mutex_exit(&dn->dn_mtx);
2236 return (0);
2237 }
34dc7c2f 2238
cae5b340
AX
2239 nlevels =
2240 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
34dc7c2f
BB
2241 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2242
2243 ASSERT3U(level * epbs, <, 64);
2244 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
cae5b340
AX
2245 /*
2246 * This assertion shouldn't trip as long as the max indirect block size
2247 * is less than 1M. The reason for this is that up to that point,
2248 * the number of levels required to address an entire object with blocks
2249 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2250 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2251 * (i.e. we can address the entire object), objects will all use at most
2252 * N-1 levels and the assertion won't overflow. However, once epbs is
2253 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2254 * enough to address an entire object, so objects will have 5 levels,
2255 * but then this assertion will overflow.
2256 *
2257 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2258 * need to redo this logic to handle overflows.
2259 */
2260 ASSERT(level >= nlevels ||
2261 ((nlevels - level - 1) * epbs) +
2262 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
34dc7c2f 2263 if (level >= nlevels ||
cae5b340
AX
2264 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2265 ((nlevels - level - 1) * epbs)) ||
2266 (fail_sparse &&
2267 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
34dc7c2f 2268 /* the buffer has no parent yet */
a08ee875 2269 return (SET_ERROR(ENOENT));
34dc7c2f
BB
2270 } else if (level < nlevels-1) {
2271 /* this block is referenced from an indirect block */
fc5bb51f
BB
2272 int err;
2273 if (dh == NULL) {
cae5b340
AX
2274 err = dbuf_hold_impl(dn, level+1,
2275 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
a08ee875 2276 } else {
fc5bb51f 2277 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
cae5b340
AX
2278 blkid >> epbs, fail_sparse, FALSE, NULL,
2279 parentp, dh->dh_depth + 1);
fc5bb51f
BB
2280 err = __dbuf_hold_impl(dh + 1);
2281 }
34dc7c2f
BB
2282 if (err)
2283 return (err);
2284 err = dbuf_read(*parentp, NULL,
2285 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2286 if (err) {
2287 dbuf_rele(*parentp, NULL);
2288 *parentp = NULL;
2289 return (err);
2290 }
2291 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2292 (blkid & ((1ULL << epbs) - 1));
cae5b340
AX
2293 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2294 ASSERT(BP_IS_HOLE(*bpp));
34dc7c2f
BB
2295 return (0);
2296 } else {
2297 /* the block is referenced from the dnode */
2298 ASSERT3U(level, ==, nlevels-1);
2299 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2300 blkid < dn->dn_phys->dn_nblkptr);
2301 if (dn->dn_dbuf) {
2302 dbuf_add_ref(dn->dn_dbuf, NULL);
2303 *parentp = dn->dn_dbuf;
2304 }
2305 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2306 return (0);
2307 }
2308}
2309
2310static dmu_buf_impl_t *
2311dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2312 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2313{
428870ff 2314 objset_t *os = dn->dn_objset;
34dc7c2f
BB
2315 dmu_buf_impl_t *db, *odb;
2316
2317 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2318 ASSERT(dn->dn_type != DMU_OT_NONE);
2319
cae5b340 2320 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
34dc7c2f
BB
2321
2322 db->db_objset = os;
2323 db->db.db_object = dn->dn_object;
2324 db->db_level = level;
2325 db->db_blkid = blkid;
2326 db->db_last_dirty = NULL;
2327 db->db_dirtycnt = 0;
572e2857 2328 db->db_dnode_handle = dn->dn_handle;
34dc7c2f
BB
2329 db->db_parent = parent;
2330 db->db_blkptr = blkptr;
2331
e10b0808
AX
2332 db->db_user = NULL;
2333 db->db_user_immediate_evict = FALSE;
2334 db->db_freed_in_flight = FALSE;
2335 db->db_pending_evict = FALSE;
34dc7c2f 2336
428870ff 2337 if (blkid == DMU_BONUS_BLKID) {
34dc7c2f 2338 ASSERT3P(parent, ==, dn->dn_dbuf);
cae5b340 2339 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
34dc7c2f
BB
2340 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2341 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
428870ff 2342 db->db.db_offset = DMU_BONUS_BLKID;
34dc7c2f
BB
2343 db->db_state = DB_UNCACHED;
2344 /* the bonus dbuf is not placed in the hash table */
cae5b340 2345 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f 2346 return (db);
428870ff
BB
2347 } else if (blkid == DMU_SPILL_BLKID) {
2348 db->db.db_size = (blkptr != NULL) ?
2349 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2350 db->db.db_offset = 0;
34dc7c2f
BB
2351 } else {
2352 int blocksize =
a08ee875 2353 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
34dc7c2f
BB
2354 db->db.db_size = blocksize;
2355 db->db.db_offset = db->db_blkid * blocksize;
2356 }
2357
2358 /*
2359 * Hold the dn_dbufs_mtx while we get the new dbuf
2360 * in the hash table *and* added to the dbufs list.
2361 * This prevents a possible deadlock with someone
2362 * trying to look up this dbuf before its added to the
2363 * dn_dbufs list.
2364 */
2365 mutex_enter(&dn->dn_dbufs_mtx);
2366 db->db_state = DB_EVICTING;
2367 if ((odb = dbuf_hash_insert(db)) != NULL) {
2368 /* someone else inserted it first */
cae5b340 2369 kmem_cache_free(dbuf_kmem_cache, db);
34dc7c2f
BB
2370 mutex_exit(&dn->dn_dbufs_mtx);
2371 return (odb);
2372 }
e10b0808 2373 avl_add(&dn->dn_dbufs, db);
cae5b340 2374
34dc7c2f
BB
2375 db->db_state = DB_UNCACHED;
2376 mutex_exit(&dn->dn_dbufs_mtx);
cae5b340 2377 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2378
2379 if (parent && parent != dn->dn_dbuf)
2380 dbuf_add_ref(parent, db);
2381
2382 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2383 refcount_count(&dn->dn_holds) > 0);
2384 (void) refcount_add(&dn->dn_holds, db);
ea04106b 2385 atomic_inc_32(&dn->dn_dbufs_count);
34dc7c2f
BB
2386
2387 dprintf_dbuf(db, "db=%p\n", db);
2388
2389 return (db);
2390}
2391
cae5b340
AX
2392typedef struct dbuf_prefetch_arg {
2393 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2394 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2395 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2396 int dpa_curlevel; /* The current level that we're reading */
2397 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2398 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2399 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2400 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2401} dbuf_prefetch_arg_t;
34dc7c2f 2402
cae5b340
AX
2403/*
2404 * Actually issue the prefetch read for the block given.
2405 */
2406static void
2407dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2408{
2409 arc_flags_t aflags;
2410 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2411 return;
34dc7c2f 2412
cae5b340 2413 aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
34dc7c2f 2414
cae5b340
AX
2415 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2416 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2417 ASSERT(dpa->dpa_zio != NULL);
2418 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2419 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2420 &aflags, &dpa->dpa_zb);
34dc7c2f
BB
2421}
2422
cae5b340
AX
2423/*
2424 * Called when an indirect block above our prefetch target is read in. This
2425 * will either read in the next indirect block down the tree or issue the actual
2426 * prefetch if the next block down is our target.
2427 */
34dc7c2f 2428static void
cae5b340 2429dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
34dc7c2f 2430{
cae5b340
AX
2431 dbuf_prefetch_arg_t *dpa = private;
2432 uint64_t nextblkid;
2433 blkptr_t *bp;
34dc7c2f 2434
cae5b340
AX
2435 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2436 ASSERT3S(dpa->dpa_curlevel, >, 0);
34dc7c2f 2437
cae5b340
AX
2438 /*
2439 * The dpa_dnode is only valid if we are called with a NULL
2440 * zio. This indicates that the arc_read() returned without
2441 * first calling zio_read() to issue a physical read. Once
2442 * a physical read is made the dpa_dnode must be invalidated
2443 * as the locks guarding it may have been dropped. If the
2444 * dpa_dnode is still valid, then we want to add it to the dbuf
2445 * cache. To do so, we must hold the dbuf associated with the block
2446 * we just prefetched, read its contents so that we associate it
2447 * with an arc_buf_t, and then release it.
