]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Fix inaccurate arcstat_l2_hdr_size calculations
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3541dc6d
GA
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27/*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */
71
72/*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
5c839890
BC
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
ab26409d
BB
109 * It as also possible to register a callback which is run when the
110 * arc_meta_limit is reached and no buffers can be safely evicted. In
111 * this case the arc user should drop a reference on some arc buffers so
112 * they can be reclaimed and the arc_meta_limit honored. For example,
113 * when using the ZPL each dentry holds a references on a znode. These
114 * dentries must be pruned before the arc buffer holding the znode can
115 * be safely evicted.
116 *
34dc7c2f
BB
117 * Note that the majority of the performance stats are manipulated
118 * with atomic operations.
119 *
120 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
121 *
122 * - L2ARC buflist creation
123 * - L2ARC buflist eviction
124 * - L2ARC write completion, which walks L2ARC buflists
125 * - ARC header destruction, as it removes from L2ARC buflists
126 * - ARC header release, as it removes from L2ARC buflists
127 */
128
129#include <sys/spa.h>
130#include <sys/zio.h>
34dc7c2f
BB
131#include <sys/zfs_context.h>
132#include <sys/arc.h>
b128c09f 133#include <sys/vdev.h>
9babb374 134#include <sys/vdev_impl.h>
34dc7c2f
BB
135#ifdef _KERNEL
136#include <sys/vmsystm.h>
137#include <vm/anon.h>
138#include <sys/fs/swapnode.h>
ab26409d 139#include <sys/zpl.h>
34dc7c2f
BB
140#endif
141#include <sys/callb.h>
142#include <sys/kstat.h>
570827e1 143#include <sys/dmu_tx.h>
428870ff 144#include <zfs_fletcher.h>
34dc7c2f
BB
145
146static kmutex_t arc_reclaim_thr_lock;
147static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
148static uint8_t arc_thread_exit;
149
ab26409d
BB
150/* number of bytes to prune from caches when at arc_meta_limit is reached */
151uint_t arc_meta_prune = 1048576;
34dc7c2f
BB
152
153typedef enum arc_reclaim_strategy {
154 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
155 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
156} arc_reclaim_strategy_t;
157
158/* number of seconds before growing cache again */
302f753f
BB
159static int arc_grow_retry = 5;
160
161/* expiration time for arc_no_grow */
162static clock_t arc_grow_time = 0;
34dc7c2f 163
d164b209
BB
164/* shift of arc_c for calculating both min and max arc_p */
165static int arc_p_min_shift = 4;
166
167/* log2(fraction of arc to reclaim) */
168static int arc_shrink_shift = 5;
169
34dc7c2f
BB
170/*
171 * minimum lifespan of a prefetch block in clock ticks
172 * (initialized in arc_init())
173 */
174static int arc_min_prefetch_lifespan;
175
176static int arc_dead;
177
b128c09f
BB
178/*
179 * The arc has filled available memory and has now warmed up.
180 */
181static boolean_t arc_warm;
182
34dc7c2f
BB
183/*
184 * These tunables are for performance analysis.
185 */
c28b2279
BB
186unsigned long zfs_arc_max = 0;
187unsigned long zfs_arc_min = 0;
188unsigned long zfs_arc_meta_limit = 0;
d164b209
BB
189int zfs_arc_grow_retry = 0;
190int zfs_arc_shrink_shift = 0;
191int zfs_arc_p_min_shift = 0;
546c978b 192int zfs_arc_memory_throttle_disable = 1;
1eb5bfa3 193int zfs_disable_dup_eviction = 0;
ab26409d 194int zfs_arc_meta_prune = 0;
34dc7c2f
BB
195
196/*
197 * Note that buffers can be in one of 6 states:
198 * ARC_anon - anonymous (discussed below)
199 * ARC_mru - recently used, currently cached
200 * ARC_mru_ghost - recentely used, no longer in cache
201 * ARC_mfu - frequently used, currently cached
202 * ARC_mfu_ghost - frequently used, no longer in cache
203 * ARC_l2c_only - exists in L2ARC but not other states
204 * When there are no active references to the buffer, they are
205 * are linked onto a list in one of these arc states. These are
206 * the only buffers that can be evicted or deleted. Within each
207 * state there are multiple lists, one for meta-data and one for
208 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
209 * etc.) is tracked separately so that it can be managed more
210 * explicitly: favored over data, limited explicitly.
211 *
212 * Anonymous buffers are buffers that are not associated with
213 * a DVA. These are buffers that hold dirty block copies
214 * before they are written to stable storage. By definition,
215 * they are "ref'd" and are considered part of arc_mru
216 * that cannot be freed. Generally, they will aquire a DVA
217 * as they are written and migrate onto the arc_mru list.
218 *
219 * The ARC_l2c_only state is for buffers that are in the second
220 * level ARC but no longer in any of the ARC_m* lists. The second
221 * level ARC itself may also contain buffers that are in any of
222 * the ARC_m* states - meaning that a buffer can exist in two
223 * places. The reason for the ARC_l2c_only state is to keep the
224 * buffer header in the hash table, so that reads that hit the
225 * second level ARC benefit from these fast lookups.
226 */
227
228typedef struct arc_state {
229 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
230 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
231 uint64_t arcs_size; /* total amount of data in this state */
232 kmutex_t arcs_mtx;
233} arc_state_t;
234
235/* The 6 states: */
236static arc_state_t ARC_anon;
237static arc_state_t ARC_mru;
238static arc_state_t ARC_mru_ghost;
239static arc_state_t ARC_mfu;
240static arc_state_t ARC_mfu_ghost;
241static arc_state_t ARC_l2c_only;
242
243typedef struct arc_stats {
244 kstat_named_t arcstat_hits;
245 kstat_named_t arcstat_misses;
246 kstat_named_t arcstat_demand_data_hits;
247 kstat_named_t arcstat_demand_data_misses;
248 kstat_named_t arcstat_demand_metadata_hits;
249 kstat_named_t arcstat_demand_metadata_misses;
250 kstat_named_t arcstat_prefetch_data_hits;
251 kstat_named_t arcstat_prefetch_data_misses;
252 kstat_named_t arcstat_prefetch_metadata_hits;
253 kstat_named_t arcstat_prefetch_metadata_misses;
254 kstat_named_t arcstat_mru_hits;
255 kstat_named_t arcstat_mru_ghost_hits;
256 kstat_named_t arcstat_mfu_hits;
257 kstat_named_t arcstat_mfu_ghost_hits;
258 kstat_named_t arcstat_deleted;
259 kstat_named_t arcstat_recycle_miss;
260 kstat_named_t arcstat_mutex_miss;
261 kstat_named_t arcstat_evict_skip;
428870ff
BB
262 kstat_named_t arcstat_evict_l2_cached;
263 kstat_named_t arcstat_evict_l2_eligible;
264 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
265 kstat_named_t arcstat_hash_elements;
266 kstat_named_t arcstat_hash_elements_max;
267 kstat_named_t arcstat_hash_collisions;
268 kstat_named_t arcstat_hash_chains;
269 kstat_named_t arcstat_hash_chain_max;
270 kstat_named_t arcstat_p;
271 kstat_named_t arcstat_c;
272 kstat_named_t arcstat_c_min;
273 kstat_named_t arcstat_c_max;
274 kstat_named_t arcstat_size;
275 kstat_named_t arcstat_hdr_size;
d164b209
BB
276 kstat_named_t arcstat_data_size;
277 kstat_named_t arcstat_other_size;
13be560d
BB
278 kstat_named_t arcstat_anon_size;
279 kstat_named_t arcstat_anon_evict_data;
280 kstat_named_t arcstat_anon_evict_metadata;
281 kstat_named_t arcstat_mru_size;
282 kstat_named_t arcstat_mru_evict_data;
283 kstat_named_t arcstat_mru_evict_metadata;
284 kstat_named_t arcstat_mru_ghost_size;
285 kstat_named_t arcstat_mru_ghost_evict_data;
286 kstat_named_t arcstat_mru_ghost_evict_metadata;
287 kstat_named_t arcstat_mfu_size;
288 kstat_named_t arcstat_mfu_evict_data;
289 kstat_named_t arcstat_mfu_evict_metadata;
290 kstat_named_t arcstat_mfu_ghost_size;
291 kstat_named_t arcstat_mfu_ghost_evict_data;
292 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
293 kstat_named_t arcstat_l2_hits;
294 kstat_named_t arcstat_l2_misses;
295 kstat_named_t arcstat_l2_feeds;
296 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
297 kstat_named_t arcstat_l2_read_bytes;
298 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
299 kstat_named_t arcstat_l2_writes_sent;
300 kstat_named_t arcstat_l2_writes_done;
301 kstat_named_t arcstat_l2_writes_error;
302 kstat_named_t arcstat_l2_writes_hdr_miss;
303 kstat_named_t arcstat_l2_evict_lock_retry;
304 kstat_named_t arcstat_l2_evict_reading;
305 kstat_named_t arcstat_l2_free_on_write;
306 kstat_named_t arcstat_l2_abort_lowmem;
307 kstat_named_t arcstat_l2_cksum_bad;
308 kstat_named_t arcstat_l2_io_error;
309 kstat_named_t arcstat_l2_size;
310 kstat_named_t arcstat_l2_hdr_size;
311 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
312 kstat_named_t arcstat_duplicate_buffers;
313 kstat_named_t arcstat_duplicate_buffers_size;
314 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
315 kstat_named_t arcstat_memory_direct_count;
316 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
317 kstat_named_t arcstat_no_grow;
318 kstat_named_t arcstat_tempreserve;
319 kstat_named_t arcstat_loaned_bytes;
ab26409d 320 kstat_named_t arcstat_prune;
1834f2d8
BB
321 kstat_named_t arcstat_meta_used;
322 kstat_named_t arcstat_meta_limit;
323 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
324} arc_stats_t;
325
326static arc_stats_t arc_stats = {
327 { "hits", KSTAT_DATA_UINT64 },
328 { "misses", KSTAT_DATA_UINT64 },
329 { "demand_data_hits", KSTAT_DATA_UINT64 },
330 { "demand_data_misses", KSTAT_DATA_UINT64 },
331 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
332 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
333 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
334 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
335 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
336 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
337 { "mru_hits", KSTAT_DATA_UINT64 },
338 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
339 { "mfu_hits", KSTAT_DATA_UINT64 },
340 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
341 { "deleted", KSTAT_DATA_UINT64 },
342 { "recycle_miss", KSTAT_DATA_UINT64 },
343 { "mutex_miss", KSTAT_DATA_UINT64 },
344 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
345 { "evict_l2_cached", KSTAT_DATA_UINT64 },
346 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
347 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
348 { "hash_elements", KSTAT_DATA_UINT64 },
349 { "hash_elements_max", KSTAT_DATA_UINT64 },
350 { "hash_collisions", KSTAT_DATA_UINT64 },
351 { "hash_chains", KSTAT_DATA_UINT64 },
352 { "hash_chain_max", KSTAT_DATA_UINT64 },
353 { "p", KSTAT_DATA_UINT64 },
354 { "c", KSTAT_DATA_UINT64 },
355 { "c_min", KSTAT_DATA_UINT64 },
356 { "c_max", KSTAT_DATA_UINT64 },
357 { "size", KSTAT_DATA_UINT64 },
358 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209
BB
359 { "data_size", KSTAT_DATA_UINT64 },
360 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
361 { "anon_size", KSTAT_DATA_UINT64 },
362 { "anon_evict_data", KSTAT_DATA_UINT64 },
363 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
364 { "mru_size", KSTAT_DATA_UINT64 },
365 { "mru_evict_data", KSTAT_DATA_UINT64 },
366 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
367 { "mru_ghost_size", KSTAT_DATA_UINT64 },
368 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
369 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
370 { "mfu_size", KSTAT_DATA_UINT64 },
371 { "mfu_evict_data", KSTAT_DATA_UINT64 },
372 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
373 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
374 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
375 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
376 { "l2_hits", KSTAT_DATA_UINT64 },
377 { "l2_misses", KSTAT_DATA_UINT64 },
378 { "l2_feeds", KSTAT_DATA_UINT64 },
379 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
380 { "l2_read_bytes", KSTAT_DATA_UINT64 },
381 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
382 { "l2_writes_sent", KSTAT_DATA_UINT64 },
383 { "l2_writes_done", KSTAT_DATA_UINT64 },
384 { "l2_writes_error", KSTAT_DATA_UINT64 },
385 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
386 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
387 { "l2_evict_reading", KSTAT_DATA_UINT64 },
388 { "l2_free_on_write", KSTAT_DATA_UINT64 },
389 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
390 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
391 { "l2_io_error", KSTAT_DATA_UINT64 },
392 { "l2_size", KSTAT_DATA_UINT64 },
393 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 394 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
395 { "duplicate_buffers", KSTAT_DATA_UINT64 },
396 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
397 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
398 { "memory_direct_count", KSTAT_DATA_UINT64 },
399 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
400 { "arc_no_grow", KSTAT_DATA_UINT64 },
401 { "arc_tempreserve", KSTAT_DATA_UINT64 },
402 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 403 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
404 { "arc_meta_used", KSTAT_DATA_UINT64 },
405 { "arc_meta_limit", KSTAT_DATA_UINT64 },
406 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
407};
408
409#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
410
411#define ARCSTAT_INCR(stat, val) \
412 atomic_add_64(&arc_stats.stat.value.ui64, (val));
413
428870ff 414#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
415#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
416
417#define ARCSTAT_MAX(stat, val) { \
418 uint64_t m; \
419 while ((val) > (m = arc_stats.stat.value.ui64) && \
420 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
421 continue; \
422}
423
424#define ARCSTAT_MAXSTAT(stat) \
425 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
426
427/*
428 * We define a macro to allow ARC hits/misses to be easily broken down by
429 * two separate conditions, giving a total of four different subtypes for
430 * each of hits and misses (so eight statistics total).
431 */
432#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
433 if (cond1) { \
434 if (cond2) { \
435 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
436 } else { \
437 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
438 } \
439 } else { \
440 if (cond2) { \
441 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
442 } else { \
443 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
444 } \
445 }
446
447kstat_t *arc_ksp;
428870ff 448static arc_state_t *arc_anon;
34dc7c2f
BB
449static arc_state_t *arc_mru;
450static arc_state_t *arc_mru_ghost;
451static arc_state_t *arc_mfu;
452static arc_state_t *arc_mfu_ghost;
453static arc_state_t *arc_l2c_only;
454
455/*
456 * There are several ARC variables that are critical to export as kstats --
457 * but we don't want to have to grovel around in the kstat whenever we wish to
458 * manipulate them. For these variables, we therefore define them to be in
459 * terms of the statistic variable. This assures that we are not introducing
460 * the possibility of inconsistency by having shadow copies of the variables,
461 * while still allowing the code to be readable.
462 */
463#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
464#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
465#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
466#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
467#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
468#define arc_no_grow ARCSTAT(arcstat_no_grow)
469#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
470#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
471#define arc_meta_used ARCSTAT(arcstat_meta_used)
472#define arc_meta_limit ARCSTAT(arcstat_meta_limit)
473#define arc_meta_max ARCSTAT(arcstat_meta_max)
34dc7c2f
BB
474
475typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
476
477typedef struct arc_callback arc_callback_t;
478
479struct arc_callback {
480 void *acb_private;
481 arc_done_func_t *acb_done;
34dc7c2f
BB
482 arc_buf_t *acb_buf;
483 zio_t *acb_zio_dummy;
484 arc_callback_t *acb_next;
485};
486
487typedef struct arc_write_callback arc_write_callback_t;
488
489struct arc_write_callback {
490 void *awcb_private;
491 arc_done_func_t *awcb_ready;
492 arc_done_func_t *awcb_done;
493 arc_buf_t *awcb_buf;
494};
495
496struct arc_buf_hdr {
497 /* protected by hash lock */
498 dva_t b_dva;
499 uint64_t b_birth;
500 uint64_t b_cksum0;
501
502 kmutex_t b_freeze_lock;
503 zio_cksum_t *b_freeze_cksum;
428870ff 504 void *b_thawed;
34dc7c2f
BB
505
506 arc_buf_hdr_t *b_hash_next;
507 arc_buf_t *b_buf;
508 uint32_t b_flags;
509 uint32_t b_datacnt;
510
511 arc_callback_t *b_acb;
512 kcondvar_t b_cv;
513
514 /* immutable */
515 arc_buf_contents_t b_type;
516 uint64_t b_size;
d164b209 517 uint64_t b_spa;
34dc7c2f
BB
518
519 /* protected by arc state mutex */
520 arc_state_t *b_state;
521 list_node_t b_arc_node;
522
523 /* updated atomically */
524 clock_t b_arc_access;
525
526 /* self protecting */
527 refcount_t b_refcnt;
528
529 l2arc_buf_hdr_t *b_l2hdr;
530 list_node_t b_l2node;
531};
532
ab26409d
BB
533static list_t arc_prune_list;
534static kmutex_t arc_prune_mtx;
34dc7c2f
BB
535static arc_buf_t *arc_eviction_list;
536static kmutex_t arc_eviction_mtx;
537static arc_buf_hdr_t arc_eviction_hdr;
538static void arc_get_data_buf(arc_buf_t *buf);
539static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
540static int arc_evict_needed(arc_buf_contents_t type);
d164b209 541static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
34dc7c2f 542
428870ff
BB
543static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
544
34dc7c2f
BB
545#define GHOST_STATE(state) \
546 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
547 (state) == arc_l2c_only)
548
549/*
550 * Private ARC flags. These flags are private ARC only flags that will show up
551 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
552 * be passed in as arc_flags in things like arc_read. However, these flags
553 * should never be passed and should only be set by ARC code. When adding new
554 * public flags, make sure not to smash the private ones.
