]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/metaslab.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ea04106b 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
a08ee875 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f 27#include <sys/zfs_context.h>
34dc7c2f
BB
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
ea04106b
AX
34#include <sys/spa_impl.h>
35#include <sys/zfeature.h>
34dc7c2f 36
a08ee875 37#define WITH_DF_BLOCK_ALLOCATOR
6d974228
GW
38
39/*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
ea04106b 44 * Currently we don't allow any gang, slog, or dump device related allocations
6d974228
GW
45 * to "fast" gang.
46 */
47#define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
22c81dd8 50
ea04106b
AX
51#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53#define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
34dc7c2f
BB
56uint64_t metaslab_aliquot = 512ULL << 10;
57uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58
c06d4368
AX
59/*
60 * The in-core space map representation is more compact than its on-disk form.
61 * The zfs_condense_pct determines how much more compact the in-core
62 * space_map representation must be before we compact it on-disk.
63 * Values should be greater than or equal to 100.
64 */
65int zfs_condense_pct = 200;
66
6d974228 67/*
ea04106b
AX
68 * Condensing a metaslab is not guaranteed to actually reduce the amount of
69 * space used on disk. In particular, a space map uses data in increments of
70 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
71 * same number of blocks after condensing. Since the goal of condensing is to
72 * reduce the number of IOPs required to read the space map, we only want to
73 * condense when we can be sure we will reduce the number of blocks used by the
74 * space map. Unfortunately, we cannot precisely compute whether or not this is
75 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
76 * we apply the following heuristic: do not condense a spacemap unless the
77 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
78 * blocks.
6d974228 79 */
ea04106b 80int zfs_metaslab_condense_block_threshold = 4;
a08ee875
LG
81
82/*
83 * The zfs_mg_noalloc_threshold defines which metaslab groups should
84 * be eligible for allocation. The value is defined as a percentage of
ea04106b 85 * free space. Metaslab groups that have more free space than
a08ee875
LG
86 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
87 * a metaslab group's free space is less than or equal to the
88 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
89 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
90 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
91 * groups are allowed to accept allocations. Gang blocks are always
92 * eligible to allocate on any metaslab group. The default value of 0 means
93 * no metaslab group will be excluded based on this criterion.
94 */
95int zfs_mg_noalloc_threshold = 0;
6d974228 96
428870ff 97/*
ea04106b
AX
98 * Metaslab groups are considered eligible for allocations if their
99 * fragmenation metric (measured as a percentage) is less than or equal to
100 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
101 * then it will be skipped unless all metaslab groups within the metaslab
102 * class have also crossed this threshold.
428870ff 103 */
ea04106b
AX
104int zfs_mg_fragmentation_threshold = 85;
105
106/*
107 * Allow metaslabs to keep their active state as long as their fragmentation
108 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
109 * active metaslab that exceeds this threshold will no longer keep its active
110 * status allowing better metaslabs to be selected.
111 */
112int zfs_metaslab_fragmentation_threshold = 70;
113
114/*
115 * When set will load all metaslabs when pool is first opened.
116 */
117int metaslab_debug_load = 0;
118
119/*
120 * When set will prevent metaslabs from being unloaded.
121 */
122int metaslab_debug_unload = 0;
428870ff 123
9babb374
BB
124/*
125 * Minimum size which forces the dynamic allocator to change
428870ff 126 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
127 * an allocation of this size then it switches to using more
128 * aggressive strategy (i.e search by size rather than offset).
129 */
130uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
131
132/*
133 * The minimum free space, in percent, which must be available
134 * in a space map to continue allocations in a first-fit fashion.
135 * Once the space_map's free space drops below this level we dynamically
136 * switch to using best-fit allocations.
137 */
428870ff
BB
138int metaslab_df_free_pct = 4;
139
140/*
141 * A metaslab is considered "free" if it contains a contiguous
142 * segment which is greater than metaslab_min_alloc_size.
143 */
144uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
145
146/*
ea04106b 147 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 148 */
ea04106b 149int metaslab_load_pct = 50;
428870ff
BB
150
151/*
ea04106b
AX
152 * Determines how many txgs a metaslab may remain loaded without having any
153 * allocations from it. As long as a metaslab continues to be used we will
154 * keep it loaded.
428870ff 155 */
ea04106b 156int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 157
a08ee875 158/*
ea04106b 159 * Max number of metaslabs per group to preload.
a08ee875 160 */
ea04106b
AX
161int metaslab_preload_limit = SPA_DVAS_PER_BP;
162
163/*
164 * Enable/disable preloading of metaslab.
165 */
166int metaslab_preload_enabled = B_TRUE;
167
168/*
169 * Enable/disable fragmentation weighting on metaslabs.
170 */
171int metaslab_fragmentation_factor_enabled = B_TRUE;
172
173/*
174 * Enable/disable lba weighting (i.e. outer tracks are given preference).
175 */
176int metaslab_lba_weighting_enabled = B_TRUE;
177
178/*
179 * Enable/disable metaslab group biasing.
180 */
181int metaslab_bias_enabled = B_TRUE;
182
183static uint64_t metaslab_fragmentation(metaslab_t *);
a08ee875 184
34dc7c2f
BB
185/*
186 * ==========================================================================
187 * Metaslab classes
188 * ==========================================================================
189 */
190metaslab_class_t *
ea04106b 191metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
192{
193 metaslab_class_t *mc;
194
ea04106b 195 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 196
428870ff 197 mc->mc_spa = spa;
34dc7c2f 198 mc->mc_rotor = NULL;
9babb374 199 mc->mc_ops = ops;
920dd524 200 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
201
202 return (mc);
203}
204
205void
206metaslab_class_destroy(metaslab_class_t *mc)
207{
428870ff
BB
208 ASSERT(mc->mc_rotor == NULL);
209 ASSERT(mc->mc_alloc == 0);
210 ASSERT(mc->mc_deferred == 0);
211 ASSERT(mc->mc_space == 0);
212 ASSERT(mc->mc_dspace == 0);
34dc7c2f 213
920dd524 214 mutex_destroy(&mc->mc_fastwrite_lock);
34dc7c2f
BB
215 kmem_free(mc, sizeof (metaslab_class_t));
216}
217
428870ff
BB
218int
219metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 220{
428870ff
BB
221 metaslab_group_t *mg;
222 vdev_t *vd;
34dc7c2f 223
428870ff
BB
224 /*
225 * Must hold one of the spa_config locks.
226 */
227 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
228 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 229
428870ff
BB
230 if ((mg = mc->mc_rotor) == NULL)
231 return (0);
232
233 do {
234 vd = mg->mg_vd;
235 ASSERT(vd->vdev_mg != NULL);
236 ASSERT3P(vd->vdev_top, ==, vd);
237 ASSERT3P(mg->mg_class, ==, mc);
238 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
239 } while ((mg = mg->mg_next) != mc->mc_rotor);
240
241 return (0);
34dc7c2f
BB
242}
243
244void
428870ff
BB
245metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
246 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 247{
428870ff
BB
248 atomic_add_64(&mc->mc_alloc, alloc_delta);
249 atomic_add_64(&mc->mc_deferred, defer_delta);
250 atomic_add_64(&mc->mc_space, space_delta);
251 atomic_add_64(&mc->mc_dspace, dspace_delta);
252}
34dc7c2f 253
428870ff
BB
254uint64_t
255metaslab_class_get_alloc(metaslab_class_t *mc)
256{
257 return (mc->mc_alloc);
258}
34dc7c2f 259
428870ff
BB
260uint64_t
261metaslab_class_get_deferred(metaslab_class_t *mc)
262{
263 return (mc->mc_deferred);
264}
34dc7c2f 265
428870ff
BB
266uint64_t
267metaslab_class_get_space(metaslab_class_t *mc)
268{
269 return (mc->mc_space);
270}
34dc7c2f 271
428870ff
BB
272uint64_t
273metaslab_class_get_dspace(metaslab_class_t *mc)
274{
275 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
276}
277
ea04106b
AX
278void
279metaslab_class_histogram_verify(metaslab_class_t *mc)
280{
281 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
282 uint64_t *mc_hist;
283 int i, c;
284
285 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
286 return;
287
288 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
289 KM_SLEEP);
290
291 for (c = 0; c < rvd->vdev_children; c++) {
292 vdev_t *tvd = rvd->vdev_child[c];
293 metaslab_group_t *mg = tvd->vdev_mg;
294
295 /*
296 * Skip any holes, uninitialized top-levels, or
297 * vdevs that are not in this metalab class.
298 */
299 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
300 mg->mg_class != mc) {
301 continue;
302 }
303
304 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
305 mc_hist[i] += mg->mg_histogram[i];
306 }
307
308 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
309 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
310
311 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
312}
313
314/*
315 * Calculate the metaslab class's fragmentation metric. The metric
316 * is weighted based on the space contribution of each metaslab group.
317 * The return value will be a number between 0 and 100 (inclusive), or
318 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
319 * zfs_frag_table for more information about the metric.
320 */
321uint64_t
322metaslab_class_fragmentation(metaslab_class_t *mc)
323{
324 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
325 uint64_t fragmentation = 0;
326 int c;
327
328 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
329
330 for (c = 0; c < rvd->vdev_children; c++) {
331 vdev_t *tvd = rvd->vdev_child[c];
332 metaslab_group_t *mg = tvd->vdev_mg;
333
334 /*
335 * Skip any holes, uninitialized top-levels, or
336 * vdevs that are not in this metalab class.
337 */
338 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
339 mg->mg_class != mc) {
340 continue;
341 }
342
343 /*
344 * If a metaslab group does not contain a fragmentation
345 * metric then just bail out.
346 */
347 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
348 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
349 return (ZFS_FRAG_INVALID);
350 }
351
352 /*
353 * Determine how much this metaslab_group is contributing
354 * to the overall pool fragmentation metric.
355 */
356 fragmentation += mg->mg_fragmentation *
357 metaslab_group_get_space(mg);
358 }
359 fragmentation /= metaslab_class_get_space(mc);
360
361 ASSERT3U(fragmentation, <=, 100);
362 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
363 return (fragmentation);
364}
365
366/*
367 * Calculate the amount of expandable space that is available in
368 * this metaslab class. If a device is expanded then its expandable
369 * space will be the amount of allocatable space that is currently not
370 * part of this metaslab class.
371 */
372uint64_t
373metaslab_class_expandable_space(metaslab_class_t *mc)
374{
375 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
376 uint64_t space = 0;
377 int c;
378
379 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
380 for (c = 0; c < rvd->vdev_children; c++) {
381 vdev_t *tvd = rvd->vdev_child[c];
382 metaslab_group_t *mg = tvd->vdev_mg;
383
384 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
385 mg->mg_class != mc) {
386 continue;
387 }
388
389 space += tvd->vdev_max_asize - tvd->vdev_asize;
390 }
391 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
392 return (space);
393}
394
34dc7c2f
BB
395/*
396 * ==========================================================================
397 * Metaslab groups
398 * ==========================================================================
399 */
400static int
401metaslab_compare(const void *x1, const void *x2)
402{
403 const metaslab_t *m1 = x1;
404 const metaslab_t *m2 = x2;
405
406 if (m1->ms_weight < m2->ms_weight)
407 return (1);
408 if (m1->ms_weight > m2->ms_weight)
409 return (-1);
410
411 /*
412 * If the weights are identical, use the offset to force uniqueness.