2448 */
2449 if (zio != NULL) {
2450 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2451 if (zio->io_flags & ZIO_FLAG_RAW) {
2452 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2453 } else {
2454 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
34dc7c2f 2455 }
cae5b340
AX
2456 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2457
2458 dpa->dpa_dnode = NULL;
2459 } else if (dpa->dpa_dnode != NULL) {
2460 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2461 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2462 dpa->dpa_zb.zb_level));
2463 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2464 dpa->dpa_curlevel, curblkid, FTAG);
2465 (void) dbuf_read(db, NULL,
2466 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2467 dbuf_rele(db, FTAG);
2468 }
2469
2470 dpa->dpa_curlevel--;
2471
2472 nextblkid = dpa->dpa_zb.zb_blkid >>
2473 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2474 bp = ((blkptr_t *)abuf->b_data) +
2475 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2476 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2477 kmem_free(dpa, sizeof (*dpa));
2478 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2479 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2480 dbuf_issue_final_prefetch(dpa, bp);
2481 kmem_free(dpa, sizeof (*dpa));
2482 } else {
2483 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2484 zbookmark_phys_t zb;
34dc7c2f 2485
41d74433
AX
2486 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2487 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2488 iter_aflags |= ARC_FLAG_L2CACHE;
2489
cae5b340
AX
2490 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2491
2492 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2493 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2494
2495 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2496 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2497 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2498 &iter_aflags, &zb);
2499 }
34dc7c2f 2500
cae5b340 2501 arc_buf_destroy(abuf, private);
34dc7c2f
BB
2502}
2503
cae5b340
AX
2504/*
2505 * Issue prefetch reads for the given block on the given level. If the indirect
2506 * blocks above that block are not in memory, we will read them in
2507 * asynchronously. As a result, this call never blocks waiting for a read to
2508 * complete.
2509 */
34dc7c2f 2510void
cae5b340
AX
2511dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2512 arc_flags_t aflags)
34dc7c2f 2513{
cae5b340
AX
2514 blkptr_t bp;
2515 int epbs, nlevels, curlevel;
2516 uint64_t curblkid;
2517 dmu_buf_impl_t *db;
2518 zio_t *pio;
2519 dbuf_prefetch_arg_t *dpa;
2520 dsl_dataset_t *ds;
34dc7c2f 2521
428870ff 2522 ASSERT(blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2523 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2524
cae5b340
AX
2525 if (blkid > dn->dn_maxblkid)
2526 return;
2527
34dc7c2f
BB
2528 if (dnode_block_freed(dn, blkid))
2529 return;
2530
cae5b340
AX
2531 /*
2532 * This dnode hasn't been written to disk yet, so there's nothing to
2533 * prefetch.
2534 */
2535 nlevels = dn->dn_phys->dn_nlevels;
2536 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2537 return;
2538
2539 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2540 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2541 return;
2542
2543 db = dbuf_find(dn->dn_objset, dn->dn_object,
2544 level, blkid);
2545 if (db != NULL) {
2546 mutex_exit(&db->db_mtx);
572e2857 2547 /*
cae5b340
AX
2548 * This dbuf already exists. It is either CACHED, or
2549 * (we assume) about to be read or filled.
572e2857 2550 */
572e2857 2551 return;
34dc7c2f
BB
2552 }
2553
cae5b340
AX
2554 /*
2555 * Find the closest ancestor (indirect block) of the target block
2556 * that is present in the cache. In this indirect block, we will
2557 * find the bp that is at curlevel, curblkid.
2558 */
2559 curlevel = level;
2560 curblkid = blkid;
2561 while (curlevel < nlevels - 1) {
2562 int parent_level = curlevel + 1;
2563 uint64_t parent_blkid = curblkid >> epbs;
2564 dmu_buf_impl_t *db;
2565
2566 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2567 FALSE, TRUE, FTAG, &db) == 0) {
2568 blkptr_t *bpp = db->db_buf->b_data;
2569 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2570 dbuf_rele(db, FTAG);
2571 break;
2572 }
2573
2574 curlevel = parent_level;
2575 curblkid = parent_blkid;
2576 }
428870ff 2577
cae5b340
AX
2578 if (curlevel == nlevels - 1) {
2579 /* No cached indirect blocks found. */
2580 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2581 bp = dn->dn_phys->dn_blkptr[curblkid];
2582 }
2583 if (BP_IS_HOLE(&bp))
2584 return;
34dc7c2f 2585
cae5b340
AX
2586 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2587
2588 pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2589 ZIO_FLAG_CANFAIL);
2590
2591 dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2592 ds = dn->dn_objset->os_dsl_dataset;
2593 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2594 dn->dn_object, level, blkid);
2595 dpa->dpa_curlevel = curlevel;
2596 dpa->dpa_prio = prio;
2597 dpa->dpa_aflags = aflags;
2598 dpa->dpa_spa = dn->dn_objset->os_spa;
2599 dpa->dpa_dnode = dn;
2600 dpa->dpa_epbs = epbs;
2601 dpa->dpa_zio = pio;
2602
41d74433
AX
2603 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2604 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2605 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2606
cae5b340
AX
2607 /*
2608 * If we have the indirect just above us, no need to do the asynchronous
2609 * prefetch chain; we'll just run the last step ourselves. If we're at
2610 * a higher level, though, we want to issue the prefetches for all the
2611 * indirect blocks asynchronously, so we can go on with whatever we were
2612 * doing.
2613 */
2614 if (curlevel == level) {
2615 ASSERT3U(curblkid, ==, blkid);
2616 dbuf_issue_final_prefetch(dpa, &bp);
2617 kmem_free(dpa, sizeof (*dpa));
2618 } else {
2619 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2620 zbookmark_phys_t zb;
2621
41d74433
AX
2622 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2623 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2624 iter_aflags |= ARC_FLAG_L2CACHE;
2625
cae5b340
AX
2626 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2627 dn->dn_object, curlevel, curblkid);
2628 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2629 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2630 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2631 &iter_aflags, &zb);
34dc7c2f 2632 }
cae5b340
AX
2633 /*
2634 * We use pio here instead of dpa_zio since it's possible that
2635 * dpa may have already been freed.
2636 */
2637 zio_nowait(pio);
34dc7c2f
BB
2638}
2639
a08ee875 2640#define DBUF_HOLD_IMPL_MAX_DEPTH 20
fc5bb51f 2641
41d74433
AX
2642/*
2643 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2644 * the case of compressed and uncompressed buffers by allocating the
2645 * new buffer, respectively, with arc_alloc_raw_buf(),
2646 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2647 *
2648 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2649 */
2650noinline static void
2651dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2652{
2653 dnode_t *dn = dh->dh_dn;
2654 dmu_buf_impl_t *db = dh->dh_db;
2655 dbuf_dirty_record_t *dr = dh->dh_dr;
2656 arc_buf_t *data = dr->dt.dl.dr_data;
2657
2658 enum zio_compress compress_type = arc_get_compression(data);
2659
2660 if (compress_type != ZIO_COMPRESS_OFF) {
2661 dbuf_set_data(db, arc_alloc_compressed_buf(
2662 dn->dn_objset->os_spa, db, arc_buf_size(data),
2663 arc_buf_lsize(data), compress_type));
2664 } else {
2665 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2666 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2667 }
2668
2669 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2670}
2671
34dc7c2f
BB
2672/*
2673 * Returns with db_holds incremented, and db_mtx not held.
2674 * Note: dn_struct_rwlock must be held.
