]> git.proxmox.com Git - mirror_zfs-debian.git/blame - module/zfs/vdev.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
ea04106b 25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/vdev_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/metaslab.h>
37#include <sys/metaslab_impl.h>
38#include <sys/space_map.h>
ea04106b 39#include <sys/space_reftree.h>
34dc7c2f
BB
40#include <sys/zio.h>
41#include <sys/zap.h>
42#include <sys/fs/zfs.h>
b128c09f 43#include <sys/arc.h>
9babb374 44#include <sys/zil.h>
428870ff 45#include <sys/dsl_scan.h>
6c285672 46#include <sys/zvol.h>
34dc7c2f 47
ea04106b
AX
48/*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52int metaslabs_per_vdev = 200;
53
34dc7c2f
BB
54/*
55 * Virtual device management.
56 */
57
58static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
428870ff 67 &vdev_hole_ops,
34dc7c2f
BB
68 NULL
69};
70
34dc7c2f
BB
71/*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74static vdev_ops_t *
75vdev_getops(const char *type)
76{
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84}
85
86/*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90uint64_t
91vdev_default_asize(vdev_t *vd, uint64_t psize)
92{
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
d6320ddb 95 int c;
34dc7c2f 96
d6320ddb 97 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103}
104
105/*
9babb374
BB
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
34dc7c2f
BB
110 */
111uint64_t
9babb374 112vdev_get_min_asize(vdev_t *vd)
34dc7c2f 113{
9babb374 114 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 115
9babb374 116 /*
1bd201e7 117 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
34dc7c2f
BB
122
123 /*
9babb374
BB
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
34dc7c2f 126 */
9babb374
BB
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 129
9babb374
BB
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
34dc7c2f 136
9babb374
BB
137 return (pvd->vdev_min_asize);
138}
139
140void
141vdev_set_min_asize(vdev_t *vd)
142{
d6320ddb 143 int c;
9babb374 144 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 145
d6320ddb 146 for (c = 0; c < vd->vdev_children; c++)
9babb374 147 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
148}
149
150vdev_t *
151vdev_lookup_top(spa_t *spa, uint64_t vdev)
152{
153 vdev_t *rvd = spa->spa_root_vdev;
154
b128c09f 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 156
b128c09f
BB
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 159 return (rvd->vdev_child[vdev]);
b128c09f 160 }
34dc7c2f
BB
161
162 return (NULL);
163}
164
165vdev_t *
166vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167{
34dc7c2f 168 vdev_t *mvd;
d6320ddb 169 int c;
34dc7c2f
BB
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
d6320ddb 174 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180}
181
182void
183vdev_add_child(vdev_t *pvd, vdev_t *cvd)
184{
185 size_t oldsize, newsize;
186 uint64_t id = cvd->vdev_id;
187 vdev_t **newchild;
188
b128c09f 189 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
190 ASSERT(cvd->vdev_parent == NULL);
191
192 cvd->vdev_parent = pvd;
193
194 if (pvd == NULL)
195 return;
196
197 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
198
199 oldsize = pvd->vdev_children * sizeof (vdev_t *);
200 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
201 newsize = pvd->vdev_children * sizeof (vdev_t *);
202
ea04106b 203 newchild = kmem_alloc(newsize, KM_SLEEP);
34dc7c2f
BB
204 if (pvd->vdev_child != NULL) {
205 bcopy(pvd->vdev_child, newchild, oldsize);
206 kmem_free(pvd->vdev_child, oldsize);
207 }
208
209 pvd->vdev_child = newchild;
210 pvd->vdev_child[id] = cvd;
211
212 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
213 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
214
215 /*
216 * Walk up all ancestors to update guid sum.
217 */
218 for (; pvd != NULL; pvd = pvd->vdev_parent)
219 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
220}
221
222void
223vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
224{
225 int c;
226 uint_t id = cvd->vdev_id;
227
228 ASSERT(cvd->vdev_parent == pvd);
229
230 if (pvd == NULL)
231 return;
232
233 ASSERT(id < pvd->vdev_children);
234 ASSERT(pvd->vdev_child[id] == cvd);
235
236 pvd->vdev_child[id] = NULL;
237 cvd->vdev_parent = NULL;
238
239 for (c = 0; c < pvd->vdev_children; c++)
240 if (pvd->vdev_child[c])
241 break;
242
243 if (c == pvd->vdev_children) {
244 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
245 pvd->vdev_child = NULL;
246 pvd->vdev_children = 0;
247 }
248
249 /*
250 * Walk up all ancestors to update guid sum.
251 */
252 for (; pvd != NULL; pvd = pvd->vdev_parent)
253 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
254}
255
256/*
257 * Remove any holes in the child array.
258 */
259void
260vdev_compact_children(vdev_t *pvd)
261{
262 vdev_t **newchild, *cvd;
263 int oldc = pvd->vdev_children;
9babb374 264 int newc;
d6320ddb 265 int c;
34dc7c2f 266
b128c09f 267 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 268
d6320ddb 269 for (c = newc = 0; c < oldc; c++)
34dc7c2f
BB
270 if (pvd->vdev_child[c])
271 newc++;
272
ea04106b 273 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
34dc7c2f 274
d6320ddb 275 for (c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
276 if ((cvd = pvd->vdev_child[c]) != NULL) {
277 newchild[newc] = cvd;
278 cvd->vdev_id = newc++;
279 }
280 }
281
282 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283 pvd->vdev_child = newchild;
284 pvd->vdev_children = newc;
285}
286
287/*
288 * Allocate and minimally initialize a vdev_t.
289 */
428870ff 290vdev_t *
34dc7c2f
BB
291vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292{
293 vdev_t *vd;
d6320ddb 294 int t;
34dc7c2f 295
ea04106b 296 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
34dc7c2f
BB
297
298 if (spa->spa_root_vdev == NULL) {
299 ASSERT(ops == &vdev_root_ops);
300 spa->spa_root_vdev = vd;
3541dc6d 301 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
302 }
303
428870ff 304 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
305 if (spa->spa_root_vdev == vd) {
306 /*
307 * The root vdev's guid will also be the pool guid,
308 * which must be unique among all pools.
309 */
428870ff 310 guid = spa_generate_guid(NULL);
34dc7c2f
BB
311 } else {
312 /*
313 * Any other vdev's guid must be unique within the pool.
314 */
428870ff 315 guid = spa_generate_guid(spa);
34dc7c2f
BB
316 }
317 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318 }
319
320 vd->vdev_spa = spa;
321 vd->vdev_id = id;
322 vd->vdev_guid = guid;
323 vd->vdev_guid_sum = guid;
324 vd->vdev_ops = ops;
325 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 326 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f 327
98f72a53
BB
328 list_link_init(&vd->vdev_config_dirty_node);
329 list_link_init(&vd->vdev_state_dirty_node);
34dc7c2f
BB
330 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
331 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 332 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d6320ddb 333 for (t = 0; t < DTL_TYPES; t++) {
ea04106b 334 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
fb5f0bc8
BB
335 &vd->vdev_dtl_lock);
336 }
34dc7c2f
BB
337 txg_list_create(&vd->vdev_ms_list,
338 offsetof(struct metaslab, ms_txg_node));
339 txg_list_create(&vd->vdev_dtl_list,
340 offsetof(struct vdev, vdev_dtl_node));
341 vd->vdev_stat.vs_timestamp = gethrtime();
342 vdev_queue_init(vd);
343 vdev_cache_init(vd);
344
345 return (vd);
346}
347
348/*
349 * Allocate a new vdev. The 'alloctype' is used to control whether we are
350 * creating a new vdev or loading an existing one - the behavior is slightly
351 * different for each case.
352 */
353int
354vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
355 int alloctype)
356{
357 vdev_ops_t *ops;
358 char *type;
359 uint64_t guid = 0, islog, nparity;
360 vdev_t *vd;
361
b128c09f 362 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
363
364 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
a08ee875 365 return (SET_ERROR(EINVAL));
34dc7c2f
BB
366
367 if ((ops = vdev_getops(type)) == NULL)
a08ee875 368 return (SET_ERROR(EINVAL));
34dc7c2f
BB
369
370 /*
371 * If this is a load, get the vdev guid from the nvlist.
372 * Otherwise, vdev_alloc_common() will generate one for us.
373 */
374 if (alloctype == VDEV_ALLOC_LOAD) {
375 uint64_t label_id;
376
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
378 label_id != id)
a08ee875 379 return (SET_ERROR(EINVAL));
34dc7c2f
BB
380
381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
a08ee875 382 return (SET_ERROR(EINVAL));
34dc7c2f
BB
383 } else if (alloctype == VDEV_ALLOC_SPARE) {
384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
a08ee875 385 return (SET_ERROR(EINVAL));
34dc7c2f
BB
386 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
387 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
a08ee875 388 return (SET_ERROR(EINVAL));
9babb374
BB
389 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
a08ee875 391 return (SET_ERROR(EINVAL));
34dc7c2f
BB
392 }
393
394 /*
395 * The first allocated vdev must be of type 'root'.
396 */
397 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
a08ee875 398 return (SET_ERROR(EINVAL));
34dc7c2f
BB
399
400 /*
401 * Determine whether we're a log vdev.
402 */
403 islog = 0;
404 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
405 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
a08ee875 406 return (SET_ERROR(ENOTSUP));
34dc7c2f 407
428870ff 408 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
a08ee875 409 return (SET_ERROR(ENOTSUP));
428870ff 410
34dc7c2f
BB
411 /*
412 * Set the nparity property for RAID-Z vdevs.
413 */
414 nparity = -1ULL;
415 if (ops == &vdev_raidz_ops) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
417 &nparity) == 0) {
428870ff 418 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
a08ee875 419 return (SET_ERROR(EINVAL));
34dc7c2f 420 /*
45d1cae3
BB
421 * Previous versions could only support 1 or 2 parity
422 * device.
34dc7c2f 423 */
45d1cae3
BB
424 if (nparity > 1 &&
425 spa_version(spa) < SPA_VERSION_RAIDZ2)
a08ee875 426 return (SET_ERROR(ENOTSUP));
45d1cae3
BB
427 if (nparity > 2 &&
428 spa_version(spa) < SPA_VERSION_RAIDZ3)
a08ee875 429 return (SET_ERROR(ENOTSUP));
34dc7c2f
BB
430 } else {
431 /*
432 * We require the parity to be specified for SPAs that
433 * support multiple parity levels.
434 */
45d1cae3 435 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
a08ee875 436 return (SET_ERROR(EINVAL));
34dc7c2f
BB
437 /*
438 * Otherwise, we default to 1 parity device for RAID-Z.
439 */
440 nparity = 1;
441 }
442 } else {
443 nparity = 0;
444 }
445 ASSERT(nparity != -1ULL);
446
447 vd = vdev_alloc_common(spa, id, guid, ops);
448
449 vd->vdev_islog = islog;
450 vd->vdev_nparity = nparity;
451
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
453 vd->vdev_path = spa_strdup(vd->vdev_path);
454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
455 vd->vdev_devid = spa_strdup(vd->vdev_devid);
456 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
457 &vd->vdev_physpath) == 0)
458 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
9babb374
BB
459 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
460 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
461
462 /*
463 * Set the whole_disk property. If it's not specified, leave the value
464 * as -1.
465 */
466 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
467 &vd->vdev_wholedisk) != 0)
468 vd->vdev_wholedisk = -1ULL;
469
470 /*
471 * Look for the 'not present' flag. This will only be set if the device
472 * was not present at the time of import.
473 */
9babb374
BB
474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
475 &vd->vdev_not_present);
34dc7c2f
BB
476
477 /*
478 * Get the alignment requirement.
479 */
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
481
428870ff
BB
482 /*
483 * Retrieve the vdev creation time.
484 */
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
486 &vd->vdev_crtxg);
487
34dc7c2f
BB
488 /*
489 * If we're a top-level vdev, try to load the allocation parameters.
490 */
428870ff
BB
491 if (parent && !parent->vdev_parent &&
492 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
494 &vd->vdev_ms_array);
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
496 &vd->vdev_ms_shift);
497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
498 &vd->vdev_asize);
428870ff
BB
499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
500 &vd->vdev_removing);
501 }
502
5ffb9d1d 503 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
504 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
505 alloctype == VDEV_ALLOC_ADD ||
506 alloctype == VDEV_ALLOC_SPLIT ||
507 alloctype == VDEV_ALLOC_ROOTPOOL);
508 vd->vdev_mg = metaslab_group_create(islog ?
509 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
510 }
511
512 /*
513 * If we're a leaf vdev, try to load the DTL object and other state.
514 */
b128c09f 515 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
516 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
517 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
518 if (alloctype == VDEV_ALLOC_LOAD) {
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
ea04106b 520 &vd->vdev_dtl_object);
b128c09f
BB
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
522 &vd->vdev_unspare);
523 }
9babb374
BB
524
525 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
526 uint64_t spare = 0;
527
528 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
529 &spare) == 0 && spare)
530 spa_spare_add(vd);
531 }
532
34dc7c2f
BB
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
534 &vd->vdev_offline);
b128c09f 535
a08ee875
LG
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
537 &vd->vdev_resilver_txg);
572e2857 538
34dc7c2f
BB
539 /*
540 * When importing a pool, we want to ignore the persistent fault
541 * state, as the diagnosis made on another system may not be
428870ff
BB
542 * valid in the current context. Local vdevs will
543 * remain in the faulted state.