413 */
ea04106b 414 if (m1->ms_start < m2->ms_start)
34dc7c2f 415 return (-1);
ea04106b 416 if (m1->ms_start > m2->ms_start)
34dc7c2f
BB
417 return (1);
418
419 ASSERT3P(m1, ==, m2);
420
421 return (0);
422}
423
a08ee875
LG
424/*
425 * Update the allocatable flag and the metaslab group's capacity.
426 * The allocatable flag is set to true if the capacity is below
427 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
428 * from allocatable to non-allocatable or vice versa then the metaslab
429 * group's class is updated to reflect the transition.
430 */
431static void
432metaslab_group_alloc_update(metaslab_group_t *mg)
433{
434 vdev_t *vd = mg->mg_vd;
435 metaslab_class_t *mc = mg->mg_class;
436 vdev_stat_t *vs = &vd->vdev_stat;
437 boolean_t was_allocatable;
438
439 ASSERT(vd == vd->vdev_top);
440
441 mutex_enter(&mg->mg_lock);
442 was_allocatable = mg->mg_allocatable;
443
444 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
445 (vs->vs_space + 1);
446
ea04106b
AX
447 /*
448 * A metaslab group is considered allocatable if it has plenty
449 * of free space or is not heavily fragmented. We only take
450 * fragmentation into account if the metaslab group has a valid
451 * fragmentation metric (i.e. a value between 0 and 100).
452 */
453 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
454 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
455 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
a08ee875
LG
456
457 /*
458 * The mc_alloc_groups maintains a count of the number of
459 * groups in this metaslab class that are still above the
460 * zfs_mg_noalloc_threshold. This is used by the allocating
461 * threads to determine if they should avoid allocations to
462 * a given group. The allocator will avoid allocations to a group
463 * if that group has reached or is below the zfs_mg_noalloc_threshold
464 * and there are still other groups that are above the threshold.
465 * When a group transitions from allocatable to non-allocatable or
466 * vice versa we update the metaslab class to reflect that change.
467 * When the mc_alloc_groups value drops to 0 that means that all
468 * groups have reached the zfs_mg_noalloc_threshold making all groups
469 * eligible for allocations. This effectively means that all devices
470 * are balanced again.
471 */
472 if (was_allocatable && !mg->mg_allocatable)
473 mc->mc_alloc_groups--;
474 else if (!was_allocatable && mg->mg_allocatable)
475 mc->mc_alloc_groups++;
ea04106b 476
a08ee875
LG
477 mutex_exit(&mg->mg_lock);
478}
479
34dc7c2f
BB
480metaslab_group_t *
481metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
482{
483 metaslab_group_t *mg;
484
ea04106b 485 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f
BB
486 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
487 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
488 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 489 mg->mg_vd = vd;
428870ff
BB
490 mg->mg_class = mc;
491 mg->mg_activation_count = 0;
34dc7c2f 492
ea04106b
AX
493 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
494 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
495
34dc7c2f
BB
496 return (mg);
497}
498
499void
500metaslab_group_destroy(metaslab_group_t *mg)
501{
428870ff
BB
502 ASSERT(mg->mg_prev == NULL);
503 ASSERT(mg->mg_next == NULL);
504 /*
505 * We may have gone below zero with the activation count
506 * either because we never activated in the first place or
507 * because we're done, and possibly removing the vdev.
508 */
509 ASSERT(mg->mg_activation_count <= 0);
510
ea04106b 511 taskq_destroy(mg->mg_taskq);
34dc7c2f
BB
512 avl_destroy(&mg->mg_metaslab_tree);
513 mutex_destroy(&mg->mg_lock);
514 kmem_free(mg, sizeof (metaslab_group_t));
515}
516
428870ff
BB
517void
518metaslab_group_activate(metaslab_group_t *mg)
519{
520 metaslab_class_t *mc = mg->mg_class;
521 metaslab_group_t *mgprev, *mgnext;
522
523 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
524
525 ASSERT(mc->mc_rotor != mg);
526 ASSERT(mg->mg_prev == NULL);
527 ASSERT(mg->mg_next == NULL);
528 ASSERT(mg->mg_activation_count <= 0);
529
530 if (++mg->mg_activation_count <= 0)
531 return;
532
533 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
a08ee875 534 metaslab_group_alloc_update(mg);
428870ff
BB
535
536 if ((mgprev = mc->mc_rotor) == NULL) {
537 mg->mg_prev = mg;
538 mg->mg_next = mg;
539 } else {
540 mgnext = mgprev->mg_next;
541 mg->mg_prev = mgprev;
542 mg->mg_next = mgnext;
543 mgprev->mg_next = mg;
544 mgnext->mg_prev = mg;
545 }
546 mc->mc_rotor = mg;
547}
548
549void
550metaslab_group_passivate(metaslab_group_t *mg)
551{
552 metaslab_class_t *mc = mg->mg_class;
553 metaslab_group_t *mgprev, *mgnext;
554
555 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
556
557 if (--mg->mg_activation_count != 0) {
558 ASSERT(mc->mc_rotor != mg);
559 ASSERT(mg->mg_prev == NULL);
560 ASSERT(mg->mg_next == NULL);
561 ASSERT(mg->mg_activation_count < 0);
562 return;
563 }
564
ea04106b
AX
565 taskq_wait(mg->mg_taskq);
566 metaslab_group_alloc_update(mg);
567
428870ff
BB
568 mgprev = mg->mg_prev;
569 mgnext = mg->mg_next;
570
571 if (mg == mgnext) {
572 mc->mc_rotor = NULL;
573 } else {
574 mc->mc_rotor = mgnext;
575 mgprev->mg_next = mgnext;
576 mgnext->mg_prev = mgprev;
577 }
578
579 mg->mg_prev = NULL;
580 mg->mg_next = NULL;
581}
582
ea04106b
AX
583uint64_t
584metaslab_group_get_space(metaslab_group_t *mg)
585{
586 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
587}
588
589void
590metaslab_group_histogram_verify(metaslab_group_t *mg)
591{
592 uint64_t *mg_hist;
593 vdev_t *vd = mg->mg_vd;
594 uint64_t ashift = vd->vdev_ashift;
595 int i, m;
596
597 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
598 return;
599
600 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
601 KM_SLEEP);
602
603 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
604 SPACE_MAP_HISTOGRAM_SIZE + ashift);
605
606 for (m = 0; m < vd->vdev_ms_count; m++) {
607 metaslab_t *msp = vd->vdev_ms[m];
608
609 if (msp->ms_sm == NULL)
610 continue;
611
612 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
613 mg_hist[i + ashift] +=
614 msp->ms_sm->sm_phys->smp_histogram[i];
615 }
616
617 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
618 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
619
620 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
621}
622
34dc7c2f 623static void
ea04106b
AX
624metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
625{
626 metaslab_class_t *mc = mg->mg_class;
627 uint64_t ashift = mg->mg_vd->vdev_ashift;
628 int i;
629
630 ASSERT(MUTEX_HELD(&msp->ms_lock));
631 if (msp->ms_sm == NULL)
632 return;
633
634 mutex_enter(&mg->mg_lock);
635 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
636 mg->mg_histogram[i + ashift] +=
637 msp->ms_sm->sm_phys->smp_histogram[i];
638 mc->mc_histogram[i + ashift] +=
639 msp->ms_sm->sm_phys->smp_histogram[i];
640 }
641 mutex_exit(&mg->mg_lock);
642}
643
644void
645metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 646{
ea04106b
AX
647 metaslab_class_t *mc = mg->mg_class;
648 uint64_t ashift = mg->mg_vd->vdev_ashift;
649 int i;
650
651 ASSERT(MUTEX_HELD(&msp->ms_lock));
652 if (msp->ms_sm == NULL)
653 return;
654
34dc7c2f 655 mutex_enter(&mg->mg_lock);
ea04106b
AX
656 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
657 ASSERT3U(mg->mg_histogram[i + ashift], >=,
658 msp->ms_sm->sm_phys->smp_histogram[i]);
659 ASSERT3U(mc->mc_histogram[i + ashift], >=,
660 msp->ms_sm->sm_phys->smp_histogram[i]);
661
662 mg->mg_histogram[i + ashift] -=
663 msp->ms_sm->sm_phys->smp_histogram[i];
664 mc->mc_histogram[i + ashift] -=
665 msp->ms_sm->sm_phys->smp_histogram[i];
666 }
667 mutex_exit(&mg->mg_lock);
668}
669
670static void
671metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
672{
34dc7c2f 673 ASSERT(msp->ms_group == NULL);
ea04106b 674 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
675 msp->ms_group = mg;
676 msp->ms_weight = 0;
677 avl_add(&mg->mg_metaslab_tree, msp);
678 mutex_exit(&mg->mg_lock);
ea04106b
AX
679
680 mutex_enter(&msp->ms_lock);
681 metaslab_group_histogram_add(mg, msp);
682 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
683}
684
685static void
686metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
687{
ea04106b
AX
688 mutex_enter(&msp->ms_lock);
689 metaslab_group_histogram_remove(mg, msp);
690 mutex_exit(&msp->ms_lock);
691
34dc7c2f
BB
692 mutex_enter(&mg->mg_lock);
693 ASSERT(msp->ms_group == mg);
694 avl_remove(&mg->mg_metaslab_tree, msp);
695 msp->ms_group = NULL;
696 mutex_exit(&mg->mg_lock);
697}
698
699static void
700metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
701{
702 /*
703 * Although in principle the weight can be any value, in
ea04106b 704 * practice we do not use values in the range [1, 511].
34dc7c2f 705 */
ea04106b 706 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
707 ASSERT(MUTEX_HELD(&msp->ms_lock));
708
709 mutex_enter(&mg->mg_lock);
710 ASSERT(msp->ms_group == mg);
711 avl_remove(&mg->mg_metaslab_tree, msp);
712 msp->ms_weight = weight;
713 avl_add(&mg->mg_metaslab_tree, msp);
714 mutex_exit(&mg->mg_lock);
715}
716
ea04106b
AX
717/*
718 * Calculate the fragmentation for a given metaslab group. We can use
719 * a simple average here since all metaslabs within the group must have
720 * the same size. The return value will be a value between 0 and 100
721 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
722 * group have a fragmentation metric.
723 */
724uint64_t
725metaslab_group_fragmentation(metaslab_group_t *mg)
726{
727 vdev_t *vd = mg->mg_vd;
728 uint64_t fragmentation = 0;
729 uint64_t valid_ms = 0;
730 int m;
731
732 for (m = 0; m < vd->vdev_ms_count; m++) {
733 metaslab_t *msp = vd->vdev_ms[m];
734
735 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
736 continue;
737
738 valid_ms++;
739 fragmentation += msp->ms_fragmentation;
740 }
741
742 if (valid_ms <= vd->vdev_ms_count / 2)
743 return (ZFS_FRAG_INVALID);
744
745 fragmentation /= valid_ms;
746 ASSERT3U(fragmentation, <=, 100);
747 return (fragmentation);
748}
749
a08ee875
LG
750/*
751 * Determine if a given metaslab group should skip allocations. A metaslab
ea04106b
AX
752 * group should avoid allocations if its free capacity is less than the
753 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
754 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
a08ee875
LG
755 * that can still handle allocations.