555 */
556
557#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
558#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
559#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
560#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
561#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
562#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
563#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
564#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
565#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
566#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
567
568#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
569#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
570#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 571#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
572#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
573#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
574#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
575#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
576#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
577 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
578#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
579#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
580#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
581
582/*
583 * Other sizes
584 */
585
586#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
587#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
588
589/*
590 * Hash table routines
591 */
592
00b46022
BB
593#define HT_LOCK_ALIGN 64
594#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
595
596struct ht_lock {
597 kmutex_t ht_lock;
598#ifdef _KERNEL
00b46022 599 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
600#endif
601};
602
603#define BUF_LOCKS 256
604typedef struct buf_hash_table {
605 uint64_t ht_mask;
606 arc_buf_hdr_t **ht_table;
607 struct ht_lock ht_locks[BUF_LOCKS];
608} buf_hash_table_t;
609
610static buf_hash_table_t buf_hash_table;
611
612#define BUF_HASH_INDEX(spa, dva, birth) \
613 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
614#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
615#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
616#define HDR_LOCK(hdr) \
617 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
618
619uint64_t zfs_crc64_table[256];
620
621/*
622 * Level 2 ARC
623 */
624
625#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
d164b209
BB
626#define L2ARC_HEADROOM 2 /* num of writes */
627#define L2ARC_FEED_SECS 1 /* caching interval secs */
628#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
629
630#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
631#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
632
633/*
634 * L2ARC Performance Tunables
635 */
abd8610c
BB
636unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
637unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
638unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
639unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
640unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
641int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
642int l2arc_feed_again = B_TRUE; /* turbo warmup */
643int l2arc_norw = B_TRUE; /* no reads during writes */
34dc7c2f
BB
644
645/*
646 * L2ARC Internals
647 */
648typedef struct l2arc_dev {
649 vdev_t *l2ad_vdev; /* vdev */
650 spa_t *l2ad_spa; /* spa */
651 uint64_t l2ad_hand; /* next write location */
652 uint64_t l2ad_write; /* desired write size, bytes */
b128c09f 653 uint64_t l2ad_boost; /* warmup write boost, bytes */
34dc7c2f
BB
654 uint64_t l2ad_start; /* first addr on device */
655 uint64_t l2ad_end; /* last addr on device */
656 uint64_t l2ad_evict; /* last addr eviction reached */
657 boolean_t l2ad_first; /* first sweep through */
d164b209 658 boolean_t l2ad_writing; /* currently writing */
34dc7c2f
BB
659 list_t *l2ad_buflist; /* buffer list */
660 list_node_t l2ad_node; /* device list node */
661} l2arc_dev_t;
662
663static list_t L2ARC_dev_list; /* device list */
664static list_t *l2arc_dev_list; /* device list pointer */
665static kmutex_t l2arc_dev_mtx; /* device list mutex */
666static l2arc_dev_t *l2arc_dev_last; /* last device used */
667static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
668static list_t L2ARC_free_on_write; /* free after write buf list */
669static list_t *l2arc_free_on_write; /* free after write list ptr */
670static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
671static uint64_t l2arc_ndev; /* number of devices */
672
673typedef struct l2arc_read_callback {
674 arc_buf_t *l2rcb_buf; /* read buffer */
675 spa_t *l2rcb_spa; /* spa */
676 blkptr_t l2rcb_bp; /* original blkptr */
677 zbookmark_t l2rcb_zb; /* original bookmark */
678 int l2rcb_flags; /* original flags */
679} l2arc_read_callback_t;
680
681typedef struct l2arc_write_callback {
682 l2arc_dev_t *l2wcb_dev; /* device info */
683 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
684} l2arc_write_callback_t;
685
686struct l2arc_buf_hdr {
687 /* protected by arc_buf_hdr mutex */
688 l2arc_dev_t *b_dev; /* L2ARC device */
9babb374 689 uint64_t b_daddr; /* disk address, offset byte */
34dc7c2f
BB
690};
691
692typedef struct l2arc_data_free {
693 /* protected by l2arc_free_on_write_mtx */
694 void *l2df_data;
695 size_t l2df_size;
696 void (*l2df_func)(void *, size_t);
697 list_node_t l2df_list_node;
698} l2arc_data_free_t;
699
700static kmutex_t l2arc_feed_thr_lock;
701static kcondvar_t l2arc_feed_thr_cv;
702static uint8_t l2arc_thread_exit;
703
704static void l2arc_read_done(zio_t *zio);
705static void l2arc_hdr_stat_add(void);
706static void l2arc_hdr_stat_remove(void);
707
708static uint64_t
d164b209 709buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 710{
34dc7c2f
BB
711 uint8_t *vdva = (uint8_t *)dva;
712 uint64_t crc = -1ULL;
713 int i;
714
715 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
716
717 for (i = 0; i < sizeof (dva_t); i++)
718 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
719
d164b209 720 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
721
722 return (crc);
723}
724
725#define BUF_EMPTY(buf) \
726 ((buf)->b_dva.dva_word[0] == 0 && \
727 (buf)->b_dva.dva_word[1] == 0 && \
728 (buf)->b_birth == 0)
729
730#define BUF_EQUAL(spa, dva, birth, buf) \
731 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
732 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
733 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
734
428870ff
BB
735static void
736buf_discard_identity(arc_buf_hdr_t *hdr)
737{
738 hdr->b_dva.dva_word[0] = 0;
739 hdr->b_dva.dva_word[1] = 0;
740 hdr->b_birth = 0;
741 hdr->b_cksum0 = 0;
742}
743
34dc7c2f 744static arc_buf_hdr_t *
d164b209 745buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
34dc7c2f
BB
746{
747 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
748 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
749 arc_buf_hdr_t *buf;
750
751 mutex_enter(hash_lock);
752 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
753 buf = buf->b_hash_next) {
754 if (BUF_EQUAL(spa, dva, birth, buf)) {
755 *lockp = hash_lock;
756 return (buf);
757 }
758 }
759 mutex_exit(hash_lock);
760 *lockp = NULL;
761 return (NULL);
762}
763
764/*
765 * Insert an entry into the hash table. If there is already an element
766 * equal to elem in the hash table, then the already existing element
767 * will be returned and the new element will not be inserted.
768 * Otherwise returns NULL.
769 */
770static arc_buf_hdr_t *
771buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
772{
773 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
774 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
775 arc_buf_hdr_t *fbuf;
776 uint32_t i;
777
778 ASSERT(!HDR_IN_HASH_TABLE(buf));
779 *lockp = hash_lock;
780 mutex_enter(hash_lock);
781 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
782 fbuf = fbuf->b_hash_next, i++) {
783 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
784 return (fbuf);
785 }
786
787 buf->b_hash_next = buf_hash_table.ht_table[idx];
788 buf_hash_table.ht_table[idx] = buf;
789 buf->b_flags |= ARC_IN_HASH_TABLE;
790
791 /* collect some hash table performance data */
792 if (i > 0) {
793 ARCSTAT_BUMP(arcstat_hash_collisions);
794 if (i == 1)
795 ARCSTAT_BUMP(arcstat_hash_chains);
796
797 ARCSTAT_MAX(arcstat_hash_chain_max, i);
798 }
799
800 ARCSTAT_BUMP(arcstat_hash_elements);
801 ARCSTAT_MAXSTAT(arcstat_hash_elements);
802
803 return (NULL);
804}
805
806static void
807buf_hash_remove(arc_buf_hdr_t *buf)
808{
809 arc_buf_hdr_t *fbuf, **bufp;
810 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
811
812 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
813 ASSERT(HDR_IN_HASH_TABLE(buf));
814
815 bufp = &buf_hash_table.ht_table[idx];
816 while ((fbuf = *bufp) != buf) {
817 ASSERT(fbuf != NULL);
818 bufp = &fbuf->b_hash_next;
819 }
820 *bufp = buf->b_hash_next;
821 buf->b_hash_next = NULL;
822 buf->b_flags &= ~ARC_IN_HASH_TABLE;
823
824 /* collect some hash table performance data */
825 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
826
827 if (buf_hash_table.ht_table[idx] &&
828 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
829 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
830}
831
832/*
833 * Global data structures and functions for the buf kmem cache.
834 */
835static kmem_cache_t *hdr_cache;
836static kmem_cache_t *buf_cache;
837
838static void
839buf_fini(void)
840{
841 int i;
842
00b46022
BB
843#if defined(_KERNEL) && defined(HAVE_SPL)
844 /* Large allocations which do not require contiguous pages
845 * should be using vmem_free() in the linux kernel */
846 vmem_free(buf_hash_table.ht_table,
847 (buf_hash_table.ht_mask + 1) * sizeof (void *));
848#else
34dc7c2f
BB
849 kmem_free(buf_hash_table.ht_table,
850 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 851#endif
34dc7c2f
BB
852 for (i = 0; i < BUF_LOCKS; i++)
853 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
854 kmem_cache_destroy(hdr_cache);
855 kmem_cache_destroy(buf_cache);
856}
857
858/*
859 * Constructor callback - called when the cache is empty
860 * and a new buf is requested.
861 */
862/* ARGSUSED */
863static int
864hdr_cons(void *vbuf, void *unused, int kmflag)
865{
866 arc_buf_hdr_t *buf = vbuf;
867
868 bzero(buf, sizeof (arc_buf_hdr_t));
869 refcount_create(&buf->b_refcnt);
870 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
871 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
872 list_link_init(&buf->b_arc_node);
873 list_link_init(&buf->b_l2node);
d164b209 874 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 875
34dc7c2f
BB
876 return (0);
877}
878
b128c09f
BB
879/* ARGSUSED */
880static int
881buf_cons(void *vbuf, void *unused, int kmflag)
882{
883 arc_buf_t *buf = vbuf;
884
885 bzero(buf, sizeof (arc_buf_t));
428870ff 886 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
887 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
888
b128c09f
BB
889 return (0);
890}
891
34dc7c2f
BB
892/*
893 * Destructor callback - called when a cached buf is
894 * no longer required.
895 */
896/* ARGSUSED */
897static void
898hdr_dest(void *vbuf, void *unused)
899{
900 arc_buf_hdr_t *buf = vbuf;
901
428870ff 902 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
903 refcount_destroy(&buf->b_refcnt);
904 cv_destroy(&buf->b_cv);
905 mutex_destroy(&buf->b_freeze_lock);
d164b209 906 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
907}
908
b128c09f
BB
909/* ARGSUSED */
910static void
911buf_dest(void *vbuf, void *unused)
912{
913 arc_buf_t *buf = vbuf;
914
428870ff 915 mutex_destroy(&buf->b_evict_lock);
d164b209 916 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
917}
918
34dc7c2f
BB
919static void
920buf_init(void)
921{
922 uint64_t *ct;
923 uint64_t hsize = 1ULL << 12;
924 int i, j;
925
926 /*
927 * The hash table is big enough to fill all of physical memory
928 * with an average 64K block size. The table will take up
929 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
930 */
931 while (hsize * 65536 < physmem * PAGESIZE)
932 hsize <<= 1;
933retry:
934 buf_hash_table.ht_mask = hsize - 1;
00b46022
BB
935#if defined(_KERNEL) && defined(HAVE_SPL)
936 /* Large allocations which do not require contiguous pages
937 * should be using vmem_alloc() in the linux kernel */
938 buf_hash_table.ht_table =
939 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
940#else
34dc7c2f
BB
941 buf_hash_table.ht_table =
942 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 943#endif
34dc7c2f
BB
944 if (buf_hash_table.ht_table == NULL) {
945 ASSERT(hsize > (1ULL << 8));
946 hsize >>= 1;
947 goto retry;
948 }
949
950 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
302f753f 951 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
34dc7c2f 952 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 953 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
954
955 for (i = 0; i < 256; i++)
956 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
957 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
958
959 for (i = 0; i < BUF_LOCKS; i++) {
960 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
961 NULL, MUTEX_DEFAULT, NULL);
962 }
963}
964
965#define ARC_MINTIME (hz>>4) /* 62 ms */
966
967static void
968arc_cksum_verify(arc_buf_t *buf)
969{
970 zio_cksum_t zc;
971
972 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
973 return;
974
975 mutex_enter(&buf->b_hdr->b_freeze_lock);
976 if (buf->b_hdr->b_freeze_cksum == NULL ||
977 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
978 mutex_exit(&buf->b_hdr->b_freeze_lock);
979 return;
980 }
981 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
982 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
983 panic("buffer modified while frozen!");
984 mutex_exit(&buf->b_hdr->b_freeze_lock);
985}
986
987static int
988arc_cksum_equal(arc_buf_t *buf)
989{
990 zio_cksum_t zc;
991 int equal;
992
993 mutex_enter(&buf->b_hdr->b_freeze_lock);
994 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
995 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
996 mutex_exit(&buf->b_hdr->b_freeze_lock);
997
998 return (equal);
999}
1000
1001static void
1002arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1003{
1004 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1005 return;
1006
1007 mutex_enter(&buf->b_hdr->b_freeze_lock);
1008 if (buf->b_hdr->b_freeze_cksum != NULL) {
1009 mutex_exit(&buf->b_hdr->b_freeze_lock);
1010 return;
1011 }
409dc1a5
PS
1012 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1013 KM_PUSHPAGE);
34dc7c2f
BB
1014 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1015 buf->b_hdr->b_freeze_cksum);
1016 mutex_exit(&buf->b_hdr->b_freeze_lock);
1017}
1018
1019void
1020arc_buf_thaw(arc_buf_t *buf)
1021{
1022 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1023 if (buf->b_hdr->b_state != arc_anon)
1024 panic("modifying non-anon buffer!");
1025 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1026 panic("modifying buffer while i/o in progress!");
1027 arc_cksum_verify(buf);
1028 }
1029
1030 mutex_enter(&buf->b_hdr->b_freeze_lock);
1031 if (buf->b_hdr->b_freeze_cksum != NULL) {
1032 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1033 buf->b_hdr->b_freeze_cksum = NULL;
1034 }
428870ff
BB
1035
1036 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1037 if (buf->b_hdr->b_thawed)
1038 kmem_free(buf->b_hdr->b_thawed, 1);
1039 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1040 }
1041
34dc7c2f
BB
1042 mutex_exit(&buf->b_hdr->b_freeze_lock);
1043}
1044
1045void
1046arc_buf_freeze(arc_buf_t *buf)
1047{
428870ff
BB
1048 kmutex_t *hash_lock;
1049
34dc7c2f
BB
1050 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1051 return;
1052
428870ff
BB
1053 hash_lock = HDR_LOCK(buf->b_hdr);
1054 mutex_enter(hash_lock);
1055
34dc7c2f
BB
1056 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1057 buf->b_hdr->b_state == arc_anon);
1058 arc_cksum_compute(buf, B_FALSE);
428870ff 1059 mutex_exit(hash_lock);
34dc7c2f
BB
1060}
1061
1062static void
1063add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1064{
1065 ASSERT(MUTEX_HELD(hash_lock));
1066
1067 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1068 (ab->b_state != arc_anon)) {
1069 uint64_t delta = ab->b_size * ab->b_datacnt;
1070 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1071 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1072
1073 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1074 mutex_enter(&ab->b_state->arcs_mtx);
1075 ASSERT(list_link_active(&ab->b_arc_node));
1076 list_remove(list, ab);
1077 if (GHOST_STATE(ab->b_state)) {
c99c9001 1078 ASSERT0(ab->b_datacnt);
34dc7c2f
BB
1079 ASSERT3P(ab->b_buf, ==, NULL);
1080 delta = ab->b_size;
1081 }
1082 ASSERT(delta > 0);
1083 ASSERT3U(*size, >=, delta);
1084 atomic_add_64(size, -delta);
1085 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1086 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1087 if (ab->b_flags & ARC_PREFETCH)
1088 ab->b_flags &= ~ARC_PREFETCH;
1089 }
1090}
1091
1092static int
1093remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1094{
1095 int cnt;
1096 arc_state_t *state = ab->b_state;
1097
1098 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1099 ASSERT(!GHOST_STATE(state));
1100
1101 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1102 (state != arc_anon)) {
1103 uint64_t *size = &state->arcs_lsize[ab->b_type];
1104
1105 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1106 mutex_enter(&state->arcs_mtx);
1107 ASSERT(!list_link_active(&ab->b_arc_node));
1108 list_insert_head(&state->arcs_list[ab->b_type], ab);
1109 ASSERT(ab->b_datacnt > 0);
1110 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1111 mutex_exit(&state->arcs_mtx);
1112 }
1113 return (cnt);
1114}
1115
1116/*
1117 * Move the supplied buffer to the indicated state. The mutex
1118 * for the buffer must be held by the caller.