34dc7c2f 544 */
428870ff 545 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
34dc7c2f
BB
546 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
547 &vd->vdev_faulted);
548 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
549 &vd->vdev_degraded);
550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
551 &vd->vdev_removed);
428870ff
BB
552
553 if (vd->vdev_faulted || vd->vdev_degraded) {
554 char *aux;
555
556 vd->vdev_label_aux =
557 VDEV_AUX_ERR_EXCEEDED;
558 if (nvlist_lookup_string(nv,
559 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
560 strcmp(aux, "external") == 0)
561 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
562 }
34dc7c2f
BB
563 }
564 }
565
566 /*
567 * Add ourselves to the parent's list of children.
568 */
569 vdev_add_child(parent, vd);
570
571 *vdp = vd;
572
573 return (0);
574}
575
576void
577vdev_free(vdev_t *vd)
578{
d6320ddb 579 int c, t;
34dc7c2f
BB
580 spa_t *spa = vd->vdev_spa;
581
582 /*
583 * vdev_free() implies closing the vdev first. This is simpler than
584 * trying to ensure complicated semantics for all callers.
585 */
586 vdev_close(vd);
587
b128c09f 588 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 589 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
590
591 /*
592 * Free all children.
593 */
d6320ddb 594 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
595 vdev_free(vd->vdev_child[c]);
596
597 ASSERT(vd->vdev_child == NULL);
598 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
599
600 /*
601 * Discard allocation state.
602 */
428870ff 603 if (vd->vdev_mg != NULL) {
34dc7c2f 604 vdev_metaslab_fini(vd);
428870ff
BB
605 metaslab_group_destroy(vd->vdev_mg);
606 }
34dc7c2f 607
c06d4368
AX
608 ASSERT0(vd->vdev_stat.vs_space);
609 ASSERT0(vd->vdev_stat.vs_dspace);
610 ASSERT0(vd->vdev_stat.vs_alloc);
34dc7c2f
BB
611
612 /*
613 * Remove this vdev from its parent's child list.
614 */
615 vdev_remove_child(vd->vdev_parent, vd);
616
617 ASSERT(vd->vdev_parent == NULL);
618
619 /*
620 * Clean up vdev structure.
621 */
622 vdev_queue_fini(vd);
623 vdev_cache_fini(vd);
624
625 if (vd->vdev_path)
626 spa_strfree(vd->vdev_path);
627 if (vd->vdev_devid)
628 spa_strfree(vd->vdev_devid);
629 if (vd->vdev_physpath)
630 spa_strfree(vd->vdev_physpath);
9babb374
BB
631 if (vd->vdev_fru)
632 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
633
634 if (vd->vdev_isspare)
635 spa_spare_remove(vd);
636 if (vd->vdev_isl2cache)
637 spa_l2cache_remove(vd);
638
639 txg_list_destroy(&vd->vdev_ms_list);
640 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 641
34dc7c2f 642 mutex_enter(&vd->vdev_dtl_lock);
ea04106b 643 space_map_close(vd->vdev_dtl_sm);
d6320ddb 644 for (t = 0; t < DTL_TYPES; t++) {
ea04106b
AX
645 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
646 range_tree_destroy(vd->vdev_dtl[t]);
fb5f0bc8 647 }
34dc7c2f 648 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 649
34dc7c2f
BB
650 mutex_destroy(&vd->vdev_dtl_lock);
651 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 652 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f
BB
653
654 if (vd == spa->spa_root_vdev)
655 spa->spa_root_vdev = NULL;
656
657 kmem_free(vd, sizeof (vdev_t));
658}
659
660/*
661 * Transfer top-level vdev state from svd to tvd.
662 */
663static void
664vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
665{
666 spa_t *spa = svd->vdev_spa;
667 metaslab_t *msp;
668 vdev_t *vd;
669 int t;
670
671 ASSERT(tvd == tvd->vdev_top);
672
673 tvd->vdev_ms_array = svd->vdev_ms_array;
674 tvd->vdev_ms_shift = svd->vdev_ms_shift;
675 tvd->vdev_ms_count = svd->vdev_ms_count;
676
677 svd->vdev_ms_array = 0;
678 svd->vdev_ms_shift = 0;
679 svd->vdev_ms_count = 0;
680
5ffb9d1d
GW
681 if (tvd->vdev_mg)
682 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
683 tvd->vdev_mg = svd->vdev_mg;
684 tvd->vdev_ms = svd->vdev_ms;
685
686 svd->vdev_mg = NULL;
687 svd->vdev_ms = NULL;
688
689 if (tvd->vdev_mg != NULL)
690 tvd->vdev_mg->mg_vd = tvd;
691
692 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
693 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
694 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
695
696 svd->vdev_stat.vs_alloc = 0;
697 svd->vdev_stat.vs_space = 0;
698 svd->vdev_stat.vs_dspace = 0;
699
700 for (t = 0; t < TXG_SIZE; t++) {
701 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
702 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
703 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
704 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
705 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
706 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
707 }
708
b128c09f 709 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
710 vdev_config_clean(svd);
711 vdev_config_dirty(tvd);
712 }
713
b128c09f
BB
714 if (list_link_active(&svd->vdev_state_dirty_node)) {
715 vdev_state_clean(svd);
716 vdev_state_dirty(tvd);
717 }
718
34dc7c2f
BB
719 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
720 svd->vdev_deflate_ratio = 0;
721
722 tvd->vdev_islog = svd->vdev_islog;
723 svd->vdev_islog = 0;
724}
725
726static void
727vdev_top_update(vdev_t *tvd, vdev_t *vd)
728{
d6320ddb
BB
729 int c;
730
34dc7c2f
BB
731 if (vd == NULL)
732 return;
733
734 vd->vdev_top = tvd;
735
d6320ddb 736 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
737 vdev_top_update(tvd, vd->vdev_child[c]);
738}
739
740/*
741 * Add a mirror/replacing vdev above an existing vdev.
742 */
743vdev_t *
744vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
745{
746 spa_t *spa = cvd->vdev_spa;
747 vdev_t *pvd = cvd->vdev_parent;
748 vdev_t *mvd;
749
b128c09f 750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
751
752 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
753
754 mvd->vdev_asize = cvd->vdev_asize;
9babb374 755 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 756 mvd->vdev_max_asize = cvd->vdev_max_asize;
34dc7c2f
BB
757 mvd->vdev_ashift = cvd->vdev_ashift;
758 mvd->vdev_state = cvd->vdev_state;
428870ff 759 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
760
761 vdev_remove_child(pvd, cvd);
762 vdev_add_child(pvd, mvd);
763 cvd->vdev_id = mvd->vdev_children;
764 vdev_add_child(mvd, cvd);
765 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
766
767 if (mvd == mvd->vdev_top)
768 vdev_top_transfer(cvd, mvd);
769
770 return (mvd);
771}
772
773/*
774 * Remove a 1-way mirror/replacing vdev from the tree.
775 */
776void
777vdev_remove_parent(vdev_t *cvd)
778{
779 vdev_t *mvd = cvd->vdev_parent;
780 vdev_t *pvd = mvd->vdev_parent;
781
b128c09f 782 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
783
784 ASSERT(mvd->vdev_children == 1);
785 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
786 mvd->vdev_ops == &vdev_replacing_ops ||
787 mvd->vdev_ops == &vdev_spare_ops);
788 cvd->vdev_ashift = mvd->vdev_ashift;
789
790 vdev_remove_child(mvd, cvd);
791 vdev_remove_child(pvd, mvd);
fb5f0bc8 792
34dc7c2f 793 /*
b128c09f
BB
794 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
795 * Otherwise, we could have detached an offline device, and when we
796 * go to import the pool we'll think we have two top-level vdevs,
797 * instead of a different version of the same top-level vdev.
34dc7c2f 798 */
fb5f0bc8
BB
799 if (mvd->vdev_top == mvd) {
800 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 801 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
802 cvd->vdev_guid += guid_delta;
803 cvd->vdev_guid_sum += guid_delta;
ea04106b
AX
804
805 /*
806 * If pool not set for autoexpand, we need to also preserve
807 * mvd's asize to prevent automatic expansion of cvd.
808 * Otherwise if we are adjusting the mirror by attaching and
809 * detaching children of non-uniform sizes, the mirror could
810 * autoexpand, unexpectedly requiring larger devices to
811 * re-establish the mirror.
812 */
813 if (!cvd->vdev_spa->spa_autoexpand)
814 cvd->vdev_asize = mvd->vdev_asize;
fb5f0bc8 815 }
b128c09f
BB
816 cvd->vdev_id = mvd->vdev_id;
817 vdev_add_child(pvd, cvd);
34dc7c2f
BB
818 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
819
820 if (cvd == cvd->vdev_top)
821 vdev_top_transfer(mvd, cvd);
822
823 ASSERT(mvd->vdev_children == 0);
824 vdev_free(mvd);
825}
826
827int
828vdev_metaslab_init(vdev_t *vd, uint64_t txg)
829{
830 spa_t *spa = vd->vdev_spa;
831 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
832 uint64_t m;
833 uint64_t oldc = vd->vdev_ms_count;
834 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
835 metaslab_t **mspp;
836 int error;
837
428870ff
BB
838 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
839
840 /*
841 * This vdev is not being allocated from yet or is a hole.
842 */
843 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
844 return (0);
845
428870ff
BB
846 ASSERT(!vd->vdev_ishole);
847
9babb374
BB
848 /*
849 * Compute the raidz-deflation ratio. Note, we hard-code
850 * in 128k (1 << 17) because it is the current "typical" blocksize.
851 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
852 * or we will inconsistently account for existing bp's.
853 */
854 vd->vdev_deflate_ratio = (1 << 17) /
855 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
856
34dc7c2f
BB
857 ASSERT(oldc <= newc);
858
ea04106b 859 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
34dc7c2f
BB
860
861 if (oldc != 0) {
862 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
863 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
864 }
865
866 vd->vdev_ms = mspp;
867 vd->vdev_ms_count = newc;
868
869 for (m = oldc; m < newc; m++) {
ea04106b
AX
870 uint64_t object = 0;
871
34dc7c2f 872 if (txg == 0) {
34dc7c2f 873 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
874 m * sizeof (uint64_t), sizeof (uint64_t), &object,
875 DMU_READ_PREFETCH);
34dc7c2f
BB
876 if (error)
877 return (error);
34dc7c2f 878 }
ea04106b
AX
879
880 error = metaslab_init(vd->vdev_mg, m, object, txg,
881 &(vd->vdev_ms[m]));
882 if (error)
883 return (error);
34dc7c2f
BB
884 }
885
428870ff
BB
886 if (txg == 0)
887 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
888
889 /*
890 * If the vdev is being removed we don't activate
891 * the metaslabs since we want to ensure that no new
892 * allocations are performed on this device.
893 */
894 if (oldc == 0 && !vd->vdev_removing)
895 metaslab_group_activate(vd->vdev_mg);
896
897 if (txg == 0)
898 spa_config_exit(spa, SCL_ALLOC, FTAG);
899
34dc7c2f
BB
900 return (0);
901}
902
903void
904vdev_metaslab_fini(vdev_t *vd)
905{
906 uint64_t m;
907 uint64_t count = vd->vdev_ms_count;
908
909 if (vd->vdev_ms != NULL) {
428870ff 910 metaslab_group_passivate(vd->vdev_mg);
ea04106b
AX
911 for (m = 0; m < count; m++) {
912 metaslab_t *msp = vd->vdev_ms[m];
913
914 if (msp != NULL)
915 metaslab_fini(msp);
916 }
34dc7c2f
BB
917 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
918 vd->vdev_ms = NULL;
919 }
920dd524
ED
920
921 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
34dc7c2f
BB
922}
923
b128c09f
BB
924typedef struct vdev_probe_stats {
925 boolean_t vps_readable;
926 boolean_t vps_writeable;
927 int vps_flags;
b128c09f
BB
928} vdev_probe_stats_t;
929
930static void
931vdev_probe_done(zio_t *zio)
34dc7c2f 932{
fb5f0bc8 933 spa_t *spa = zio->io_spa;
d164b209 934 vdev_t *vd = zio->io_vd;
b128c09f 935 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
936
937 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
938
939 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
940 if (zio->io_error == 0)
941 vps->vps_readable = 1;
fb5f0bc8 942 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 943 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
b128c09f
BB
944 zio->io_offset, zio->io_size, zio->io_data,
945 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
946 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
947 } else {
948 zio_buf_free(zio->io_data, zio->io_size);
949 }
950 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
951 if (zio->io_error == 0)
952 vps->vps_writeable = 1;
953 zio_buf_free(zio->io_data, zio->io_size);
954 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 955 zio_t *pio;
b128c09f
BB
956
957 vd->vdev_cant_read |= !vps->vps_readable;
958 vd->vdev_cant_write |= !vps->vps_writeable;
959
960 if (vdev_readable(vd) &&
fb5f0bc8 961 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
962 zio->io_error = 0;
963 } else {
964 ASSERT(zio->io_error != 0);
965 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 966 spa, vd, NULL, 0, 0);
a08ee875 967 zio->io_error = SET_ERROR(ENXIO);
b128c09f 968 }
d164b209
BB
969
970 mutex_enter(&vd->vdev_probe_lock);
971 ASSERT(vd->vdev_probe_zio == zio);
972 vd->vdev_probe_zio = NULL;
973 mutex_exit(&vd->vdev_probe_lock);
974
975 while ((pio = zio_walk_parents(zio)) != NULL)
976 if (!vdev_accessible(vd, pio))
a08ee875 977 pio->io_error = SET_ERROR(ENXIO);
d164b209 978
b128c09f
BB
979 kmem_free(vps, sizeof (*vps));
980 }
981}
34dc7c2f 982
b128c09f 983/*
a08ee875
LG
984 * Determine whether this device is accessible.