756 */
757static boolean_t
758metaslab_group_allocatable(metaslab_group_t *mg)
759{
760 vdev_t *vd = mg->mg_vd;
761 spa_t *spa = vd->vdev_spa;
762 metaslab_class_t *mc = mg->mg_class;
763
764 /*
ea04106b
AX
765 * We use two key metrics to determine if a metaslab group is
766 * considered allocatable -- free space and fragmentation. If
767 * the free space is greater than the free space threshold and
768 * the fragmentation is less than the fragmentation threshold then
769 * consider the group allocatable. There are two case when we will
770 * not consider these key metrics. The first is if the group is
771 * associated with a slog device and the second is if all groups
772 * in this metaslab class have already been consider ineligible
773 * for allocations.
a08ee875 774 */
ea04106b
AX
775 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
776 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
777 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
a08ee875
LG
778 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
779}
780
428870ff
BB
781/*
782 * ==========================================================================
ea04106b 783 * Range tree callbacks
428870ff
BB
784 * ==========================================================================
785 */
ea04106b
AX
786
787/*
788 * Comparison function for the private size-ordered tree. Tree is sorted
789 * by size, larger sizes at the end of the tree.
790 */
428870ff 791static int
ea04106b 792metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 793{
ea04106b
AX
794 const range_seg_t *r1 = x1;
795 const range_seg_t *r2 = x2;
796 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
797 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 798
ea04106b 799 if (rs_size1 < rs_size2)
428870ff 800 return (-1);
ea04106b 801 if (rs_size1 > rs_size2)
428870ff
BB
802 return (1);
803
ea04106b 804 if (r1->rs_start < r2->rs_start)
428870ff 805 return (-1);
ea04106b
AX
806
807 if (r1->rs_start > r2->rs_start)
428870ff
BB
808 return (1);
809
810 return (0);
811}
812
34dc7c2f 813/*
ea04106b
AX
814 * Create any block allocator specific components. The current allocators
815 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
34dc7c2f 816 */
ea04106b
AX
817static void
818metaslab_rt_create(range_tree_t *rt, void *arg)
34dc7c2f 819{
ea04106b 820 metaslab_t *msp = arg;
34dc7c2f 821
ea04106b
AX
822 ASSERT3P(rt->rt_arg, ==, msp);
823 ASSERT(msp->ms_tree == NULL);
34dc7c2f 824
ea04106b
AX
825 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
826 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
9babb374
BB
827}
828
ea04106b
AX
829/*
830 * Destroy the block allocator specific components.
831 */
9babb374 832static void
ea04106b 833metaslab_rt_destroy(range_tree_t *rt, void *arg)
9babb374 834{
ea04106b 835 metaslab_t *msp = arg;
428870ff 836
ea04106b
AX
837 ASSERT3P(rt->rt_arg, ==, msp);
838 ASSERT3P(msp->ms_tree, ==, rt);
839 ASSERT0(avl_numnodes(&msp->ms_size_tree));
428870ff 840
ea04106b 841 avl_destroy(&msp->ms_size_tree);
9babb374
BB
842}
843
844static void
ea04106b 845metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
9babb374 846{
ea04106b 847 metaslab_t *msp = arg;
9babb374 848
ea04106b
AX
849 ASSERT3P(rt->rt_arg, ==, msp);
850 ASSERT3P(msp->ms_tree, ==, rt);
851 VERIFY(!msp->ms_condensing);
852 avl_add(&msp->ms_size_tree, rs);
34dc7c2f
BB
853}
854
34dc7c2f 855static void
ea04106b 856metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
34dc7c2f 857{
ea04106b
AX
858 metaslab_t *msp = arg;
859
860 ASSERT3P(rt->rt_arg, ==, msp);
861 ASSERT3P(msp->ms_tree, ==, rt);
862 VERIFY(!msp->ms_condensing);
863 avl_remove(&msp->ms_size_tree, rs);
34dc7c2f
BB
864}
865
34dc7c2f 866static void
ea04106b 867metaslab_rt_vacate(range_tree_t *rt, void *arg)
34dc7c2f 868{
ea04106b
AX
869 metaslab_t *msp = arg;
870
871 ASSERT3P(rt->rt_arg, ==, msp);
872 ASSERT3P(msp->ms_tree, ==, rt);
873
874 /*
875 * Normally one would walk the tree freeing nodes along the way.
876 * Since the nodes are shared with the range trees we can avoid
877 * walking all nodes and just reinitialize the avl tree. The nodes
878 * will be freed by the range tree, so we don't want to free them here.
879 */
880 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
881 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
34dc7c2f
BB
882}
883
ea04106b
AX
884static range_tree_ops_t metaslab_rt_ops = {
885 metaslab_rt_create,
886 metaslab_rt_destroy,
887 metaslab_rt_add,
888 metaslab_rt_remove,
889 metaslab_rt_vacate
890};
891
892/*
893 * ==========================================================================
894 * Metaslab block operations
895 * ==========================================================================
896 */
897
9babb374 898/*
428870ff 899 * Return the maximum contiguous segment within the metaslab.
9babb374 900 */
9babb374 901uint64_t
ea04106b 902metaslab_block_maxsize(metaslab_t *msp)
9babb374 903{
ea04106b
AX
904 avl_tree_t *t = &msp->ms_size_tree;
905 range_seg_t *rs;
9babb374 906
ea04106b 907 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
908 return (0ULL);
909
ea04106b
AX
910 return (rs->rs_end - rs->rs_start);
911}
912
913uint64_t
914metaslab_block_alloc(metaslab_t *msp, uint64_t size)
915{
916 uint64_t start;
917 range_tree_t *rt = msp->ms_tree;
918
919 VERIFY(!msp->ms_condensing);
920
921 start = msp->ms_ops->msop_alloc(msp, size);
922 if (start != -1ULL) {
923 vdev_t *vd = msp->ms_group->mg_vd;
924
925 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
926 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
927 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
928 range_tree_remove(rt, start, size);
929 }
930 return (start);
9babb374
BB
931}
932
428870ff
BB
933/*
934 * ==========================================================================
ea04106b 935 * Common allocator routines
428870ff
BB
936 * ==========================================================================
937 */
ea04106b
AX
938
939#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
940 defined(WITH_DF_BLOCK_ALLOCATOR) || \
941 defined(WITH_CF_BLOCK_ALLOCATOR)
942/*
943 * This is a helper function that can be used by the allocator to find
944 * a suitable block to allocate. This will search the specified AVL
945 * tree looking for a block that matches the specified criteria.
946 */
428870ff 947static uint64_t
ea04106b
AX
948metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
949 uint64_t align)
9babb374 950{
ea04106b
AX
951 range_seg_t *rs, rsearch;
952 avl_index_t where;
953
954 rsearch.rs_start = *cursor;
955 rsearch.rs_end = *cursor + size;
956
957 rs = avl_find(t, &rsearch, &where);
958 if (rs == NULL)
959 rs = avl_nearest(t, where, AVL_AFTER);
960
961 while (rs != NULL) {
962 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
963
964 if (offset + size <= rs->rs_end) {
965 *cursor = offset + size;
966 return (offset);
967 }
968 rs = AVL_NEXT(t, rs);
969 }
970
971 /*
972 * If we know we've searched the whole map (*cursor == 0), give up.
973 * Otherwise, reset the cursor to the beginning and try again.
974 */
975 if (*cursor == 0)
976 return (-1ULL);
9babb374 977
ea04106b 978 *cursor = 0;
428870ff 979 return (metaslab_block_picker(t, cursor, size, align));
9babb374 980}
ea04106b 981#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
9babb374 982
ea04106b
AX
983#if defined(WITH_FF_BLOCK_ALLOCATOR)
984/*
985 * ==========================================================================
986 * The first-fit block allocator
987 * ==========================================================================
988 */
989static uint64_t
990metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
9babb374 991{
ea04106b
AX
992 /*
993 * Find the largest power of 2 block size that evenly divides the
994 * requested size. This is used to try to allocate blocks with similar
995 * alignment from the same area of the metaslab (i.e. same cursor
996 * bucket) but it does not guarantee that other allocations sizes
997 * may exist in the same region.
998 */
999 uint64_t align = size & -size;
1000 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1001 avl_tree_t *t = &msp->ms_tree->rt_root;
1002
1003 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
1004}
1005
ea04106b
AX
1006static metaslab_ops_t metaslab_ff_ops = {
1007 metaslab_ff_alloc
428870ff 1008};
9babb374 1009
ea04106b 1010metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
22c81dd8
BB
1011#endif /* WITH_FF_BLOCK_ALLOCATOR */
1012
1013#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1014/*
1015 * ==========================================================================
1016 * Dynamic block allocator -
1017 * Uses the first fit allocation scheme until space get low and then
1018 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1019 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1020 * ==========================================================================
1021 */
9babb374 1022static uint64_t
ea04106b 1023metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1024{
ea04106b
AX
1025 /*
1026 * Find the largest power of 2 block size that evenly divides the
1027 * requested size. This is used to try to allocate blocks with similar
1028 * alignment from the same area of the metaslab (i.e. same cursor
1029 * bucket) but it does not guarantee that other allocations sizes
1030 * may exist in the same region.
1031 */
9babb374 1032 uint64_t align = size & -size;
ea04106b
AX
1033 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1034 range_tree_t *rt = msp->ms_tree;
1035 avl_tree_t *t = &rt->rt_root;
1036 uint64_t max_size = metaslab_block_maxsize(msp);
1037 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
9babb374 1038
ea04106b
AX
1039 ASSERT(MUTEX_HELD(&msp->ms_lock));
1040 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
9babb374
BB
1041
1042 if (max_size < size)
1043 return (-1ULL);
1044
1045 /*
1046 * If we're running low on space switch to using the size
1047 * sorted AVL tree (best-fit).
1048 */
1049 if (max_size < metaslab_df_alloc_threshold ||
1050 free_pct < metaslab_df_free_pct) {
ea04106b 1051 t = &msp->ms_size_tree;
9babb374
BB
1052 *cursor = 0;
1053 }
1054
1055 return (metaslab_block_picker(t, cursor, size, 1ULL));
1056}
1057
ea04106b
AX
1058static metaslab_ops_t metaslab_df_ops = {
1059 metaslab_df_alloc
34dc7c2f
BB
1060};
1061
ea04106b 1062metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1063#endif /* WITH_DF_BLOCK_ALLOCATOR */
1064
ea04106b 1065#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1066/*
1067 * ==========================================================================
ea04106b
AX
1068 * Cursor fit block allocator -
1069 * Select the largest region in the metaslab, set the cursor to the beginning
1070 * of the range and the cursor_end to the end of the range. As allocations
1071 * are made advance the cursor. Continue allocating from the cursor until
1072 * the range is exhausted and then find a new range.
428870ff
BB
1073 * ==========================================================================
1074 */
1075static uint64_t
ea04106b 1076metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1077{
ea04106b
AX
1078 range_tree_t *rt = msp->ms_tree;
1079 avl_tree_t *t = &msp->ms_size_tree;
1080 uint64_t *cursor = &msp->ms_lbas[0];
1081 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1082 uint64_t offset = 0;
1083
ea04106b
AX
1084 ASSERT(MUTEX_HELD(&msp->ms_lock));
1085 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1086
ea04106b 1087 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1088
ea04106b
AX
1089 if ((*cursor + size) > *cursor_end) {
1090 range_seg_t *rs;
428870ff 1091
ea04106b
AX
1092 rs = avl_last(&msp->ms_size_tree);
1093 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1094 return (-1ULL);
428870ff 1095
ea04106b
AX
1096 *cursor = rs->rs_start;
1097 *cursor_end = rs->rs_end;
428870ff 1098 }
428870ff 1099
ea04106b
AX
1100 offset = *cursor;
1101 *cursor += size;
428870ff 1102
ea04106b 1103 return (offset);
428870ff
BB
1104}
1105
ea04106b
AX
1106static metaslab_ops_t metaslab_cf_ops = {
1107 metaslab_cf_alloc
428870ff
BB
1108};
1109
ea04106b
AX
1110metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1111#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1112
1113#if defined(WITH_NDF_BLOCK_ALLOCATOR)
ea04106b
AX
1114/*
1115 * ==========================================================================
1116 * New dynamic fit allocator -
1117 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1118 * contiguous blocks. If no region is found then just use the largest segment
1119 * that remains.