2675 */
fc5bb51f
BB
2676static int
2677__dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
34dc7c2f 2678{
fc5bb51f
BB
2679 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2680 dh->dh_parent = NULL;
34dc7c2f 2681
fc5bb51f
BB
2682 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2683 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2684 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
34dc7c2f 2685
fc5bb51f 2686 *(dh->dh_dbp) = NULL;
cae5b340 2687
34dc7c2f 2688 /* dbuf_find() returns with db_mtx held */
e10b0808
AX
2689 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2690 dh->dh_level, dh->dh_blkid);
fc5bb51f
BB
2691
2692 if (dh->dh_db == NULL) {
2693 dh->dh_bp = NULL;
2694
cae5b340
AX
2695 if (dh->dh_fail_uncached)
2696 return (SET_ERROR(ENOENT));
2697
fc5bb51f
BB
2698 ASSERT3P(dh->dh_parent, ==, NULL);
2699 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
cae5b340 2700 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
fc5bb51f 2701 if (dh->dh_fail_sparse) {
a08ee875
LG
2702 if (dh->dh_err == 0 &&
2703 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2704 dh->dh_err = SET_ERROR(ENOENT);
fc5bb51f
BB
2705 if (dh->dh_err) {
2706 if (dh->dh_parent)
2707 dbuf_rele(dh->dh_parent, NULL);
2708 return (dh->dh_err);
34dc7c2f
BB
2709 }
2710 }
fc5bb51f
BB
2711 if (dh->dh_err && dh->dh_err != ENOENT)
2712 return (dh->dh_err);
2713 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
cae5b340 2714 dh->dh_parent, dh->dh_bp);
34dc7c2f
BB
2715 }
2716
cae5b340
AX
2717 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2718 mutex_exit(&dh->dh_db->db_mtx);
2719 return (SET_ERROR(ENOENT));
34dc7c2f
BB
2720 }
2721
047218e2
AX
2722 if (dh->dh_db->db_buf != NULL) {
2723 arc_buf_access(dh->dh_db->db_buf);
cae5b340 2724 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
047218e2 2725 }
cae5b340 2726
fc5bb51f 2727 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
34dc7c2f
BB
2728
2729 /*
2730 * If this buffer is currently syncing out, and we are are
2731 * still referencing it from db_data, we need to make a copy
2732 * of it in case we decide we want to dirty it again in this txg.
2733 */
fc5bb51f
BB
2734 if (dh->dh_db->db_level == 0 &&
2735 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2736 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2737 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2738 dh->dh_dr = dh->dh_db->db_data_pending;
41d74433
AX
2739 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
2740 dbuf_hold_copy(dh);
34dc7c2f
BB
2741 }
2742
cae5b340
AX
2743 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2744 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2745 multilist_remove(dbuf_cache, dh->dh_db);
2746 (void) refcount_remove_many(&dbuf_cache_size,
2747 dh->dh_db->db.db_size, dh->dh_db);
2748 }
fc5bb51f 2749 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
fc5bb51f
BB
2750 DBUF_VERIFY(dh->dh_db);
2751 mutex_exit(&dh->dh_db->db_mtx);
34dc7c2f
BB
2752
2753 /* NOTE: we can't rele the parent until after we drop the db_mtx */
fc5bb51f
BB
2754 if (dh->dh_parent)
2755 dbuf_rele(dh->dh_parent, NULL);
34dc7c2f 2756
fc5bb51f
BB
2757 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2758 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2759 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2760 *(dh->dh_dbp) = dh->dh_db;
34dc7c2f
BB
2761
2762 return (0);
2763}
2764
fc5bb51f
BB
2765/*
2766 * The following code preserves the recursive function dbuf_hold_impl()
2767 * but moves the local variables AND function arguments to the heap to
2768 * minimize the stack frame size. Enough space is initially allocated
2769 * on the stack for 20 levels of recursion.
2770 */
2771int
cae5b340
AX
2772dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2773 boolean_t fail_sparse, boolean_t fail_uncached,
fc5bb51f
BB
2774 void *tag, dmu_buf_impl_t **dbp)
2775{
2776 struct dbuf_hold_impl_data *dh;
2777 int error;
2778
cae5b340 2779 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
ea04106b 2780 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
cae5b340
AX
2781 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2782 fail_uncached, tag, dbp, 0);
fc5bb51f
BB
2783
2784 error = __dbuf_hold_impl(dh);
2785
a08ee875 2786 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
fc5bb51f
BB
2787 DBUF_HOLD_IMPL_MAX_DEPTH);
2788
2789 return (error);
2790}
2791
2792static void
2793__dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
cae5b340
AX
2794 dnode_t *dn, uint8_t level, uint64_t blkid,
2795 boolean_t fail_sparse, boolean_t fail_uncached,
fc5bb51f
BB
2796 void *tag, dmu_buf_impl_t **dbp, int depth)
2797{
2798 dh->dh_dn = dn;
2799 dh->dh_level = level;
2800 dh->dh_blkid = blkid;
cae5b340 2801
fc5bb51f 2802 dh->dh_fail_sparse = fail_sparse;
cae5b340
AX
2803 dh->dh_fail_uncached = fail_uncached;
2804
fc5bb51f
BB
2805 dh->dh_tag = tag;
2806 dh->dh_dbp = dbp;
cae5b340
AX
2807
2808 dh->dh_db = NULL;
2809 dh->dh_parent = NULL;
2810 dh->dh_bp = NULL;
2811 dh->dh_err = 0;
2812 dh->dh_dr = NULL;
cae5b340 2813
fc5bb51f
BB
2814 dh->dh_depth = depth;
2815}
2816
34dc7c2f
BB
2817dmu_buf_impl_t *
2818dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2819{
cae5b340 2820 return (dbuf_hold_level(dn, 0, blkid, tag));
34dc7c2f
BB
2821}
2822
2823dmu_buf_impl_t *
2824dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2825{
2826 dmu_buf_impl_t *db;
cae5b340 2827 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
34dc7c2f
BB
2828 return (err ? NULL : db);
2829}
2830
2831void
2832dbuf_create_bonus(dnode_t *dn)
2833{
2834 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2835
2836 ASSERT(dn->dn_bonus == NULL);
428870ff
BB
2837 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2838}
2839
2840int
2841dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2842{
2843 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
572e2857
BB
2844 dnode_t *dn;
2845
428870ff 2846 if (db->db_blkid != DMU_SPILL_BLKID)
a08ee875 2847 return (SET_ERROR(ENOTSUP));
428870ff
BB
2848 if (blksz == 0)
2849 blksz = SPA_MINBLOCKSIZE;
e10b0808
AX
2850 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2851 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
428870ff 2852
572e2857
BB
2853 DB_DNODE_ENTER(db);
2854 dn = DB_DNODE(db);
2855 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
428870ff 2856 dbuf_new_size(db, blksz, tx);
572e2857
BB
2857 rw_exit(&dn->dn_struct_rwlock);
2858 DB_DNODE_EXIT(db);
428870ff
BB
2859
2860 return (0);
2861}
2862
2863void
2864dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2865{
2866 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
34dc7c2f
BB
2867}
2868
2869#pragma weak dmu_buf_add_ref = dbuf_add_ref
2870void
2871dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2872{
cae5b340
AX
2873 int64_t holds = refcount_add(&db->db_holds, tag);
2874 VERIFY3S(holds, >, 1);
34dc7c2f
BB
2875}
2876
e10b0808
AX
2877#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2878boolean_t
2879dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2880 void *tag)
2881{
2882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2883 dmu_buf_impl_t *found_db;
2884 boolean_t result = B_FALSE;
2885
2886 if (blkid == DMU_BONUS_BLKID)
2887 found_db = dbuf_find_bonus(os, obj);
2888 else
2889 found_db = dbuf_find(os, obj, 0, blkid);
2890
2891 if (found_db != NULL) {
2892 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2893 (void) refcount_add(&db->db_holds, tag);
2894 result = B_TRUE;
2895 }
2896 mutex_exit(&found_db->db_mtx);
2897 }
2898 return (result);
2899}
2900
572e2857
BB
2901/*
2902 * If you call dbuf_rele() you had better not be referencing the dnode handle
2903 * unless you have some other direct or indirect hold on the dnode. (An indirect
2904 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2905 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2906 * dnode's parent dbuf evicting its dnode handles.