1119 */
1120static void
1121arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1122{
1123 arc_state_t *old_state = ab->b_state;
1124 int64_t refcnt = refcount_count(&ab->b_refcnt);
1125 uint64_t from_delta, to_delta;
1126
1127 ASSERT(MUTEX_HELD(hash_lock));
1128 ASSERT(new_state != old_state);
1129 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1130 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1131 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1132
1133 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1134
1135 /*
1136 * If this buffer is evictable, transfer it from the
1137 * old state list to the new state list.
1138 */
1139 if (refcnt == 0) {
1140 if (old_state != arc_anon) {
1141 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1142 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1143
1144 if (use_mutex)
1145 mutex_enter(&old_state->arcs_mtx);
1146
1147 ASSERT(list_link_active(&ab->b_arc_node));
1148 list_remove(&old_state->arcs_list[ab->b_type], ab);
1149
1150 /*
1151 * If prefetching out of the ghost cache,
428870ff 1152 * we will have a non-zero datacnt.
34dc7c2f
BB
1153 */
1154 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1155 /* ghost elements have a ghost size */
1156 ASSERT(ab->b_buf == NULL);
1157 from_delta = ab->b_size;
1158 }
1159 ASSERT3U(*size, >=, from_delta);
1160 atomic_add_64(size, -from_delta);
1161
1162 if (use_mutex)
1163 mutex_exit(&old_state->arcs_mtx);
1164 }
1165 if (new_state != arc_anon) {
1166 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1167 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1168
1169 if (use_mutex)
1170 mutex_enter(&new_state->arcs_mtx);
1171
1172 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1173
1174 /* ghost elements have a ghost size */
1175 if (GHOST_STATE(new_state)) {
1176 ASSERT(ab->b_datacnt == 0);
1177 ASSERT(ab->b_buf == NULL);
1178 to_delta = ab->b_size;
1179 }
1180 atomic_add_64(size, to_delta);
1181
1182 if (use_mutex)
1183 mutex_exit(&new_state->arcs_mtx);
1184 }
1185 }
1186
1187 ASSERT(!BUF_EMPTY(ab));
428870ff 1188 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1189 buf_hash_remove(ab);
34dc7c2f
BB
1190
1191 /* adjust state sizes */
1192 if (to_delta)
1193 atomic_add_64(&new_state->arcs_size, to_delta);
1194 if (from_delta) {
1195 ASSERT3U(old_state->arcs_size, >=, from_delta);
1196 atomic_add_64(&old_state->arcs_size, -from_delta);
1197 }
1198 ab->b_state = new_state;
1199
1200 /* adjust l2arc hdr stats */
1201 if (new_state == arc_l2c_only)
1202 l2arc_hdr_stat_add();
1203 else if (old_state == arc_l2c_only)
1204 l2arc_hdr_stat_remove();
1205}
1206
1207void
d164b209 1208arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1209{
d164b209
BB
1210 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1211
1212 switch (type) {
e75c13c3
BB
1213 default:
1214 break;
d164b209
BB
1215 case ARC_SPACE_DATA:
1216 ARCSTAT_INCR(arcstat_data_size, space);
1217 break;
1218 case ARC_SPACE_OTHER:
1219 ARCSTAT_INCR(arcstat_other_size, space);
1220 break;
1221 case ARC_SPACE_HDRS:
1222 ARCSTAT_INCR(arcstat_hdr_size, space);
1223 break;
1224 case ARC_SPACE_L2HDRS:
1225 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1226 break;
1227 }
1228
34dc7c2f
BB
1229 atomic_add_64(&arc_meta_used, space);
1230 atomic_add_64(&arc_size, space);
1231}
1232
1233void
d164b209 1234arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1235{
d164b209
BB
1236 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1237
1238 switch (type) {
e75c13c3
BB
1239 default:
1240 break;
d164b209
BB
1241 case ARC_SPACE_DATA:
1242 ARCSTAT_INCR(arcstat_data_size, -space);
1243 break;
1244 case ARC_SPACE_OTHER:
1245 ARCSTAT_INCR(arcstat_other_size, -space);
1246 break;
1247 case ARC_SPACE_HDRS:
1248 ARCSTAT_INCR(arcstat_hdr_size, -space);
1249 break;
1250 case ARC_SPACE_L2HDRS:
1251 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1252 break;
1253 }
1254
34dc7c2f
BB
1255 ASSERT(arc_meta_used >= space);
1256 if (arc_meta_max < arc_meta_used)
1257 arc_meta_max = arc_meta_used;
1258 atomic_add_64(&arc_meta_used, -space);
1259 ASSERT(arc_size >= space);
1260 atomic_add_64(&arc_size, -space);
1261}
1262
1263void *
1264arc_data_buf_alloc(uint64_t size)
1265{
1266 if (arc_evict_needed(ARC_BUFC_DATA))
1267 cv_signal(&arc_reclaim_thr_cv);
1268 atomic_add_64(&arc_size, size);
1269 return (zio_data_buf_alloc(size));
1270}
1271
1272void
1273arc_data_buf_free(void *buf, uint64_t size)
1274{
1275 zio_data_buf_free(buf, size);
1276 ASSERT(arc_size >= size);
1277 atomic_add_64(&arc_size, -size);
1278}
1279
1280arc_buf_t *
1281arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1282{
1283 arc_buf_hdr_t *hdr;
1284 arc_buf_t *buf;
1285
1286 ASSERT3U(size, >, 0);
1287 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1288 ASSERT(BUF_EMPTY(hdr));
1289 hdr->b_size = size;
1290 hdr->b_type = type;
3541dc6d 1291 hdr->b_spa = spa_load_guid(spa);
34dc7c2f
BB
1292 hdr->b_state = arc_anon;
1293 hdr->b_arc_access = 0;
1294 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1295 buf->b_hdr = hdr;
1296 buf->b_data = NULL;
1297 buf->b_efunc = NULL;
1298 buf->b_private = NULL;
1299 buf->b_next = NULL;
1300 hdr->b_buf = buf;
1301 arc_get_data_buf(buf);
1302 hdr->b_datacnt = 1;
1303 hdr->b_flags = 0;
1304 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1305 (void) refcount_add(&hdr->b_refcnt, tag);
1306
1307 return (buf);
1308}
1309
9babb374
BB
1310static char *arc_onloan_tag = "onloan";
1311
1312/*
1313 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1314 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1315 * buffers must be returned to the arc before they can be used by the DMU or
1316 * freed.
1317 */
1318arc_buf_t *
1319arc_loan_buf(spa_t *spa, int size)
1320{
1321 arc_buf_t *buf;
1322
1323 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1324
1325 atomic_add_64(&arc_loaned_bytes, size);
1326 return (buf);
1327}
1328
1329/*
1330 * Return a loaned arc buffer to the arc.
1331 */
1332void
1333arc_return_buf(arc_buf_t *buf, void *tag)
1334{
1335 arc_buf_hdr_t *hdr = buf->b_hdr;
1336
9babb374 1337 ASSERT(buf->b_data != NULL);
428870ff
BB
1338 (void) refcount_add(&hdr->b_refcnt, tag);
1339 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1340
1341 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1342}
1343
428870ff
BB
1344/* Detach an arc_buf from a dbuf (tag) */
1345void
1346arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1347{
1348 arc_buf_hdr_t *hdr;
1349
1350 ASSERT(buf->b_data != NULL);
1351 hdr = buf->b_hdr;
1352 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1353 (void) refcount_remove(&hdr->b_refcnt, tag);
1354 buf->b_efunc = NULL;
1355 buf->b_private = NULL;
1356
1357 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1358}
1359
34dc7c2f
BB
1360static arc_buf_t *
1361arc_buf_clone(arc_buf_t *from)
1362{
1363 arc_buf_t *buf;
1364 arc_buf_hdr_t *hdr = from->b_hdr;
1365 uint64_t size = hdr->b_size;
1366
428870ff
BB
1367 ASSERT(hdr->b_state != arc_anon);
1368
34dc7c2f
BB
1369 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1370 buf->b_hdr = hdr;
1371 buf->b_data = NULL;
1372 buf->b_efunc = NULL;
1373 buf->b_private = NULL;
1374 buf->b_next = hdr->b_buf;
1375 hdr->b_buf = buf;
1376 arc_get_data_buf(buf);
1377 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1378
1379 /*
1380 * This buffer already exists in the arc so create a duplicate
1381 * copy for the caller. If the buffer is associated with user data
1382 * then track the size and number of duplicates. These stats will be
1383 * updated as duplicate buffers are created and destroyed.
1384 */
1385 if (hdr->b_type == ARC_BUFC_DATA) {
1386 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1387 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1388 }
34dc7c2f
BB
1389 hdr->b_datacnt += 1;
1390 return (buf);
1391}
1392
1393void
1394arc_buf_add_ref(arc_buf_t *buf, void* tag)
1395{
1396 arc_buf_hdr_t *hdr;
1397 kmutex_t *hash_lock;
1398
1399 /*
b128c09f
BB
1400 * Check to see if this buffer is evicted. Callers
1401 * must verify b_data != NULL to know if the add_ref
1402 * was successful.
34dc7c2f 1403 */
428870ff 1404 mutex_enter(&buf->b_evict_lock);
b128c09f 1405 if (buf->b_data == NULL) {
428870ff 1406 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1407 return;
1408 }
428870ff 1409 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1410 mutex_enter(hash_lock);
428870ff
BB
1411 hdr = buf->b_hdr;
1412 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1413 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1414
34dc7c2f
BB
1415 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1416 add_reference(hdr, hash_lock, tag);
d164b209 1417 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1418 arc_access(hdr, hash_lock);
1419 mutex_exit(hash_lock);
1420 ARCSTAT_BUMP(arcstat_hits);
1421 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1422 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1423 data, metadata, hits);
1424}
1425
1426/*
1427 * Free the arc data buffer. If it is an l2arc write in progress,
1428 * the buffer is placed on l2arc_free_on_write to be freed later.
1429 */
1430static void
1431arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1432 void *data, size_t size)
1433{
1434 if (HDR_L2_WRITING(hdr)) {
1435 l2arc_data_free_t *df;
594b4dd8 1436 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
34dc7c2f
BB
1437 df->l2df_data = data;
1438 df->l2df_size = size;
1439 df->l2df_func = free_func;
1440 mutex_enter(&l2arc_free_on_write_mtx);
1441 list_insert_head(l2arc_free_on_write, df);
1442 mutex_exit(&l2arc_free_on_write_mtx);
1443 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1444 } else {
1445 free_func(data, size);
1446 }
1447}
1448
1449static void
1450arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1451{
1452 arc_buf_t **bufp;
1453
1454 /* free up data associated with the buf */
1455 if (buf->b_data) {
1456 arc_state_t *state = buf->b_hdr->b_state;
1457 uint64_t size = buf->b_hdr->b_size;
1458 arc_buf_contents_t type = buf->b_hdr->b_type;
1459
1460 arc_cksum_verify(buf);
428870ff 1461
34dc7c2f
BB
1462 if (!recycle) {
1463 if (type == ARC_BUFC_METADATA) {
1464 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1465 buf->b_data, size);
d164b209 1466 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1467 } else {
1468 ASSERT(type == ARC_BUFC_DATA);
1469 arc_buf_data_free(buf->b_hdr,
1470 zio_data_buf_free, buf->b_data, size);
d164b209 1471 ARCSTAT_INCR(arcstat_data_size, -size);
34dc7c2f
BB
1472 atomic_add_64(&arc_size, -size);
1473 }
1474 }
1475 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1476 uint64_t *cnt = &state->arcs_lsize[type];
1477
1478 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1479 ASSERT(state != arc_anon);
1480
1481 ASSERT3U(*cnt, >=, size);
1482 atomic_add_64(cnt, -size);
1483 }
1484 ASSERT3U(state->arcs_size, >=, size);
1485 atomic_add_64(&state->arcs_size, -size);
1486 buf->b_data = NULL;
1eb5bfa3
GW
1487
1488 /*
1489 * If we're destroying a duplicate buffer make sure
1490 * that the appropriate statistics are updated.
1491 */
1492 if (buf->b_hdr->b_datacnt > 1 &&
1493 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1494 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1495 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1496 }
34dc7c2f
BB
1497 ASSERT(buf->b_hdr->b_datacnt > 0);
1498 buf->b_hdr->b_datacnt -= 1;
1499 }
1500
1501 /* only remove the buf if requested */
1502 if (!all)
1503 return;
1504
1505 /* remove the buf from the hdr list */
1506 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1507 continue;
1508 *bufp = buf->b_next;
428870ff 1509 buf->b_next = NULL;
34dc7c2f
BB
1510
1511 ASSERT(buf->b_efunc == NULL);
1512
1513 /* clean up the buf */
1514 buf->b_hdr = NULL;
1515 kmem_cache_free(buf_cache, buf);
1516}
1517
1518static void
1519arc_hdr_destroy(arc_buf_hdr_t *hdr)
1520{
d6320ddb
BB
1521 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1522
34dc7c2f
BB
1523 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1524 ASSERT3P(hdr->b_state, ==, arc_anon);
1525 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1526
428870ff
BB
1527 if (l2hdr != NULL) {
1528 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1529 /*
1530 * To prevent arc_free() and l2arc_evict() from
1531 * attempting to free the same buffer at the same time,
1532 * a FREE_IN_PROGRESS flag is given to arc_free() to
1533 * give it priority. l2arc_evict() can't destroy this
1534 * header while we are waiting on l2arc_buflist_mtx.
1535 *
1536 * The hdr may be removed from l2ad_buflist before we
1537 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1538 */
1539 if (!buflist_held) {
34dc7c2f 1540 mutex_enter(&l2arc_buflist_mtx);
428870ff 1541 l2hdr = hdr->b_l2hdr;
34dc7c2f 1542 }
428870ff
BB
1543
1544 if (l2hdr != NULL) {
1545 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1546 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1547 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
6e1d7276 1548 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
428870ff
BB
1549 if (hdr->b_state == arc_l2c_only)
1550 l2arc_hdr_stat_remove();
1551 hdr->b_l2hdr = NULL;
1552 }
1553
1554 if (!buflist_held)
1555 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1556 }
1557
1558 if (!BUF_EMPTY(hdr)) {
1559 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1560 buf_discard_identity(hdr);
34dc7c2f
BB
1561 }
1562 while (hdr->b_buf) {
1563 arc_buf_t *buf = hdr->b_buf;
1564
1565 if (buf->b_efunc) {
1566 mutex_enter(&arc_eviction_mtx);
428870ff 1567 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1568 ASSERT(buf->b_hdr != NULL);
1569 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1570 hdr->b_buf = buf->b_next;
1571 buf->b_hdr = &arc_eviction_hdr;
1572 buf->b_next = arc_eviction_list;
1573 arc_eviction_list = buf;
428870ff 1574 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1575 mutex_exit(&arc_eviction_mtx);
1576 } else {
1577 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1578 }
1579 }
1580 if (hdr->b_freeze_cksum != NULL) {
1581 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1582 hdr->b_freeze_cksum = NULL;
1583 }
428870ff
BB
1584 if (hdr->b_thawed) {
1585 kmem_free(hdr->b_thawed, 1);
1586 hdr->b_thawed = NULL;
1587 }
34dc7c2f
BB
1588
1589 ASSERT(!list_link_active(&hdr->b_arc_node));
1590 ASSERT3P(hdr->b_hash_next, ==, NULL);
1591 ASSERT3P(hdr->b_acb, ==, NULL);
1592 kmem_cache_free(hdr_cache, hdr);
1593}
1594
1595void
1596arc_buf_free(arc_buf_t *buf, void *tag)
1597{
1598 arc_buf_hdr_t *hdr = buf->b_hdr;
1599 int hashed = hdr->b_state != arc_anon;
1600
1601 ASSERT(buf->b_efunc == NULL);
1602 ASSERT(buf->b_data != NULL);
1603
1604 if (hashed) {
1605 kmutex_t *hash_lock = HDR_LOCK(hdr);
1606
1607 mutex_enter(hash_lock);
428870ff
BB
1608 hdr = buf->b_hdr;
1609 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1610
34dc7c2f 1611 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1612 if (hdr->b_datacnt > 1) {
34dc7c2f 1613 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1614 } else {
1615 ASSERT(buf == hdr->b_buf);
1616 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1617 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1618 }
34dc7c2f
BB
1619 mutex_exit(hash_lock);
1620 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1621 int destroy_hdr;
1622 /*
1623 * We are in the middle of an async write. Don't destroy
1624 * this buffer unless the write completes before we finish
1625 * decrementing the reference count.