1120 * ==========================================================================
1121 */
1122
1123/*
1124 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1125 * to request from the allocator.
1126 */
428870ff
BB
1127uint64_t metaslab_ndf_clump_shift = 4;
1128
1129static uint64_t
ea04106b 1130metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1131{
ea04106b 1132 avl_tree_t *t = &msp->ms_tree->rt_root;
428870ff 1133 avl_index_t where;
ea04106b
AX
1134 range_seg_t *rs, rsearch;
1135 uint64_t hbit = highbit64(size);
1136 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1137 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1138
ea04106b
AX
1139 ASSERT(MUTEX_HELD(&msp->ms_lock));
1140 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
428870ff
BB
1141
1142 if (max_size < size)
1143 return (-1ULL);
1144
ea04106b
AX
1145 rsearch.rs_start = *cursor;
1146 rsearch.rs_end = *cursor + size;
428870ff 1147
ea04106b
AX
1148 rs = avl_find(t, &rsearch, &where);
1149 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1150 t = &msp->ms_size_tree;
428870ff 1151
ea04106b
AX
1152 rsearch.rs_start = 0;
1153 rsearch.rs_end = MIN(max_size,
428870ff 1154 1ULL << (hbit + metaslab_ndf_clump_shift));
ea04106b
AX
1155 rs = avl_find(t, &rsearch, &where);
1156 if (rs == NULL)
1157 rs = avl_nearest(t, where, AVL_AFTER);
1158 ASSERT(rs != NULL);
428870ff
BB
1159 }
1160
ea04106b
AX
1161 if ((rs->rs_end - rs->rs_start) >= size) {
1162 *cursor = rs->rs_start + size;
1163 return (rs->rs_start);
428870ff
BB
1164 }
1165 return (-1ULL);
1166}
1167
ea04106b
AX
1168static metaslab_ops_t metaslab_ndf_ops = {
1169 metaslab_ndf_alloc
428870ff
BB
1170};
1171
ea04106b 1172metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1173#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1174
ea04106b 1175
34dc7c2f
BB
1176/*
1177 * ==========================================================================
1178 * Metaslabs
1179 * ==========================================================================
1180 */
ea04106b
AX
1181
1182/*
1183 * Wait for any in-progress metaslab loads to complete.
1184 */
1185void
1186metaslab_load_wait(metaslab_t *msp)
1187{
1188 ASSERT(MUTEX_HELD(&msp->ms_lock));
1189
1190 while (msp->ms_loading) {
1191 ASSERT(!msp->ms_loaded);
1192 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1193 }
1194}
1195
1196int
1197metaslab_load(metaslab_t *msp)
1198{
1199 int error = 0;
1200 int t;
1201
1202 ASSERT(MUTEX_HELD(&msp->ms_lock));
1203 ASSERT(!msp->ms_loaded);
1204 ASSERT(!msp->ms_loading);
1205
1206 msp->ms_loading = B_TRUE;
1207
1208 /*
1209 * If the space map has not been allocated yet, then treat
1210 * all the space in the metaslab as free and add it to the
1211 * ms_tree.
1212 */
1213 if (msp->ms_sm != NULL)
1214 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1215 else
1216 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1217
1218 msp->ms_loaded = (error == 0);
1219 msp->ms_loading = B_FALSE;
1220
1221 if (msp->ms_loaded) {
1222 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1223 range_tree_walk(msp->ms_defertree[t],
1224 range_tree_remove, msp->ms_tree);
1225 }
1226 }
1227 cv_broadcast(&msp->ms_load_cv);
1228 return (error);
1229}
1230
1231void
1232metaslab_unload(metaslab_t *msp)
1233{
1234 ASSERT(MUTEX_HELD(&msp->ms_lock));
1235 range_tree_vacate(msp->ms_tree, NULL, NULL);
1236 msp->ms_loaded = B_FALSE;
1237 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1238}
1239
1240int
1241metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1242 metaslab_t **msp)
34dc7c2f
BB
1243{
1244 vdev_t *vd = mg->mg_vd;
ea04106b
AX
1245 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1246 metaslab_t *ms;
1247 int error;
1248
1249 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1250 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1251 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1252 ms->ms_id = id;
1253 ms->ms_start = id << vd->vdev_ms_shift;
1254 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1255
1256 /*
1257 * We only open space map objects that already exist. All others
1258 * will be opened when we finally allocate an object for it.
1259 */
1260 if (object != 0) {
1261 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1262 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
34dc7c2f 1263
ea04106b
AX
1264 if (error != 0) {
1265 kmem_free(ms, sizeof (metaslab_t));
1266 return (error);
1267 }
34dc7c2f 1268
ea04106b
AX
1269 ASSERT(ms->ms_sm != NULL);
1270 }
34dc7c2f
BB
1271
1272 /*
ea04106b
AX
1273 * We create the main range tree here, but we don't create the
1274 * alloctree and freetree until metaslab_sync_done(). This serves
34dc7c2f
BB
1275 * two purposes: it allows metaslab_sync_done() to detect the
1276 * addition of new space; and for debugging, it ensures that we'd
1277 * data fault on any attempt to use this metaslab before it's ready.
1278 */
ea04106b
AX
1279 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1280 metaslab_group_add(mg, ms);
34dc7c2f 1281
ea04106b
AX
1282 ms->ms_fragmentation = metaslab_fragmentation(ms);
1283 ms->ms_ops = mg->mg_class->mc_ops;
428870ff 1284
34dc7c2f
BB
1285 /*
1286 * If we're opening an existing pool (txg == 0) or creating
1287 * a new one (txg == TXG_INITIAL), all space is available now.
1288 * If we're adding space to an existing pool, the new space
1289 * does not become available until after this txg has synced.
1290 */
1291 if (txg <= TXG_INITIAL)
ea04106b
AX
1292 metaslab_sync_done(ms, 0);
1293
1294 /*
1295 * If metaslab_debug_load is set and we're initializing a metaslab
1296 * that has an allocated space_map object then load the its space
1297 * map so that can verify frees.
1298 */
1299 if (metaslab_debug_load && ms->ms_sm != NULL) {
1300 mutex_enter(&ms->ms_lock);
1301 VERIFY0(metaslab_load(ms));
1302 mutex_exit(&ms->ms_lock);
1303 }
34dc7c2f
BB
1304
1305 if (txg != 0) {
34dc7c2f 1306 vdev_dirty(vd, 0, NULL, txg);
ea04106b 1307 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1308 }
1309
ea04106b
AX
1310 *msp = ms;
1311
1312 return (0);
34dc7c2f
BB
1313}
1314
1315void
1316metaslab_fini(metaslab_t *msp)
1317{
d6320ddb 1318 int t;
34dc7c2f 1319
ea04106b 1320 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1321
1322 metaslab_group_remove(mg, msp);
1323
1324 mutex_enter(&msp->ms_lock);
1325
ea04106b
AX
1326 VERIFY(msp->ms_group == NULL);
1327 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1328 0, -msp->ms_size);
1329 space_map_close(msp->ms_sm);
1330
1331 metaslab_unload(msp);
1332 range_tree_destroy(msp->ms_tree);
34dc7c2f 1333
d6320ddb 1334 for (t = 0; t < TXG_SIZE; t++) {
ea04106b
AX
1335 range_tree_destroy(msp->ms_alloctree[t]);
1336 range_tree_destroy(msp->ms_freetree[t]);
34dc7c2f
BB
1337 }
1338
c06d4368 1339 for (t = 0; t < TXG_DEFER_SIZE; t++) {
ea04106b 1340 range_tree_destroy(msp->ms_defertree[t]);
c06d4368 1341 }
428870ff 1342
c06d4368 1343 ASSERT0(msp->ms_deferspace);
428870ff 1344
34dc7c2f 1345 mutex_exit(&msp->ms_lock);
ea04106b 1346 cv_destroy(&msp->ms_load_cv);
34dc7c2f
BB
1347 mutex_destroy(&msp->ms_lock);
1348
1349 kmem_free(msp, sizeof (metaslab_t));
1350}
1351
ea04106b
AX
1352#define FRAGMENTATION_TABLE_SIZE 17
1353
1354/*
1355 * This table defines a segment size based fragmentation metric that will
1356 * allow each metaslab to derive its own fragmentation value. This is done
1357 * by calculating the space in each bucket of the spacemap histogram and
1358 * multiplying that by the fragmetation metric in this table. Doing
1359 * this for all buckets and dividing it by the total amount of free
1360 * space in this metaslab (i.e. the total free space in all buckets) gives
1361 * us the fragmentation metric. This means that a high fragmentation metric
1362 * equates to most of the free space being comprised of small segments.
1363 * Conversely, if the metric is low, then most of the free space is in
1364 * large segments. A 10% change in fragmentation equates to approximately
1365 * double the number of segments.
1366 *
1367 * This table defines 0% fragmented space using 16MB segments. Testing has
1368 * shown that segments that are greater than or equal to 16MB do not suffer
1369 * from drastic performance problems. Using this value, we derive the rest
1370 * of the table. Since the fragmentation value is never stored on disk, it
1371 * is possible to change these calculations in the future.
1372 */
1373int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1374 100, /* 512B */
1375 100, /* 1K */
1376 98, /* 2K */
1377 95, /* 4K */
1378 90, /* 8K */
1379 80, /* 16K */
1380 70, /* 32K */
1381 60, /* 64K */
1382 50, /* 128K */
1383 40, /* 256K */
1384 30, /* 512K */
1385 20, /* 1M */
1386 15, /* 2M */
1387 10, /* 4M */
1388 5, /* 8M */
1389 0 /* 16M */
1390};
1391
1392/*
1393 * Calclate the metaslab's fragmentation metric. A return value
1394 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1395 * not support this metric. Otherwise, the return value should be in the
1396 * range [0, 100].
1397 */
1398static uint64_t
1399metaslab_fragmentation(metaslab_t *msp)
1400{
1401 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1402 uint64_t fragmentation = 0;
1403 uint64_t total = 0;
1404 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1405 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1406 int i;
1407
1408 if (!feature_enabled)
1409 return (ZFS_FRAG_INVALID);
1410
1411 /*
1412 * A null space map means that the entire metaslab is free
1413 * and thus is not fragmented.
1414 */
1415 if (msp->ms_sm == NULL)
1416 return (0);
1417
1418 /*
1419 * If this metaslab's space_map has not been upgraded, flag it
1420 * so that we upgrade next time we encounter it.
1421 */
1422 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1423 vdev_t *vd = msp->ms_group->mg_vd;
1424
1425 if (spa_writeable(vd->vdev_spa)) {
1426 uint64_t txg = spa_syncing_txg(spa);
1427
1428 msp->ms_condense_wanted = B_TRUE;
1429 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1430 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1431 "msp %p, vd %p", txg, msp, vd);
1432 }
1433 return (ZFS_FRAG_INVALID);
1434 }
1435
1436 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1437 uint64_t space = 0;
1438 uint8_t shift = msp->ms_sm->sm_shift;
1439 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1440 FRAGMENTATION_TABLE_SIZE - 1);
1441
1442 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1443 continue;
1444
1445 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1446 total += space;
34dc7c2f 1447
ea04106b
AX
1448 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1449 fragmentation += space * zfs_frag_table[idx];
1450 }
1451
1452 if (total > 0)
1453 fragmentation /= total;
1454 ASSERT3U(fragmentation, <=, 100);
1455 return (fragmentation);
1456}
1457
1458/*
1459 * Compute a weight -- a selection preference value -- for the given metaslab.