2907 */
34dc7c2f
BB
2908void
2909dbuf_rele(dmu_buf_impl_t *db, void *tag)
428870ff
BB
2910{
2911 mutex_enter(&db->db_mtx);
2912 dbuf_rele_and_unlock(db, tag);
2913}
2914
ea04106b
AX
2915void
2916dmu_buf_rele(dmu_buf_t *db, void *tag)
2917{
2918 dbuf_rele((dmu_buf_impl_t *)db, tag);
2919}
2920
428870ff
BB
2921/*
2922 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2923 * db_dirtycnt and db_holds to be updated atomically.
2924 */
2925void
2926dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
34dc7c2f
BB
2927{
2928 int64_t holds;
2929
428870ff 2930 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f
BB
2931 DBUF_VERIFY(db);
2932
572e2857
BB
2933 /*
2934 * Remove the reference to the dbuf before removing its hold on the
2935 * dnode so we can guarantee in dnode_move() that a referenced bonus
2936 * buffer has a corresponding dnode hold.
2937 */
34dc7c2f
BB
2938 holds = refcount_remove(&db->db_holds, tag);
2939 ASSERT(holds >= 0);
2940
2941 /*
2942 * We can't freeze indirects if there is a possibility that they
2943 * may be modified in the current syncing context.
2944 */
cae5b340
AX
2945 if (db->db_buf != NULL &&
2946 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
34dc7c2f 2947 arc_buf_freeze(db->db_buf);
cae5b340 2948 }
34dc7c2f
BB
2949
2950 if (holds == db->db_dirtycnt &&
e10b0808 2951 db->db_level == 0 && db->db_user_immediate_evict)
34dc7c2f
BB
2952 dbuf_evict_user(db);
2953
2954 if (holds == 0) {
428870ff 2955 if (db->db_blkid == DMU_BONUS_BLKID) {
ea04106b 2956 dnode_t *dn;
e10b0808 2957 boolean_t evict_dbuf = db->db_pending_evict;
572e2857
BB
2958
2959 /*
ea04106b
AX
2960 * If the dnode moves here, we cannot cross this
2961 * barrier until the move completes.
572e2857
BB
2962 */
2963 DB_DNODE_ENTER(db);
ea04106b
AX
2964
2965 dn = DB_DNODE(db);
2966 atomic_dec_32(&dn->dn_dbufs_count);
2967
2968 /*
2969 * Decrementing the dbuf count means that the bonus
2970 * buffer's dnode hold is no longer discounted in
2971 * dnode_move(). The dnode cannot move until after
e10b0808 2972 * the dnode_rele() below.
ea04106b 2973 */
572e2857 2974 DB_DNODE_EXIT(db);
ea04106b
AX
2975
2976 /*
2977 * Do not reference db after its lock is dropped.
2978 * Another thread may evict it.
2979 */
2980 mutex_exit(&db->db_mtx);
2981
e10b0808 2982 if (evict_dbuf)
ea04106b 2983 dnode_evict_bonus(dn);
e10b0808
AX
2984
2985 dnode_rele(dn, db);
34dc7c2f
BB
2986 } else if (db->db_buf == NULL) {
2987 /*
2988 * This is a special case: we never associated this
2989 * dbuf with any data allocated from the ARC.
2990 */
b128c09f
BB
2991 ASSERT(db->db_state == DB_UNCACHED ||
2992 db->db_state == DB_NOFILL);
cae5b340 2993 dbuf_destroy(db);
34dc7c2f 2994 } else if (arc_released(db->db_buf)) {
34dc7c2f
BB
2995 /*
2996 * This dbuf has anonymous data associated with it.
2997 */
cae5b340 2998 dbuf_destroy(db);
34dc7c2f 2999 } else {
cae5b340
AX
3000 boolean_t do_arc_evict = B_FALSE;
3001 blkptr_t bp;
3002 spa_t *spa = dmu_objset_spa(db->db_objset);
3003
3004 if (!DBUF_IS_CACHEABLE(db) &&
3005 db->db_blkptr != NULL &&
3006 !BP_IS_HOLE(db->db_blkptr) &&
3007 !BP_IS_EMBEDDED(db->db_blkptr)) {
3008 do_arc_evict = B_TRUE;
3009 bp = *db->db_blkptr;
3010 }
1eb5bfa3 3011
cae5b340
AX
3012 if (!DBUF_IS_CACHEABLE(db) ||
3013 db->db_pending_evict) {
3014 dbuf_destroy(db);
3015 } else if (!multilist_link_active(&db->db_cache_link)) {
3016 multilist_insert(dbuf_cache, db);
3017 (void) refcount_add_many(&dbuf_cache_size,
3018 db->db.db_size, db);
b128c09f 3019 mutex_exit(&db->db_mtx);
cae5b340
AX
3020
3021 dbuf_evict_notify();
ea04106b 3022 }
cae5b340
AX
3023
3024 if (do_arc_evict)
3025 arc_freed(spa, &bp);
34dc7c2f
BB
3026 }
3027 } else {
3028 mutex_exit(&db->db_mtx);
3029 }
cae5b340 3030
34dc7c2f
BB
3031}
3032
3033#pragma weak dmu_buf_refcount = dbuf_refcount
3034uint64_t
3035dbuf_refcount(dmu_buf_impl_t *db)
3036{
3037 return (refcount_count(&db->db_holds));
3038}
3039
3040void *
e10b0808
AX
3041dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3042 dmu_buf_user_t *new_user)
34dc7c2f 3043{
e10b0808
AX
3044 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3045
3046 mutex_enter(&db->db_mtx);
3047 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3048 if (db->db_user == old_user)
3049 db->db_user = new_user;
3050 else
3051 old_user = db->db_user;
3052 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3053 mutex_exit(&db->db_mtx);
3054
3055 return (old_user);
34dc7c2f
BB
3056}
3057
3058void *
e10b0808 3059dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f 3060{
e10b0808 3061 return (dmu_buf_replace_user(db_fake, NULL, user));
34dc7c2f
BB
3062}
3063
3064void *
e10b0808 3065dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f
BB
3066{
3067 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3068
e10b0808
AX
3069 db->db_user_immediate_evict = TRUE;
3070 return (dmu_buf_set_user(db_fake, user));
3071}
34dc7c2f 3072
e10b0808
AX
3073void *
3074dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3075{
3076 return (dmu_buf_replace_user(db_fake, user, NULL));
34dc7c2f
BB
3077}
3078
3079void *
3080dmu_buf_get_user(dmu_buf_t *db_fake)
3081{
3082 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3083
e10b0808
AX
3084 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3085 return (db->db_user);
3086}
3087
3088void
3089dmu_buf_user_evict_wait()
3090{
3091 taskq_wait(dbu_evict_taskq);
34dc7c2f
BB
3092}
3093
cae5b340
AX
3094blkptr_t *
3095dmu_buf_get_blkptr(dmu_buf_t *db)
9babb374 3096{
cae5b340
AX
3097 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3098 return (dbi->db_blkptr);
3099}
9babb374 3100
cae5b340
AX
3101objset_t *
3102dmu_buf_get_objset(dmu_buf_t *db)
3103{
3104 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3105 return (dbi->db_objset);
3106}
9babb374 3107
cae5b340
AX
3108dnode_t *
3109dmu_buf_dnode_enter(dmu_buf_t *db)
3110{
3111 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3112 DB_DNODE_ENTER(dbi);
3113 return (DB_DNODE(dbi));
9babb374
BB
3114}
3115
cae5b340
AX
3116void
3117dmu_buf_dnode_exit(dmu_buf_t *db)
a08ee875
LG
3118{
3119 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
cae5b340 3120 DB_DNODE_EXIT(dbi);
a08ee875
LG
3121}
3122
34dc7c2f
BB
3123static void
3124dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3125{
3126 /* ASSERT(dmu_tx_is_syncing(tx) */
3127 ASSERT(MUTEX_HELD(&db->db_mtx));
3128
3129 if (db->db_blkptr != NULL)
3130 return;
3131
428870ff 3132 if (db->db_blkid == DMU_SPILL_BLKID) {
cae5b340 3133 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
3134 BP_ZERO(db->db_blkptr);
3135 return;
3136 }
34dc7c2f
BB
3137 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3138 /*
3139 * This buffer was allocated at a time when there was
3140 * no available blkptrs from the dnode, or it was
3141 * inappropriate to hook it in (i.e., nlevels mis-match).