1626 */
1627 mutex_enter(&arc_eviction_mtx);
1628 (void) remove_reference(hdr, NULL, tag);
1629 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1630 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1631 mutex_exit(&arc_eviction_mtx);
1632 if (destroy_hdr)
1633 arc_hdr_destroy(hdr);
1634 } else {
428870ff 1635 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1636 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1637 else
34dc7c2f 1638 arc_hdr_destroy(hdr);
34dc7c2f
BB
1639 }
1640}
1641
1642int
1643arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1644{
1645 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1646 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
1647 int no_callback = (buf->b_efunc == NULL);
1648
1649 if (hdr->b_state == arc_anon) {
428870ff 1650 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1651 arc_buf_free(buf, tag);
1652 return (no_callback);
1653 }
1654
b4f7f105 1655 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1656 mutex_enter(hash_lock);
428870ff
BB
1657 hdr = buf->b_hdr;
1658 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1659 ASSERT(hdr->b_state != arc_anon);
1660 ASSERT(buf->b_data != NULL);
1661
1662 (void) remove_reference(hdr, hash_lock, tag);
1663 if (hdr->b_datacnt > 1) {
1664 if (no_callback)
1665 arc_buf_destroy(buf, FALSE, TRUE);
1666 } else if (no_callback) {
1667 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1668 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1669 hdr->b_flags |= ARC_BUF_AVAILABLE;
1670 }
1671 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1672 refcount_is_zero(&hdr->b_refcnt));
1673 mutex_exit(hash_lock);
1674 return (no_callback);
1675}
1676
1677int
1678arc_buf_size(arc_buf_t *buf)
1679{
1680 return (buf->b_hdr->b_size);
1681}
1682
1eb5bfa3
GW
1683/*
1684 * Called from the DMU to determine if the current buffer should be
1685 * evicted. In order to ensure proper locking, the eviction must be initiated
1686 * from the DMU. Return true if the buffer is associated with user data and
1687 * duplicate buffers still exist.
1688 */
1689boolean_t
1690arc_buf_eviction_needed(arc_buf_t *buf)
1691{
1692 arc_buf_hdr_t *hdr;
1693 boolean_t evict_needed = B_FALSE;
1694
1695 if (zfs_disable_dup_eviction)
1696 return (B_FALSE);
1697
1698 mutex_enter(&buf->b_evict_lock);
1699 hdr = buf->b_hdr;
1700 if (hdr == NULL) {
1701 /*
1702 * We are in arc_do_user_evicts(); let that function
1703 * perform the eviction.
1704 */
1705 ASSERT(buf->b_data == NULL);
1706 mutex_exit(&buf->b_evict_lock);
1707 return (B_FALSE);
1708 } else if (buf->b_data == NULL) {
1709 /*
1710 * We have already been added to the arc eviction list;
1711 * recommend eviction.
1712 */
1713 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1714 mutex_exit(&buf->b_evict_lock);
1715 return (B_TRUE);
1716 }
1717
1718 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1719 evict_needed = B_TRUE;
1720
1721 mutex_exit(&buf->b_evict_lock);
1722 return (evict_needed);
1723}
1724
34dc7c2f
BB
1725/*
1726 * Evict buffers from list until we've removed the specified number of
1727 * bytes. Move the removed buffers to the appropriate evict state.
1728 * If the recycle flag is set, then attempt to "recycle" a buffer:
1729 * - look for a buffer to evict that is `bytes' long.
1730 * - return the data block from this buffer rather than freeing it.
1731 * This flag is used by callers that are trying to make space for a
1732 * new buffer in a full arc cache.
1733 *
1734 * This function makes a "best effort". It skips over any buffers
1735 * it can't get a hash_lock on, and so may not catch all candidates.
1736 * It may also return without evicting as much space as requested.
1737 */
1738static void *
d164b209 1739arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1740 arc_buf_contents_t type)
1741{
1742 arc_state_t *evicted_state;
1743 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1744 arc_buf_hdr_t *ab, *ab_prev = NULL;
1745 list_t *list = &state->arcs_list[type];
1746 kmutex_t *hash_lock;
1747 boolean_t have_lock;
1748 void *stolen = NULL;
1749
1750 ASSERT(state == arc_mru || state == arc_mfu);
1751
1752 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1753
1754 mutex_enter(&state->arcs_mtx);
1755 mutex_enter(&evicted_state->arcs_mtx);
1756
1757 for (ab = list_tail(list); ab; ab = ab_prev) {
1758 ab_prev = list_prev(list, ab);
1759 /* prefetch buffers have a minimum lifespan */
1760 if (HDR_IO_IN_PROGRESS(ab) ||
1761 (spa && ab->b_spa != spa) ||
1762 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff
BB
1763 ddi_get_lbolt() - ab->b_arc_access <
1764 arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1765 skipped++;
1766 continue;
1767 }
1768 /* "lookahead" for better eviction candidate */
1769 if (recycle && ab->b_size != bytes &&
1770 ab_prev && ab_prev->b_size == bytes)
1771 continue;
1772 hash_lock = HDR_LOCK(ab);
1773 have_lock = MUTEX_HELD(hash_lock);
1774 if (have_lock || mutex_tryenter(hash_lock)) {
c99c9001 1775 ASSERT0(refcount_count(&ab->b_refcnt));
34dc7c2f
BB
1776 ASSERT(ab->b_datacnt > 0);
1777 while (ab->b_buf) {
1778 arc_buf_t *buf = ab->b_buf;
428870ff 1779 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1780 missed += 1;
1781 break;
1782 }
34dc7c2f
BB
1783 if (buf->b_data) {
1784 bytes_evicted += ab->b_size;
1785 if (recycle && ab->b_type == type &&
1786 ab->b_size == bytes &&
1787 !HDR_L2_WRITING(ab)) {
1788 stolen = buf->b_data;
1789 recycle = FALSE;
1790 }
1791 }
1792 if (buf->b_efunc) {
1793 mutex_enter(&arc_eviction_mtx);
1794 arc_buf_destroy(buf,
1795 buf->b_data == stolen, FALSE);
1796 ab->b_buf = buf->b_next;
1797 buf->b_hdr = &arc_eviction_hdr;
1798 buf->b_next = arc_eviction_list;
1799 arc_eviction_list = buf;
1800 mutex_exit(&arc_eviction_mtx);
428870ff 1801 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1802 } else {
428870ff 1803 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1804 arc_buf_destroy(buf,
1805 buf->b_data == stolen, TRUE);
1806 }
1807 }
428870ff
BB
1808
1809 if (ab->b_l2hdr) {
1810 ARCSTAT_INCR(arcstat_evict_l2_cached,
1811 ab->b_size);
1812 } else {
1813 if (l2arc_write_eligible(ab->b_spa, ab)) {
1814 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1815 ab->b_size);
1816 } else {
1817 ARCSTAT_INCR(
1818 arcstat_evict_l2_ineligible,
1819 ab->b_size);
1820 }
1821 }
1822
b128c09f
BB
1823 if (ab->b_datacnt == 0) {
1824 arc_change_state(evicted_state, ab, hash_lock);
1825 ASSERT(HDR_IN_HASH_TABLE(ab));
1826 ab->b_flags |= ARC_IN_HASH_TABLE;
1827 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1828 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1829 }
34dc7c2f
BB
1830 if (!have_lock)
1831 mutex_exit(hash_lock);
1832 if (bytes >= 0 && bytes_evicted >= bytes)
1833 break;
1834 } else {
1835 missed += 1;
1836 }
1837 }
1838
1839 mutex_exit(&evicted_state->arcs_mtx);
1840 mutex_exit(&state->arcs_mtx);
1841
1842 if (bytes_evicted < bytes)
3f504482 1843 dprintf("only evicted %lld bytes from %x\n",
34dc7c2f
BB
1844 (longlong_t)bytes_evicted, state);
1845
1846 if (skipped)
1847 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1848
1849 if (missed)
1850 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1851
1852 /*
1853 * We have just evicted some date into the ghost state, make
1854 * sure we also adjust the ghost state size if necessary.
1855 */
1856 if (arc_no_grow &&
1857 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1858 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1859 arc_mru_ghost->arcs_size - arc_c;
1860
1861 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1862 int64_t todelete =
1863 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
b8864a23 1864 arc_evict_ghost(arc_mru_ghost, 0, todelete);
34dc7c2f
BB
1865 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1866 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1867 arc_mru_ghost->arcs_size +
1868 arc_mfu_ghost->arcs_size - arc_c);
b8864a23 1869 arc_evict_ghost(arc_mfu_ghost, 0, todelete);
34dc7c2f
BB
1870 }
1871 }
1872
1873 return (stolen);
1874}
1875
1876/*
1877 * Remove buffers from list until we've removed the specified number of
1878 * bytes. Destroy the buffers that are removed.
1879 */
1880static void
d164b209 1881arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
34dc7c2f
BB
1882{
1883 arc_buf_hdr_t *ab, *ab_prev;
2598c001 1884 arc_buf_hdr_t marker;
34dc7c2f
BB
1885 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1886 kmutex_t *hash_lock;
1887 uint64_t bytes_deleted = 0;
1888 uint64_t bufs_skipped = 0;
1889
1890 ASSERT(GHOST_STATE(state));
2598c001 1891 bzero(&marker, sizeof(marker));
34dc7c2f
BB
1892top:
1893 mutex_enter(&state->arcs_mtx);
1894 for (ab = list_tail(list); ab; ab = ab_prev) {
1895 ab_prev = list_prev(list, ab);
1896 if (spa && ab->b_spa != spa)
1897 continue;
572e2857
BB
1898
1899 /* ignore markers */
1900 if (ab->b_spa == 0)
1901 continue;
1902
34dc7c2f 1903 hash_lock = HDR_LOCK(ab);
428870ff
BB
1904 /* caller may be trying to modify this buffer, skip it */
1905 if (MUTEX_HELD(hash_lock))
1906 continue;
34dc7c2f
BB
1907 if (mutex_tryenter(hash_lock)) {
1908 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1909 ASSERT(ab->b_buf == NULL);
1910 ARCSTAT_BUMP(arcstat_deleted);
1911 bytes_deleted += ab->b_size;
1912
1913 if (ab->b_l2hdr != NULL) {
1914 /*
1915 * This buffer is cached on the 2nd Level ARC;
1916 * don't destroy the header.
1917 */
1918 arc_change_state(arc_l2c_only, ab, hash_lock);
1919 mutex_exit(hash_lock);
1920 } else {
1921 arc_change_state(arc_anon, ab, hash_lock);
1922 mutex_exit(hash_lock);
1923 arc_hdr_destroy(ab);
1924 }
1925
1926 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1927 if (bytes >= 0 && bytes_deleted >= bytes)
1928 break;
572e2857
BB
1929 } else if (bytes < 0) {
1930 /*
1931 * Insert a list marker and then wait for the
1932 * hash lock to become available. Once its
1933 * available, restart from where we left off.
1934 */
1935 list_insert_after(list, ab, &marker);
1936 mutex_exit(&state->arcs_mtx);
1937 mutex_enter(hash_lock);
1938 mutex_exit(hash_lock);
1939 mutex_enter(&state->arcs_mtx);
1940 ab_prev = list_prev(list, &marker);
1941 list_remove(list, &marker);
1942 } else
34dc7c2f 1943 bufs_skipped += 1;
34dc7c2f
BB
1944 }
1945 mutex_exit(&state->arcs_mtx);
1946
1947 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1948 (bytes < 0 || bytes_deleted < bytes)) {
1949 list = &state->arcs_list[ARC_BUFC_METADATA];
1950 goto top;
1951 }
1952
1953 if (bufs_skipped) {
1954 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1955 ASSERT(bytes >= 0);
1956 }
1957
1958 if (bytes_deleted < bytes)
3f504482 1959 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
1960 (longlong_t)bytes_deleted, state);
1961}
1962
1963static void
1964arc_adjust(void)
1965{
d164b209
BB
1966 int64_t adjustment, delta;
1967
1968 /*
1969 * Adjust MRU size
1970 */
34dc7c2f 1971
572e2857
BB
1972 adjustment = MIN((int64_t)(arc_size - arc_c),
1973 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1974 arc_p));
34dc7c2f 1975
d164b209
BB
1976 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1977 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
b8864a23 1978 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1979 adjustment -= delta;
34dc7c2f
BB
1980 }
1981
d164b209
BB
1982 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1983 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
b8864a23 1984 (void) arc_evict(arc_mru, 0, delta, FALSE,
34dc7c2f 1985 ARC_BUFC_METADATA);
34dc7c2f
BB
1986 }
1987
d164b209
BB
1988 /*
1989 * Adjust MFU size
1990 */
34dc7c2f 1991
d164b209
BB
1992 adjustment = arc_size - arc_c;
1993
1994 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1995 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
b8864a23 1996 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 1997 adjustment -= delta;
34dc7c2f
BB
1998 }
1999
d164b209
BB
2000 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2001 int64_t delta = MIN(adjustment,
2002 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
b8864a23 2003 (void) arc_evict(arc_mfu, 0, delta, FALSE,
d164b209
BB
2004 ARC_BUFC_METADATA);
2005 }
34dc7c2f 2006
d164b209
BB
2007 /*
2008 * Adjust ghost lists
2009 */
34dc7c2f 2010
d164b209
BB
2011 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2012
2013 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2014 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
b8864a23 2015 arc_evict_ghost(arc_mru_ghost, 0, delta);
d164b209 2016 }
34dc7c2f 2017
d164b209
BB
2018 adjustment =
2019 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 2020
d164b209
BB
2021 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2022 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
b8864a23 2023 arc_evict_ghost(arc_mfu_ghost, 0, delta);
34dc7c2f
BB
2024 }
2025}
2026
ab26409d
BB
2027/*
2028 * Request that arc user drop references so that N bytes can be released
2029 * from the cache. This provides a mechanism to ensure the arc can honor
2030 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2031 * by higher layers. (i.e. the zpl)
2032 */
2033static void
2034arc_do_user_prune(int64_t adjustment)
2035{
2036 arc_prune_func_t *func;
2037 void *private;
2038 arc_prune_t *cp, *np;
2039
2040 mutex_enter(&arc_prune_mtx);
2041
2042 cp = list_head(&arc_prune_list);
2043 while (cp != NULL) {
2044 func = cp->p_pfunc;
2045 private = cp->p_private;
2046 np = list_next(&arc_prune_list, cp);
2047 refcount_add(&cp->p_refcnt, func);
2048 mutex_exit(&arc_prune_mtx);
2049
2050 if (func != NULL)
2051 func(adjustment, private);
2052
2053 mutex_enter(&arc_prune_mtx);
2054
2055 /* User removed prune callback concurrently with execution */
2056 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2057 ASSERT(!list_link_active(&cp->p_node));
2058 refcount_destroy(&cp->p_refcnt);
2059 kmem_free(cp, sizeof (*cp));
2060 }
2061
2062 cp = np;
2063 }
2064
2065 ARCSTAT_BUMP(arcstat_prune);
2066 mutex_exit(&arc_prune_mtx);
2067}
2068
34dc7c2f
BB
2069static void
2070arc_do_user_evicts(void)
2071{
2072 mutex_enter(&arc_eviction_mtx);
2073 while (arc_eviction_list != NULL) {
2074 arc_buf_t *buf = arc_eviction_list;
2075 arc_eviction_list = buf->b_next;
428870ff 2076 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2077 buf->b_hdr = NULL;
428870ff 2078 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2079 mutex_exit(&arc_eviction_mtx);
2080
2081 if (buf->b_efunc != NULL)
2082 VERIFY(buf->b_efunc(buf) == 0);
2083
2084 buf->b_efunc = NULL;
2085 buf->b_private = NULL;
2086 kmem_cache_free(buf_cache, buf);
2087 mutex_enter(&arc_eviction_mtx);
2088 }
2089 mutex_exit(&arc_eviction_mtx);
2090}
2091
ab26409d
BB
2092/*
2093 * Evict only meta data objects from the cache leaving the data objects.
2094 * This is only used to enforce the tunable arc_meta_limit, if we are
2095 * unable to evict enough buffers notify the user via the prune callback.
2096 */
2097void
2098arc_adjust_meta(int64_t adjustment, boolean_t may_prune)
2099{
2100 int64_t delta;
2101
2102 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2103 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2104 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
2105 adjustment -= delta;
2106 }
2107
2108 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2109 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2110 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
2111 adjustment -= delta;
2112 }
2113
2114 if (may_prune && (adjustment > 0) && (arc_meta_used > arc_meta_limit))
2115 arc_do_user_prune(arc_meta_prune);
2116}
2117
34dc7c2f
BB
2118/*
2119 * Flush all *evictable* data from the cache for the given spa.