985 *
986 * Read and write to several known locations: the pad regions of each
987 * vdev label but the first, which we leave alone in case it contains
988 * a VTOC.
b128c09f
BB
989 */
990zio_t *
d164b209 991vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
992{
993 spa_t *spa = vd->vdev_spa;
d164b209
BB
994 vdev_probe_stats_t *vps = NULL;
995 zio_t *pio;
d6320ddb 996 int l;
d164b209
BB
997
998 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 999
d164b209
BB
1000 /*
1001 * Don't probe the probe.
1002 */
1003 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1004 return (NULL);
b128c09f 1005
d164b209
BB
1006 /*
1007 * To prevent 'probe storms' when a device fails, we create
1008 * just one probe i/o at a time. All zios that want to probe
1009 * this vdev will become parents of the probe io.
1010 */
1011 mutex_enter(&vd->vdev_probe_lock);
b128c09f 1012
d164b209 1013 if ((pio = vd->vdev_probe_zio) == NULL) {
ea04106b 1014 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
d164b209
BB
1015
1016 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1017 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1018 ZIO_FLAG_TRYHARD;
d164b209
BB
1019
1020 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1021 /*
1022 * vdev_cant_read and vdev_cant_write can only
1023 * transition from TRUE to FALSE when we have the
1024 * SCL_ZIO lock as writer; otherwise they can only
1025 * transition from FALSE to TRUE. This ensures that
1026 * any zio looking at these values can assume that
1027 * failures persist for the life of the I/O. That's
1028 * important because when a device has intermittent
1029 * connectivity problems, we want to ensure that
1030 * they're ascribed to the device (ENXIO) and not
1031 * the zio (EIO).
1032 *
1033 * Since we hold SCL_ZIO as writer here, clear both
1034 * values so the probe can reevaluate from first
1035 * principles.
1036 */
1037 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1038 vd->vdev_cant_read = B_FALSE;
1039 vd->vdev_cant_write = B_FALSE;
1040 }
1041
1042 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1043 vdev_probe_done, vps,
1044 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1045
428870ff
BB
1046 /*
1047 * We can't change the vdev state in this context, so we
1048 * kick off an async task to do it on our behalf.
1049 */
d164b209
BB
1050 if (zio != NULL) {
1051 vd->vdev_probe_wanted = B_TRUE;
1052 spa_async_request(spa, SPA_ASYNC_PROBE);
1053 }
b128c09f
BB
1054 }
1055
d164b209
BB
1056 if (zio != NULL)
1057 zio_add_child(zio, pio);
b128c09f 1058
d164b209 1059 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1060
d164b209
BB
1061 if (vps == NULL) {
1062 ASSERT(zio != NULL);
1063 return (NULL);
1064 }
b128c09f 1065
d6320ddb 1066 for (l = 1; l < VDEV_LABELS; l++) {
d164b209 1067 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1068 vdev_label_offset(vd->vdev_psize, l,
9babb374
BB
1069 offsetof(vdev_label_t, vl_pad2)),
1070 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
b128c09f
BB
1071 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1072 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1073 }
1074
d164b209
BB
1075 if (zio == NULL)
1076 return (pio);
1077
1078 zio_nowait(pio);
1079 return (NULL);
34dc7c2f
BB
1080}
1081
45d1cae3
BB
1082static void
1083vdev_open_child(void *arg)
1084{
1085 vdev_t *vd = arg;
1086
1087 vd->vdev_open_thread = curthread;
1088 vd->vdev_open_error = vdev_open(vd);
1089 vd->vdev_open_thread = NULL;
1090}
1091
6c285672 1092static boolean_t
428870ff
BB
1093vdev_uses_zvols(vdev_t *vd)
1094{
d6320ddb
BB
1095 int c;
1096
6c285672
JL
1097#ifdef _KERNEL
1098 if (zvol_is_zvol(vd->vdev_path))
428870ff 1099 return (B_TRUE);
6c285672
JL
1100#endif
1101
d6320ddb 1102 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1103 if (vdev_uses_zvols(vd->vdev_child[c]))
1104 return (B_TRUE);
6c285672 1105
428870ff
BB
1106 return (B_FALSE);
1107}
1108
45d1cae3
BB
1109void
1110vdev_open_children(vdev_t *vd)
1111{
1112 taskq_t *tq;
1113 int children = vd->vdev_children;
d6320ddb 1114 int c;
45d1cae3 1115
428870ff
BB
1116 /*
1117 * in order to handle pools on top of zvols, do the opens
1118 * in a single thread so that the same thread holds the
1119 * spa_namespace_lock
1120 */
1121 if (vdev_uses_zvols(vd)) {
d6320ddb 1122 for (c = 0; c < children; c++)
428870ff
BB
1123 vd->vdev_child[c]->vdev_open_error =
1124 vdev_open(vd->vdev_child[c]);
1125 return;
1126 }
45d1cae3
BB
1127 tq = taskq_create("vdev_open", children, minclsyspri,
1128 children, children, TASKQ_PREPOPULATE);
1129
d6320ddb 1130 for (c = 0; c < children; c++)
45d1cae3 1131 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
d6320ddb 1132 TQ_SLEEP) != 0);
45d1cae3
BB
1133
1134 taskq_destroy(tq);
1135}
1136
34dc7c2f
BB
1137/*
1138 * Prepare a virtual device for access.
1139 */
1140int
1141vdev_open(vdev_t *vd)
1142{
fb5f0bc8 1143 spa_t *spa = vd->vdev_spa;
34dc7c2f 1144 int error;
34dc7c2f 1145 uint64_t osize = 0;
1bd201e7
CS
1146 uint64_t max_osize = 0;
1147 uint64_t asize, max_asize, psize;
34dc7c2f 1148 uint64_t ashift = 0;
d6320ddb 1149 int c;
34dc7c2f 1150
45d1cae3
BB
1151 ASSERT(vd->vdev_open_thread == curthread ||
1152 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1153 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1154 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1155 vd->vdev_state == VDEV_STATE_OFFLINE);
1156
34dc7c2f 1157 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1158 vd->vdev_cant_read = B_FALSE;
1159 vd->vdev_cant_write = B_FALSE;
1160 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1161
428870ff
BB
1162 /*
1163 * If this vdev is not removed, check its fault status. If it's
1164 * faulted, bail out of the open.
1165 */
34dc7c2f
BB
1166 if (!vd->vdev_removed && vd->vdev_faulted) {
1167 ASSERT(vd->vdev_children == 0);
428870ff
BB
1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1171 vd->vdev_label_aux);
a08ee875 1172 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1173 } else if (vd->vdev_offline) {
1174 ASSERT(vd->vdev_children == 0);
1175 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
a08ee875 1176 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1177 }
1178
1bd201e7 1179 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1180
428870ff
BB
1181 /*
1182 * Reset the vdev_reopening flag so that we actually close
1183 * the vdev on error.
1184 */
1185 vd->vdev_reopening = B_FALSE;
34dc7c2f 1186 if (zio_injection_enabled && error == 0)
9babb374 1187 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1188
1189 if (error) {
1190 if (vd->vdev_removed &&
1191 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1192 vd->vdev_removed = B_FALSE;
1193
1194 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1195 vd->vdev_stat.vs_aux);
1196 return (error);
1197 }
1198
1199 vd->vdev_removed = B_FALSE;
1200
428870ff
BB
1201 /*
1202 * Recheck the faulted flag now that we have confirmed that
1203 * the vdev is accessible. If we're faulted, bail.
1204 */
1205 if (vd->vdev_faulted) {
1206 ASSERT(vd->vdev_children == 0);
1207 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1208 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1210 vd->vdev_label_aux);
a08ee875 1211 return (SET_ERROR(ENXIO));
428870ff
BB
1212 }
1213
34dc7c2f
BB
1214 if (vd->vdev_degraded) {
1215 ASSERT(vd->vdev_children == 0);
1216 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1217 VDEV_AUX_ERR_EXCEEDED);
1218 } else {
428870ff 1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1220 }
1221
428870ff
BB
1222 /*
1223 * For hole or missing vdevs we just return success.
1224 */
1225 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1226 return (0);
1227
d6320ddb 1228 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1229 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1231 VDEV_AUX_NONE);
1232 break;
1233 }
9babb374 1234 }
34dc7c2f
BB
1235
1236 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1237 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1238
1239 if (vd->vdev_children == 0) {
1240 if (osize < SPA_MINDEVSIZE) {
1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242 VDEV_AUX_TOO_SMALL);
a08ee875 1243 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1244 }
1245 psize = osize;
1246 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1247 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1248 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1249 } else {
1250 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1251 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1252 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253 VDEV_AUX_TOO_SMALL);
a08ee875 1254 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1255 }
1256 psize = 0;
1257 asize = osize;
1bd201e7 1258 max_asize = max_osize;
34dc7c2f
BB
1259 }
1260
1261 vd->vdev_psize = psize;
1262
9babb374
BB
1263 /*
1264 * Make sure the allocatable size hasn't shrunk.
1265 */
1266 if (asize < vd->vdev_min_asize) {
1267 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268 VDEV_AUX_BAD_LABEL);
a08ee875 1269 return (SET_ERROR(EINVAL));
9babb374
BB
1270 }
1271
34dc7c2f
BB
1272 if (vd->vdev_asize == 0) {
1273 /*
1274 * This is the first-ever open, so use the computed values.
c06d4368 1275 * For compatibility, a different ashift can be requested.
34dc7c2f
BB
1276 */
1277 vd->vdev_asize = asize;
1bd201e7 1278 vd->vdev_max_asize = max_asize;
c06d4368
AX
1279 if (vd->vdev_ashift == 0)
1280 vd->vdev_ashift = ashift;
34dc7c2f
BB
1281 } else {
1282 /*
32a9872b
GW
1283 * Detect if the alignment requirement has increased.
1284 * We don't want to make the pool unavailable, just
1285 * post an event instead.
34dc7c2f 1286 */
32a9872b
GW
1287 if (ashift > vd->vdev_top->vdev_ashift &&
1288 vd->vdev_ops->vdev_op_leaf) {
1289 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1290 spa, vd, NULL, 0, 0);
34dc7c2f 1291 }
32a9872b 1292
1bd201e7 1293 vd->vdev_max_asize = max_asize;
9babb374 1294 }
34dc7c2f 1295
9babb374
BB
1296 /*
1297 * If all children are healthy and the asize has increased,
1298 * then we've experienced dynamic LUN growth. If automatic
1299 * expansion is enabled then use the additional space.
1300 */
1301 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1302 (vd->vdev_expanding || spa->spa_autoexpand))
1303 vd->vdev_asize = asize;
34dc7c2f 1304
9babb374 1305 vdev_set_min_asize(vd);
34dc7c2f
BB
1306
1307 /*
1308 * Ensure we can issue some IO before declaring the
1309 * vdev open for business.
1310 */
b128c09f
BB
1311 if (vd->vdev_ops->vdev_op_leaf &&
1312 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1314 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1315 return (error);
1316 }
1317
34dc7c2f 1318 /*
b128c09f 1319 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1320 * resilver. But don't do this if we are doing a reopen for a scrub,
1321 * since this would just restart the scrub we are already doing.
34dc7c2f 1322 */
fb5f0bc8
BB
1323 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1324 vdev_resilver_needed(vd, NULL, NULL))
1325 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1326
1327 return (0);
1328}
1329
1330/*
1331 * Called once the vdevs are all opened, this routine validates the label
1332 * contents. This needs to be done before vdev_load() so that we don't
1333 * inadvertently do repair I/Os to the wrong device.
1334 *
c7f2d69d
GW
1335 * If 'strict' is false ignore the spa guid check. This is necessary because
1336 * if the machine crashed during a re-guid the new guid might have been written
1337 * to all of the vdev labels, but not the cached config. The strict check
1338 * will be performed when the pool is opened again using the mos config.
1339 *
34dc7c2f
BB
1340 * This function will only return failure if one of the vdevs indicates that it
1341 * has since been destroyed or exported. This is only possible if
1342 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1343 * will be updated but the function will return 0.
1344 */
1345int
c7f2d69d 1346vdev_validate(vdev_t *vd, boolean_t strict)
34dc7c2f
BB
1347{
1348 spa_t *spa = vd->vdev_spa;
34dc7c2f 1349 nvlist_t *label;
428870ff 1350 uint64_t guid = 0, top_guid;
34dc7c2f 1351 uint64_t state;
d6320ddb 1352 int c;
34dc7c2f 1353
d6320ddb 1354 for (c = 0; c < vd->vdev_children; c++)
c7f2d69d 1355 if (vdev_validate(vd->vdev_child[c], strict) != 0)
a08ee875 1356 return (SET_ERROR(EBADF));
34dc7c2f
BB
1357
1358 /*
1359 * If the device has already failed, or was marked offline, don't do
1360 * any further validation. Otherwise, label I/O will fail and we will
1361 * overwrite the previous state.