3142 */
3143 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3144 ASSERT(db->db_parent == NULL);
3145 db->db_parent = dn->dn_dbuf;
3146 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3147 DBUF_VERIFY(db);
3148 } else {
3149 dmu_buf_impl_t *parent = db->db_parent;
3150 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3151
3152 ASSERT(dn->dn_phys->dn_nlevels > 1);
3153 if (parent == NULL) {
3154 mutex_exit(&db->db_mtx);
3155 rw_enter(&dn->dn_struct_rwlock, RW_READER);
cae5b340
AX
3156 parent = dbuf_hold_level(dn, db->db_level + 1,
3157 db->db_blkid >> epbs, db);
34dc7c2f
BB
3158 rw_exit(&dn->dn_struct_rwlock);
3159 mutex_enter(&db->db_mtx);
3160 db->db_parent = parent;
3161 }
3162 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3163 (db->db_blkid & ((1ULL << epbs) - 1));
3164 DBUF_VERIFY(db);
3165 }
3166}
3167
a08ee875
LG
3168/*
3169 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
60948de1
BB
3170 * is critical the we not allow the compiler to inline this function in to
3171 * dbuf_sync_list() thereby drastically bloating the stack usage.
3172 */
3173noinline static void
34dc7c2f
BB
3174dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3175{
3176 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857 3177 dnode_t *dn;
34dc7c2f
BB
3178 zio_t *zio;
3179
3180 ASSERT(dmu_tx_is_syncing(tx));
3181
3182 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3183
3184 mutex_enter(&db->db_mtx);
3185
3186 ASSERT(db->db_level > 0);
3187 DBUF_VERIFY(db);
3188
a08ee875 3189 /* Read the block if it hasn't been read yet. */
34dc7c2f
BB
3190 if (db->db_buf == NULL) {
3191 mutex_exit(&db->db_mtx);
3192 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3193 mutex_enter(&db->db_mtx);
3194 }
3195 ASSERT3U(db->db_state, ==, DB_CACHED);
34dc7c2f
BB
3196 ASSERT(db->db_buf != NULL);
3197
572e2857
BB
3198 DB_DNODE_ENTER(db);
3199 dn = DB_DNODE(db);
a08ee875 3200 /* Indirect block size must match what the dnode thinks it is. */
572e2857 3201 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
34dc7c2f 3202 dbuf_check_blkptr(dn, db);
572e2857 3203 DB_DNODE_EXIT(db);
34dc7c2f 3204
a08ee875 3205 /* Provide the pending dirty record to child dbufs */
34dc7c2f
BB
3206 db->db_data_pending = dr;
3207
34dc7c2f 3208 mutex_exit(&db->db_mtx);
b128c09f 3209 dbuf_write(dr, db->db_buf, tx);
34dc7c2f
BB
3210
3211 zio = dr->dr_zio;
3212 mutex_enter(&dr->dt.di.dr_mtx);
e10b0808 3213 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
34dc7c2f
BB
3214 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3215 mutex_exit(&dr->dt.di.dr_mtx);
3216 zio_nowait(zio);
3217}
3218
a08ee875
LG
3219/*
3220 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
60948de1
BB
3221 * critical the we not allow the compiler to inline this function in to
3222 * dbuf_sync_list() thereby drastically bloating the stack usage.
3223 */
3224noinline static void
34dc7c2f
BB
3225dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3226{
3227 arc_buf_t **datap = &dr->dt.dl.dr_data;
3228 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
3229 dnode_t *dn;
3230 objset_t *os;
34dc7c2f 3231 uint64_t txg = tx->tx_txg;
34dc7c2f
BB
3232
3233 ASSERT(dmu_tx_is_syncing(tx));
3234
3235 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3236
3237 mutex_enter(&db->db_mtx);
3238 /*
3239 * To be synced, we must be dirtied. But we
3240 * might have been freed after the dirty.
3241 */
3242 if (db->db_state == DB_UNCACHED) {
3243 /* This buffer has been freed since it was dirtied */
3244 ASSERT(db->db.db_data == NULL);
3245 } else if (db->db_state == DB_FILL) {
3246 /* This buffer was freed and is now being re-filled */
3247 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3248 } else {
b128c09f 3249 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
3250 }
3251 DBUF_VERIFY(db);
3252
572e2857
BB
3253 DB_DNODE_ENTER(db);
3254 dn = DB_DNODE(db);
3255
428870ff
BB
3256 if (db->db_blkid == DMU_SPILL_BLKID) {
3257 mutex_enter(&dn->dn_mtx);
87dac73d
AX
3258 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3259 /*
3260 * In the previous transaction group, the bonus buffer
3261 * was entirely used to store the attributes for the
3262 * dnode which overrode the dn_spill field. However,
3263 * when adding more attributes to the file a spill
3264 * block was required to hold the extra attributes.
3265 *
3266 * Make sure to clear the garbage left in the dn_spill
3267 * field from the previous attributes in the bonus
3268 * buffer. Otherwise, after writing out the spill
3269 * block to the new allocated dva, it will free
3270 * the old block pointed to by the invalid dn_spill.
3271 */
3272 db->db_blkptr = NULL;
3273 }
428870ff
BB
3274 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3275 mutex_exit(&dn->dn_mtx);
3276 }
3277
34dc7c2f
BB
3278 /*
3279 * If this is a bonus buffer, simply copy the bonus data into the
3280 * dnode. It will be written out when the dnode is synced (and it
3281 * will be synced, since it must have been dirty for dbuf_sync to
3282 * be called).
3283 */
428870ff 3284 if (db->db_blkid == DMU_BONUS_BLKID) {
34dc7c2f
BB
3285 dbuf_dirty_record_t **drp;
3286
3287 ASSERT(*datap != NULL);
c06d4368 3288 ASSERT0(db->db_level);
cae5b340
AX
3289 ASSERT3U(dn->dn_phys->dn_bonuslen, <=,
3290 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
34dc7c2f 3291 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
572e2857
BB
3292 DB_DNODE_EXIT(db);
3293
34dc7c2f 3294 if (*datap != db->db.db_data) {
cae5b340
AX
3295 int slots = DB_DNODE(db)->dn_num_slots;
3296 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3297 kmem_free(*datap, bonuslen);
3298 arc_space_return(bonuslen, ARC_SPACE_BONUS);
34dc7c2f
BB
3299 }
3300 db->db_data_pending = NULL;
3301 drp = &db->db_last_dirty;
3302 while (*drp != dr)
3303 drp = &(*drp)->dr_next;
3304 ASSERT(dr->dr_next == NULL);
428870ff 3305 ASSERT(dr->dr_dbuf == db);
34dc7c2f 3306 *drp = dr->dr_next;
753972fc
BB
3307 if (dr->dr_dbuf->db_level != 0) {
3308 mutex_destroy(&dr->dt.di.dr_mtx);
3309 list_destroy(&dr->dt.di.dr_children);
3310 }
34dc7c2f
BB
3311 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3312 ASSERT(db->db_dirtycnt > 0);
3313 db->db_dirtycnt -= 1;
428870ff 3314 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
34dc7c2f
BB
3315 return;
3316 }
3317
572e2857
BB
3318 os = dn->dn_objset;
3319
34dc7c2f
BB
3320 /*
3321 * This function may have dropped the db_mtx lock allowing a dmu_sync
3322 * operation to sneak in. As a result, we need to ensure that we
3323 * don't check the dr_override_state until we have returned from
3324 * dbuf_check_blkptr.