1460 * This is based on the amount of free space, the level of fragmentation,
1461 * the LBA range, and whether the metaslab is loaded.
1462 */
34dc7c2f
BB
1463static uint64_t
1464metaslab_weight(metaslab_t *msp)
1465{
1466 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1467 vdev_t *vd = mg->mg_vd;
1468 uint64_t weight, space;
1469
1470 ASSERT(MUTEX_HELD(&msp->ms_lock));
1471
a08ee875
LG
1472 /*
1473 * This vdev is in the process of being removed so there is nothing
1474 * for us to do here.
1475 */
1476 if (vd->vdev_removing) {
ea04106b 1477 ASSERT0(space_map_allocated(msp->ms_sm));
a08ee875
LG
1478 ASSERT0(vd->vdev_ms_shift);
1479 return (0);
1480 }
1481
34dc7c2f
BB
1482 /*
1483 * The baseline weight is the metaslab's free space.
1484 */
ea04106b
AX
1485 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1486
1487 msp->ms_fragmentation = metaslab_fragmentation(msp);
1488 if (metaslab_fragmentation_factor_enabled &&
1489 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1490 /*
1491 * Use the fragmentation information to inversely scale
1492 * down the baseline weight. We need to ensure that we
1493 * don't exclude this metaslab completely when it's 100%
1494 * fragmented. To avoid this we reduce the fragmented value
1495 * by 1.
1496 */
1497 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1498
1499 /*
1500 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1501 * this metaslab again. The fragmentation metric may have
1502 * decreased the space to something smaller than
1503 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1504 * so that we can consume any remaining space.
1505 */
1506 if (space > 0 && space < SPA_MINBLOCKSIZE)
1507 space = SPA_MINBLOCKSIZE;
1508 }
34dc7c2f
BB
1509 weight = space;
1510
1511 /*
1512 * Modern disks have uniform bit density and constant angular velocity.
1513 * Therefore, the outer recording zones are faster (higher bandwidth)
1514 * than the inner zones by the ratio of outer to inner track diameter,
1515 * which is typically around 2:1. We account for this by assigning
1516 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1517 * In effect, this means that we'll select the metaslab with the most
1518 * free bandwidth rather than simply the one with the most free space.
1519 */
ea04106b
AX
1520 if (metaslab_lba_weighting_enabled) {
1521 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1522 ASSERT(weight >= space && weight <= 2 * space);
1523 }
34dc7c2f
BB
1524
1525 /*
ea04106b
AX
1526 * If this metaslab is one we're actively using, adjust its
1527 * weight to make it preferable to any inactive metaslab so
1528 * we'll polish it off. If the fragmentation on this metaslab
1529 * has exceed our threshold, then don't mark it active.
34dc7c2f 1530 */
ea04106b
AX
1531 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1532 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
1533 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1534 }
428870ff 1535
ea04106b 1536 return (weight);
34dc7c2f
BB
1537}
1538
1539static int
6d974228 1540metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
34dc7c2f 1541{
34dc7c2f
BB
1542 ASSERT(MUTEX_HELD(&msp->ms_lock));
1543
1544 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
ea04106b
AX
1545 metaslab_load_wait(msp);
1546 if (!msp->ms_loaded) {
1547 int error = metaslab_load(msp);
1548 if (error) {
428870ff
BB
1549 metaslab_group_sort(msp->ms_group, msp, 0);
1550 return (error);
1551 }
34dc7c2f 1552 }
9babb374 1553
34dc7c2f
BB
1554 metaslab_group_sort(msp->ms_group, msp,
1555 msp->ms_weight | activation_weight);
1556 }
ea04106b 1557 ASSERT(msp->ms_loaded);
34dc7c2f
BB
1558 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1559
1560 return (0);
1561}
1562
1563static void
1564metaslab_passivate(metaslab_t *msp, uint64_t size)
1565{
1566 /*
1567 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1568 * this metaslab again. In that case, it had better be empty,
1569 * or we would be leaving space on the table.
1570 */
ea04106b 1571 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
34dc7c2f
BB
1572 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1573 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1574}
1575
ea04106b
AX
1576static void
1577metaslab_preload(void *arg)
1578{
1579 metaslab_t *msp = arg;
1580 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1581
1582 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1583
1584 mutex_enter(&msp->ms_lock);
1585 metaslab_load_wait(msp);
1586 if (!msp->ms_loaded)
1587 (void) metaslab_load(msp);
1588
1589 /*
1590 * Set the ms_access_txg value so that we don't unload it right away.
1591 */
1592 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1593 mutex_exit(&msp->ms_lock);
1594}
1595
1596static void
1597metaslab_group_preload(metaslab_group_t *mg)
1598{
1599 spa_t *spa = mg->mg_vd->vdev_spa;
1600 metaslab_t *msp;
1601 avl_tree_t *t = &mg->mg_metaslab_tree;
1602 int m = 0;
1603
1604 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1605 taskq_wait(mg->mg_taskq);
1606 return;
1607 }
1608
1609 mutex_enter(&mg->mg_lock);
1610 /*
1611 * Load the next potential metaslabs
1612 */
1613 msp = avl_first(t);
1614 while (msp != NULL) {
1615 metaslab_t *msp_next = AVL_NEXT(t, msp);
1616
1617 /*
1618 * We preload only the maximum number of metaslabs specified
1619 * by metaslab_preload_limit. If a metaslab is being forced
1620 * to condense then we preload it too. This will ensure
1621 * that force condensing happens in the next txg.
1622 */
1623 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1624 msp = msp_next;
1625 continue;
1626 }
1627
1628 /*
1629 * We must drop the metaslab group lock here to preserve
1630 * lock ordering with the ms_lock (when grabbing both
1631 * the mg_lock and the ms_lock, the ms_lock must be taken
1632 * first). As a result, it is possible that the ordering
1633 * of the metaslabs within the avl tree may change before
1634 * we reacquire the lock. The metaslab cannot be removed from
1635 * the tree while we're in syncing context so it is safe to
1636 * drop the mg_lock here. If the metaslabs are reordered
1637 * nothing will break -- we just may end up loading a
1638 * less than optimal one.
1639 */
1640 mutex_exit(&mg->mg_lock);
1641 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1642 msp, TQ_SLEEP) != 0);
1643 mutex_enter(&mg->mg_lock);
1644 msp = msp_next;
1645 }
1646 mutex_exit(&mg->mg_lock);
1647}
1648
c06d4368 1649/*
ea04106b
AX
1650 * Determine if the space map's on-disk footprint is past our tolerance
1651 * for inefficiency. We would like to use the following criteria to make
1652 * our decision:
c06d4368
AX
1653 *
1654 * 1. The size of the space map object should not dramatically increase as a
ea04106b 1655 * result of writing out the free space range tree.
c06d4368
AX
1656 *
1657 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
ea04106b
AX
1658 * times the size than the free space range tree representation
1659 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1660 *
1661 * 3. The on-disk size of the space map should actually decrease.
c06d4368
AX
1662 *
1663 * Checking the first condition is tricky since we don't want to walk
1664 * the entire AVL tree calculating the estimated on-disk size. Instead we
ea04106b
AX
1665 * use the size-ordered range tree in the metaslab and calculate the
1666 * size required to write out the largest segment in our free tree. If the
c06d4368
AX
1667 * size required to represent that segment on disk is larger than the space
1668 * map object then we avoid condensing this map.
1669 *
1670 * To determine the second criterion we use a best-case estimate and assume
1671 * each segment can be represented on-disk as a single 64-bit entry. We refer
1672 * to this best-case estimate as the space map's minimal form.
ea04106b
AX
1673 *
1674 * Unfortunately, we cannot compute the on-disk size of the space map in this
1675 * context because we cannot accurately compute the effects of compression, etc.
1676 * Instead, we apply the heuristic described in the block comment for
1677 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1678 * is greater than a threshold number of blocks.
c06d4368
AX
1679 */
1680static boolean_t
1681metaslab_should_condense(metaslab_t *msp)
1682{
ea04106b
AX
1683 space_map_t *sm = msp->ms_sm;
1684 range_seg_t *rs;
1685 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1686 dmu_object_info_t doi;
1687 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
c06d4368
AX
1688
1689 ASSERT(MUTEX_HELD(&msp->ms_lock));
ea04106b 1690 ASSERT(msp->ms_loaded);
c06d4368
AX
1691
1692 /*
ea04106b
AX
1693 * Use the ms_size_tree range tree, which is ordered by size, to
1694 * obtain the largest segment in the free tree. We always condense
1695 * metaslabs that are empty and metaslabs for which a condense
1696 * request has been made.
c06d4368 1697 */
ea04106b
AX
1698 rs = avl_last(&msp->ms_size_tree);
1699 if (rs == NULL || msp->ms_condense_wanted)
c06d4368
AX
1700 return (B_TRUE);
1701
1702 /*
1703 * Calculate the number of 64-bit entries this segment would
1704 * require when written to disk. If this single segment would be
1705 * larger on-disk than the entire current on-disk structure, then
1706 * clearly condensing will increase the on-disk structure size.
1707 */
ea04106b 1708 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
c06d4368
AX
1709 entries = size / (MIN(size, SM_RUN_MAX));
1710 segsz = entries * sizeof (uint64_t);
1711
ea04106b
AX
1712 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1713 object_size = space_map_length(msp->ms_sm);
1714
1715 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1716 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1717
1718 return (segsz <= object_size &&
1719 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1720 object_size > zfs_metaslab_condense_block_threshold * record_size);
c06d4368
AX
1721}
1722
1723/*
1724 * Condense the on-disk space map representation to its minimized form.
1725 * The minimized form consists of a small number of allocations followed by
ea04106b 1726 * the entries of the free range tree.
c06d4368
AX
1727 */
1728static void
1729metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1730{
1731 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
ea04106b
AX
1732 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1733 range_tree_t *condense_tree;
1734 space_map_t *sm = msp->ms_sm;
c06d4368
AX
1735 int t;
1736
1737 ASSERT(MUTEX_HELD(&msp->ms_lock));
1738 ASSERT3U(spa_sync_pass(spa), ==, 1);
ea04106b
AX
1739 ASSERT(msp->ms_loaded);
1740
c06d4368
AX
1741
1742 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
ea04106b
AX
1743 "smp size %llu, segments %lu, forcing condense=%s", txg,
1744 msp->ms_id, msp, space_map_length(msp->ms_sm),
1745 avl_numnodes(&msp->ms_tree->rt_root),
1746 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1747
1748 msp->ms_condense_wanted = B_FALSE;
c06d4368
AX
1749
1750 /*
ea04106b 1751 * Create an range tree that is 100% allocated. We remove segments
c06d4368
AX
1752 * that have been freed in this txg, any deferred frees that exist,
1753 * and any allocation in the future. Removing segments should be
ea04106b
AX
1754 * a relatively inexpensive operation since we expect these trees to
1755 * have a small number of nodes.
c06d4368 1756 */
ea04106b
AX
1757 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1758 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
c06d4368
AX
1759
1760 /*
ea04106b 1761 * Remove what's been freed in this txg from the condense_tree.
c06d4368 1762 * Since we're in sync_pass 1, we know that all the frees from
ea04106b 1763 * this txg are in the freetree.
c06d4368 1764 */
ea04106b 1765 range_tree_walk(freetree, range_tree_remove, condense_tree);
c06d4368 1766
ea04106b
AX
1767 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1768 range_tree_walk(msp->ms_defertree[t],
1769 range_tree_remove, condense_tree);
1770 }
c06d4368 1771
ea04106b
AX
1772 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1773 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1774 range_tree_remove, condense_tree);
1775 }
c06d4368
AX
1776
1777 /*
1778 * We're about to drop the metaslab's lock thus allowing
1779 * other consumers to change it's content. Set the
ea04106b 1780 * metaslab's ms_condensing flag to ensure that
c06d4368
AX
1781 * allocations on this metaslab do not occur while we're
1782 * in the middle of committing it to disk. This is only critical
ea04106b 1783 * for the ms_tree as all other range trees use per txg
c06d4368
AX
1784 * views of their content.