1362 */
b128c09f 1363 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1364 uint64_t aux_guid = 0;
1365 nvlist_t *nvl;
c06d4368
AX
1366 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1367 spa_last_synced_txg(spa) : -1ULL;
34dc7c2f 1368
3bc7e0fb 1369 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
34dc7c2f
BB
1370 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1371 VDEV_AUX_BAD_LABEL);
1372 return (0);
1373 }
1374
428870ff
BB
1375 /*
1376 * Determine if this vdev has been split off into another
1377 * pool. If so, then refuse to open it.
1378 */
1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1380 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1382 VDEV_AUX_SPLIT_POOL);
1383 nvlist_free(label);
1384 return (0);
1385 }
1386
c7f2d69d
GW
1387 if (strict && (nvlist_lookup_uint64(label,
1388 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1389 guid != spa_guid(spa))) {
34dc7c2f
BB
1390 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391 VDEV_AUX_CORRUPT_DATA);
1392 nvlist_free(label);
1393 return (0);
1394 }
1395
428870ff
BB
1396 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1397 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1398 &aux_guid) != 0)
1399 aux_guid = 0;
1400
b128c09f
BB
1401 /*
1402 * If this vdev just became a top-level vdev because its
1403 * sibling was detached, it will have adopted the parent's
1404 * vdev guid -- but the label may or may not be on disk yet.
1405 * Fortunately, either version of the label will have the
1406 * same top guid, so if we're a top-level vdev, we can
1407 * safely compare to that instead.
428870ff
BB
1408 *
1409 * If we split this vdev off instead, then we also check the
1410 * original pool's guid. We don't want to consider the vdev
1411 * corrupt if it is partway through a split operation.
b128c09f 1412 */
34dc7c2f 1413 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1414 &guid) != 0 ||
1415 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1416 &top_guid) != 0 ||
428870ff 1417 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1418 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1419 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1420 VDEV_AUX_CORRUPT_DATA);
1421 nvlist_free(label);
1422 return (0);
1423 }
1424
1425 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1426 &state) != 0) {
1427 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1428 VDEV_AUX_CORRUPT_DATA);
1429 nvlist_free(label);
1430 return (0);
1431 }
1432
1433 nvlist_free(label);
1434
45d1cae3 1435 /*
572e2857 1436 * If this is a verbatim import, no need to check the
45d1cae3
BB
1437 * state of the pool.
1438 */
572e2857 1439 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1440 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f 1441 state != POOL_STATE_ACTIVE)
a08ee875 1442 return (SET_ERROR(EBADF));
34dc7c2f 1443
b128c09f
BB
1444 /*
1445 * If we were able to open and validate a vdev that was
1446 * previously marked permanently unavailable, clear that state
1447 * now.
1448 */
1449 if (vd->vdev_not_present)
1450 vd->vdev_not_present = 0;
1451 }
34dc7c2f
BB
1452
1453 return (0);
1454}
1455
1456/*
1457 * Close a virtual device.
1458 */
1459void
1460vdev_close(vdev_t *vd)
1461{
428870ff 1462 vdev_t *pvd = vd->vdev_parent;
1fde1e37 1463 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
1464
1465 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1466
428870ff
BB
1467 /*
1468 * If our parent is reopening, then we are as well, unless we are
1469 * going offline.
1470 */
1471 if (pvd != NULL && pvd->vdev_reopening)
1472 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1473
34dc7c2f
BB
1474 vd->vdev_ops->vdev_op_close(vd);
1475
1476 vdev_cache_purge(vd);
1477
1478 /*
9babb374 1479 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1480 * doing a reopen(), we don't generate FMA ereports if we notice that
1481 * it's still faulted.
1482 */
1483 vd->vdev_prevstate = vd->vdev_state;
1484
1485 if (vd->vdev_offline)
1486 vd->vdev_state = VDEV_STATE_OFFLINE;
1487 else
1488 vd->vdev_state = VDEV_STATE_CLOSED;
1489 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1490}
1491
428870ff
BB
1492void
1493vdev_hold(vdev_t *vd)
1494{
1495 spa_t *spa = vd->vdev_spa;
d6320ddb 1496 int c;
428870ff
BB
1497
1498 ASSERT(spa_is_root(spa));
1499 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1500 return;
1501
d6320ddb 1502 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1503 vdev_hold(vd->vdev_child[c]);
1504
1505 if (vd->vdev_ops->vdev_op_leaf)
1506 vd->vdev_ops->vdev_op_hold(vd);
1507}
1508
1509void
1510vdev_rele(vdev_t *vd)
1511{
d6320ddb 1512 int c;
428870ff 1513
d6320ddb
BB
1514 ASSERT(spa_is_root(vd->vdev_spa));
1515 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1516 vdev_rele(vd->vdev_child[c]);
1517
1518 if (vd->vdev_ops->vdev_op_leaf)
1519 vd->vdev_ops->vdev_op_rele(vd);
1520}
1521
1522/*
1523 * Reopen all interior vdevs and any unopened leaves. We don't actually
1524 * reopen leaf vdevs which had previously been opened as they might deadlock
1525 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1526 * If the leaf has never been opened then open it, as usual.
1527 */
34dc7c2f
BB
1528void
1529vdev_reopen(vdev_t *vd)
1530{
1531 spa_t *spa = vd->vdev_spa;
1532
b128c09f 1533 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1534
428870ff
BB
1535 /* set the reopening flag unless we're taking the vdev offline */
1536 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1537 vdev_close(vd);
1538 (void) vdev_open(vd);
1539
1540 /*
1541 * Call vdev_validate() here to make sure we have the same device.
1542 * Otherwise, a device with an invalid label could be successfully
1543 * opened in response to vdev_reopen().
1544 */
b128c09f
BB
1545 if (vd->vdev_aux) {
1546 (void) vdev_validate_aux(vd);
1547 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1548 vd->vdev_aux == &spa->spa_l2cache &&
1549 !l2arc_vdev_present(vd))
1550 l2arc_add_vdev(spa, vd);
b128c09f 1551 } else {
c06d4368 1552 (void) vdev_validate(vd, B_TRUE);
b128c09f 1553 }
34dc7c2f
BB
1554
1555 /*
1556 * Reassess parent vdev's health.
1557 */
1558 vdev_propagate_state(vd);
1559}
1560
1561int
1562vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1563{
1564 int error;
1565
1566 /*
1567 * Normally, partial opens (e.g. of a mirror) are allowed.
1568 * For a create, however, we want to fail the request if
1569 * there are any components we can't open.
1570 */
1571 error = vdev_open(vd);
1572
1573 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1574 vdev_close(vd);
1575 return (error ? error : ENXIO);
1576 }
1577
1578 /*
ea04106b 1579 * Recursively load DTLs and initialize all labels.
34dc7c2f 1580 */
ea04106b
AX
1581 if ((error = vdev_dtl_load(vd)) != 0 ||
1582 (error = vdev_label_init(vd, txg, isreplacing ?
34dc7c2f
BB
1583 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1584 vdev_close(vd);
1585 return (error);
1586 }
1587
1588 return (0);
1589}
1590
34dc7c2f 1591void
9babb374 1592vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1593{
1594 /*
ea04106b 1595 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
34dc7c2f 1596 */
ea04106b 1597 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
34dc7c2f 1598 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1599}
1600
1601void
1602vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1603{
1604 ASSERT(vd == vd->vdev_top);
428870ff 1605 ASSERT(!vd->vdev_ishole);
34dc7c2f 1606 ASSERT(ISP2(flags));
572e2857 1607 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1608
1609 if (flags & VDD_METASLAB)
1610 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1611
1612 if (flags & VDD_DTL)
1613 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1614
1615 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1616}
1617
ea04106b
AX
1618void
1619vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1620{
1621 int c;
1622
1623 for (c = 0; c < vd->vdev_children; c++)
1624 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1625
1626 if (vd->vdev_ops->vdev_op_leaf)
1627 vdev_dirty(vd->vdev_top, flags, vd, txg);
1628}
1629
fb5f0bc8
BB
1630/*
1631 * DTLs.
1632 *
1633 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1634 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1635 *
1636 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1637 *
1638 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1639 *
1640 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1641 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1642 * txgs that was scrubbed.
1643 *
1644 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1645 * persistent errors or just some device being offline.
1646 * Unlike the other three, the DTL_OUTAGE map is not generally
1647 * maintained; it's only computed when needed, typically to
1648 * determine whether a device can be detached.
1649 *
1650 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1651 * either has the data or it doesn't.
1652 *
1653 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1654 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1655 * if any child is less than fully replicated, then so is its parent.
1656 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1657 * comprising only those txgs which appear in 'maxfaults' or more children;
1658 * those are the txgs we don't have enough replication to read. For example,
1659 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1660 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1661 * two child DTL_MISSING maps.
1662 *
1663 * It should be clear from the above that to compute the DTLs and outage maps
1664 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1665 * Therefore, that is all we keep on disk. When loading the pool, or after
1666 * a configuration change, we generate all other DTLs from first principles.
1667 */
34dc7c2f 1668void
fb5f0bc8 1669vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1670{
ea04106b 1671 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
1672
1673 ASSERT(t < DTL_TYPES);
1674 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1675 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1676
ea04106b
AX
1677 mutex_enter(rt->rt_lock);
1678 if (!range_tree_contains(rt, txg, size))
1679 range_tree_add(rt, txg, size);
1680 mutex_exit(rt->rt_lock);
34dc7c2f
BB
1681}
1682
fb5f0bc8
BB
1683boolean_t
1684vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1685{
ea04106b 1686 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8 1687 boolean_t dirty = B_FALSE;
34dc7c2f 1688
fb5f0bc8
BB
1689 ASSERT(t < DTL_TYPES);
1690 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f 1691
ea04106b
AX
1692 mutex_enter(rt->rt_lock);
1693 if (range_tree_space(rt) != 0)
1694 dirty = range_tree_contains(rt, txg, size);
1695 mutex_exit(rt->rt_lock);
34dc7c2f
BB
1696
1697 return (dirty);
1698}
1699
fb5f0bc8
BB
1700boolean_t
1701vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1702{
ea04106b 1703 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
1704 boolean_t empty;
1705
ea04106b
AX
1706 mutex_enter(rt->rt_lock);
1707 empty = (range_tree_space(rt) == 0);
1708 mutex_exit(rt->rt_lock);
fb5f0bc8
BB
1709
1710 return (empty);
1711}
1712
a08ee875
LG
1713/*
1714 * Returns the lowest txg in the DTL range.
1715 */
1716static uint64_t
1717vdev_dtl_min(vdev_t *vd)
1718{
ea04106b 1719 range_seg_t *rs;
a08ee875
LG
1720
1721 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ea04106b 1722 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
a08ee875
LG
1723 ASSERT0(vd->vdev_children);
1724
ea04106b
AX
1725 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1726 return (rs->rs_start - 1);
a08ee875
LG
1727}
1728
1729/*
1730 * Returns the highest txg in the DTL.
1731 */
1732static uint64_t
1733vdev_dtl_max(vdev_t *vd)
1734{
ea04106b 1735 range_seg_t *rs;
a08ee875
LG
1736
1737 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ea04106b 1738 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
a08ee875
LG
1739 ASSERT0(vd->vdev_children);
1740
ea04106b
AX
1741 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1742 return (rs->rs_end);
a08ee875
LG
1743}
1744
1745/*
1746 * Determine if a resilvering vdev should remove any DTL entries from
1747 * its range. If the vdev was resilvering for the entire duration of the
1748 * scan then it should excise that range from its DTLs. Otherwise, this
1749 * vdev is considered partially resilvered and should leave its DTL
1750 * entries intact. The comment in vdev_dtl_reassess() describes how we
1751 * excise the DTLs.
1752 */
1753static boolean_t
1754vdev_dtl_should_excise(vdev_t *vd)
1755{
1756 spa_t *spa = vd->vdev_spa;
1757 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1758
1759 ASSERT0(scn->scn_phys.scn_errors);
1760 ASSERT0(vd->vdev_children);
1761
1762 if (vd->vdev_resilver_txg == 0 ||
ea04106b 1763 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
a08ee875
LG
1764 return (B_TRUE);
1765
1766 /*
1767 * When a resilver is initiated the scan will assign the scn_max_txg
1768 * value to the highest txg value that exists in all DTLs. If this
1769 * device's max DTL is not part of this scan (i.e. it is not in
1770 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1771 * for excision.
1772 */
1773 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1774 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1775 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1776 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1777 return (B_TRUE);
1778 }
1779 return (B_FALSE);
1780}
1781
34dc7c2f
BB
1782/*
1783 * Reassess DTLs after a config change or scrub completion.