3325 */
3326 dbuf_check_blkptr(dn, db);
3327
3328 /*
572e2857 3329 * If this buffer is in the middle of an immediate write,
34dc7c2f
BB
3330 * wait for the synchronous IO to complete.
3331 */
3332 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3333 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3334 cv_wait(&db->db_changed, &db->db_mtx);
3335 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3336 }
3337
9babb374
BB
3338 if (db->db_state != DB_NOFILL &&
3339 dn->dn_object != DMU_META_DNODE_OBJECT &&
3340 refcount_count(&db->db_holds) > 1 &&
428870ff 3341 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
9babb374
BB
3342 *datap == db->db_buf) {
3343 /*
3344 * If this buffer is currently "in use" (i.e., there
3345 * are active holds and db_data still references it),
3346 * then make a copy before we start the write so that
3347 * any modifications from the open txg will not leak
3348 * into this write.
3349 *
3350 * NOTE: this copy does not need to be made for
3351 * objects only modified in the syncing context (e.g.
3352 * DNONE_DNODE blocks).
3353 */
cae5b340 3354 int psize = arc_buf_size(*datap);
9babb374 3355 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
cae5b340
AX
3356 enum zio_compress compress_type = arc_get_compression(*datap);
3357
3358 if (compress_type == ZIO_COMPRESS_OFF) {
3359 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3360 } else {
3361 ASSERT3U(type, ==, ARC_BUFC_DATA);
3362 int lsize = arc_buf_lsize(*datap);
3363 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3364 psize, lsize, compress_type);
3365 }
3366 bcopy(db->db.db_data, (*datap)->b_data, psize);
b128c09f 3367 }
34dc7c2f
BB
3368 db->db_data_pending = dr;
3369
3370 mutex_exit(&db->db_mtx);
3371
b128c09f 3372 dbuf_write(dr, *datap, tx);
34dc7c2f
BB
3373
3374 ASSERT(!list_link_active(&dr->dr_dirty_node));
572e2857 3375 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
34dc7c2f 3376 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
572e2857
BB
3377 DB_DNODE_EXIT(db);
3378 } else {
3379 /*
3380 * Although zio_nowait() does not "wait for an IO", it does
3381 * initiate the IO. If this is an empty write it seems plausible
3382 * that the IO could actually be completed before the nowait
3383 * returns. We need to DB_DNODE_EXIT() first in case
3384 * zio_nowait() invalidates the dbuf.
3385 */
3386 DB_DNODE_EXIT(db);
34dc7c2f 3387 zio_nowait(dr->dr_zio);
572e2857 3388 }
34dc7c2f
BB
3389}
3390
3391void
e10b0808 3392dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
34dc7c2f
BB
3393{
3394 dbuf_dirty_record_t *dr;
3395
c65aa5b2 3396 while ((dr = list_head(list))) {
34dc7c2f
BB
3397 if (dr->dr_zio != NULL) {
3398 /*
3399 * If we find an already initialized zio then we
3400 * are processing the meta-dnode, and we have finished.
3401 * The dbufs for all dnodes are put back on the list
3402 * during processing, so that we can zio_wait()
3403 * these IOs after initiating all child IOs.
3404 */
3405 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3406 DMU_META_DNODE_OBJECT);
3407 break;
3408 }
e10b0808
AX
3409 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3410 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3411 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3412 }
34dc7c2f
BB
3413 list_remove(list, dr);
3414 if (dr->dr_dbuf->db_level > 0)
3415 dbuf_sync_indirect(dr, tx);
3416 else
3417 dbuf_sync_leaf(dr, tx);
3418 }
3419}
3420
34dc7c2f
BB
3421/* ARGSUSED */
3422static void
3423dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3424{
3425 dmu_buf_impl_t *db = vdb;
572e2857 3426 dnode_t *dn;
b128c09f 3427 blkptr_t *bp = zio->io_bp;
34dc7c2f 3428 blkptr_t *bp_orig = &zio->io_bp_orig;
428870ff
BB
3429 spa_t *spa = zio->io_spa;
3430 int64_t delta;
34dc7c2f 3431 uint64_t fill = 0;
428870ff 3432 int i;
34dc7c2f 3433
cae5b340
AX
3434 ASSERT3P(db->db_blkptr, !=, NULL);
3435 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
b128c09f 3436
572e2857
BB
3437 DB_DNODE_ENTER(db);
3438 dn = DB_DNODE(db);
428870ff
BB
3439 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3440 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3441 zio->io_prev_space_delta = delta;
34dc7c2f 3442
ea04106b
AX
3443 if (bp->blk_birth != 0) {
3444 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3445 BP_GET_TYPE(bp) == dn->dn_type) ||
3446 (db->db_blkid == DMU_SPILL_BLKID &&
3447 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3448 BP_IS_EMBEDDED(bp));
3449 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
34dc7c2f
BB
3450 }
3451
3452 mutex_enter(&db->db_mtx);
3453
428870ff
BB
3454#ifdef ZFS_DEBUG
3455 if (db->db_blkid == DMU_SPILL_BLKID) {
428870ff 3456 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
cae5b340
AX
3457 ASSERT(!(BP_IS_HOLE(bp)) &&
3458 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
428870ff
BB
3459 }
3460#endif
3461
34dc7c2f
BB
3462 if (db->db_level == 0) {
3463 mutex_enter(&dn->dn_mtx);
428870ff
BB
3464 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3465 db->db_blkid != DMU_SPILL_BLKID)
34dc7c2f
BB
3466 dn->dn_phys->dn_maxblkid = db->db_blkid;
3467 mutex_exit(&dn->dn_mtx);
3468
3469 if (dn->dn_type == DMU_OT_DNODE) {
cae5b340
AX
3470 i = 0;
3471 while (i < db->db.db_size) {
3472 dnode_phys_t *dnp =
3473 (void *)(((char *)db->db.db_data) + i);
3474
3475 i += DNODE_MIN_SIZE;
3476 if (dnp->dn_type != DMU_OT_NONE) {
34dc7c2f 3477 fill++;
cae5b340
AX
3478 i += dnp->dn_extra_slots *
3479 DNODE_MIN_SIZE;
3480 }
34dc7c2f
BB
3481 }
3482 } else {
ea04106b
AX
3483 if (BP_IS_HOLE(bp)) {
3484 fill = 0;
3485 } else {
3486 fill = 1;
3487 }
34dc7c2f
BB
3488 }
3489 } else {
b128c09f 3490 blkptr_t *ibp = db->db.db_data;
34dc7c2f 3491 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
b128c09f
BB
3492 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3493 if (BP_IS_HOLE(ibp))
34dc7c2f 3494 continue;
ea04106b 3495 fill += BP_GET_FILL(ibp);
34dc7c2f
BB
3496 }
3497 }
572e2857 3498 DB_DNODE_EXIT(db);
34dc7c2f 3499
ea04106b
AX
3500 if (!BP_IS_EMBEDDED(bp))
3501 bp->blk_fill = fill;
34dc7c2f
BB
3502
3503 mutex_exit(&db->db_mtx);
cae5b340
AX
3504
3505 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3506 *db->db_blkptr = *bp;
3507 rw_exit(&dn->dn_struct_rwlock);
3508}
3509
3510/* ARGSUSED */
3511/*
3512 * This function gets called just prior to running through the compression
3513 * stage of the zio pipeline. If we're an indirect block comprised of only
3514 * holes, then we want this indirect to be compressed away to a hole. In
3515 * order to do that we must zero out any information about the holes that
3516 * this indirect points to prior to before we try to compress it.