1785 */
ea04106b 1786 msp->ms_condensing = B_TRUE;
c06d4368
AX
1787
1788 mutex_exit(&msp->ms_lock);
ea04106b 1789 space_map_truncate(sm, tx);
c06d4368
AX
1790 mutex_enter(&msp->ms_lock);
1791
1792 /*
1793 * While we would ideally like to create a space_map representation
1794 * that consists only of allocation records, doing so can be
ea04106b 1795 * prohibitively expensive because the in-core free tree can be
c06d4368 1796 * large, and therefore computationally expensive to subtract
ea04106b
AX
1797 * from the condense_tree. Instead we sync out two trees, a cheap
1798 * allocation only tree followed by the in-core free tree. While not
c06d4368
AX
1799 * optimal, this is typically close to optimal, and much cheaper to
1800 * compute.
1801 */
ea04106b
AX
1802 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1803 range_tree_vacate(condense_tree, NULL, NULL);
1804 range_tree_destroy(condense_tree);
c06d4368 1805
ea04106b
AX
1806 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1807 msp->ms_condensing = B_FALSE;
c06d4368
AX
1808}
1809
34dc7c2f
BB
1810/*
1811 * Write a metaslab to disk in the context of the specified transaction group.
1812 */
1813void
1814metaslab_sync(metaslab_t *msp, uint64_t txg)
1815{
ea04106b
AX
1816 metaslab_group_t *mg = msp->ms_group;
1817 vdev_t *vd = mg->mg_vd;
34dc7c2f 1818 spa_t *spa = vd->vdev_spa;
428870ff 1819 objset_t *mos = spa_meta_objset(spa);
ea04106b
AX
1820 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1821 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1822 range_tree_t **freed_tree =
1823 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
34dc7c2f 1824 dmu_tx_t *tx;
ea04106b 1825 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 1826
428870ff
BB
1827 ASSERT(!vd->vdev_ishole);
1828
c06d4368
AX
1829 /*
1830 * This metaslab has just been added so there's no work to do now.
1831 */
ea04106b
AX
1832 if (*freetree == NULL) {
1833 ASSERT3P(alloctree, ==, NULL);
c06d4368
AX
1834 return;
1835 }
1836
ea04106b
AX
1837 ASSERT3P(alloctree, !=, NULL);
1838 ASSERT3P(*freetree, !=, NULL);
1839 ASSERT3P(*freed_tree, !=, NULL);
c06d4368 1840
ea04106b
AX
1841 /*
1842 * Normally, we don't want to process a metaslab if there
1843 * are no allocations or frees to perform. However, if the metaslab
1844 * is being forced to condense we need to let it through.
1845 */
1846 if (range_tree_space(alloctree) == 0 &&
1847 range_tree_space(*freetree) == 0 &&
1848 !msp->ms_condense_wanted)
428870ff 1849 return;
34dc7c2f
BB
1850
1851 /*
1852 * The only state that can actually be changing concurrently with
ea04106b
AX
1853 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1854 * be modifying this txg's alloctree, freetree, freed_tree, or
1855 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1856 * space_map ASSERTs. We drop it whenever we call into the DMU,
1857 * because the DMU can call down to us (e.g. via zio_free()) at
1858 * any time.
34dc7c2f 1859 */
428870ff
BB
1860
1861 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 1862
ea04106b
AX
1863 if (msp->ms_sm == NULL) {
1864 uint64_t new_object;
1865
1866 new_object = space_map_alloc(mos, tx);
1867 VERIFY3U(new_object, !=, 0);
1868
1869 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1870 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1871 &msp->ms_lock));
1872 ASSERT(msp->ms_sm != NULL);
34dc7c2f
BB
1873 }
1874
428870ff
BB
1875 mutex_enter(&msp->ms_lock);
1876
ea04106b
AX
1877 /*
1878 * Note: metaslab_condense() clears the space_map's histogram.
1879 * Therefore we muse verify and remove this histogram before
1880 * condensing.
1881 */
1882 metaslab_group_histogram_verify(mg);
1883 metaslab_class_histogram_verify(mg->mg_class);
1884 metaslab_group_histogram_remove(mg, msp);
1885
1886 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
c06d4368
AX
1887 metaslab_should_condense(msp)) {
1888 metaslab_condense(msp, txg, tx);
1889 } else {
ea04106b
AX
1890 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1891 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
c06d4368 1892 }
428870ff 1893
ea04106b
AX
1894 if (msp->ms_loaded) {
1895 /*
1896 * When the space map is loaded, we have an accruate
1897 * histogram in the range tree. This gives us an opportunity
1898 * to bring the space map's histogram up-to-date so we clear
1899 * it first before updating it.
1900 */
1901 space_map_histogram_clear(msp->ms_sm);
1902 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1903 } else {
1904 /*
1905 * Since the space map is not loaded we simply update the
1906 * exisiting histogram with what was freed in this txg. This
1907 * means that the on-disk histogram may not have an accurate
1908 * view of the free space but it's close enough to allow
1909 * us to make allocation decisions.
1910 */
1911 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1912 }
1913 metaslab_group_histogram_add(mg, msp);
1914 metaslab_group_histogram_verify(mg);
1915 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 1916
c06d4368 1917 /*
ea04106b
AX
1918 * For sync pass 1, we avoid traversing this txg's free range tree
1919 * and instead will just swap the pointers for freetree and
1920 * freed_tree. We can safely do this since the freed_tree is
c06d4368
AX
1921 * guaranteed to be empty on the initial pass.
1922 */
1923 if (spa_sync_pass(spa) == 1) {
ea04106b 1924 range_tree_swap(freetree, freed_tree);
c06d4368 1925 } else {
ea04106b 1926 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
34dc7c2f 1927 }
ea04106b 1928 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 1929
ea04106b
AX
1930 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1931 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
34dc7c2f
BB
1932
1933 mutex_exit(&msp->ms_lock);
1934
ea04106b
AX
1935 if (object != space_map_object(msp->ms_sm)) {
1936 object = space_map_object(msp->ms_sm);
1937 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1938 msp->ms_id, sizeof (uint64_t), &object, tx);
1939 }
34dc7c2f
BB
1940 dmu_tx_commit(tx);
1941}
1942
1943/*
1944 * Called after a transaction group has completely synced to mark
1945 * all of the metaslab's free space as usable.
1946 */
1947void
1948metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1949{
34dc7c2f
BB
1950 metaslab_group_t *mg = msp->ms_group;
1951 vdev_t *vd = mg->mg_vd;
ea04106b
AX
1952 range_tree_t **freed_tree;
1953 range_tree_t **defer_tree;
428870ff 1954 int64_t alloc_delta, defer_delta;
d6320ddb 1955 int t;
428870ff
BB
1956
1957 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
1958
1959 mutex_enter(&msp->ms_lock);
1960
1961 /*
1962 * If this metaslab is just becoming available, initialize its
ea04106b
AX
1963 * alloctrees, freetrees, and defertree and add its capacity to
1964 * the vdev.
34dc7c2f 1965 */
ea04106b 1966 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
d6320ddb 1967 for (t = 0; t < TXG_SIZE; t++) {
ea04106b
AX
1968 ASSERT(msp->ms_alloctree[t] == NULL);
1969 ASSERT(msp->ms_freetree[t] == NULL);
1970
1971 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1972 &msp->ms_lock);
1973 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1974 &msp->ms_lock);
34dc7c2f 1975 }
428870ff 1976
c06d4368 1977 for (t = 0; t < TXG_DEFER_SIZE; t++) {
ea04106b 1978 ASSERT(msp->ms_defertree[t] == NULL);
c06d4368 1979
ea04106b
AX
1980 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1981 &msp->ms_lock);
1982 }
428870ff 1983
ea04106b 1984 vdev_space_update(vd, 0, 0, msp->ms_size);
34dc7c2f
BB
1985 }
1986
ea04106b
AX
1987 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1988 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1989
1990 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1991 defer_delta = range_tree_space(*freed_tree) -
1992 range_tree_space(*defer_tree);
428870ff
BB
1993
1994 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
34dc7c2f 1995
ea04106b
AX
1996 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1997 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
34dc7c2f
BB
1998
1999 /*
ea04106b 2000 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 2001 * so that we have a consistent view of the in-core space map.
34dc7c2f 2002 */
ea04106b 2003 metaslab_load_wait(msp);
a08ee875
LG
2004
2005 /*
ea04106b
AX
2006 * Move the frees from the defer_tree back to the free
2007 * range tree (if it's loaded). Swap the freed_tree and the
2008 * defer_tree -- this is safe to do because we've just emptied out
2009 * the defer_tree.
a08ee875 2010 */
ea04106b
AX
2011 range_tree_vacate(*defer_tree,
2012 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2013 range_tree_swap(freed_tree, defer_tree);
34dc7c2f 2014
ea04106b 2015 space_map_update(msp->ms_sm);
34dc7c2f 2016
428870ff
BB
2017 msp->ms_deferspace += defer_delta;
2018 ASSERT3S(msp->ms_deferspace, >=, 0);
ea04106b 2019 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
2020 if (msp->ms_deferspace != 0) {
2021 /*
2022 * Keep syncing this metaslab until all deferred frees
2023 * are back in circulation.