1784 */
1785void
1786vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1787{
1788 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1789 avl_tree_t reftree;
d6320ddb 1790 int c, t, minref;
34dc7c2f 1791
fb5f0bc8 1792 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1793
d6320ddb 1794 for (c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
1795 vdev_dtl_reassess(vd->vdev_child[c], txg,
1796 scrub_txg, scrub_done);
1797
428870ff 1798 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1799 return;
1800
1801 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1802 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1803
34dc7c2f 1804 mutex_enter(&vd->vdev_dtl_lock);
a08ee875
LG
1805
1806 /*
1807 * If we've completed a scan cleanly then determine
1808 * if this vdev should remove any DTLs. We only want to
1809 * excise regions on vdevs that were available during
1810 * the entire duration of this scan.
1811 */
b128c09f 1812 if (scrub_txg != 0 &&
428870ff 1813 (spa->spa_scrub_started ||
a08ee875
LG
1814 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1815 vdev_dtl_should_excise(vd)) {
b128c09f
BB
1816 /*
1817 * We completed a scrub up to scrub_txg. If we
1818 * did it without rebooting, then the scrub dtl
1819 * will be valid, so excise the old region and
1820 * fold in the scrub dtl. Otherwise, leave the
1821 * dtl as-is if there was an error.
fb5f0bc8
BB
1822 *
1823 * There's little trick here: to excise the beginning
1824 * of the DTL_MISSING map, we put it into a reference
1825 * tree and then add a segment with refcnt -1 that
1826 * covers the range [0, scrub_txg). This means
1827 * that each txg in that range has refcnt -1 or 0.
1828 * We then add DTL_SCRUB with a refcnt of 2, so that
1829 * entries in the range [0, scrub_txg) will have a
1830 * positive refcnt -- either 1 or 2. We then convert
1831 * the reference tree into the new DTL_MISSING map.
b128c09f 1832 */
ea04106b
AX
1833 space_reftree_create(&reftree);
1834 space_reftree_add_map(&reftree,
1835 vd->vdev_dtl[DTL_MISSING], 1);
1836 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1837 space_reftree_add_map(&reftree,
1838 vd->vdev_dtl[DTL_SCRUB], 2);
1839 space_reftree_generate_map(&reftree,
1840 vd->vdev_dtl[DTL_MISSING], 1);
1841 space_reftree_destroy(&reftree);
34dc7c2f 1842 }
ea04106b
AX
1843 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1844 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1845 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1846 if (scrub_done)
ea04106b
AX
1847 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1848 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
fb5f0bc8 1849 if (!vdev_readable(vd))
ea04106b 1850 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
fb5f0bc8 1851 else
ea04106b
AX
1852 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1853 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
a08ee875
LG
1854
1855 /*
1856 * If the vdev was resilvering and no longer has any
1857 * DTLs then reset its resilvering flag.
1858 */
1859 if (vd->vdev_resilver_txg != 0 &&
ea04106b
AX
1860 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1861 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
a08ee875
LG
1862 vd->vdev_resilver_txg = 0;
1863
34dc7c2f 1864 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 1865
34dc7c2f
BB
1866 if (txg != 0)
1867 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1868 return;
1869 }
1870
34dc7c2f 1871 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 1872 for (t = 0; t < DTL_TYPES; t++) {
ea04106b
AX
1873 int c;
1874
428870ff
BB
1875 /* account for child's outage in parent's missing map */
1876 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
1877 if (t == DTL_SCRUB)
1878 continue; /* leaf vdevs only */
1879 if (t == DTL_PARTIAL)
1880 minref = 1; /* i.e. non-zero */
1881 else if (vd->vdev_nparity != 0)
1882 minref = vd->vdev_nparity + 1; /* RAID-Z */
1883 else
1884 minref = vd->vdev_children; /* any kind of mirror */
ea04106b 1885 space_reftree_create(&reftree);
d6320ddb 1886 for (c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
1887 vdev_t *cvd = vd->vdev_child[c];
1888 mutex_enter(&cvd->vdev_dtl_lock);
ea04106b 1889 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
1890 mutex_exit(&cvd->vdev_dtl_lock);
1891 }
ea04106b
AX
1892 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1893 space_reftree_destroy(&reftree);
34dc7c2f 1894 }
fb5f0bc8 1895 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
1896}
1897
ea04106b 1898int
34dc7c2f
BB
1899vdev_dtl_load(vdev_t *vd)
1900{
1901 spa_t *spa = vd->vdev_spa;
34dc7c2f 1902 objset_t *mos = spa->spa_meta_objset;
ea04106b
AX
1903 int error = 0;
1904 int c;
34dc7c2f 1905
ea04106b
AX
1906 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1907 ASSERT(!vd->vdev_ishole);
34dc7c2f 1908
ea04106b
AX
1909 error = space_map_open(&vd->vdev_dtl_sm, mos,
1910 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1911 if (error)
1912 return (error);
1913 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f 1914
ea04106b 1915 mutex_enter(&vd->vdev_dtl_lock);
428870ff 1916
ea04106b
AX
1917 /*
1918 * Now that we've opened the space_map we need to update
1919 * the in-core DTL.
1920 */
1921 space_map_update(vd->vdev_dtl_sm);
34dc7c2f 1922
ea04106b
AX
1923 error = space_map_load(vd->vdev_dtl_sm,
1924 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1925 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f 1926
ea04106b
AX
1927 return (error);
1928 }
1929
1930 for (c = 0; c < vd->vdev_children; c++) {
1931 error = vdev_dtl_load(vd->vdev_child[c]);
1932 if (error != 0)
1933 break;
1934 }
34dc7c2f
BB
1935
1936 return (error);
1937}
1938
1939void
1940vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1941{
1942 spa_t *spa = vd->vdev_spa;
ea04106b 1943 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
34dc7c2f 1944 objset_t *mos = spa->spa_meta_objset;
ea04106b
AX
1945 range_tree_t *rtsync;
1946 kmutex_t rtlock;
34dc7c2f 1947 dmu_tx_t *tx;
ea04106b 1948 uint64_t object = space_map_object(vd->vdev_dtl_sm);
34dc7c2f 1949
428870ff 1950 ASSERT(!vd->vdev_ishole);
ea04106b 1951 ASSERT(vd->vdev_ops->vdev_op_leaf);
428870ff 1952
34dc7c2f
BB
1953 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1954
ea04106b
AX
1955 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1956 mutex_enter(&vd->vdev_dtl_lock);
1957 space_map_free(vd->vdev_dtl_sm, tx);
1958 space_map_close(vd->vdev_dtl_sm);
1959 vd->vdev_dtl_sm = NULL;
1960 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f 1961 dmu_tx_commit(tx);
34dc7c2f
BB
1962 return;
1963 }
1964
ea04106b
AX
1965 if (vd->vdev_dtl_sm == NULL) {
1966 uint64_t new_object;
1967
1968 new_object = space_map_alloc(mos, tx);
1969 VERIFY3U(new_object, !=, 0);
1970
1971 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1972 0, -1ULL, 0, &vd->vdev_dtl_lock));
1973 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f
BB
1974 }
1975
ea04106b 1976 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 1977
ea04106b 1978 rtsync = range_tree_create(NULL, NULL, &rtlock);
34dc7c2f 1979
ea04106b 1980 mutex_enter(&rtlock);
34dc7c2f
BB
1981
1982 mutex_enter(&vd->vdev_dtl_lock);
ea04106b 1983 range_tree_walk(rt, range_tree_add, rtsync);
34dc7c2f
BB
1984 mutex_exit(&vd->vdev_dtl_lock);
1985
ea04106b
AX
1986 space_map_truncate(vd->vdev_dtl_sm, tx);
1987 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1988 range_tree_vacate(rtsync, NULL, NULL);
34dc7c2f 1989
ea04106b 1990 range_tree_destroy(rtsync);
34dc7c2f 1991
ea04106b
AX
1992 mutex_exit(&rtlock);
1993 mutex_destroy(&rtlock);
34dc7c2f 1994
ea04106b
AX
1995 /*
1996 * If the object for the space map has changed then dirty
1997 * the top level so that we update the config.
1998 */
1999 if (object != space_map_object(vd->vdev_dtl_sm)) {
2000 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2001 "new object %llu", txg, spa_name(spa), object,
2002 space_map_object(vd->vdev_dtl_sm));
2003 vdev_config_dirty(vd->vdev_top);
2004 }
34dc7c2f
BB
2005
2006 dmu_tx_commit(tx);
ea04106b
AX
2007
2008 mutex_enter(&vd->vdev_dtl_lock);
2009 space_map_update(vd->vdev_dtl_sm);
2010 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2011}
2012
fb5f0bc8
BB
2013/*
2014 * Determine whether the specified vdev can be offlined/detached/removed
2015 * without losing data.
2016 */
2017boolean_t
2018vdev_dtl_required(vdev_t *vd)
2019{
2020 spa_t *spa = vd->vdev_spa;
2021 vdev_t *tvd = vd->vdev_top;
2022 uint8_t cant_read = vd->vdev_cant_read;
2023 boolean_t required;
2024
2025 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2026
2027 if (vd == spa->spa_root_vdev || vd == tvd)
2028 return (B_TRUE);
2029
2030 /*
2031 * Temporarily mark the device as unreadable, and then determine
2032 * whether this results in any DTL outages in the top-level vdev.
2033 * If not, we can safely offline/detach/remove the device.
2034 */
2035 vd->vdev_cant_read = B_TRUE;
2036 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2037 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2038 vd->vdev_cant_read = cant_read;
2039 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2040
572e2857
BB
2041 if (!required && zio_injection_enabled)
2042 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2043
fb5f0bc8
BB
2044 return (required);
2045}
2046
b128c09f
BB
2047/*
2048 * Determine if resilver is needed, and if so the txg range.
2049 */
2050boolean_t
2051vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2052{
2053 boolean_t needed = B_FALSE;
2054 uint64_t thismin = UINT64_MAX;
2055 uint64_t thismax = 0;
d6320ddb 2056 int c;
b128c09f
BB
2057
2058 if (vd->vdev_children == 0) {
2059 mutex_enter(&vd->vdev_dtl_lock);
ea04106b 2060 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
fb5f0bc8 2061 vdev_writeable(vd)) {
b128c09f 2062
a08ee875
LG
2063 thismin = vdev_dtl_min(vd);
2064 thismax = vdev_dtl_max(vd);
b128c09f
BB
2065 needed = B_TRUE;
2066 }
2067 mutex_exit(&vd->vdev_dtl_lock);
2068 } else {
d6320ddb 2069 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
2070 vdev_t *cvd = vd->vdev_child[c];
2071 uint64_t cmin, cmax;
2072
2073 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2074 thismin = MIN(thismin, cmin);
2075 thismax = MAX(thismax, cmax);
2076 needed = B_TRUE;
2077 }
2078 }
2079 }
2080
2081 if (needed && minp) {
2082 *minp = thismin;
2083 *maxp = thismax;
2084 }
2085 return (needed);
2086}
2087
34dc7c2f
BB
2088void
2089vdev_load(vdev_t *vd)
2090{
d6320ddb
BB
2091 int c;
2092
34dc7c2f
BB
2093 /*
2094 * Recursively load all children.
2095 */
d6320ddb 2096 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
2097 vdev_load(vd->vdev_child[c]);
2098
2099 /*
2100 * If this is a top-level vdev, initialize its metaslabs.
2101 */
428870ff 2102 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
2103 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2104 vdev_metaslab_init(vd, 0) != 0))
2105 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2106 VDEV_AUX_CORRUPT_DATA);
2107
2108 /*
2109 * If this is a leaf vdev, load its DTL.
2110 */
2111 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2112 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2113 VDEV_AUX_CORRUPT_DATA);
2114}
2115
2116/*
2117 * The special vdev case is used for hot spares and l2cache devices. Its
2118 * sole purpose it to set the vdev state for the associated vdev. To do this,
2119 * we make sure that we can open the underlying device, then try to read the
2120 * label, and make sure that the label is sane and that it hasn't been
2121 * repurposed to another pool.
2122 */
2123int
2124vdev_validate_aux(vdev_t *vd)
2125{
2126 nvlist_t *label;
2127 uint64_t guid, version;
2128 uint64_t state;
2129
b128c09f
BB
2130 if (!vdev_readable(vd))
2131 return (0);
2132
3bc7e0fb 2133 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
34dc7c2f
BB
2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2135 VDEV_AUX_CORRUPT_DATA);
2136 return (-1);
2137 }
2138
2139 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
9ae529ec 2140 !SPA_VERSION_IS_SUPPORTED(version) ||
34dc7c2f
BB
2141 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2142 guid != vd->vdev_guid ||
2143 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2144 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2145 VDEV_AUX_CORRUPT_DATA);
2146 nvlist_free(label);
2147 return (-1);
2148 }
2149
2150 /*
2151 * We don't actually check the pool state here. If it's in fact in
2152 * use by another pool, we update this fact on the fly when requested.
2153 */
2154 nvlist_free(label);
2155 return (0);
2156}
2157
428870ff
BB
2158void
2159vdev_remove(vdev_t *vd, uint64_t txg)
2160{
2161 spa_t *spa = vd->vdev_spa;
2162 objset_t *mos = spa->spa_meta_objset;
2163 dmu_tx_t *tx;
ea04106b 2164 int m, i;
428870ff
BB
2165
2166 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2167
428870ff 2168 if (vd->vdev_ms != NULL) {
ea04106b
AX
2169 metaslab_group_t *mg = vd->vdev_mg;
2170
2171 metaslab_group_histogram_verify(mg);
2172 metaslab_class_histogram_verify(mg->mg_class);
2173
d6320ddb 2174 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
2175 metaslab_t *msp = vd->vdev_ms[m];
2176
ea04106b 2177 if (msp == NULL || msp->ms_sm == NULL)
428870ff
BB
2178 continue;
2179
ea04106b
AX
2180 mutex_enter(&msp->ms_lock);
2181 /*
2182 * If the metaslab was not loaded when the vdev
2183 * was removed then the histogram accounting may
2184 * not be accurate. Update the histogram information
2185 * here so that we ensure that the metaslab group
2186 * and metaslab class are up-to-date.