2120 * NOTE: this will not touch "active" (i.e. referenced) data.
2121 */
2122void
2123arc_flush(spa_t *spa)
2124{
d164b209
BB
2125 uint64_t guid = 0;
2126
2127 if (spa)
3541dc6d 2128 guid = spa_load_guid(spa);
d164b209 2129
34dc7c2f 2130 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2131 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2132 if (spa)
2133 break;
2134 }
2135 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2136 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2137 if (spa)
2138 break;
2139 }
2140 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2141 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2142 if (spa)
2143 break;
2144 }
2145 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2146 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2147 if (spa)
2148 break;
2149 }
2150
d164b209
BB
2151 arc_evict_ghost(arc_mru_ghost, guid, -1);
2152 arc_evict_ghost(arc_mfu_ghost, guid, -1);
34dc7c2f
BB
2153
2154 mutex_enter(&arc_reclaim_thr_lock);
2155 arc_do_user_evicts();
2156 mutex_exit(&arc_reclaim_thr_lock);
2157 ASSERT(spa || arc_eviction_list == NULL);
2158}
2159
34dc7c2f 2160void
302f753f 2161arc_shrink(uint64_t bytes)
34dc7c2f
BB
2162{
2163 if (arc_c > arc_c_min) {
2164 uint64_t to_free;
2165
302f753f
BB
2166 to_free = bytes ? bytes : arc_c >> arc_shrink_shift;
2167
34dc7c2f
BB
2168 if (arc_c > arc_c_min + to_free)
2169 atomic_add_64(&arc_c, -to_free);
2170 else
2171 arc_c = arc_c_min;
2172
2173 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2174 if (arc_c > arc_size)
2175 arc_c = MAX(arc_size, arc_c_min);
2176 if (arc_p > arc_c)
2177 arc_p = (arc_c >> 1);
2178 ASSERT(arc_c >= arc_c_min);
2179 ASSERT((int64_t)arc_p >= 0);
2180 }
2181
2182 if (arc_size > arc_c)
2183 arc_adjust();
2184}
2185
34dc7c2f 2186static void
302f753f 2187arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2188{
2189 size_t i;
2190 kmem_cache_t *prev_cache = NULL;
2191 kmem_cache_t *prev_data_cache = NULL;
2192 extern kmem_cache_t *zio_buf_cache[];
2193 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2194
2195 /*
2196 * An aggressive reclamation will shrink the cache size as well as
2197 * reap free buffers from the arc kmem caches.
2198 */
2199 if (strat == ARC_RECLAIM_AGGR)
302f753f 2200 arc_shrink(bytes);
34dc7c2f
BB
2201
2202 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2203 if (zio_buf_cache[i] != prev_cache) {
2204 prev_cache = zio_buf_cache[i];
2205 kmem_cache_reap_now(zio_buf_cache[i]);
2206 }
2207 if (zio_data_buf_cache[i] != prev_data_cache) {
2208 prev_data_cache = zio_data_buf_cache[i];
2209 kmem_cache_reap_now(zio_data_buf_cache[i]);
2210 }
2211 }
ab26409d 2212
34dc7c2f
BB
2213 kmem_cache_reap_now(buf_cache);
2214 kmem_cache_reap_now(hdr_cache);
2215}
2216
302f753f
BB
2217/*
2218 * Unlike other ZFS implementations this thread is only responsible for
2219 * adapting the target ARC size on Linux. The responsibility for memory
2220 * reclamation has been entirely delegated to the arc_shrinker_func()
2221 * which is registered with the VM. To reflect this change in behavior
2222 * the arc_reclaim thread has been renamed to arc_adapt.
2223 */
34dc7c2f 2224static void
302f753f 2225arc_adapt_thread(void)
34dc7c2f 2226{
34dc7c2f 2227 callb_cpr_t cpr;
ab26409d 2228 int64_t prune;
34dc7c2f
BB
2229
2230 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2231
2232 mutex_enter(&arc_reclaim_thr_lock);
2233 while (arc_thread_exit == 0) {
302f753f
BB
2234#ifndef _KERNEL
2235 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2236
2237 if (spa_get_random(100) == 0) {
34dc7c2f
BB
2238
2239 if (arc_no_grow) {
2240 if (last_reclaim == ARC_RECLAIM_CONS) {
2241 last_reclaim = ARC_RECLAIM_AGGR;
2242 } else {
2243 last_reclaim = ARC_RECLAIM_CONS;
2244 }
2245 } else {
2246 arc_no_grow = TRUE;
2247 last_reclaim = ARC_RECLAIM_AGGR;
2248 membar_producer();
2249 }
2250
2251 /* reset the growth delay for every reclaim */
302f753f 2252 arc_grow_time = ddi_get_lbolt()+(arc_grow_retry * hz);
34dc7c2f 2253
302f753f 2254 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 2255 arc_warm = B_TRUE;
302f753f
BB
2256 }
2257#endif /* !_KERNEL */
34dc7c2f 2258
302f753f
BB
2259 /* No recent memory pressure allow the ARC to grow. */
2260 if (arc_no_grow && ddi_get_lbolt() >= arc_grow_time)
34dc7c2f 2261 arc_no_grow = FALSE;
34dc7c2f 2262
ab26409d
BB
2263 /*
2264 * Keep meta data usage within limits, arc_shrink() is not
2265 * used to avoid collapsing the arc_c value when only the
2266 * arc_meta_limit is being exceeded.
2267 */
2268 prune = (int64_t)arc_meta_used - (int64_t)arc_meta_limit;
2269 if (prune > 0)
2270 arc_adjust_meta(prune, B_TRUE);
6a8f9b6b 2271
572e2857 2272 arc_adjust();
34dc7c2f
BB
2273
2274 if (arc_eviction_list != NULL)
2275 arc_do_user_evicts();
2276
2277 /* block until needed, or one second, whichever is shorter */
2278 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2279 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2280 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f
BB
2281 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2282 }
2283
2284 arc_thread_exit = 0;
2285 cv_broadcast(&arc_reclaim_thr_cv);
2286 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2287 thread_exit();
2288}
2289
7cb67b45
BB
2290#ifdef _KERNEL
2291/*
302f753f
BB
2292 * Determine the amount of memory eligible for eviction contained in the
2293 * ARC. All clean data reported by the ghost lists can always be safely
2294 * evicted. Due to arc_c_min, the same does not hold for all clean data
2295 * contained by the regular mru and mfu lists.
2296 *
2297 * In the case of the regular mru and mfu lists, we need to report as
2298 * much clean data as possible, such that evicting that same reported
2299 * data will not bring arc_size below arc_c_min. Thus, in certain
2300 * circumstances, the total amount of clean data in the mru and mfu
2301 * lists might not actually be evictable.
2302 *
2303 * The following two distinct cases are accounted for:
2304 *
2305 * 1. The sum of the amount of dirty data contained by both the mru and
2306 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2307 * is greater than or equal to arc_c_min.
2308 * (i.e. amount of dirty data >= arc_c_min)
2309 *
2310 * This is the easy case; all clean data contained by the mru and mfu
2311 * lists is evictable. Evicting all clean data can only drop arc_size
2312 * to the amount of dirty data, which is greater than arc_c_min.
2313 *
2314 * 2. The sum of the amount of dirty data contained by both the mru and
2315 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2316 * is less than arc_c_min.
2317 * (i.e. arc_c_min > amount of dirty data)
2318 *
2319 * 2.1. arc_size is greater than or equal arc_c_min.
2320 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2321 *
2322 * In this case, not all clean data from the regular mru and mfu
2323 * lists is actually evictable; we must leave enough clean data
2324 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2325 * evictable data from the two lists combined, is exactly the
2326 * difference between arc_size and arc_c_min.
2327 *
2328 * 2.2. arc_size is less than arc_c_min
2329 * (i.e. arc_c_min > arc_size > amount of dirty data)
2330 *
2331 * In this case, none of the data contained in the mru and mfu
2332 * lists is evictable, even if it's clean. Since arc_size is
2333 * already below arc_c_min, evicting any more would only
2334 * increase this negative difference.
7cb67b45 2335 */
302f753f
BB
2336static uint64_t
2337arc_evictable_memory(void) {
2338 uint64_t arc_clean =
2339 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2340 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2341 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2342 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2343 uint64_t ghost_clean =
2344 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2345 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2346 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2347 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2348 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2349
2350 if (arc_dirty >= arc_c_min)
2351 return (ghost_clean + arc_clean);
2352
2353 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2354}
2355
7e7baeca
BB
2356static int
2357__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 2358{
302f753f 2359 uint64_t pages;
7cb67b45 2360
302f753f
BB
2361 /* The arc is considered warm once reclaim has occurred */
2362 if (unlikely(arc_warm == B_FALSE))
2363 arc_warm = B_TRUE;
7cb67b45 2364
302f753f
BB
2365 /* Return the potential number of reclaimable pages */
2366 pages = btop(arc_evictable_memory());
2367 if (sc->nr_to_scan == 0)
2368 return (pages);
3fd70ee6
BB
2369
2370 /* Not allowed to perform filesystem reclaim */
7e7baeca 2371 if (!(sc->gfp_mask & __GFP_FS))
3fd70ee6
BB
2372 return (-1);
2373
7cb67b45
BB
2374 /* Reclaim in progress */
2375 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
2376 return (-1);
2377
302f753f
BB
2378 /*
2379 * Evict the requested number of pages by shrinking arc_c the
2380 * requested amount. If there is nothing left to evict just
2381 * reap whatever we can from the various arc slabs.
2382 */
2383 if (pages > 0) {
2384 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
2385 pages = btop(arc_evictable_memory());
2386 } else {
2387 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
2388 pages = -1;
2389 }
2390
2391 /*
2392 * When direct reclaim is observed it usually indicates a rapid
2393 * increase in memory pressure. This occurs because the kswapd
2394 * threads were unable to asynchronously keep enough free memory
2395 * available. In this case set arc_no_grow to briefly pause arc
2396 * growth to avoid compounding the memory pressure.
2397 */
7cb67b45 2398 if (current_is_kswapd()) {
302f753f 2399 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 2400 } else {
302f753f
BB
2401 arc_no_grow = B_TRUE;
2402 arc_grow_time = ddi_get_lbolt() + (arc_grow_retry * hz);
2403 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
2404 }
2405
7cb67b45
BB
2406 mutex_exit(&arc_reclaim_thr_lock);
2407
302f753f 2408 return (pages);
7cb67b45 2409}
7e7baeca 2410SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2411
2412SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2413#endif /* _KERNEL */
2414
34dc7c2f
BB
2415/*
2416 * Adapt arc info given the number of bytes we are trying to add and
2417 * the state that we are comming from. This function is only called
2418 * when we are adding new content to the cache.
2419 */
2420static void
2421arc_adapt(int bytes, arc_state_t *state)
2422{
2423 int mult;
d164b209 2424 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
34dc7c2f
BB
2425
2426 if (state == arc_l2c_only)
2427 return;
2428
2429 ASSERT(bytes > 0);
2430 /*
2431 * Adapt the target size of the MRU list:
2432 * - if we just hit in the MRU ghost list, then increase
2433 * the target size of the MRU list.
2434 * - if we just hit in the MFU ghost list, then increase
2435 * the target size of the MFU list by decreasing the
2436 * target size of the MRU list.
2437 */
2438 if (state == arc_mru_ghost) {
2439 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2440 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
572e2857 2441 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2442
d164b209 2443 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 2444 } else if (state == arc_mfu_ghost) {
d164b209
BB
2445 uint64_t delta;
2446
34dc7c2f
BB
2447 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2448 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
572e2857 2449 mult = MIN(mult, 10);
34dc7c2f 2450
d164b209
BB
2451 delta = MIN(bytes * mult, arc_p);
2452 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
2453 }
2454 ASSERT((int64_t)arc_p >= 0);
2455
34dc7c2f
BB
2456 if (arc_no_grow)
2457 return;
2458
2459 if (arc_c >= arc_c_max)
2460 return;
2461
2462 /*
2463 * If we're within (2 * maxblocksize) bytes of the target
2464 * cache size, increment the target cache size
2465 */
2466 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2467 atomic_add_64(&arc_c, (int64_t)bytes);
2468 if (arc_c > arc_c_max)
2469 arc_c = arc_c_max;
2470 else if (state == arc_anon)
2471 atomic_add_64(&arc_p, (int64_t)bytes);
2472 if (arc_p > arc_c)
2473 arc_p = arc_c;
2474 }
2475 ASSERT((int64_t)arc_p >= 0);
2476}
2477
2478/*
2479 * Check if the cache has reached its limits and eviction is required
2480 * prior to insert.
2481 */
2482static int
2483arc_evict_needed(arc_buf_contents_t type)
2484{
2485 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2486 return (1);
2487
302f753f 2488 if (arc_no_grow)
34dc7c2f
BB
2489 return (1);
2490
2491 return (arc_size > arc_c);
2492}
2493
2494/*
2495 * The buffer, supplied as the first argument, needs a data block.
2496 * So, if we are at cache max, determine which cache should be victimized.
2497 * We have the following cases:
2498 *
2499 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2500 * In this situation if we're out of space, but the resident size of the MFU is
2501 * under the limit, victimize the MFU cache to satisfy this insertion request.
2502 *
2503 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2504 * Here, we've used up all of the available space for the MRU, so we need to
2505 * evict from our own cache instead. Evict from the set of resident MRU
2506 * entries.
2507 *
2508 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2509 * c minus p represents the MFU space in the cache, since p is the size of the
2510 * cache that is dedicated to the MRU. In this situation there's still space on
2511 * the MFU side, so the MRU side needs to be victimized.
2512 *
2513 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2514 * MFU's resident set is consuming more space than it has been allotted. In
2515 * this situation, we must victimize our own cache, the MFU, for this insertion.
2516 */
2517static void
2518arc_get_data_buf(arc_buf_t *buf)
2519{
2520 arc_state_t *state = buf->b_hdr->b_state;
2521 uint64_t size = buf->b_hdr->b_size;
2522 arc_buf_contents_t type = buf->b_hdr->b_type;
2523
2524 arc_adapt(size, state);
2525
2526 /*
2527 * We have not yet reached cache maximum size,
2528 * just allocate a new buffer.
2529 */
2530 if (!arc_evict_needed(type)) {
2531 if (type == ARC_BUFC_METADATA) {
2532 buf->b_data = zio_buf_alloc(size);
d164b209 2533 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2534 } else {
2535 ASSERT(type == ARC_BUFC_DATA);
2536 buf->b_data = zio_data_buf_alloc(size);
d164b209 2537 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2538 atomic_add_64(&arc_size, size);
2539 }
2540 goto out;
2541 }
2542
2543 /*
2544 * If we are prefetching from the mfu ghost list, this buffer
2545 * will end up on the mru list; so steal space from there.
2546 */
2547 if (state == arc_mfu_ghost)
2548 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2549 else if (state == arc_mru_ghost)
2550 state = arc_mru;
2551
2552 if (state == arc_mru || state == arc_anon) {
2553 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2554 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2555 arc_p > mru_used) ? arc_mfu : arc_mru;
2556 } else {
2557 /* MFU cases */
2558 uint64_t mfu_space = arc_c - arc_p;
d164b209 2559 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2560 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2561 }
ab26409d 2562
b8864a23 2563 if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
34dc7c2f
BB
2564 if (type == ARC_BUFC_METADATA) {
2565 buf->b_data = zio_buf_alloc(size);
d164b209 2566 arc_space_consume(size, ARC_SPACE_DATA);
ab26409d
BB
2567
2568 /*
2569 * If we are unable to recycle an existing meta buffer
2570 * signal the reclaim thread. It will notify users
2571 * via the prune callback to drop references. The
2572 * prune callback in run in the context of the reclaim
2573 * thread to avoid deadlocking on the hash_lock.
2574 */
2575 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2576 } else {
2577 ASSERT(type == ARC_BUFC_DATA);
2578 buf->b_data = zio_data_buf_alloc(size);
d164b209 2579 ARCSTAT_INCR(arcstat_data_size, size);
34dc7c2f
BB
2580 atomic_add_64(&arc_size, size);
2581 }
ab26409d 2582
34dc7c2f
BB
2583 ARCSTAT_BUMP(arcstat_recycle_miss);
2584 }
2585 ASSERT(buf->b_data != NULL);
2586out:
2587 /*
2588 * Update the state size. Note that ghost states have a
2589 * "ghost size" and so don't need to be updated.