2024 */
2025 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2026 }
2027
ea04106b
AX
2028 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2029 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2030 VERIFY0(range_tree_space(
2031 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2032 }
34dc7c2f 2033
ea04106b
AX
2034 if (!metaslab_debug_unload)
2035 metaslab_unload(msp);
34dc7c2f
BB
2036 }
2037
2038 metaslab_group_sort(mg, msp, metaslab_weight(msp));
34dc7c2f
BB
2039 mutex_exit(&msp->ms_lock);
2040}
2041
428870ff
BB
2042void
2043metaslab_sync_reassess(metaslab_group_t *mg)
2044{
ea04106b
AX
2045 metaslab_group_alloc_update(mg);
2046 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 2047
428870ff 2048 /*
ea04106b 2049 * Preload the next potential metaslabs
428870ff 2050 */
ea04106b 2051 metaslab_group_preload(mg);
428870ff
BB
2052}
2053
34dc7c2f
BB
2054static uint64_t
2055metaslab_distance(metaslab_t *msp, dva_t *dva)
2056{
2057 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2058 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
ea04106b 2059 uint64_t start = msp->ms_id;
34dc7c2f
BB
2060
2061 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2062 return (1ULL << 63);
2063
2064 if (offset < start)
2065 return ((start - offset) << ms_shift);
2066 if (offset > start)
2067 return ((offset - start) << ms_shift);
2068 return (0);
2069}
2070
2071static uint64_t
6d974228 2072metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
ea04106b 2073 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
34dc7c2f 2074{
6d974228 2075 spa_t *spa = mg->mg_vd->vdev_spa;
34dc7c2f
BB
2076 metaslab_t *msp = NULL;
2077 uint64_t offset = -1ULL;
2078 avl_tree_t *t = &mg->mg_metaslab_tree;
2079 uint64_t activation_weight;
2080 uint64_t target_distance;
2081 int i;
2082
2083 activation_weight = METASLAB_WEIGHT_PRIMARY;
9babb374
BB
2084 for (i = 0; i < d; i++) {
2085 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 2086 activation_weight = METASLAB_WEIGHT_SECONDARY;
9babb374
BB
2087 break;
2088 }
2089 }
34dc7c2f
BB
2090
2091 for (;;) {
9babb374
BB
2092 boolean_t was_active;
2093
34dc7c2f
BB
2094 mutex_enter(&mg->mg_lock);
2095 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
6d974228
GW
2096 if (msp->ms_weight < asize) {
2097 spa_dbgmsg(spa, "%s: failed to meet weight "
2098 "requirement: vdev %llu, txg %llu, mg %p, "
2099 "msp %p, psize %llu, asize %llu, "
ea04106b
AX
2100 "weight %llu", spa_name(spa),
2101 mg->mg_vd->vdev_id, txg,
2102 mg, msp, psize, asize, msp->ms_weight);
34dc7c2f
BB
2103 mutex_exit(&mg->mg_lock);
2104 return (-1ULL);
2105 }
a08ee875
LG
2106
2107 /*
2108 * If the selected metaslab is condensing, skip it.
2109 */
ea04106b 2110 if (msp->ms_condensing)
a08ee875
LG
2111 continue;
2112
9babb374 2113 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
34dc7c2f
BB
2114 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2115 break;
2116
2117 target_distance = min_distance +
ea04106b
AX
2118 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2119 min_distance >> 1);
34dc7c2f
BB
2120
2121 for (i = 0; i < d; i++)
2122 if (metaslab_distance(msp, &dva[i]) <
2123 target_distance)
2124 break;
2125 if (i == d)
2126 break;
2127 }
2128 mutex_exit(&mg->mg_lock);
2129 if (msp == NULL)
2130 return (-1ULL);
2131
a08ee875
LG
2132 mutex_enter(&msp->ms_lock);
2133
34dc7c2f
BB
2134 /*
2135 * Ensure that the metaslab we have selected is still
2136 * capable of handling our request. It's possible that
2137 * another thread may have changed the weight while we
2138 * were blocked on the metaslab lock.
2139 */
6d974228 2140 if (msp->ms_weight < asize || (was_active &&
9babb374
BB
2141 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2142 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
34dc7c2f
BB
2143 mutex_exit(&msp->ms_lock);
2144 continue;
2145 }
2146
2147 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2148 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2149 metaslab_passivate(msp,
2150 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2151 mutex_exit(&msp->ms_lock);
2152 continue;
2153 }
2154
6d974228 2155 if (metaslab_activate(msp, activation_weight) != 0) {
34dc7c2f
BB
2156 mutex_exit(&msp->ms_lock);
2157 continue;
2158 }
2159
a08ee875
LG
2160 /*
2161 * If this metaslab is currently condensing then pick again as
2162 * we can't manipulate this metaslab until it's committed
2163 * to disk.
2164 */
ea04106b 2165 if (msp->ms_condensing) {
a08ee875
LG
2166 mutex_exit(&msp->ms_lock);
2167 continue;
2168 }
2169
ea04106b 2170 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
34dc7c2f
BB
2171 break;
2172
ea04106b 2173 metaslab_passivate(msp, metaslab_block_maxsize(msp));
34dc7c2f
BB
2174 mutex_exit(&msp->ms_lock);
2175 }
2176
ea04106b 2177 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
34dc7c2f
BB
2178 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2179
ea04106b
AX
2180 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2181 msp->ms_access_txg = txg + metaslab_unload_delay;
34dc7c2f
BB
2182
2183 mutex_exit(&msp->ms_lock);
2184
2185 return (offset);
2186}
2187
2188/*
2189 * Allocate a block for the specified i/o.
2190 */
2191static int
2192metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
b128c09f 2193 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
34dc7c2f 2194{
920dd524 2195 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f
BB
2196 vdev_t *vd;
2197 int dshift = 3;
2198 int all_zero;
fb5f0bc8
BB
2199 int zio_lock = B_FALSE;
2200 boolean_t allocatable;
34dc7c2f
BB
2201 uint64_t offset = -1ULL;
2202 uint64_t asize;
2203 uint64_t distance;
2204
2205 ASSERT(!DVA_IS_VALID(&dva[d]));
2206
2207 /*
2208 * For testing, make some blocks above a certain size be gang blocks.
2209 */
428870ff 2210 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
a08ee875 2211 return (SET_ERROR(ENOSPC));
34dc7c2f 2212
920dd524
ED
2213 if (flags & METASLAB_FASTWRITE)
2214 mutex_enter(&mc->mc_fastwrite_lock);
2215
34dc7c2f
BB
2216 /*
2217 * Start at the rotor and loop through all mgs until we find something.
428870ff 2218 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
2219 * nothing actually breaks if we miss a few updates -- we just won't
2220 * allocate quite as evenly. It all balances out over time.
2221 *
2222 * If we are doing ditto or log blocks, try to spread them across
2223 * consecutive vdevs. If we're forced to reuse a vdev before we've
2224 * allocated all of our ditto blocks, then try and spread them out on
2225 * that vdev as much as possible. If it turns out to not be possible,
2226 * gradually lower our standards until anything becomes acceptable.
2227 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2228 * gives us hope of containing our fault domains to something we're
2229 * able to reason about. Otherwise, any two top-level vdev failures
2230 * will guarantee the loss of data. With consecutive allocation,
2231 * only two adjacent top-level vdev failures will result in data loss.
2232 *
2233 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2234 * ourselves on the same vdev as our gang block header. That
2235 * way, we can hope for locality in vdev_cache, plus it makes our
2236 * fault domains something tractable.
2237 */
2238 if (hintdva) {
2239 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
2240
2241 /*
2242 * It's possible the vdev we're using as the hint no
2243 * longer exists (i.e. removed). Consult the rotor when
2244 * all else fails.
2245 */
2246 if (vd != NULL) {
34dc7c2f 2247 mg = vd->vdev_mg;
428870ff
BB
2248
2249 if (flags & METASLAB_HINTBP_AVOID &&
2250 mg->mg_next != NULL)
2251 mg = mg->mg_next;
2252 } else {
2253 mg = mc->mc_rotor;
2254 }
34dc7c2f
BB
2255 } else if (d != 0) {
2256 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2257 mg = vd->vdev_mg->mg_next;
920dd524
ED
2258 } else if (flags & METASLAB_FASTWRITE) {
2259 mg = fast_mg = mc->mc_rotor;
2260
2261 do {
2262 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2263 mg->mg_vd->vdev_pending_fastwrite)
2264 mg = fast_mg;
2265 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2266
34dc7c2f
BB
2267 } else {
2268 mg = mc->mc_rotor;
2269 }
2270
2271 /*
428870ff
BB
2272 * If the hint put us into the wrong metaslab class, or into a
2273 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 2274 */
428870ff 2275 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
2276 mg = mc->mc_rotor;
2277
2278 rotor = mg;
2279top:
2280 all_zero = B_TRUE;
2281 do {
428870ff
BB
2282 ASSERT(mg->mg_activation_count == 1);
2283
34dc7c2f 2284 vd = mg->mg_vd;
fb5f0bc8 2285
34dc7c2f 2286 /*
b128c09f 2287 * Don't allocate from faulted devices.
34dc7c2f 2288 */
fb5f0bc8
BB
2289 if (zio_lock) {
2290 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2291 allocatable = vdev_allocatable(vd);
2292 spa_config_exit(spa, SCL_ZIO, FTAG);
2293 } else {
2294 allocatable = vdev_allocatable(vd);
2295 }
a08ee875
LG
2296
2297 /*
2298 * Determine if the selected metaslab group is eligible
2299 * for allocations. If we're ganging or have requested
2300 * an allocation for the smallest gang block size
2301 * then we don't want to avoid allocating to the this
2302 * metaslab group. If we're in this condition we should
2303 * try to allocate from any device possible so that we
2304 * don't inadvertently return ENOSPC and suspend the pool
2305 * even though space is still available.
2306 */
2307 if (allocatable && CAN_FASTGANG(flags) &&
2308 psize > SPA_GANGBLOCKSIZE)
2309 allocatable = metaslab_group_allocatable(mg);
2310
fb5f0bc8 2311 if (!allocatable)
34dc7c2f 2312 goto next;
fb5f0bc8 2313
34dc7c2f
BB
2314 /*
2315 * Avoid writing single-copy data to a failing vdev
a08ee875 2316 * unless the user instructs us that it is okay.
34dc7c2f
BB
2317 */
2318 if ((vd->vdev_stat.vs_write_errors > 0 ||
2319 vd->vdev_state < VDEV_STATE_HEALTHY) &&
ea04106b 2320 d == 0 && dshift == 3 && vd->vdev_children == 0) {
34dc7c2f
BB
2321 all_zero = B_FALSE;
2322 goto next;
2323 }
2324
2325 ASSERT(mg->mg_class == mc);
2326
2327 distance = vd->vdev_asize >> dshift;
2328 if (distance <= (1ULL << vd->vdev_ms_shift))
2329 distance = 0;
2330 else
2331 all_zero = B_FALSE;
2332
2333 asize = vdev_psize_to_asize(vd, psize);
2334 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2335
6d974228 2336 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
ea04106b 2337 dva, d);
34dc7c2f
BB
2338 if (offset != -1ULL) {
2339 /*
2340 * If we've just selected this metaslab group,
2341 * figure out whether the corresponding vdev is
2342 * over- or under-used relative to the pool,
2343 * and set an allocation bias to even it out.
2344 */
ea04106b 2345 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 2346 vdev_stat_t *vs = &vd->vdev_stat;
428870ff 2347 int64_t vu, cu;
34dc7c2f 2348
6d974228
GW
2349 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2350 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
34dc7c2f
BB
2351
2352 /*
6d974228
GW
2353 * Calculate how much more or less we should
2354 * try to allocate from this device during
2355 * this iteration around the rotor.
2356 * For example, if a device is 80% full
2357 * and the pool is 20% full then we should
2358 * reduce allocations by 60% on this device.
2359 *
2360 * mg_bias = (20 - 80) * 512K / 100 = -307K
2361 *
2362 * This reduces allocations by 307K for this
2363 * iteration.