3517 */
3518static void
3519dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3520{
3521 dmu_buf_impl_t *db = vdb;
3522 dnode_t *dn;
3523 blkptr_t *bp;
3524 unsigned int epbs, i;
3525
3526 ASSERT3U(db->db_level, >, 0);
3527 DB_DNODE_ENTER(db);
3528 dn = DB_DNODE(db);
3529 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3530 ASSERT3U(epbs, <, 31);
3531
3532 /* Determine if all our children are holes */
3533 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3534 if (!BP_IS_HOLE(bp))
3535 break;
3536 }
3537
3538 /*
3539 * If all the children are holes, then zero them all out so that
3540 * we may get compressed away.
3541 */
3542 if (i == 1ULL << epbs) {
3543 /*
3544 * We only found holes. Grab the rwlock to prevent
3545 * anybody from reading the blocks we're about to
3546 * zero out.
3547 */
3548 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3549 bzero(db->db.db_data, db->db.db_size);
3550 rw_exit(&dn->dn_struct_rwlock);
3551 }
3552 DB_DNODE_EXIT(db);
34dc7c2f
BB
3553}
3554
a08ee875
LG
3555/*
3556 * The SPA will call this callback several times for each zio - once
3557 * for every physical child i/o (zio->io_phys_children times). This
3558 * allows the DMU to monitor the progress of each logical i/o. For example,
3559 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3560 * block. There may be a long delay before all copies/fragments are completed,
3561 * so this callback allows us to retire dirty space gradually, as the physical
3562 * i/os complete.
3563 */
3564/* ARGSUSED */
3565static void
3566dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3567{
3568 dmu_buf_impl_t *db = arg;
3569 objset_t *os = db->db_objset;
3570 dsl_pool_t *dp = dmu_objset_pool(os);
3571 dbuf_dirty_record_t *dr;
3572 int delta = 0;
3573
3574 dr = db->db_data_pending;
3575 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3576
3577 /*
3578 * The callback will be called io_phys_children times. Retire one
3579 * portion of our dirty space each time we are called. Any rounding
3580 * error will be cleaned up by dsl_pool_sync()'s call to
3581 * dsl_pool_undirty_space().
3582 */
3583 delta = dr->dr_accounted / zio->io_phys_children;
3584 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3585}
3586
34dc7c2f
BB
3587/* ARGSUSED */
3588static void
3589dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3590{
3591 dmu_buf_impl_t *db = vdb;
428870ff 3592 blkptr_t *bp_orig = &zio->io_bp_orig;
ea04106b
AX
3593 blkptr_t *bp = db->db_blkptr;
3594 objset_t *os = db->db_objset;
3595 dmu_tx_t *tx = os->os_synctx;
34dc7c2f
BB
3596 dbuf_dirty_record_t **drp, *dr;
3597
c06d4368 3598 ASSERT0(zio->io_error);
428870ff
BB
3599 ASSERT(db->db_blkptr == bp);
3600
a08ee875
LG
3601 /*
3602 * For nopwrites and rewrites we ensure that the bp matches our
3603 * original and bypass all the accounting.
3604 */
3605 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
428870ff
BB
3606 ASSERT(BP_EQUAL(bp, bp_orig));
3607 } else {
ea04106b 3608 dsl_dataset_t *ds = os->os_dsl_dataset;
428870ff
BB
3609 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3610 dsl_dataset_block_born(ds, bp, tx);
3611 }
34dc7c2f
BB
3612
3613 mutex_enter(&db->db_mtx);
3614
428870ff
BB
3615 DBUF_VERIFY(db);
3616
34dc7c2f
BB
3617 drp = &db->db_last_dirty;
3618 while ((dr = *drp) != db->db_data_pending)
3619 drp = &dr->dr_next;
3620 ASSERT(!list_link_active(&dr->dr_dirty_node));
428870ff 3621 ASSERT(dr->dr_dbuf == db);
34dc7c2f
BB
3622 ASSERT(dr->dr_next == NULL);
3623 *drp = dr->dr_next;
3624
428870ff
BB
3625#ifdef ZFS_DEBUG
3626 if (db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
3627 dnode_t *dn;
3628
3629 DB_DNODE_ENTER(db);
3630 dn = DB_DNODE(db);
428870ff
BB
3631 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3632 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
cae5b340 3633 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
572e2857 3634 DB_DNODE_EXIT(db);
428870ff
BB
3635 }
3636#endif
3637
34dc7c2f 3638 if (db->db_level == 0) {
428870ff 3639 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 3640 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
b128c09f
BB
3641 if (db->db_state != DB_NOFILL) {
3642 if (dr->dt.dl.dr_data != db->db_buf)
cae5b340 3643 arc_buf_destroy(dr->dt.dl.dr_data, db);
b128c09f 3644 }
34dc7c2f 3645 } else {
572e2857
BB
3646 dnode_t *dn;
3647
3648 DB_DNODE_ENTER(db);
3649 dn = DB_DNODE(db);
34dc7c2f 3650 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
ea04106b 3651 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
34dc7c2f 3652 if (!BP_IS_HOLE(db->db_blkptr)) {
1fde1e37
BB
3653 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3654 SPA_BLKPTRSHIFT);
ea04106b
AX
3655 ASSERT3U(db->db_blkid, <=,
3656 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
34dc7c2f
BB
3657 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3658 db->db.db_size);
34dc7c2f 3659 }
572e2857 3660 DB_DNODE_EXIT(db);
34dc7c2f
BB
3661 mutex_destroy(&dr->dt.di.dr_mtx);
3662 list_destroy(&dr->dt.di.dr_children);
3663 }
3664 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3665
3666 cv_broadcast(&db->db_changed);
3667 ASSERT(db->db_dirtycnt > 0);
3668 db->db_dirtycnt -= 1;
3669 db->db_data_pending = NULL;
ea04106b 3670 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
428870ff
BB
3671}
3672
3673static void
3674dbuf_write_nofill_ready(zio_t *zio)
3675{
3676 dbuf_write_ready(zio, NULL, zio->io_private);
3677}
3678
3679static void
3680dbuf_write_nofill_done(zio_t *zio)
3681{
3682 dbuf_write_done(zio, NULL, zio->io_private);
3683}
3684
3685static void
3686dbuf_write_override_ready(zio_t *zio)
3687{
3688 dbuf_dirty_record_t *dr = zio->io_private;
3689 dmu_buf_impl_t *db = dr->dr_dbuf;
3690
3691 dbuf_write_ready(zio, NULL, db);
3692}
3693
3694static void
3695dbuf_write_override_done(zio_t *zio)
3696{
3697 dbuf_dirty_record_t *dr = zio->io_private;
3698 dmu_buf_impl_t *db = dr->dr_dbuf;
3699 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3700
3701 mutex_enter(&db->db_mtx);
3702 if (!BP_EQUAL(zio->io_bp, obp)) {
3703 if (!BP_IS_HOLE(obp))
3704 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3705 arc_release(dr->dt.dl.dr_data, db);
3706 }
34dc7c2f
BB
3707 mutex_exit(&db->db_mtx);
3708
428870ff 3709 dbuf_write_done(zio, NULL, db);
cae5b340
AX
3710
3711 if (zio->io_abd != NULL)
3712 abd_put(zio->io_abd);
428870ff
BB
3713}
3714
a08ee875 3715/* Issue I/O to commit a dirty buffer to disk. */
428870ff
BB
3716static void
3717dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3718{
3719 dmu_buf_impl_t *db = dr->dr_dbuf;
572e2857
BB
3720 dnode_t *dn;
3721 objset_t *os;
428870ff
BB
3722 dmu_buf_impl_t *parent = db->db_parent;
3723 uint64_t txg = tx->tx_txg;
ea04106b 3724 zbookmark_phys_t zb;
428870ff
BB
3725 zio_prop_t zp;
3726 zio_t *zio;
3727 int wp_flag = 0;
34dc7c2f 3728
cae5b340
AX
3729 ASSERT(dmu_tx_is_syncing(tx));
3730
572e2857
BB
3731 DB_DNODE_ENTER(db);
3732 dn = DB_DNODE(db);
3733 os = dn->dn_objset;
3734
428870ff
BB
3735 if (db->db_state != DB_NOFILL) {
3736 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3737 /*
3738 * Private object buffers are released here rather
3739 * than in dbuf_dirty() since they are only modified
3740 * in the syncing context and we don't want the
3741 * overhead of making multiple copies of the data.