2590 */
2591 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2592 arc_buf_hdr_t *hdr = buf->b_hdr;
2593
2594 atomic_add_64(&hdr->b_state->arcs_size, size);
2595 if (list_link_active(&hdr->b_arc_node)) {
2596 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2597 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2598 }
2599 /*
2600 * If we are growing the cache, and we are adding anonymous
2601 * data, and we have outgrown arc_p, update arc_p
2602 */
2603 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2604 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2605 arc_p = MIN(arc_c, arc_p + size);
2606 }
2607}
2608
2609/*
2610 * This routine is called whenever a buffer is accessed.
2611 * NOTE: the hash lock is dropped in this function.
2612 */
2613static void
2614arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2615{
428870ff
BB
2616 clock_t now;
2617
34dc7c2f
BB
2618 ASSERT(MUTEX_HELD(hash_lock));
2619
2620 if (buf->b_state == arc_anon) {
2621 /*
2622 * This buffer is not in the cache, and does not
2623 * appear in our "ghost" list. Add the new buffer
2624 * to the MRU state.
2625 */
2626
2627 ASSERT(buf->b_arc_access == 0);
428870ff 2628 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2629 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2630 arc_change_state(arc_mru, buf, hash_lock);
2631
2632 } else if (buf->b_state == arc_mru) {
428870ff
BB
2633 now = ddi_get_lbolt();
2634
34dc7c2f
BB
2635 /*
2636 * If this buffer is here because of a prefetch, then either:
2637 * - clear the flag if this is a "referencing" read
2638 * (any subsequent access will bump this into the MFU state).
2639 * or
2640 * - move the buffer to the head of the list if this is
2641 * another prefetch (to make it less likely to be evicted).
2642 */
2643 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2644 if (refcount_count(&buf->b_refcnt) == 0) {
2645 ASSERT(list_link_active(&buf->b_arc_node));
2646 } else {
2647 buf->b_flags &= ~ARC_PREFETCH;
2648 ARCSTAT_BUMP(arcstat_mru_hits);
2649 }
428870ff 2650 buf->b_arc_access = now;
34dc7c2f
BB
2651 return;
2652 }
2653
2654 /*
2655 * This buffer has been "accessed" only once so far,
2656 * but it is still in the cache. Move it to the MFU
2657 * state.
2658 */
428870ff 2659 if (now > buf->b_arc_access + ARC_MINTIME) {
34dc7c2f
BB
2660 /*
2661 * More than 125ms have passed since we
2662 * instantiated this buffer. Move it to the
2663 * most frequently used state.
2664 */
428870ff 2665 buf->b_arc_access = now;
34dc7c2f
BB
2666 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2667 arc_change_state(arc_mfu, buf, hash_lock);
2668 }
2669 ARCSTAT_BUMP(arcstat_mru_hits);
2670 } else if (buf->b_state == arc_mru_ghost) {
2671 arc_state_t *new_state;
2672 /*
2673 * This buffer has been "accessed" recently, but
2674 * was evicted from the cache. Move it to the
2675 * MFU state.
2676 */
2677
2678 if (buf->b_flags & ARC_PREFETCH) {
2679 new_state = arc_mru;
2680 if (refcount_count(&buf->b_refcnt) > 0)
2681 buf->b_flags &= ~ARC_PREFETCH;
2682 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2683 } else {
2684 new_state = arc_mfu;
2685 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2686 }
2687
428870ff 2688 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2689 arc_change_state(new_state, buf, hash_lock);
2690
2691 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2692 } else if (buf->b_state == arc_mfu) {
2693 /*
2694 * This buffer has been accessed more than once and is
2695 * still in the cache. Keep it in the MFU state.
2696 *
2697 * NOTE: an add_reference() that occurred when we did
2698 * the arc_read() will have kicked this off the list.
2699 * If it was a prefetch, we will explicitly move it to
2700 * the head of the list now.
2701 */
2702 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2703 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2704 ASSERT(list_link_active(&buf->b_arc_node));
2705 }
2706 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2707 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2708 } else if (buf->b_state == arc_mfu_ghost) {
2709 arc_state_t *new_state = arc_mfu;
2710 /*
2711 * This buffer has been accessed more than once but has
2712 * been evicted from the cache. Move it back to the
2713 * MFU state.
2714 */
2715
2716 if (buf->b_flags & ARC_PREFETCH) {
2717 /*
2718 * This is a prefetch access...
2719 * move this block back to the MRU state.
2720 */
c99c9001 2721 ASSERT0(refcount_count(&buf->b_refcnt));
34dc7c2f
BB
2722 new_state = arc_mru;
2723 }
2724
428870ff 2725 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2726 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2727 arc_change_state(new_state, buf, hash_lock);
2728
2729 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2730 } else if (buf->b_state == arc_l2c_only) {
2731 /*
2732 * This buffer is on the 2nd Level ARC.
2733 */
2734
428870ff 2735 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2736 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2737 arc_change_state(arc_mfu, buf, hash_lock);
2738 } else {
2739 ASSERT(!"invalid arc state");
2740 }
2741}
2742
2743/* a generic arc_done_func_t which you can use */
2744/* ARGSUSED */
2745void
2746arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2747{
428870ff
BB
2748 if (zio == NULL || zio->io_error == 0)
2749 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
34dc7c2f
BB
2750 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2751}
2752
2753/* a generic arc_done_func_t */
2754void
2755arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2756{
2757 arc_buf_t **bufp = arg;
2758 if (zio && zio->io_error) {
2759 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2760 *bufp = NULL;
2761 } else {
2762 *bufp = buf;
428870ff 2763 ASSERT(buf->b_data);
34dc7c2f
BB
2764 }
2765}
2766
2767static void
2768arc_read_done(zio_t *zio)
2769{
2770 arc_buf_hdr_t *hdr, *found;
2771 arc_buf_t *buf;
2772 arc_buf_t *abuf; /* buffer we're assigning to callback */
2773 kmutex_t *hash_lock;
2774 arc_callback_t *callback_list, *acb;
2775 int freeable = FALSE;
2776
2777 buf = zio->io_private;
2778 hdr = buf->b_hdr;
2779
2780 /*
2781 * The hdr was inserted into hash-table and removed from lists
2782 * prior to starting I/O. We should find this header, since
2783 * it's in the hash table, and it should be legit since it's
2784 * not possible to evict it during the I/O. The only possible
2785 * reason for it not to be found is if we were freed during the
2786 * read.
2787 */
d164b209 2788 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
34dc7c2f
BB
2789 &hash_lock);
2790
2791 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2792 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2793 (found == hdr && HDR_L2_READING(hdr)));
2794
b128c09f 2795 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2796 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2797 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2798
2799 /* byteswap if necessary */
2800 callback_list = hdr->b_acb;
2801 ASSERT(callback_list != NULL);
428870ff 2802 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
2803 dmu_object_byteswap_t bswap =
2804 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
2805 if (BP_GET_LEVEL(zio->io_bp) > 0)
2806 byteswap_uint64_array(buf->b_data, hdr->b_size);
2807 else
2808 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 2809 }
34dc7c2f
BB
2810
2811 arc_cksum_compute(buf, B_FALSE);
2812
428870ff
BB
2813 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2814 /*
2815 * Only call arc_access on anonymous buffers. This is because
2816 * if we've issued an I/O for an evicted buffer, we've already
2817 * called arc_access (to prevent any simultaneous readers from
2818 * getting confused).
2819 */
2820 arc_access(hdr, hash_lock);
2821 }
2822
34dc7c2f
BB
2823 /* create copies of the data buffer for the callers */
2824 abuf = buf;
2825 for (acb = callback_list; acb; acb = acb->acb_next) {
2826 if (acb->acb_done) {
1eb5bfa3
GW
2827 if (abuf == NULL) {
2828 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 2829 abuf = arc_buf_clone(buf);
1eb5bfa3 2830 }
34dc7c2f
BB
2831 acb->acb_buf = abuf;
2832 abuf = NULL;
2833 }
2834 }
2835 hdr->b_acb = NULL;
2836 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2837 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
2838 if (abuf == buf) {
2839 ASSERT(buf->b_efunc == NULL);
2840 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 2841 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 2842 }
34dc7c2f
BB
2843
2844 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2845
2846 if (zio->io_error != 0) {
2847 hdr->b_flags |= ARC_IO_ERROR;
2848 if (hdr->b_state != arc_anon)
2849 arc_change_state(arc_anon, hdr, hash_lock);
2850 if (HDR_IN_HASH_TABLE(hdr))
2851 buf_hash_remove(hdr);
2852 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
2853 }
2854
2855 /*
2856 * Broadcast before we drop the hash_lock to avoid the possibility
2857 * that the hdr (and hence the cv) might be freed before we get to
2858 * the cv_broadcast().
2859 */
2860 cv_broadcast(&hdr->b_cv);
2861
2862 if (hash_lock) {
34dc7c2f
BB
2863 mutex_exit(hash_lock);
2864 } else {
2865 /*
2866 * This block was freed while we waited for the read to
2867 * complete. It has been removed from the hash table and
2868 * moved to the anonymous state (so that it won't show up
2869 * in the cache).
2870 */
2871 ASSERT3P(hdr->b_state, ==, arc_anon);
2872 freeable = refcount_is_zero(&hdr->b_refcnt);
2873 }
2874
2875 /* execute each callback and free its structure */
2876 while ((acb = callback_list) != NULL) {
2877 if (acb->acb_done)
2878 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2879
2880 if (acb->acb_zio_dummy != NULL) {
2881 acb->acb_zio_dummy->io_error = zio->io_error;
2882 zio_nowait(acb->acb_zio_dummy);
2883 }
2884
2885 callback_list = acb->acb_next;
2886 kmem_free(acb, sizeof (arc_callback_t));
2887 }
2888
2889 if (freeable)
2890 arc_hdr_destroy(hdr);
2891}
2892
2893/*
5c839890 2894 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
2895 * cache. If the block is found in the cache, invoke the provided
2896 * callback immediately and return. Note that the `zio' parameter
2897 * in the callback will be NULL in this case, since no IO was
2898 * required. If the block is not in the cache pass the read request
2899 * on to the spa with a substitute callback function, so that the
2900 * requested block will be added to the cache.
2901 *
2902 * If a read request arrives for a block that has a read in-progress,
2903 * either wait for the in-progress read to complete (and return the
2904 * results); or, if this is a read with a "done" func, add a record
2905 * to the read to invoke the "done" func when the read completes,
2906 * and return; or just return.
2907 *
2908 * arc_read_done() will invoke all the requested "done" functions
2909 * for readers of this block.
2910 */
2911int
294f6806
GW
2912arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2913 void *private, int priority, int zio_flags, uint32_t *arc_flags,
2914 const zbookmark_t *zb)
34dc7c2f
BB
2915{
2916 arc_buf_hdr_t *hdr;
d4ed6673 2917 arc_buf_t *buf = NULL;
34dc7c2f
BB
2918 kmutex_t *hash_lock;
2919 zio_t *rzio;
3541dc6d 2920 uint64_t guid = spa_load_guid(spa);
34dc7c2f
BB
2921
2922top:
428870ff
BB
2923 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2924 &hash_lock);
34dc7c2f
BB
2925 if (hdr && hdr->b_datacnt > 0) {
2926
2927 *arc_flags |= ARC_CACHED;
2928
2929 if (HDR_IO_IN_PROGRESS(hdr)) {
2930
2931 if (*arc_flags & ARC_WAIT) {
2932 cv_wait(&hdr->b_cv, hash_lock);
2933 mutex_exit(hash_lock);
2934 goto top;
2935 }
2936 ASSERT(*arc_flags & ARC_NOWAIT);
2937
2938 if (done) {
2939 arc_callback_t *acb = NULL;
2940
2941 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 2942 KM_PUSHPAGE);
34dc7c2f
BB
2943 acb->acb_done = done;
2944 acb->acb_private = private;
34dc7c2f
BB
2945 if (pio != NULL)
2946 acb->acb_zio_dummy = zio_null(pio,
d164b209 2947 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
2948
2949 ASSERT(acb->acb_done != NULL);
2950 acb->acb_next = hdr->b_acb;
2951 hdr->b_acb = acb;
2952 add_reference(hdr, hash_lock, private);
2953 mutex_exit(hash_lock);
2954 return (0);
2955 }
2956 mutex_exit(hash_lock);
2957 return (0);
2958 }
2959
2960 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2961
2962 if (done) {
2963 add_reference(hdr, hash_lock, private);
2964 /*
2965 * If this block is already in use, create a new
2966 * copy of the data so that we will be guaranteed
2967 * that arc_release() will always succeed.
2968 */
2969 buf = hdr->b_buf;
2970 ASSERT(buf);
2971 ASSERT(buf->b_data);
2972 if (HDR_BUF_AVAILABLE(hdr)) {
2973 ASSERT(buf->b_efunc == NULL);
2974 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2975 } else {
2976 buf = arc_buf_clone(buf);
2977 }
428870ff 2978
34dc7c2f
BB
2979 } else if (*arc_flags & ARC_PREFETCH &&
2980 refcount_count(&hdr->b_refcnt) == 0) {
2981 hdr->b_flags |= ARC_PREFETCH;
2982 }
2983 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2984 arc_access(hdr, hash_lock);
b128c09f
BB
2985 if (*arc_flags & ARC_L2CACHE)
2986 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
2987 mutex_exit(hash_lock);
2988 ARCSTAT_BUMP(arcstat_hits);
2989 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2990 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2991 data, metadata, hits);
2992
2993 if (done)
2994 done(NULL, buf, private);
2995 } else {
2996 uint64_t size = BP_GET_LSIZE(bp);
2997 arc_callback_t *acb;
b128c09f 2998 vdev_t *vd = NULL;
e06be586 2999 uint64_t addr = -1;
d164b209 3000 boolean_t devw = B_FALSE;
34dc7c2f
BB
3001
3002 if (hdr == NULL) {
3003 /* this block is not in the cache */
3004 arc_buf_hdr_t *exists;
3005 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3006 buf = arc_buf_alloc(spa, size, private, type);
3007 hdr = buf->b_hdr;
3008 hdr->b_dva = *BP_IDENTITY(bp);
428870ff 3009 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
3010 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3011 exists = buf_hash_insert(hdr, &hash_lock);
3012 if (exists) {
3013 /* somebody beat us to the hash insert */
3014 mutex_exit(hash_lock);
428870ff 3015 buf_discard_identity(hdr);
34dc7c2f
BB
3016 (void) arc_buf_remove_ref(buf, private);
3017 goto top; /* restart the IO request */
3018 }
3019 /* if this is a prefetch, we don't have a reference */
3020 if (*arc_flags & ARC_PREFETCH) {
3021 (void) remove_reference(hdr, hash_lock,
3022 private);
3023 hdr->b_flags |= ARC_PREFETCH;
3024 }
b128c09f
BB
3025 if (*arc_flags & ARC_L2CACHE)
3026 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3027 if (BP_GET_LEVEL(bp) > 0)
3028 hdr->b_flags |= ARC_INDIRECT;
3029 } else {
3030 /* this block is in the ghost cache */
3031 ASSERT(GHOST_STATE(hdr->b_state));
3032 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
c99c9001 3033 ASSERT0(refcount_count(&hdr->b_refcnt));
34dc7c2f
BB
3034 ASSERT(hdr->b_buf == NULL);
3035
3036 /* if this is a prefetch, we don't have a reference */
3037 if (*arc_flags & ARC_PREFETCH)
3038 hdr->b_flags |= ARC_PREFETCH;
3039 else
3040 add_reference(hdr, hash_lock, private);
b128c09f
BB
3041 if (*arc_flags & ARC_L2CACHE)
3042 hdr->b_flags |= ARC_L2CACHE;
34dc7c2f
BB
3043 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3044 buf->b_hdr = hdr;
3045 buf->b_data = NULL;
3046 buf->b_efunc = NULL;
3047 buf->b_private = NULL;
3048 buf->b_next = NULL;
3049 hdr->b_buf = buf;
34dc7c2f
BB
3050 ASSERT(hdr->b_datacnt == 0);
3051 hdr->b_datacnt = 1;
428870ff
BB
3052 arc_get_data_buf(buf);
3053 arc_access(hdr, hash_lock);
34dc7c2f
BB
3054 }
3055
428870ff
BB
3056 ASSERT(!GHOST_STATE(hdr->b_state));
3057
691f6ac4 3058 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3059 acb->acb_done = done;
3060 acb->acb_private = private;
34dc7c2f
BB
3061
3062 ASSERT(hdr->b_acb == NULL);
3063 hdr->b_acb = acb;
3064 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3065
b128c09f
BB
3066 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
3067 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3068 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f
BB
3069 addr = hdr->b_l2hdr->b_daddr;
3070 /*
3071 * Lock out device removal.