2187 */
2188 metaslab_group_histogram_remove(mg, msp);
2189
2190 VERIFY0(space_map_allocated(msp->ms_sm));
2191 space_map_free(msp->ms_sm, tx);
2192 space_map_close(msp->ms_sm);
2193 msp->ms_sm = NULL;
2194 mutex_exit(&msp->ms_lock);
428870ff 2195 }
ea04106b
AX
2196
2197 metaslab_group_histogram_verify(mg);
2198 metaslab_class_histogram_verify(mg->mg_class);
2199 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2200 ASSERT0(mg->mg_histogram[i]);
2201
428870ff
BB
2202 }
2203
2204 if (vd->vdev_ms_array) {
2205 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2206 vd->vdev_ms_array = 0;
428870ff
BB
2207 }
2208 dmu_tx_commit(tx);
2209}
2210
34dc7c2f
BB
2211void
2212vdev_sync_done(vdev_t *vd, uint64_t txg)
2213{
2214 metaslab_t *msp;
428870ff
BB
2215 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2216
2217 ASSERT(!vd->vdev_ishole);
34dc7c2f 2218
c65aa5b2 2219 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
34dc7c2f 2220 metaslab_sync_done(msp, txg);
428870ff
BB
2221
2222 if (reassess)
2223 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2224}
2225
2226void
2227vdev_sync(vdev_t *vd, uint64_t txg)
2228{
2229 spa_t *spa = vd->vdev_spa;
2230 vdev_t *lvd;
2231 metaslab_t *msp;
2232 dmu_tx_t *tx;
2233
428870ff
BB
2234 ASSERT(!vd->vdev_ishole);
2235
34dc7c2f
BB
2236 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2237 ASSERT(vd == vd->vdev_top);
2238 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2239 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2240 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2241 ASSERT(vd->vdev_ms_array != 0);
2242 vdev_config_dirty(vd);
2243 dmu_tx_commit(tx);
2244 }
2245
428870ff
BB
2246 /*
2247 * Remove the metadata associated with this vdev once it's empty.
2248 */
2249 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2250 vdev_remove(vd, txg);
2251
34dc7c2f
BB
2252 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2253 metaslab_sync(msp, txg);
2254 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2255 }
2256
2257 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2258 vdev_dtl_sync(lvd, txg);
2259
2260 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2261}
2262
2263uint64_t
2264vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2265{
2266 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2267}
2268
34dc7c2f
BB
2269/*
2270 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2271 * not be opened, and no I/O is attempted.
2272 */
2273int
428870ff 2274vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2275{
572e2857 2276 vdev_t *vd, *tvd;
34dc7c2f 2277
428870ff 2278 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2279
b128c09f
BB
2280 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2281 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2282
34dc7c2f 2283 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2284 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2285
572e2857
BB
2286 tvd = vd->vdev_top;
2287
428870ff
BB
2288 /*
2289 * We don't directly use the aux state here, but if we do a
2290 * vdev_reopen(), we need this value to be present to remember why we
2291 * were faulted.
2292 */
2293 vd->vdev_label_aux = aux;
2294
34dc7c2f
BB
2295 /*
2296 * Faulted state takes precedence over degraded.
2297 */
428870ff 2298 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2299 vd->vdev_faulted = 1ULL;
2300 vd->vdev_degraded = 0ULL;
428870ff 2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2302
2303 /*
428870ff
BB
2304 * If this device has the only valid copy of the data, then
2305 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2306 */
572e2857 2307 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2308 vd->vdev_degraded = 1ULL;
2309 vd->vdev_faulted = 0ULL;
2310
2311 /*
2312 * If we reopen the device and it's not dead, only then do we
2313 * mark it degraded.
2314 */
572e2857 2315 vdev_reopen(tvd);
34dc7c2f 2316
428870ff
BB
2317 if (vdev_readable(vd))
2318 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2319 }
2320
b128c09f 2321 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2322}
2323
2324/*
2325 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2326 * user that something is wrong. The vdev continues to operate as normal as far
2327 * as I/O is concerned.
2328 */
2329int
428870ff 2330vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2331{
b128c09f 2332 vdev_t *vd;
34dc7c2f 2333
428870ff 2334 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2335
b128c09f
BB
2336 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2337 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2338
34dc7c2f 2339 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2340 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2341
2342 /*
2343 * If the vdev is already faulted, then don't do anything.
2344 */
b128c09f
BB
2345 if (vd->vdev_faulted || vd->vdev_degraded)
2346 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2347
2348 vd->vdev_degraded = 1ULL;
2349 if (!vdev_is_dead(vd))
2350 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2351 aux);
34dc7c2f 2352
b128c09f 2353 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2354}
2355
2356/*
a08ee875
LG
2357 * Online the given vdev.
2358 *
2359 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2360 * spare device should be detached when the device finishes resilvering.
2361 * Second, the online should be treated like a 'test' online case, so no FMA
2362 * events are generated if the device fails to open.
34dc7c2f
BB
2363 */
2364int
b128c09f 2365vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2366{
9babb374 2367 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
34dc7c2f 2368
428870ff 2369 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2370
b128c09f
BB
2371 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2372 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2373
2374 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2375 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2376
9babb374 2377 tvd = vd->vdev_top;
34dc7c2f
BB
2378 vd->vdev_offline = B_FALSE;
2379 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2380 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2381 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2382
2383 /* XXX - L2ARC 1.0 does not support expansion */
2384 if (!vd->vdev_aux) {
2385 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2386 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2387 }
2388
2389 vdev_reopen(tvd);
34dc7c2f
BB
2390 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2391
9babb374
BB
2392 if (!vd->vdev_aux) {
2393 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2394 pvd->vdev_expanding = B_FALSE;
2395 }
2396
34dc7c2f
BB
2397 if (newstate)
2398 *newstate = vd->vdev_state;
2399 if ((flags & ZFS_ONLINE_UNSPARE) &&
2400 !vdev_is_dead(vd) && vd->vdev_parent &&
2401 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2402 vd->vdev_parent->vdev_child[0] == vd)
2403 vd->vdev_unspare = B_TRUE;
2404
9babb374
BB
2405 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2406
2407 /* XXX - L2ARC 1.0 does not support expansion */
2408 if (vd->vdev_aux)
2409 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2410 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2411 }
fb5f0bc8 2412 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2413}
2414
428870ff
BB
2415static int
2416vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2417{
9babb374 2418 vdev_t *vd, *tvd;
428870ff
BB
2419 int error = 0;
2420 uint64_t generation;
2421 metaslab_group_t *mg;
34dc7c2f 2422
428870ff
BB
2423top:
2424 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2425
b128c09f
BB
2426 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2427 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2428
2429 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2430 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2431
9babb374 2432 tvd = vd->vdev_top;
428870ff
BB
2433 mg = tvd->vdev_mg;
2434 generation = spa->spa_config_generation + 1;
9babb374 2435
34dc7c2f
BB
2436 /*
2437 * If the device isn't already offline, try to offline it.
2438 */
2439 if (!vd->vdev_offline) {
2440 /*
fb5f0bc8 2441 * If this device has the only valid copy of some data,
9babb374
BB
2442 * don't allow it to be offlined. Log devices are always
2443 * expendable.
34dc7c2f 2444 */
9babb374
BB
2445 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2446 vdev_dtl_required(vd))
b128c09f 2447 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2448
428870ff
BB
2449 /*
2450 * If the top-level is a slog and it has had allocations
2451 * then proceed. We check that the vdev's metaslab group
2452 * is not NULL since it's possible that we may have just
2453 * added this vdev but not yet initialized its metaslabs.
2454 */
2455 if (tvd->vdev_islog && mg != NULL) {
2456 /*
2457 * Prevent any future allocations.
2458 */
2459 metaslab_group_passivate(mg);
2460 (void) spa_vdev_state_exit(spa, vd, 0);
2461
2462 error = spa_offline_log(spa);
2463
2464 spa_vdev_state_enter(spa, SCL_ALLOC);
2465
2466 /*
2467 * Check to see if the config has changed.
2468 */
2469 if (error || generation != spa->spa_config_generation) {
2470 metaslab_group_activate(mg);
2471 if (error)
2472 return (spa_vdev_state_exit(spa,
2473 vd, error));
2474 (void) spa_vdev_state_exit(spa, vd, 0);
2475 goto top;
2476 }
c06d4368 2477 ASSERT0(tvd->vdev_stat.vs_alloc);
428870ff
BB
2478 }
2479
34dc7c2f
BB
2480 /*
2481 * Offline this device and reopen its top-level vdev.
9babb374
BB
2482 * If the top-level vdev is a log device then just offline
2483 * it. Otherwise, if this action results in the top-level
2484 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2485 */
2486 vd->vdev_offline = B_TRUE;
9babb374
BB
2487 vdev_reopen(tvd);
2488
2489 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2490 vdev_is_dead(tvd)) {
34dc7c2f 2491 vd->vdev_offline = B_FALSE;
9babb374 2492 vdev_reopen(tvd);
b128c09f 2493 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2494 }
428870ff
BB
2495
2496 /*
2497 * Add the device back into the metaslab rotor so that
2498 * once we online the device it's open for business.
2499 */
2500 if (tvd->vdev_islog && mg != NULL)
2501 metaslab_group_activate(mg);
34dc7c2f
BB
2502 }
2503
b128c09f 2504 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2505
428870ff
BB
2506 return (spa_vdev_state_exit(spa, vd, 0));
2507}
9babb374 2508
428870ff
BB
2509int
2510vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2511{
2512 int error;
9babb374 2513
428870ff
BB
2514 mutex_enter(&spa->spa_vdev_top_lock);
2515 error = vdev_offline_locked(spa, guid, flags);
2516 mutex_exit(&spa->spa_vdev_top_lock);
2517
2518 return (error);
34dc7c2f
BB
2519}
2520
2521/*
2522 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2523 * vdev_offline(), we assume the spa config is locked. We also clear all
2524 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2525 */
2526void
b128c09f 2527vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2528{
b128c09f 2529 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2530 int c;
b128c09f
BB
2531
2532 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2533
2534 if (vd == NULL)
b128c09f 2535 vd = rvd;
34dc7c2f
BB
2536
2537 vd->vdev_stat.vs_read_errors = 0;
2538 vd->vdev_stat.vs_write_errors = 0;
2539 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2540
d6320ddb 2541 for (c = 0; c < vd->vdev_children; c++)
b128c09f 2542 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2543
2544 /*
b128c09f
BB
2545 * If we're in the FAULTED state or have experienced failed I/O, then
2546 * clear the persistent state and attempt to reopen the device. We
2547 * also mark the vdev config dirty, so that the new faulted state is
2548 * written out to disk.
34dc7c2f 2549 */
b128c09f
BB
2550 if (vd->vdev_faulted || vd->vdev_degraded ||
2551 !vdev_readable(vd) || !vdev_writeable(vd)) {
2552
428870ff
BB
2553 /*
2554 * When reopening in reponse to a clear event, it may be due to
2555 * a fmadm repair request. In this case, if the device is
2556 * still broken, we want to still post the ereport again.
2557 */
2558 vd->vdev_forcefault = B_TRUE;
2559
572e2857 2560 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2561 vd->vdev_cant_read = B_FALSE;
2562 vd->vdev_cant_write = B_FALSE;
2563
572e2857 2564 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2565
428870ff
BB
2566 vd->vdev_forcefault = B_FALSE;
2567
572e2857 2568 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2569 vdev_state_dirty(vd->vdev_top);
2570
2571 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2572 spa_async_request(spa, SPA_ASYNC_RESILVER);
2573
26685276 2574 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
34dc7c2f 2575 }
428870ff
BB
2576
2577 /*
2578 * When clearing a FMA-diagnosed fault, we always want to
2579 * unspare the device, as we assume that the original spare was
2580 * done in response to the FMA fault.
2581 */
2582 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2583 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2584 vd->vdev_parent->vdev_child[0] == vd)
2585 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2586}
2587
b128c09f
BB
2588boolean_t
2589vdev_is_dead(vdev_t *vd)
2590{
428870ff
BB
2591 /*
2592 * Holes and missing devices are always considered "dead".
2593 * This simplifies the code since we don't have to check for
2594 * these types of devices in the various code paths.
2595 * Instead we rely on the fact that we skip over dead devices
2596 * before issuing I/O to them.