3742 */
3743 if (BP_IS_HOLE(db->db_blkptr)) {
3744 arc_buf_thaw(data);
3745 } else {
3746 dbuf_release_bp(db);
3747 }
3748 }
3749 }
3750
3751 if (parent != dn->dn_dbuf) {
a08ee875
LG
3752 /* Our parent is an indirect block. */
3753 /* We have a dirty parent that has been scheduled for write. */
428870ff 3754 ASSERT(parent && parent->db_data_pending);
a08ee875 3755 /* Our parent's buffer is one level closer to the dnode. */
428870ff 3756 ASSERT(db->db_level == parent->db_level-1);
a08ee875
LG
3757 /*
3758 * We're about to modify our parent's db_data by modifying
3759 * our block pointer, so the parent must be released.
3760 */
428870ff
BB
3761 ASSERT(arc_released(parent->db_buf));
3762 zio = parent->db_data_pending->dr_zio;
3763 } else {
a08ee875 3764 /* Our parent is the dnode itself. */
428870ff
BB
3765 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3766 db->db_blkid != DMU_SPILL_BLKID) ||
3767 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3768 if (db->db_blkid != DMU_SPILL_BLKID)
3769 ASSERT3P(db->db_blkptr, ==,
3770 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3771 zio = dn->dn_zio;
3772 }
3773
3774 ASSERT(db->db_level == 0 || data == db->db_buf);
3775 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3776 ASSERT(zio);
3777
3778 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3779 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3780 db->db.db_object, db->db_level, db->db_blkid);
3781
3782 if (db->db_blkid == DMU_SPILL_BLKID)
3783 wp_flag = WP_SPILL;
3784 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3785
3786 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
572e2857 3787 DB_DNODE_EXIT(db);
428870ff 3788
cae5b340
AX
3789 /*
3790 * We copy the blkptr now (rather than when we instantiate the dirty
3791 * record), because its value can change between open context and
3792 * syncing context. We do not need to hold dn_struct_rwlock to read
3793 * db_blkptr because we are in syncing context.
3794 */
3795 dr->dr_bp_copy = *db->db_blkptr;
3796
ea04106b
AX
3797 if (db->db_level == 0 &&
3798 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3799 /*
3800 * The BP for this block has been provided by open context
3801 * (by dmu_sync() or dmu_buf_write_embedded()).
3802 */
cae5b340
AX
3803 abd_t *contents = (data != NULL) ?
3804 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
ea04106b 3805
428870ff 3806 dr->dr_zio = zio_write(zio, os->os_spa, txg,
cae5b340
AX
3807 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3808 &zp, dbuf_write_override_ready, NULL, NULL,
3809 dbuf_write_override_done,
a08ee875 3810 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff
BB
3811 mutex_enter(&db->db_mtx);
3812 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3813 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
a08ee875 3814 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
428870ff
BB
3815 mutex_exit(&db->db_mtx);
3816 } else if (db->db_state == DB_NOFILL) {
cae5b340
AX
3817 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3818 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
428870ff 3819 dr->dr_zio = zio_write(zio, os->os_spa, txg,
cae5b340
AX
3820 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3821 dbuf_write_nofill_ready, NULL, NULL,
3822 dbuf_write_nofill_done, db,
428870ff
BB
3823 ZIO_PRIORITY_ASYNC_WRITE,
3824 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3825 } else {
cae5b340 3826 arc_done_func_t *children_ready_cb = NULL;
428870ff 3827 ASSERT(arc_released(data));
cae5b340
AX
3828
3829 /*
3830 * For indirect blocks, we want to setup the children
3831 * ready callback so that we can properly handle an indirect
3832 * block that only contains holes.
3833 */
3834 if (db->db_level != 0)
3835 children_ready_cb = dbuf_write_children_ready;
3836
428870ff 3837 dr->dr_zio = arc_write(zio, os->os_spa, txg,
cae5b340
AX
3838 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3839 &zp, dbuf_write_ready,
3840 children_ready_cb, dbuf_write_physdone,
3841 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3842 ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff 3843 }
34dc7c2f 3844}
c28b2279
BB
3845
3846#if defined(_KERNEL) && defined(HAVE_SPL)
8f576c23
BB
3847EXPORT_SYMBOL(dbuf_find);
3848EXPORT_SYMBOL(dbuf_is_metadata);
cae5b340 3849EXPORT_SYMBOL(dbuf_destroy);
8f576c23
BB
3850EXPORT_SYMBOL(dbuf_loan_arcbuf);
3851EXPORT_SYMBOL(dbuf_whichblock);
3852EXPORT_SYMBOL(dbuf_read);
3853EXPORT_SYMBOL(dbuf_unoverride);
3854EXPORT_SYMBOL(dbuf_free_range);
3855EXPORT_SYMBOL(dbuf_new_size);
3856EXPORT_SYMBOL(dbuf_release_bp);
3857EXPORT_SYMBOL(dbuf_dirty);
c28b2279 3858EXPORT_SYMBOL(dmu_buf_will_dirty);
8f576c23
BB
3859EXPORT_SYMBOL(dmu_buf_will_not_fill);
3860EXPORT_SYMBOL(dmu_buf_will_fill);
3861EXPORT_SYMBOL(dmu_buf_fill_done);
4047414a 3862EXPORT_SYMBOL(dmu_buf_rele);
8f576c23 3863EXPORT_SYMBOL(dbuf_assign_arcbuf);
8f576c23
BB
3864EXPORT_SYMBOL(dbuf_prefetch);
3865EXPORT_SYMBOL(dbuf_hold_impl);
3866EXPORT_SYMBOL(dbuf_hold);
3867EXPORT_SYMBOL(dbuf_hold_level);
3868EXPORT_SYMBOL(dbuf_create_bonus);
3869EXPORT_SYMBOL(dbuf_spill_set_blksz);
3870EXPORT_SYMBOL(dbuf_rm_spill);
3871EXPORT_SYMBOL(dbuf_add_ref);
3872EXPORT_SYMBOL(dbuf_rele);
3873EXPORT_SYMBOL(dbuf_rele_and_unlock);
3874EXPORT_SYMBOL(dbuf_refcount);
3875EXPORT_SYMBOL(dbuf_sync_list);
3876EXPORT_SYMBOL(dmu_buf_set_user);
3877EXPORT_SYMBOL(dmu_buf_set_user_ie);
8f576c23 3878EXPORT_SYMBOL(dmu_buf_get_user);
ea04106b 3879EXPORT_SYMBOL(dmu_buf_get_blkptr);
cae5b340
AX
3880
3881/* BEGIN CSTYLED */
3882module_param(dbuf_cache_max_bytes, ulong, 0644);
3883MODULE_PARM_DESC(dbuf_cache_max_bytes,
3884 "Maximum size in bytes of the dbuf cache.");
3885
3886module_param(dbuf_cache_hiwater_pct, uint, 0644);
3887MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
3888 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
3889 "directly.");
3890
3891module_param(dbuf_cache_lowater_pct, uint, 0644);
3892MODULE_PARM_DESC(dbuf_cache_lowater_pct,
3893 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
3894 "evicting dbufs.");
3895
3896module_param(dbuf_cache_max_shift, int, 0644);
3897MODULE_PARM_DESC(dbuf_cache_max_shift,
3898 "Cap the size of the dbuf cache to a log2 fraction of arc size.");
3899/* END CSTYLED */
c28b2279 3900#endif