3072 */
3073 if (vdev_is_dead(vd) ||
3074 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3075 vd = NULL;
3076 }
3077
3078 mutex_exit(hash_lock);
3079
34dc7c2f 3080 ASSERT3U(hdr->b_size, ==, size);
428870ff
BB
3081 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3082 uint64_t, size, zbookmark_t *, zb);
34dc7c2f
BB
3083 ARCSTAT_BUMP(arcstat_misses);
3084 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3085 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3086 data, metadata, misses);
3087
d164b209 3088 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3089 /*
3090 * Read from the L2ARC if the following are true:
b128c09f
BB
3091 * 1. The L2ARC vdev was previously cached.
3092 * 2. This buffer still has L2ARC metadata.
3093 * 3. This buffer isn't currently writing to the L2ARC.
3094 * 4. The L2ARC entry wasn't evicted, which may
3095 * also have invalidated the vdev.
d164b209 3096 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3097 */
b128c09f 3098 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3099 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3100 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3101 l2arc_read_callback_t *cb;
3102
3103 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3104 ARCSTAT_BUMP(arcstat_l2_hits);
3105
34dc7c2f 3106 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 3107 KM_PUSHPAGE);
34dc7c2f
BB
3108 cb->l2rcb_buf = buf;
3109 cb->l2rcb_spa = spa;
3110 cb->l2rcb_bp = *bp;
3111 cb->l2rcb_zb = *zb;
b128c09f 3112 cb->l2rcb_flags = zio_flags;
34dc7c2f
BB
3113
3114 /*
b128c09f
BB
3115 * l2arc read. The SCL_L2ARC lock will be
3116 * released by l2arc_read_done().
34dc7c2f
BB
3117 */
3118 rzio = zio_read_phys(pio, vd, addr, size,
3119 buf->b_data, ZIO_CHECKSUM_OFF,
b128c09f
BB
3120 l2arc_read_done, cb, priority, zio_flags |
3121 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
3122 ZIO_FLAG_DONT_PROPAGATE |
3123 ZIO_FLAG_DONT_RETRY, B_FALSE);
34dc7c2f
BB
3124 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3125 zio_t *, rzio);
d164b209 3126 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
34dc7c2f 3127
b128c09f
BB
3128 if (*arc_flags & ARC_NOWAIT) {
3129 zio_nowait(rzio);
3130 return (0);
3131 }
34dc7c2f 3132
b128c09f
BB
3133 ASSERT(*arc_flags & ARC_WAIT);
3134 if (zio_wait(rzio) == 0)
3135 return (0);
3136
3137 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3138 } else {
3139 DTRACE_PROBE1(l2arc__miss,
3140 arc_buf_hdr_t *, hdr);
3141 ARCSTAT_BUMP(arcstat_l2_misses);
3142 if (HDR_L2_WRITING(hdr))
3143 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3144 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3145 }
d164b209
BB
3146 } else {
3147 if (vd != NULL)
3148 spa_config_exit(spa, SCL_L2ARC, vd);
3149 if (l2arc_ndev != 0) {
3150 DTRACE_PROBE1(l2arc__miss,
3151 arc_buf_hdr_t *, hdr);
3152 ARCSTAT_BUMP(arcstat_l2_misses);
3153 }
34dc7c2f 3154 }
34dc7c2f
BB
3155
3156 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3157 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f
BB
3158
3159 if (*arc_flags & ARC_WAIT)
3160 return (zio_wait(rzio));
3161
3162 ASSERT(*arc_flags & ARC_NOWAIT);
3163 zio_nowait(rzio);
3164 }
3165 return (0);
3166}
3167
ab26409d
BB
3168arc_prune_t *
3169arc_add_prune_callback(arc_prune_func_t *func, void *private)
3170{
3171 arc_prune_t *p;
3172
3173 p = kmem_alloc(sizeof(*p), KM_SLEEP);
3174 p->p_pfunc = func;
3175 p->p_private = private;
3176 list_link_init(&p->p_node);
3177 refcount_create(&p->p_refcnt);
3178
3179 mutex_enter(&arc_prune_mtx);
3180 refcount_add(&p->p_refcnt, &arc_prune_list);
3181 list_insert_head(&arc_prune_list, p);
3182 mutex_exit(&arc_prune_mtx);
3183
3184 return (p);
3185}
3186
3187void
3188arc_remove_prune_callback(arc_prune_t *p)
3189{
3190 mutex_enter(&arc_prune_mtx);
3191 list_remove(&arc_prune_list, p);
3192 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3193 refcount_destroy(&p->p_refcnt);
3194 kmem_free(p, sizeof (*p));
3195 }
3196 mutex_exit(&arc_prune_mtx);
3197}
3198
34dc7c2f
BB
3199void
3200arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3201{
3202 ASSERT(buf->b_hdr != NULL);
3203 ASSERT(buf->b_hdr->b_state != arc_anon);
3204 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3205 ASSERT(buf->b_efunc == NULL);
3206 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3207
34dc7c2f
BB
3208 buf->b_efunc = func;
3209 buf->b_private = private;
3210}
3211
df4474f9
MA
3212/*
3213 * Notify the arc that a block was freed, and thus will never be used again.
3214 */
3215void
3216arc_freed(spa_t *spa, const blkptr_t *bp)
3217{
3218 arc_buf_hdr_t *hdr;
3219 kmutex_t *hash_lock;
3220 uint64_t guid = spa_load_guid(spa);
3221
3222 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3223 &hash_lock);
3224 if (hdr == NULL)
3225 return;
3226 if (HDR_BUF_AVAILABLE(hdr)) {
3227 arc_buf_t *buf = hdr->b_buf;
3228 add_reference(hdr, hash_lock, FTAG);
3229 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3230 mutex_exit(hash_lock);
3231
3232 arc_release(buf, FTAG);
3233 (void) arc_buf_remove_ref(buf, FTAG);
3234 } else {
3235 mutex_exit(hash_lock);
3236 }
3237
3238}
3239
34dc7c2f
BB
3240/*
3241 * This is used by the DMU to let the ARC know that a buffer is
3242 * being evicted, so the ARC should clean up. If this arc buf
3243 * is not yet in the evicted state, it will be put there.
3244 */
3245int
3246arc_buf_evict(arc_buf_t *buf)
3247{
3248 arc_buf_hdr_t *hdr;
3249 kmutex_t *hash_lock;
3250 arc_buf_t **bufp;
3251
428870ff 3252 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3253 hdr = buf->b_hdr;
3254 if (hdr == NULL) {
3255 /*
3256 * We are in arc_do_user_evicts().
3257 */
3258 ASSERT(buf->b_data == NULL);
428870ff 3259 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3260 return (0);
b128c09f
BB
3261 } else if (buf->b_data == NULL) {
3262 arc_buf_t copy = *buf; /* structure assignment */
34dc7c2f 3263 /*
b128c09f
BB
3264 * We are on the eviction list; process this buffer now
3265 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3266 */
b128c09f 3267 buf->b_efunc = NULL;
428870ff 3268 mutex_exit(&buf->b_evict_lock);
b128c09f
BB
3269 VERIFY(copy.b_efunc(&copy) == 0);
3270 return (1);
34dc7c2f 3271 }
b128c09f
BB
3272 hash_lock = HDR_LOCK(hdr);
3273 mutex_enter(hash_lock);
428870ff
BB
3274 hdr = buf->b_hdr;
3275 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3276
34dc7c2f
BB
3277 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3278 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3279
3280 /*
3281 * Pull this buffer off of the hdr
3282 */
3283 bufp = &hdr->b_buf;
3284 while (*bufp != buf)
3285 bufp = &(*bufp)->b_next;
3286 *bufp = buf->b_next;
3287
3288 ASSERT(buf->b_data != NULL);
3289 arc_buf_destroy(buf, FALSE, FALSE);
3290
3291 if (hdr->b_datacnt == 0) {
3292 arc_state_t *old_state = hdr->b_state;
3293 arc_state_t *evicted_state;
3294
428870ff 3295 ASSERT(hdr->b_buf == NULL);
34dc7c2f
BB
3296 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3297
3298 evicted_state =
3299 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3300
3301 mutex_enter(&old_state->arcs_mtx);
3302 mutex_enter(&evicted_state->arcs_mtx);
3303
3304 arc_change_state(evicted_state, hdr, hash_lock);
3305 ASSERT(HDR_IN_HASH_TABLE(hdr));
3306 hdr->b_flags |= ARC_IN_HASH_TABLE;
3307 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3308
3309 mutex_exit(&evicted_state->arcs_mtx);
3310 mutex_exit(&old_state->arcs_mtx);
3311 }
3312 mutex_exit(hash_lock);
428870ff 3313 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3314
3315 VERIFY(buf->b_efunc(buf) == 0);
3316 buf->b_efunc = NULL;
3317 buf->b_private = NULL;
3318 buf->b_hdr = NULL;
428870ff 3319 buf->b_next = NULL;
34dc7c2f
BB
3320 kmem_cache_free(buf_cache, buf);
3321 return (1);
3322}
3323
3324/*
3325 * Release this buffer from the cache. This must be done
3326 * after a read and prior to modifying the buffer contents.
3327 * If the buffer has more than one reference, we must make
b128c09f 3328 * a new hdr for the buffer.
34dc7c2f
BB
3329 */
3330void
3331arc_release(arc_buf_t *buf, void *tag)
3332{
b128c09f 3333 arc_buf_hdr_t *hdr;
428870ff 3334 kmutex_t *hash_lock = NULL;
b128c09f 3335 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3336 uint64_t buf_size = 0;
34dc7c2f 3337
428870ff
BB
3338 /*
3339 * It would be nice to assert that if it's DMU metadata (level >
3340 * 0 || it's the dnode file), then it must be syncing context.
3341 * But we don't know that information at this level.
3342 */
3343
3344 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3345 hdr = buf->b_hdr;
3346
34dc7c2f
BB
3347 /* this buffer is not on any list */
3348 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3349
3350 if (hdr->b_state == arc_anon) {
3351 /* this buffer is already released */
34dc7c2f 3352 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3353 } else {
3354 hash_lock = HDR_LOCK(hdr);
3355 mutex_enter(hash_lock);
428870ff
BB
3356 hdr = buf->b_hdr;
3357 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3358 }
3359
b128c09f
BB
3360 l2hdr = hdr->b_l2hdr;
3361 if (l2hdr) {
3362 mutex_enter(&l2arc_buflist_mtx);
3363 hdr->b_l2hdr = NULL;
3364 buf_size = hdr->b_size;
3365 }
3366
34dc7c2f
BB
3367 /*
3368 * Do we have more than one buf?
3369 */
b128c09f 3370 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3371 arc_buf_hdr_t *nhdr;
3372 arc_buf_t **bufp;
3373 uint64_t blksz = hdr->b_size;
d164b209 3374 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3375 arc_buf_contents_t type = hdr->b_type;
3376 uint32_t flags = hdr->b_flags;
3377
b128c09f 3378 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3379 /*
428870ff
BB
3380 * Pull the data off of this hdr and attach it to
3381 * a new anonymous hdr.
34dc7c2f
BB
3382 */
3383 (void) remove_reference(hdr, hash_lock, tag);
3384 bufp = &hdr->b_buf;
3385 while (*bufp != buf)
3386 bufp = &(*bufp)->b_next;
428870ff 3387 *bufp = buf->b_next;
34dc7c2f
BB
3388 buf->b_next = NULL;
3389
3390 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3391 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3392 if (refcount_is_zero(&hdr->b_refcnt)) {
3393 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3394 ASSERT3U(*size, >=, hdr->b_size);
3395 atomic_add_64(size, -hdr->b_size);
3396 }
1eb5bfa3
GW
3397
3398 /*
3399 * We're releasing a duplicate user data buffer, update
3400 * our statistics accordingly.
3401 */
3402 if (hdr->b_type == ARC_BUFC_DATA) {
3403 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3404 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3405 -hdr->b_size);
3406 }
34dc7c2f 3407 hdr->b_datacnt -= 1;
34dc7c2f
BB
3408 arc_cksum_verify(buf);
3409
3410 mutex_exit(hash_lock);
3411
3412 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3413 nhdr->b_size = blksz;
3414 nhdr->b_spa = spa;
3415 nhdr->b_type = type;
3416 nhdr->b_buf = buf;
3417 nhdr->b_state = arc_anon;
3418 nhdr->b_arc_access = 0;
3419 nhdr->b_flags = flags & ARC_L2_WRITING;
3420 nhdr->b_l2hdr = NULL;
3421 nhdr->b_datacnt = 1;
3422 nhdr->b_freeze_cksum = NULL;
3423 (void) refcount_add(&nhdr->b_refcnt, tag);
3424 buf->b_hdr = nhdr;
428870ff 3425 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3426 atomic_add_64(&arc_anon->arcs_size, blksz);
3427 } else {
428870ff 3428 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3429 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3430 ASSERT(!list_link_active(&hdr->b_arc_node));
3431 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3432 if (hdr->b_state != arc_anon)
3433 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3434 hdr->b_arc_access = 0;
428870ff
BB
3435 if (hash_lock)
3436 mutex_exit(hash_lock);
34dc7c2f 3437
428870ff 3438 buf_discard_identity(hdr);
34dc7c2f
BB
3439 arc_buf_thaw(buf);
3440 }
3441 buf->b_efunc = NULL;
3442 buf->b_private = NULL;
3443
3444 if (l2hdr) {
3445 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3446 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
6e1d7276 3447 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 3448 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3449 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3450 }
34dc7c2f
BB
3451}
3452
3453int
3454arc_released(arc_buf_t *buf)
3455{
b128c09f
BB
3456 int released;
3457
428870ff 3458 mutex_enter(&buf->b_evict_lock);
b128c09f 3459 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3460 mutex_exit(&buf->b_evict_lock);
b128c09f 3461 return (released);
34dc7c2f
BB
3462}
3463
3464int
3465arc_has_callback(arc_buf_t *buf)
3466{
b128c09f
BB
3467 int callback;
3468
428870ff 3469 mutex_enter(&buf->b_evict_lock);
b128c09f 3470 callback = (buf->b_efunc != NULL);
428870ff 3471 mutex_exit(&buf->b_evict_lock);
b128c09f 3472 return (callback);
34dc7c2f
BB
3473}
3474
3475#ifdef ZFS_DEBUG
3476int
3477arc_referenced(arc_buf_t *buf)
3478{
b128c09f
BB
3479 int referenced;
3480
428870ff 3481 mutex_enter(&buf->b_evict_lock);
b128c09f 3482 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3483 mutex_exit(&buf->b_evict_lock);
b128c09f 3484 return (referenced);
34dc7c2f
BB
3485}
3486#endif
3487
3488static void
3489arc_write_ready(zio_t *zio)
3490{
3491 arc_write_callback_t *callback = zio->io_private;
3492 arc_buf_t *buf = callback->awcb_buf;
3493 arc_buf_hdr_t *hdr = buf->b_hdr;
3494
b128c09f
BB
3495 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3496 callback->awcb_ready(zio, buf, callback->awcb_private);
3497
34dc7c2f
BB
3498 /*
3499 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3500 * attempt, so we need to thaw and re-compute the cksum.
3501 * It is the responsibility of the callback to handle the
3502 * accounting for any re-write attempt.
34dc7c2f
BB
3503 */
3504 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3505 mutex_enter(&hdr->b_freeze_lock);
3506 if (hdr->b_freeze_cksum != NULL) {
3507 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3508 hdr->b_freeze_cksum = NULL;
3509 }
3510 mutex_exit(&hdr->b_freeze_lock);
3511 }
3512 arc_cksum_compute(buf, B_FALSE);
3513 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3514}
3515
3516static void
3517arc_write_done(zio_t *zio)
3518{
3519 arc_write_callback_t *callback = zio->io_private;
3520 arc_buf_t *buf = callback->awcb_buf;
3521 arc_buf_hdr_t *hdr = buf->b_hdr;
3522
428870ff
BB
3523 ASSERT(hdr->b_acb == NULL);
3524
3525 if (zio->io_error == 0) {
3526 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3527 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3528 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3529 } else {
3530 ASSERT(BUF_EMPTY(hdr));
3531 }
34dc7c2f 3532
34dc7c2f
BB
3533 /*
3534 * If the block to be written was all-zero, we may have
3535 * compressed it away. In this case no write was performed
428870ff
BB
3536 * so there will be no dva/birth/checksum. The buffer must
3537 * therefore remain anonymous (and uncached).
34dc7c2f
BB
3538 */
3539 if (!BUF_EMPTY(hdr)) {
3540 arc_buf_hdr_t *exists;
3541 kmutex_t *hash_lock;
3542
428870ff
BB
3543 ASSERT(zio->io_error == 0);
3544
34dc7c2f
BB
3545 arc_cksum_verify(buf);
3546
3547 exists = buf_hash_insert(hdr, &hash_lock);
3548 if (exists) {
3549 /*
3550 * This can only happen if we overwrite for
3551 * sync-to-convergence, because we remove
3552 * buffers from the hash table when we arc_free().