34dc7c2f 2364 */
428870ff 2365 mg->mg_bias = ((cu - vu) *
6d974228 2366 (int64_t)mg->mg_aliquot) / 100;
ea04106b
AX
2367 } else if (!metaslab_bias_enabled) {
2368 mg->mg_bias = 0;
34dc7c2f
BB
2369 }
2370
920dd524
ED
2371 if ((flags & METASLAB_FASTWRITE) ||
2372 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
2373 mg->mg_aliquot + mg->mg_bias) {
2374 mc->mc_rotor = mg->mg_next;
428870ff 2375 mc->mc_aliquot = 0;
34dc7c2f
BB
2376 }
2377
2378 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2379 DVA_SET_OFFSET(&dva[d], offset);
b128c09f 2380 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
34dc7c2f
BB
2381 DVA_SET_ASIZE(&dva[d], asize);
2382
920dd524
ED
2383 if (flags & METASLAB_FASTWRITE) {
2384 atomic_add_64(&vd->vdev_pending_fastwrite,
2385 psize);
2386 mutex_exit(&mc->mc_fastwrite_lock);
2387 }
2388
34dc7c2f
BB
2389 return (0);
2390 }
2391next:
2392 mc->mc_rotor = mg->mg_next;
428870ff 2393 mc->mc_aliquot = 0;
34dc7c2f
BB
2394 } while ((mg = mg->mg_next) != rotor);
2395
2396 if (!all_zero) {
2397 dshift++;
2398 ASSERT(dshift < 64);
2399 goto top;
2400 }
2401
9babb374 2402 if (!allocatable && !zio_lock) {
fb5f0bc8
BB
2403 dshift = 3;
2404 zio_lock = B_TRUE;
2405 goto top;
2406 }
2407
34dc7c2f
BB
2408 bzero(&dva[d], sizeof (dva_t));
2409
920dd524
ED
2410 if (flags & METASLAB_FASTWRITE)
2411 mutex_exit(&mc->mc_fastwrite_lock);
a08ee875
LG
2412
2413 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
2414}
2415
2416/*
2417 * Free the block represented by DVA in the context of the specified
2418 * transaction group.
2419 */
2420static void
2421metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2422{
2423 uint64_t vdev = DVA_GET_VDEV(dva);
2424 uint64_t offset = DVA_GET_OFFSET(dva);
2425 uint64_t size = DVA_GET_ASIZE(dva);
2426 vdev_t *vd;
2427 metaslab_t *msp;
2428
34dc7c2f
BB
2429 if (txg > spa_freeze_txg(spa))
2430 return;
2431
ea04106b 2432 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 2433 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
ea04106b
AX
2434 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
2435 (u_longlong_t)vdev, (u_longlong_t)offset,
2436 (u_longlong_t)size);
34dc7c2f
BB
2437 return;
2438 }
2439
2440 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2441
2442 if (DVA_GET_GANG(dva))
2443 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2444
2445 mutex_enter(&msp->ms_lock);
2446
2447 if (now) {
ea04106b 2448 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
34dc7c2f 2449 offset, size);
ea04106b
AX
2450
2451 VERIFY(!msp->ms_condensing);
2452 VERIFY3U(offset, >=, msp->ms_start);
2453 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2454 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2455 msp->ms_size);
2456 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2457 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2458 range_tree_add(msp->ms_tree, offset, size);
34dc7c2f 2459 } else {
ea04106b 2460 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
34dc7c2f 2461 vdev_dirty(vd, VDD_METASLAB, msp, txg);
ea04106b
AX
2462 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2463 offset, size);
34dc7c2f
BB
2464 }
2465
2466 mutex_exit(&msp->ms_lock);
2467}
2468
2469/*
2470 * Intent log support: upon opening the pool after a crash, notify the SPA
2471 * of blocks that the intent log has allocated for immediate write, but
2472 * which are still considered free by the SPA because the last transaction
2473 * group didn't commit yet.
2474 */
2475static int
2476metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2477{
2478 uint64_t vdev = DVA_GET_VDEV(dva);
2479 uint64_t offset = DVA_GET_OFFSET(dva);
2480 uint64_t size = DVA_GET_ASIZE(dva);
2481 vdev_t *vd;
2482 metaslab_t *msp;
428870ff 2483 int error = 0;
34dc7c2f
BB
2484
2485 ASSERT(DVA_IS_VALID(dva));
2486
2487 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2488 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
a08ee875 2489 return (SET_ERROR(ENXIO));
34dc7c2f
BB
2490
2491 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2492
2493 if (DVA_GET_GANG(dva))
2494 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2495
2496 mutex_enter(&msp->ms_lock);
2497
ea04106b 2498 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
6d974228 2499 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
428870ff 2500
ea04106b 2501 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
a08ee875 2502 error = SET_ERROR(ENOENT);
428870ff 2503
b128c09f 2504 if (error || txg == 0) { /* txg == 0 indicates dry run */
34dc7c2f
BB
2505 mutex_exit(&msp->ms_lock);
2506 return (error);
2507 }
2508
ea04106b
AX
2509 VERIFY(!msp->ms_condensing);
2510 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2511 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2512 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2513 range_tree_remove(msp->ms_tree, offset, size);
b128c09f 2514
fb5f0bc8 2515 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
ea04106b 2516 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
b128c09f 2517 vdev_dirty(vd, VDD_METASLAB, msp, txg);
ea04106b 2518 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
b128c09f 2519 }
34dc7c2f
BB
2520
2521 mutex_exit(&msp->ms_lock);
2522
2523 return (0);
2524}
2525
2526int
2527metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
b128c09f 2528 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
34dc7c2f
BB
2529{
2530 dva_t *dva = bp->blk_dva;
2531 dva_t *hintdva = hintbp->blk_dva;
d6320ddb 2532 int d, error = 0;
34dc7c2f 2533
b128c09f 2534 ASSERT(bp->blk_birth == 0);
428870ff 2535 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
2536
2537 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2538
2539 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2540 spa_config_exit(spa, SCL_ALLOC, FTAG);
a08ee875 2541 return (SET_ERROR(ENOSPC));
b128c09f 2542 }
34dc7c2f
BB
2543
2544 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2545 ASSERT(BP_GET_NDVAS(bp) == 0);
2546 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2547
d6320ddb 2548 for (d = 0; d < ndvas; d++) {
34dc7c2f 2549 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
b128c09f 2550 txg, flags);
ea04106b 2551 if (error != 0) {
34dc7c2f
BB
2552 for (d--; d >= 0; d--) {
2553 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2554 bzero(&dva[d], sizeof (dva_t));
2555 }
b128c09f 2556 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f
BB
2557 return (error);
2558 }
2559 }
2560 ASSERT(error == 0);
2561 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2562
b128c09f
BB
2563 spa_config_exit(spa, SCL_ALLOC, FTAG);
2564
428870ff 2565 BP_SET_BIRTH(bp, txg, txg);
b128c09f 2566
34dc7c2f
BB
2567 return (0);
2568}
2569
2570void
2571metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2572{
2573 const dva_t *dva = bp->blk_dva;
d6320ddb 2574 int d, ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
2575
2576 ASSERT(!BP_IS_HOLE(bp));
428870ff 2577 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f
BB
2578
2579 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 2580
d6320ddb 2581 for (d = 0; d < ndvas; d++)
34dc7c2f 2582 metaslab_free_dva(spa, &dva[d], txg, now);
b128c09f
BB
2583
2584 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
2585}
2586
2587int
2588metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2589{
2590 const dva_t *dva = bp->blk_dva;
2591 int ndvas = BP_GET_NDVAS(bp);
d6320ddb 2592 int d, error = 0;
34dc7c2f
BB
2593
2594 ASSERT(!BP_IS_HOLE(bp));
2595
b128c09f
BB
2596 if (txg != 0) {
2597 /*
2598 * First do a dry run to make sure all DVAs are claimable,
2599 * so we don't have to unwind from partial failures below.
2600 */
2601 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2602 return (error);
2603 }
2604
2605 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2606
d6320ddb 2607 for (d = 0; d < ndvas; d++)
34dc7c2f 2608 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
b128c09f
BB
2609 break;
2610
2611 spa_config_exit(spa, SCL_ALLOC, FTAG);
2612
2613 ASSERT(error == 0 || txg == 0);
34dc7c2f 2614
b128c09f 2615 return (error);
34dc7c2f 2616}
920dd524 2617
a08ee875
LG
2618void
2619metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
2620{
2621 const dva_t *dva = bp->blk_dva;
2622 int ndvas = BP_GET_NDVAS(bp);
2623 uint64_t psize = BP_GET_PSIZE(bp);
2624 int d;
2625 vdev_t *vd;
2626
2627 ASSERT(!BP_IS_HOLE(bp));
ea04106b 2628 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
2629 ASSERT(psize > 0);
2630
2631 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2632
2633 for (d = 0; d < ndvas; d++) {
2634 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2635 continue;
2636 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2637 }
2638
2639 spa_config_exit(spa, SCL_VDEV, FTAG);
2640}
2641
a08ee875
LG
2642void
2643metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
2644{
2645 const dva_t *dva = bp->blk_dva;
2646 int ndvas = BP_GET_NDVAS(bp);
2647 uint64_t psize = BP_GET_PSIZE(bp);
2648 int d;
2649 vdev_t *vd;
2650
2651 ASSERT(!BP_IS_HOLE(bp));
ea04106b 2652 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
2653 ASSERT(psize > 0);
2654
2655 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2656
2657 for (d = 0; d < ndvas; d++) {
2658 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2659 continue;
2660 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2661 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2662 }
2663
2664 spa_config_exit(spa, SCL_VDEV, FTAG);
2665}
30b92c1d 2666
a08ee875
LG
2667void
2668metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2669{
2670 int i, j;
2671
2672 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2673 return;
2674
2675 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2676 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
ea04106b
AX
2677 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2678 vdev_t *vd = vdev_lookup_top(spa, vdev);
2679 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
a08ee875 2680 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
ea04106b 2681 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
a08ee875 2682
ea04106b
AX
2683 if (msp->ms_loaded)
2684 range_tree_verify(msp->ms_tree, offset, size);
a08ee875
LG
2685
2686 for (j = 0; j < TXG_SIZE; j++)
ea04106b 2687 range_tree_verify(msp->ms_freetree[j], offset, size);
a08ee875 2688 for (j = 0; j < TXG_DEFER_SIZE; j++)
ea04106b 2689 range_tree_verify(msp->ms_defertree[j], offset, size);
a08ee875
LG
2690 }
2691 spa_config_exit(spa, SCL_VDEV, FTAG);
2692}
2693
30b92c1d 2694#if defined(_KERNEL) && defined(HAVE_SPL)
ea04106b
AX
2695module_param(metaslab_debug_load, int, 0644);
2696module_param(metaslab_debug_unload, int, 0644);
2697module_param(metaslab_preload_enabled, int, 0644);
2698module_param(zfs_mg_noalloc_threshold, int, 0644);
2699module_param(zfs_mg_fragmentation_threshold, int, 0644);
2700module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2701module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2702module_param(metaslab_lba_weighting_enabled, int, 0644);
2703module_param(metaslab_bias_enabled, int, 0644);
2704
2705MODULE_PARM_DESC(metaslab_debug_load,
2706 "load all metaslabs when pool is first opened");
2707MODULE_PARM_DESC(metaslab_debug_unload,
2708 "prevent metaslabs from being unloaded");
2709MODULE_PARM_DESC(metaslab_preload_enabled,
2710 "preload potential metaslabs during reassessment");
2711
2712MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2713 "percentage of free space for metaslab group to allow allocation");
2714MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2715 "fragmentation for metaslab group to allow allocation");
2716
2717MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2718 "fragmentation for metaslab to allow allocation");
2719MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2720 "use the fragmentation metric to prefer less fragmented metaslabs");
2721MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2722 "prefer metaslabs with lower LBAs");
2723MODULE_PARM_DESC(metaslab_bias_enabled,
2724 "enable metaslab group biasing");
30b92c1d 2725#endif /* _KERNEL && HAVE_SPL */