2597 */
2598 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2599 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2600}
2601
2602boolean_t
34dc7c2f
BB
2603vdev_readable(vdev_t *vd)
2604{
b128c09f 2605 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2606}
2607
b128c09f 2608boolean_t
34dc7c2f
BB
2609vdev_writeable(vdev_t *vd)
2610{
b128c09f 2611 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2612}
2613
b128c09f
BB
2614boolean_t
2615vdev_allocatable(vdev_t *vd)
34dc7c2f 2616{
fb5f0bc8
BB
2617 uint64_t state = vd->vdev_state;
2618
b128c09f 2619 /*
fb5f0bc8 2620 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2621 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2622 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2623 * the proper locks. Note that we have to get the vdev state
2624 * in a local variable because although it changes atomically,
2625 * we're asking two separate questions about it.
b128c09f 2626 */
fb5f0bc8 2627 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
428870ff 2628 !vd->vdev_cant_write && !vd->vdev_ishole);
34dc7c2f
BB
2629}
2630
b128c09f
BB
2631boolean_t
2632vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2633{
b128c09f 2634 ASSERT(zio->io_vd == vd);
34dc7c2f 2635
b128c09f
BB
2636 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2637 return (B_FALSE);
34dc7c2f 2638
b128c09f
BB
2639 if (zio->io_type == ZIO_TYPE_READ)
2640 return (!vd->vdev_cant_read);
34dc7c2f 2641
b128c09f
BB
2642 if (zio->io_type == ZIO_TYPE_WRITE)
2643 return (!vd->vdev_cant_write);
34dc7c2f 2644
b128c09f 2645 return (B_TRUE);
34dc7c2f
BB
2646}
2647
2648/*
2649 * Get statistics for the given vdev.
2650 */
2651void
2652vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2653{
ea04106b
AX
2654 spa_t *spa = vd->vdev_spa;
2655 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2656 int c, t;
34dc7c2f 2657
ea04106b
AX
2658 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2659
34dc7c2f
BB
2660 mutex_enter(&vd->vdev_stat_lock);
2661 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2662 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2663 vs->vs_state = vd->vdev_state;
9babb374
BB
2664 vs->vs_rsize = vdev_get_min_asize(vd);
2665 if (vd->vdev_ops->vdev_op_leaf)
2666 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1bd201e7 2667 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
ea04106b
AX
2668 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2669 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2670 }
34dc7c2f
BB
2671
2672 /*
2673 * If we're getting stats on the root vdev, aggregate the I/O counts
2674 * over all top-level vdevs (i.e. the direct children of the root).
2675 */
2676 if (vd == rvd) {
d6320ddb 2677 for (c = 0; c < rvd->vdev_children; c++) {
34dc7c2f
BB
2678 vdev_t *cvd = rvd->vdev_child[c];
2679 vdev_stat_t *cvs = &cvd->vdev_stat;
2680
d6320ddb 2681 for (t = 0; t < ZIO_TYPES; t++) {
34dc7c2f
BB
2682 vs->vs_ops[t] += cvs->vs_ops[t];
2683 vs->vs_bytes[t] += cvs->vs_bytes[t];
2684 }
428870ff 2685 cvs->vs_scan_removing = cvd->vdev_removing;
34dc7c2f
BB
2686 }
2687 }
ea04106b 2688 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2689}
2690
2691void
2692vdev_clear_stats(vdev_t *vd)
2693{
2694 mutex_enter(&vd->vdev_stat_lock);
2695 vd->vdev_stat.vs_space = 0;
2696 vd->vdev_stat.vs_dspace = 0;
2697 vd->vdev_stat.vs_alloc = 0;
2698 mutex_exit(&vd->vdev_stat_lock);
2699}
2700
428870ff
BB
2701void
2702vdev_scan_stat_init(vdev_t *vd)
2703{
2704 vdev_stat_t *vs = &vd->vdev_stat;
d6320ddb 2705 int c;
428870ff 2706
d6320ddb 2707 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
2708 vdev_scan_stat_init(vd->vdev_child[c]);
2709
2710 mutex_enter(&vd->vdev_stat_lock);
2711 vs->vs_scan_processed = 0;
2712 mutex_exit(&vd->vdev_stat_lock);
2713}
2714
34dc7c2f 2715void
b128c09f 2716vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 2717{
fb5f0bc8
BB
2718 spa_t *spa = zio->io_spa;
2719 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 2720 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
2721 vdev_t *pvd;
2722 uint64_t txg = zio->io_txg;
2723 vdev_stat_t *vs = &vd->vdev_stat;
2724 zio_type_t type = zio->io_type;
2725 int flags = zio->io_flags;
2726
b128c09f
BB
2727 /*
2728 * If this i/o is a gang leader, it didn't do any actual work.
2729 */
2730 if (zio->io_gang_tree)
2731 return;
2732
34dc7c2f 2733 if (zio->io_error == 0) {
b128c09f
BB
2734 /*
2735 * If this is a root i/o, don't count it -- we've already
2736 * counted the top-level vdevs, and vdev_get_stats() will
2737 * aggregate them when asked. This reduces contention on
2738 * the root vdev_stat_lock and implicitly handles blocks
2739 * that compress away to holes, for which there is no i/o.
2740 * (Holes never create vdev children, so all the counters
2741 * remain zero, which is what we want.)
2742 *
2743 * Note: this only applies to successful i/o (io_error == 0)
2744 * because unlike i/o counts, errors are not additive.
2745 * When reading a ditto block, for example, failure of
2746 * one top-level vdev does not imply a root-level error.
2747 */
2748 if (vd == rvd)
2749 return;
2750
2751 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
2752
2753 if (flags & ZIO_FLAG_IO_BYPASS)
2754 return;
2755
2756 mutex_enter(&vd->vdev_stat_lock);
2757
b128c09f 2758 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 2759 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
2760 dsl_scan_phys_t *scn_phys =
2761 &spa->spa_dsl_pool->dp_scan->scn_phys;
2762 uint64_t *processed = &scn_phys->scn_processed;
2763
2764 /* XXX cleanup? */
2765 if (vd->vdev_ops->vdev_op_leaf)
2766 atomic_add_64(processed, psize);
2767 vs->vs_scan_processed += psize;
2768 }
2769
fb5f0bc8 2770 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 2771 vs->vs_self_healed += psize;
34dc7c2f 2772 }
fb5f0bc8
BB
2773
2774 vs->vs_ops[type]++;
2775 vs->vs_bytes[type] += psize;
2776
2777 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
2778 return;
2779 }
2780
2781 if (flags & ZIO_FLAG_SPECULATIVE)
2782 return;
2783
9babb374
BB
2784 /*
2785 * If this is an I/O error that is going to be retried, then ignore the
2786 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2787 * hard errors, when in reality they can happen for any number of
2788 * innocuous reasons (bus resets, MPxIO link failure, etc).
2789 */
2790 if (zio->io_error == EIO &&
2791 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2792 return;
2793
428870ff
BB
2794 /*
2795 * Intent logs writes won't propagate their error to the root
2796 * I/O so don't mark these types of failures as pool-level
2797 * errors.
2798 */
2799 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2800 return;
2801
b128c09f 2802 mutex_enter(&vd->vdev_stat_lock);
9babb374 2803 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
2804 if (zio->io_error == ECKSUM)
2805 vs->vs_checksum_errors++;
2806 else
2807 vs->vs_read_errors++;
34dc7c2f 2808 }
9babb374 2809 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
2810 vs->vs_write_errors++;
2811 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 2812
fb5f0bc8
BB
2813 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2814 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 2815 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 2816 spa->spa_claiming)) {
fb5f0bc8 2817 /*
428870ff
BB
2818 * This is either a normal write (not a repair), or it's
2819 * a repair induced by the scrub thread, or it's a repair
2820 * made by zil_claim() during spa_load() in the first txg.
2821 * In the normal case, we commit the DTL change in the same
2822 * txg as the block was born. In the scrub-induced repair
2823 * case, we know that scrubs run in first-pass syncing context,
2824 * so we commit the DTL change in spa_syncing_txg(spa).
2825 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
2826 *
2827 * We currently do not make DTL entries for failed spontaneous
2828 * self-healing writes triggered by normal (non-scrubbing)
2829 * reads, because we have no transactional context in which to
2830 * do so -- and it's not clear that it'd be desirable anyway.
2831 */
2832 if (vd->vdev_ops->vdev_op_leaf) {
2833 uint64_t commit_txg = txg;
572e2857 2834 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
2835 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2836 ASSERT(spa_sync_pass(spa) == 1);
2837 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
2838 commit_txg = spa_syncing_txg(spa);
2839 } else if (spa->spa_claiming) {
2840 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2841 commit_txg = spa_first_txg(spa);
fb5f0bc8 2842 }
428870ff 2843 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 2844 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 2845 return;
fb5f0bc8
BB
2846 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2847 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2848 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 2849 }
fb5f0bc8
BB
2850 if (vd != rvd)
2851 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
2852 }
2853}
2854
34dc7c2f 2855/*
428870ff
BB
2856 * Update the in-core space usage stats for this vdev, its metaslab class,
2857 * and the root vdev.
34dc7c2f
BB
2858 */
2859void
428870ff
BB
2860vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2861 int64_t space_delta)
34dc7c2f
BB
2862{
2863 int64_t dspace_delta = space_delta;
2864 spa_t *spa = vd->vdev_spa;
2865 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
2866 metaslab_group_t *mg = vd->vdev_mg;
2867 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
2868
2869 ASSERT(vd == vd->vdev_top);
2870
2871 /*
2872 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2873 * factor. We must calculate this here and not at the root vdev
2874 * because the root vdev's psize-to-asize is simply the max of its
2875 * childrens', thus not accurate enough for us.
2876 */
2877 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 2878 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
2879 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2880 vd->vdev_deflate_ratio;
2881
2882 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 2883 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2884 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2885 vd->vdev_stat.vs_dspace += dspace_delta;
2886 mutex_exit(&vd->vdev_stat_lock);
2887
428870ff 2888 if (mc == spa_normal_class(spa)) {
34dc7c2f 2889 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 2890 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 2891 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
2892 rvd->vdev_stat.vs_dspace += dspace_delta;
2893 mutex_exit(&rvd->vdev_stat_lock);
2894 }
428870ff
BB
2895
2896 if (mc != NULL) {
2897 ASSERT(rvd == vd->vdev_parent);
2898 ASSERT(vd->vdev_ms_count != 0);
2899
2900 metaslab_class_space_update(mc,
2901 alloc_delta, defer_delta, space_delta, dspace_delta);
2902 }
34dc7c2f
BB
2903}
2904
2905/*
2906 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2907 * so that it will be written out next time the vdev configuration is synced.
2908 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2909 */
2910void
2911vdev_config_dirty(vdev_t *vd)
2912{
2913 spa_t *spa = vd->vdev_spa;
2914 vdev_t *rvd = spa->spa_root_vdev;
2915 int c;
2916
572e2857
BB
2917 ASSERT(spa_writeable(spa));
2918
34dc7c2f 2919 /*
9babb374
BB
2920 * If this is an aux vdev (as with l2cache and spare devices), then we
2921 * update the vdev config manually and set the sync flag.
b128c09f
BB
2922 */
2923 if (vd->vdev_aux != NULL) {
2924 spa_aux_vdev_t *sav = vd->vdev_aux;
2925 nvlist_t **aux;
2926 uint_t naux;
2927
2928 for (c = 0; c < sav->sav_count; c++) {
2929 if (sav->sav_vdevs[c] == vd)
2930 break;
2931 }
2932
2933 if (c == sav->sav_count) {
2934 /*
2935 * We're being removed. There's nothing more to do.
2936 */
2937 ASSERT(sav->sav_sync == B_TRUE);
2938 return;
2939 }
2940
2941 sav->sav_sync = B_TRUE;
2942
9babb374
BB
2943 if (nvlist_lookup_nvlist_array(sav->sav_config,
2944 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2945 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2946 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2947 }
b128c09f
BB
2948
2949 ASSERT(c < naux);
2950
2951 /*
2952 * Setting the nvlist in the middle if the array is a little
2953 * sketchy, but it will work.
2954 */
2955 nvlist_free(aux[c]);
428870ff 2956 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
2957
2958 return;
2959 }
2960
2961 /*
2962 * The dirty list is protected by the SCL_CONFIG lock. The caller
2963 * must either hold SCL_CONFIG as writer, or must be the sync thread
2964 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
2965 * so this is sufficient to ensure mutual exclusion.
2966 */
b128c09f
BB
2967 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2968 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2969 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
2970
2971 if (vd == rvd) {
2972 for (c = 0; c < rvd->vdev_children; c++)
2973 vdev_config_dirty(rvd->vdev_child[c]);
2974 } else {
2975 ASSERT(vd == vd->vdev_top);
2976
428870ff
BB
2977 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2978 !vd->vdev_ishole)
b128c09f 2979 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2980 }
2981}
2982
2983void
2984vdev_config_clean(vdev_t *vd)
2985{
2986 spa_t *spa = vd->vdev_spa;
2987
b128c09f
BB
2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2989 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2990 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 2991
b128c09f
BB
2992 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2993 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
2994}
2995
b128c09f
BB
2996/*
2997 * Mark a top-level vdev's state as dirty, so that the next pass of
2998 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2999 * the state changes from larger config changes because they require
3000 * much less locking, and are often needed for administrative actions.
3001 */
3002void
3003vdev_state_dirty(vdev_t *vd)
3004{
3005 spa_t *spa = vd->vdev_spa;
3006
572e2857 3007 ASSERT(spa_writeable(spa));
b128c09f
BB
3008 ASSERT(vd == vd->vdev_top);
3009
3010 /*
3011 * The state list is protected by the SCL_STATE lock. The caller
3012 * must either hold SCL_STATE as writer, or must be the sync thread
3013 * (which holds SCL_STATE as reader). There's only one sync thread,
3014 * so this is sufficient to ensure mutual exclusion.
3015 */
3016 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3017 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3018 spa_config_held(spa, SCL_STATE, RW_READER)));
3019
428870ff 3020 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
3021 list_insert_head(&spa->spa_state_dirty_list, vd);
3022}
3023
3024void
3025vdev_state_clean(vdev_t *vd)
3026{
3027 spa_t *spa = vd->vdev_spa;
3028
3029 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3030 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3031 spa_config_held(spa, SCL_STATE, RW_READER)));
3032
3033 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3034 list_remove(&spa->spa_state_dirty_list, vd);
3035}
3036
3037/*
3038 * Propagate vdev state up from children to parent.
3039 */
34dc7c2f
BB
3040void
3041vdev_propagate_state(vdev_t *vd)
3042{
fb5f0bc8
BB
3043 spa_t *spa = vd->vdev_spa;
3044 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
3045 int degraded = 0, faulted = 0;
3046 int corrupted = 0;
34dc7c2f 3047 vdev_t *child;
d6320ddb 3048 int c;
34dc7c2f
BB
3049
3050 if (vd->vdev_children > 0) {
d6320ddb 3051 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f 3052 child = vd->vdev_child[c];
b128c09f 3053
428870ff
BB
3054 /*
3055 * Don't factor holes into the decision.
3056 */
3057 if (child->vdev_ishole)
3058 continue;
3059
b128c09f 3060 if (!vdev_readable(child) ||
fb5f0bc8 3061 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
3062 /*
3063 * Root special: if there is a top-level log
3064 * device, treat the root vdev as if it were
3065 * degraded.
3066 */
3067 if (child->vdev_islog && vd == rvd)
3068 degraded++;
3069 else
3070 faulted++;
3071 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 3072 degraded++;
b128c09f 3073 }
34dc7c2f
BB
3074
3075 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3076 corrupted++;
3077 }
3078
3079 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3080
3081 /*
b128c09f 3082 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
3083 * opened due to corrupted metadata, then propagate the root
3084 * vdev's aux state as 'corrupt' rather than 'insufficient
3085 * replicas'.
3086 */
3087 if (corrupted && vd == rvd &&
3088 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3089 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3090 VDEV_AUX_CORRUPT_DATA);
3091 }
3092
b128c09f 3093 if (vd->vdev_parent)
34dc7c2f
BB
3094 vdev_propagate_state(vd->vdev_parent);
3095}
3096
3097/*
3098 * Set a vdev's state. If this is during an open, we don't update the parent
3099 * state, because we're in the process of opening children depth-first.
3100 * Otherwise, we propagate the change to the parent.
3101 *
3102 * If this routine places a device in a faulted state, an appropriate ereport is
3103 * generated.
3104 */
3105void
3106vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3107{
3108 uint64_t save_state;
b128c09f 3109 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
3110
3111 if (state == vd->vdev_state) {
3112 vd->vdev_stat.vs_aux = aux;
3113 return;
3114 }
3115
3116 save_state = vd->vdev_state;
3117
3118 vd->vdev_state = state;
3119 vd->vdev_stat.vs_aux = aux;
3120
3121 /*
3122 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
3123 * always close the underlying device unless the device has requested
3124 * a delayed close (i.e. we're about to remove or fault the device).
3125 * Otherwise, we keep accessible but invalid devices open forever.
3126 * We don't call vdev_close() itself, because that implies some extra
3127 * checks (offline, etc) that we don't want here. This is limited to
3128 * leaf devices, because otherwise closing the device will affect other
3129 * children.
34dc7c2f 3130 */
428870ff
BB
3131 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3132 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
3133 vd->vdev_ops->vdev_op_close(vd);
3134
428870ff
BB
3135 /*
3136 * If we have brought this vdev back into service, we need
3137 * to notify fmd so that it can gracefully repair any outstanding
3138 * cases due to a missing device. We do this in all cases, even those
3139 * that probably don't correlate to a repaired fault. This is sure to
3140 * catch all cases, and we let the zfs-retire agent sort it out. If
3141 * this is a transient state it's OK, as the retire agent will
3142 * double-check the state of the vdev before repairing it.
3143 */
3144 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3145 vd->vdev_prevstate != state)
3146 zfs_post_state_change(spa, vd);
3147
34dc7c2f
BB
3148 if (vd->vdev_removed &&
3149 state == VDEV_STATE_CANT_OPEN &&
3150 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3151 /*
3152 * If the previous state is set to VDEV_STATE_REMOVED, then this
3153 * device was previously marked removed and someone attempted to
3154 * reopen it. If this failed due to a nonexistent device, then
3155 * keep the device in the REMOVED state. We also let this be if
3156 * it is one of our special test online cases, which is only
3157 * attempting to online the device and shouldn't generate an FMA
3158 * fault.
3159 */
3160 vd->vdev_state = VDEV_STATE_REMOVED;
3161 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3162 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
3163 vd->vdev_removed = B_TRUE;
3164 } else if (state == VDEV_STATE_CANT_OPEN) {
3165 /*
572e2857
BB
3166 * If we fail to open a vdev during an import or recovery, we
3167 * mark it as "not available", which signifies that it was
3168 * never there to begin with. Failure to open such a device
3169 * is not considered an error.
34dc7c2f 3170 */
572e2857
BB
3171 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3172 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
3173 vd->vdev_ops->vdev_op_leaf)
3174 vd->vdev_not_present = 1;
3175
3176 /*
3177 * Post the appropriate ereport. If the 'prevstate' field is
3178 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3179 * that this is part of a vdev_reopen(). In this case, we don't
3180 * want to post the ereport if the device was already in the
3181 * CANT_OPEN state beforehand.
3182 *
3183 * If the 'checkremove' flag is set, then this is an attempt to
3184 * online the device in response to an insertion event. If we
3185 * hit this case, then we have detected an insertion event for a
3186 * faulted or offline device that wasn't in the removed state.
3187 * In this scenario, we don't post an ereport because we are
3188 * about to replace the device, or attempt an online with
3189 * vdev_forcefault, which will generate the fault for us.
3190 */
3191 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3192 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 3193 vd != spa->spa_root_vdev) {
34dc7c2f
BB
3194 const char *class;
3195
3196 switch (aux) {
3197 case VDEV_AUX_OPEN_FAILED:
3198 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3199 break;
3200 case VDEV_AUX_CORRUPT_DATA:
3201 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3202 break;
3203 case VDEV_AUX_NO_REPLICAS:
3204 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3205 break;
3206 case VDEV_AUX_BAD_GUID_SUM:
3207 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3208 break;
3209 case VDEV_AUX_TOO_SMALL:
3210 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3211 break;
3212 case VDEV_AUX_BAD_LABEL:
3213 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3214 break;
3215 default:
3216 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3217 }
3218
b128c09f 3219 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3220 }
3221
3222 /* Erase any notion of persistent removed state */
3223 vd->vdev_removed = B_FALSE;
3224 } else {
3225 vd->vdev_removed = B_FALSE;
3226 }
3227
9babb374
BB
3228 if (!isopen && vd->vdev_parent)
3229 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3230}
b128c09f
BB
3231
3232/*
3233 * Check the vdev configuration to ensure that it's capable of supporting
57a4eddc 3234 * a root pool.
b128c09f
BB
3235 */
3236boolean_t
3237vdev_is_bootable(vdev_t *vd)
3238{
57a4eddc
RL
3239#if defined(__sun__) || defined(__sun)
3240 /*
3241 * Currently, we do not support RAID-Z or partial configuration.
3242 * In addition, only a single top-level vdev is allowed and none of the
3243 * leaves can be wholedisks.
3244 */
d6320ddb
BB
3245 int c;
3246
b128c09f
BB
3247 if (!vd->vdev_ops->vdev_op_leaf) {
3248 char *vdev_type = vd->vdev_ops->vdev_op_type;
3249
3250 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3251 vd->vdev_children > 1) {
3252 return (B_FALSE);
3253 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3254 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3255 return (B_FALSE);
3256 }
3257 } else if (vd->vdev_wholedisk == 1) {
3258 return (B_FALSE);
3259 }
3260
d6320ddb 3261 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3262 if (!vdev_is_bootable(vd->vdev_child[c]))
3263 return (B_FALSE);
3264 }
57a4eddc 3265#endif /* __sun__ || __sun */
b128c09f
BB
3266 return (B_TRUE);
3267}
9babb374 3268
428870ff
BB
3269/*
3270 * Load the state from the original vdev tree (ovd) which
3271 * we've retrieved from the MOS config object. If the original
572e2857
BB
3272 * vdev was offline or faulted then we transfer that state to the
3273 * device in the current vdev tree (nvd).
428870ff 3274 */
9babb374 3275void
428870ff 3276vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3277{
d6320ddb 3278 int c;
9babb374 3279
572e2857 3280 ASSERT(nvd->vdev_top->vdev_islog);
1fde1e37
BB
3281 ASSERT(spa_config_held(nvd->vdev_spa,
3282 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
428870ff 3283 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3284
d6320ddb 3285 for (c = 0; c < nvd->vdev_children; c++)
428870ff 3286 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3287
572e2857 3288 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3289 /*
572e2857 3290 * Restore the persistent vdev state
9babb374 3291 */
428870ff 3292 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3293 nvd->vdev_faulted = ovd->vdev_faulted;
3294 nvd->vdev_degraded = ovd->vdev_degraded;
3295 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3296 }
3297}
3298
572e2857
BB
3299/*
3300 * Determine if a log device has valid content. If the vdev was
3301 * removed or faulted in the MOS config then we know that
3302 * the content on the log device has already been written to the pool.
3303 */
3304boolean_t
3305vdev_log_state_valid(vdev_t *vd)
3306{
d6320ddb
BB
3307 int c;
3308
572e2857
BB
3309 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3310 !vd->vdev_removed)
3311 return (B_TRUE);
3312
d6320ddb 3313 for (c = 0; c < vd->vdev_children; c++)
572e2857
BB
3314 if (vdev_log_state_valid(vd->vdev_child[c]))
3315 return (B_TRUE);
3316
3317 return (B_FALSE);
3318}
3319
9babb374
BB
3320/*
3321 * Expand a vdev if possible.
3322 */
3323void
3324vdev_expand(vdev_t *vd, uint64_t txg)
3325{
3326 ASSERT(vd->vdev_top == vd);
3327 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3328
3329 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3330 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3331 vdev_config_dirty(vd);
3332 }
3333}
428870ff
BB
3334
3335/*
3336 * Split a vdev.
3337 */
3338void
3339vdev_split(vdev_t *vd)
3340{
3341 vdev_t *cvd, *pvd = vd->vdev_parent;
3342
3343 vdev_remove_child(pvd, vd);
3344 vdev_compact_children(pvd);
3345
3346 cvd = pvd->vdev_child[0];
3347 if (pvd->vdev_children == 1) {
3348 vdev_remove_parent(cvd);
3349 cvd->vdev_splitting = B_TRUE;
3350 }
3351 vdev_propagate_state(cvd);
3352}
c28b2279 3353
c06d4368
AX
3354void
3355vdev_deadman(vdev_t *vd)
3356{
3357 int c;
3358
3359 for (c = 0; c < vd->vdev_children; c++) {
3360 vdev_t *cvd = vd->vdev_child[c];
3361
3362 vdev_deadman(cvd);
3363 }
3364
3365 if (vd->vdev_ops->vdev_op_leaf) {
3366 vdev_queue_t *vq = &vd->vdev_queue;
3367
3368 mutex_enter(&vq->vq_lock);
a08ee875 3369 if (avl_numnodes(&vq->vq_active_tree) > 0) {
c06d4368
AX
3370 spa_t *spa = vd->vdev_spa;
3371 zio_t *fio;
3372 uint64_t delta;
3373
3374 /*
3375 * Look at the head of all the pending queues,
3376 * if any I/O has been outstanding for longer than
3377 * the spa_deadman_synctime we log a zevent.
3378 */
a08ee875 3379 fio = avl_first(&vq->vq_active_tree);
c06d4368
AX
3380 delta = gethrtime() - fio->io_timestamp;
3381 if (delta > spa_deadman_synctime(spa)) {
3382 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3383 "delta %lluns, last io %lluns",
3384 fio->io_timestamp, delta,
3385 vq->vq_io_complete_ts);
3386 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3387 spa, vd, fio, 0, 0);
3388 }
3389 }
3390 mutex_exit(&vq->vq_lock);
3391 }
3392}
3393
c28b2279
BB
3394#if defined(_KERNEL) && defined(HAVE_SPL)
3395EXPORT_SYMBOL(vdev_fault);
3396EXPORT_SYMBOL(vdev_degrade);
3397EXPORT_SYMBOL(vdev_online);
3398EXPORT_SYMBOL(vdev_offline);
3399EXPORT_SYMBOL(vdev_clear);
ea04106b
AX
3400
3401module_param(metaslabs_per_vdev, int, 0644);
3402MODULE_PARM_DESC(metaslabs_per_vdev,
3403 "Divide added vdev into approximately (but no more than) this number "
3404 "of metaslabs");
c28b2279 3405#endif