3553 */
428870ff
BB
3554 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3555 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3556 panic("bad overwrite, hdr=%p exists=%p",
3557 (void *)hdr, (void *)exists);
3558 ASSERT(refcount_is_zero(&exists->b_refcnt));
3559 arc_change_state(arc_anon, exists, hash_lock);
3560 mutex_exit(hash_lock);
3561 arc_hdr_destroy(exists);
3562 exists = buf_hash_insert(hdr, &hash_lock);
3563 ASSERT3P(exists, ==, NULL);
3564 } else {
3565 /* Dedup */
3566 ASSERT(hdr->b_datacnt == 1);
3567 ASSERT(hdr->b_state == arc_anon);
3568 ASSERT(BP_GET_DEDUP(zio->io_bp));
3569 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3570 }
34dc7c2f
BB
3571 }
3572 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3573 /* if it's not anon, we are doing a scrub */
428870ff 3574 if (!exists && hdr->b_state == arc_anon)
b128c09f 3575 arc_access(hdr, hash_lock);
34dc7c2f 3576 mutex_exit(hash_lock);
34dc7c2f
BB
3577 } else {
3578 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3579 }
3580
428870ff
BB
3581 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3582 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3583
3584 kmem_free(callback, sizeof (arc_write_callback_t));
3585}
3586
3587zio_t *
428870ff
BB
3588arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3589 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3590 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3591 int priority, int zio_flags, const zbookmark_t *zb)
34dc7c2f
BB
3592{
3593 arc_buf_hdr_t *hdr = buf->b_hdr;
3594 arc_write_callback_t *callback;
b128c09f 3595 zio_t *zio;
34dc7c2f 3596
b128c09f 3597 ASSERT(ready != NULL);
428870ff 3598 ASSERT(done != NULL);
34dc7c2f
BB
3599 ASSERT(!HDR_IO_ERROR(hdr));
3600 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3601 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3602 if (l2arc)
3603 hdr->b_flags |= ARC_L2CACHE;
b8d06fca 3604 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3605 callback->awcb_ready = ready;
3606 callback->awcb_done = done;
3607 callback->awcb_private = private;
3608 callback->awcb_buf = buf;
b128c09f 3609
428870ff 3610 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
b128c09f 3611 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
34dc7c2f
BB
3612
3613 return (zio);
3614}
3615
34dc7c2f 3616static int
9babb374 3617arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
34dc7c2f
BB
3618{
3619#ifdef _KERNEL
302f753f 3620 uint64_t available_memory;
34dc7c2f 3621
0c5493d4
BB
3622 if (zfs_arc_memory_throttle_disable)
3623 return (0);
3624
302f753f
BB
3625 /* Easily reclaimable memory (free + inactive + arc-evictable) */
3626 available_memory = ptob(spl_kmem_availrmem()) + arc_evictable_memory();
34dc7c2f 3627
302f753f 3628 if (available_memory <= zfs_write_limit_max) {
34dc7c2f 3629 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3630 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
34dc7c2f
BB
3631 return (EAGAIN);
3632 }
34dc7c2f
BB
3633
3634 if (inflight_data > available_memory / 4) {
3635 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3636 DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
34dc7c2f
BB
3637 return (ERESTART);
3638 }
3639#endif
3640 return (0);
3641}
3642
3643void
3644arc_tempreserve_clear(uint64_t reserve)
3645{
3646 atomic_add_64(&arc_tempreserve, -reserve);
3647 ASSERT((int64_t)arc_tempreserve >= 0);
3648}
3649
3650int
3651arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3652{
3653 int error;
9babb374 3654 uint64_t anon_size;
34dc7c2f
BB
3655
3656#ifdef ZFS_DEBUG
3657 /*
3658 * Once in a while, fail for no reason. Everything should cope.
3659 */
3660 if (spa_get_random(10000) == 0) {
3661 dprintf("forcing random failure\n");
3662 return (ERESTART);
3663 }
3664#endif
3665 if (reserve > arc_c/4 && !arc_no_grow)
3666 arc_c = MIN(arc_c_max, reserve * 4);
570827e1
BB
3667 if (reserve > arc_c) {
3668 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
34dc7c2f 3669 return (ENOMEM);
570827e1 3670 }
34dc7c2f 3671
9babb374
BB
3672 /*
3673 * Don't count loaned bufs as in flight dirty data to prevent long
3674 * network delays from blocking transactions that are ready to be
3675 * assigned to a txg.
3676 */
3677 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3678
34dc7c2f
BB
3679 /*
3680 * Writes will, almost always, require additional memory allocations
3681 * in order to compress/encrypt/etc the data. We therefor need to
3682 * make sure that there is sufficient available memory for this.
3683 */
c65aa5b2 3684 if ((error = arc_memory_throttle(reserve, anon_size, txg)))
34dc7c2f
BB
3685 return (error);
3686
3687 /*
3688 * Throttle writes when the amount of dirty data in the cache
3689 * gets too large. We try to keep the cache less than half full
3690 * of dirty blocks so that our sync times don't grow too large.
3691 * Note: if two requests come in concurrently, we might let them
3692 * both succeed, when one of them should fail. Not a huge deal.
3693 */
9babb374
BB
3694
3695 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3696 anon_size > arc_c / 4) {
34dc7c2f
BB
3697 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3698 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3699 arc_tempreserve>>10,
3700 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3701 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3702 reserve>>10, arc_c>>10);
570827e1 3703 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
34dc7c2f
BB
3704 return (ERESTART);
3705 }
3706 atomic_add_64(&arc_tempreserve, reserve);
3707 return (0);
3708}
3709
13be560d
BB
3710static void
3711arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3712 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3713{
3714 size->value.ui64 = state->arcs_size;
3715 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3716 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3717}
3718
3719static int
3720arc_kstat_update(kstat_t *ksp, int rw)
3721{
3722 arc_stats_t *as = ksp->ks_data;
3723
3724 if (rw == KSTAT_WRITE) {
3725 return (EACCES);
3726 } else {
3727 arc_kstat_update_state(arc_anon,
3728 &as->arcstat_anon_size,
3729 &as->arcstat_anon_evict_data,
3730 &as->arcstat_anon_evict_metadata);
3731 arc_kstat_update_state(arc_mru,
3732 &as->arcstat_mru_size,
3733 &as->arcstat_mru_evict_data,
3734 &as->arcstat_mru_evict_metadata);
3735 arc_kstat_update_state(arc_mru_ghost,
3736 &as->arcstat_mru_ghost_size,
3737 &as->arcstat_mru_ghost_evict_data,
3738 &as->arcstat_mru_ghost_evict_metadata);
3739 arc_kstat_update_state(arc_mfu,
3740 &as->arcstat_mfu_size,
3741 &as->arcstat_mfu_evict_data,
3742 &as->arcstat_mfu_evict_metadata);
fc41c640 3743 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
3744 &as->arcstat_mfu_ghost_size,
3745 &as->arcstat_mfu_ghost_evict_data,
3746 &as->arcstat_mfu_ghost_evict_metadata);
3747 }
3748
3749 return (0);
3750}
3751
34dc7c2f
BB
3752void
3753arc_init(void)
3754{
3755 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3756 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3757
3758 /* Convert seconds to clock ticks */
3759 arc_min_prefetch_lifespan = 1 * hz;
3760
3761 /* Start out with 1/8 of all memory */
3762 arc_c = physmem * PAGESIZE / 8;
3763
3764#ifdef _KERNEL
3765 /*
3766 * On architectures where the physical memory can be larger
3767 * than the addressable space (intel in 32-bit mode), we may
3768 * need to limit the cache to 1/8 of VM size.
3769 */
3770 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
3771 /*
3772 * Register a shrinker to support synchronous (direct) memory
3773 * reclaim from the arc. This is done to prevent kswapd from
3774 * swapping out pages when it is preferable to shrink the arc.
3775 */
3776 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
3777#endif
3778
3779 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3780 arc_c_min = MAX(arc_c / 4, 64<<20);
518b4876 3781 /* set max to 1/2 of all memory */
23bdb07d 3782 arc_c_max = MAX(arc_c * 4, arc_c_max);
34dc7c2f
BB
3783
3784 /*
3785 * Allow the tunables to override our calculations if they are
3786 * reasonable (ie. over 64MB)
3787 */
3788 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3789 arc_c_max = zfs_arc_max;
3790 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3791 arc_c_min = zfs_arc_min;
3792
3793 arc_c = arc_c_max;
3794 arc_p = (arc_c >> 1);
3795
3796 /* limit meta-data to 1/4 of the arc capacity */
3797 arc_meta_limit = arc_c_max / 4;
1834f2d8 3798 arc_meta_max = 0;
34dc7c2f
BB
3799
3800 /* Allow the tunable to override if it is reasonable */
3801 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3802 arc_meta_limit = zfs_arc_meta_limit;
3803
3804 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3805 arc_c_min = arc_meta_limit / 2;
3806
d164b209
BB
3807 if (zfs_arc_grow_retry > 0)
3808 arc_grow_retry = zfs_arc_grow_retry;
3809
3810 if (zfs_arc_shrink_shift > 0)
3811 arc_shrink_shift = zfs_arc_shrink_shift;
3812
3813 if (zfs_arc_p_min_shift > 0)
3814 arc_p_min_shift = zfs_arc_p_min_shift;
3815
ab26409d
BB
3816 if (zfs_arc_meta_prune > 0)
3817 arc_meta_prune = zfs_arc_meta_prune;
6a8f9b6b 3818
34dc7c2f
BB
3819 /* if kmem_flags are set, lets try to use less memory */
3820 if (kmem_debugging())
3821 arc_c = arc_c / 2;
3822 if (arc_c < arc_c_min)
3823 arc_c = arc_c_min;
3824
3825 arc_anon = &ARC_anon;
3826 arc_mru = &ARC_mru;
3827 arc_mru_ghost = &ARC_mru_ghost;
3828 arc_mfu = &ARC_mfu;
3829 arc_mfu_ghost = &ARC_mfu_ghost;
3830 arc_l2c_only = &ARC_l2c_only;
3831 arc_size = 0;
3832
3833 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3834 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3835 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3836 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3837 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3838 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3839
3840 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3841 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3842 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3843 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3844 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3845 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3846 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3847 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3848 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3849 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3850 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3851 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3852 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3853 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3854 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3855 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3856 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3857 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3858 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3859 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3860
3861 buf_init();
3862
3863 arc_thread_exit = 0;
ab26409d
BB
3864 list_create(&arc_prune_list, sizeof (arc_prune_t),
3865 offsetof(arc_prune_t, p_node));
34dc7c2f 3866 arc_eviction_list = NULL;
ab26409d 3867 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3868 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3869 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3870
3871 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3872 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3873
3874 if (arc_ksp != NULL) {
3875 arc_ksp->ks_data = &arc_stats;
13be560d 3876 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
3877 kstat_install(arc_ksp);
3878 }
3879
302f753f 3880 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
3881 TS_RUN, minclsyspri);
3882
3883 arc_dead = FALSE;
b128c09f 3884 arc_warm = B_FALSE;
34dc7c2f
BB
3885
3886 if (zfs_write_limit_max == 0)
b128c09f 3887 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
34dc7c2f
BB
3888 else
3889 zfs_write_limit_shift = 0;
b128c09f 3890 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
3891}
3892
3893void
3894arc_fini(void)
3895{
ab26409d
BB
3896 arc_prune_t *p;
3897
34dc7c2f 3898 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
3899#ifdef _KERNEL
3900 spl_unregister_shrinker(&arc_shrinker);
3901#endif /* _KERNEL */
3902
34dc7c2f
BB
3903 arc_thread_exit = 1;
3904 while (arc_thread_exit != 0)
3905 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3906 mutex_exit(&arc_reclaim_thr_lock);
3907
3908 arc_flush(NULL);
3909
3910 arc_dead = TRUE;
3911
3912 if (arc_ksp != NULL) {
3913 kstat_delete(arc_ksp);
3914 arc_ksp = NULL;
3915 }
3916
ab26409d
BB
3917 mutex_enter(&arc_prune_mtx);
3918 while ((p = list_head(&arc_prune_list)) != NULL) {
3919 list_remove(&arc_prune_list, p);
3920 refcount_remove(&p->p_refcnt, &arc_prune_list);
3921 refcount_destroy(&p->p_refcnt);
3922 kmem_free(p, sizeof (*p));
3923 }
3924 mutex_exit(&arc_prune_mtx);
3925
3926 list_destroy(&arc_prune_list);
3927 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
3928 mutex_destroy(&arc_eviction_mtx);
3929 mutex_destroy(&arc_reclaim_thr_lock);
3930 cv_destroy(&arc_reclaim_thr_cv);
3931
3932 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3933 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3934 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3935 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3936 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3937 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3938 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3939 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3940
3941 mutex_destroy(&arc_anon->arcs_mtx);
3942 mutex_destroy(&arc_mru->arcs_mtx);
3943 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3944 mutex_destroy(&arc_mfu->arcs_mtx);
3945 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 3946 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f 3947
b128c09f
BB
3948 mutex_destroy(&zfs_write_limit_lock);
3949
34dc7c2f 3950 buf_fini();
9babb374
BB
3951
3952 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
3953}
3954
3955/*
3956 * Level 2 ARC
3957 *
3958 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3959 * It uses dedicated storage devices to hold cached data, which are populated
3960 * using large infrequent writes. The main role of this cache is to boost
3961 * the performance of random read workloads. The intended L2ARC devices
3962 * include short-stroked disks, solid state disks, and other media with
3963 * substantially faster read latency than disk.
3964 *
3965 * +-----------------------+
3966 * | ARC |
3967 * +-----------------------+
3968 * | ^ ^
3969 * | | |
3970 * l2arc_feed_thread() arc_read()
3971 * | | |
3972 * | l2arc read |
3973 * V | |
3974 * +---------------+ |
3975 * | L2ARC | |
3976 * +---------------+ |
3977 * | ^ |
3978 * l2arc_write() | |
3979 * | | |
3980 * V | |
3981 * +-------+ +-------+
3982 * | vdev | | vdev |
3983 * | cache | | cache |
3984 * +-------+ +-------+
3985 * +=========+ .-----.
3986 * : L2ARC : |-_____-|
3987 * : devices : | Disks |
3988 * +=========+ `-_____-'
3989 *
3990 * Read requests are satisfied from the following sources, in order:
3991 *
3992 * 1) ARC
3993 * 2) vdev cache of L2ARC devices
3994 * 3) L2ARC devices
3995 * 4) vdev cache of disks
3996 * 5) disks
3997 *
3998 * Some L2ARC device types exhibit extremely slow write performance.
3999 * To accommodate for this there are some significant differences between
4000 * the L2ARC and traditional cache design:
4001 *
4002 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4003 * the ARC behave as usual, freeing buffers and placing headers on ghost
4004 * lists. The ARC does not send buffers to the L2ARC during eviction as
4005 * this would add inflated write latencies for all ARC memory pressure.
4006 *
4007 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4008 * It does this by periodically scanning buffers from the eviction-end of
4009 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4010 * not already there. It scans until a headroom of buffers is satisfied,
4011 * which itself is a buffer for ARC eviction. The thread that does this is
4012 * l2arc_feed_thread(), illustrated below; example sizes are included to
4013 * provide a better sense of ratio than this diagram:
4014 *
4015 * head --> tail
4016 * +---------------------+----------+
4017 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4018 * +---------------------+----------+ | o L2ARC eligible
4019 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4020 * +---------------------+----------+ |
4021 * 15.9 Gbytes ^ 32 Mbytes |
4022 * headroom |
4023 * l2arc_feed_thread()
4024 * |
4025 * l2arc write hand <--[oooo]--'
4026 * | 8 Mbyte
4027 * | write max
4028 * V
4029 * +==============================+
4030 * L2ARC dev |####|#|###|###| |####| ... |
4031 * +==============================+
4032 * 32 Gbytes
4033 *
4034 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4035 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4036 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4037 * safe to say that this is an uncommon case, since buffers at the end of
4038 * the ARC lists have moved there due to inactivity.
4039 *
4040 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4041 * then the L2ARC simply misses copying some buffers. This serves as a
4042 * pressure valve to prevent heavy read workloads from both stalling the ARC
4043 * with waits and clogging the L2ARC with writes. This also helps prevent
4044 * the potential for the L2ARC to churn if it attempts to cache content too
4045 * quickly, such as during backups of the entire pool.
4046 *
b128c09f
BB
4047 * 5. After system boot and before the ARC has filled main memory, there are
4048 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4049 * lists can remain mostly static. Instead of searching from tail of these
4050 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4051 * for eligible buffers, greatly increasing its chance of finding them.
4052 *
4053 * The L2ARC device write speed is also boosted during this time so that
4054 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4055 * there are no L2ARC reads, and no fear of degrading read performance
4056 * through increased writes.
4057 *
4058 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4059 * the vdev queue can aggregate them into larger and fewer writes. Each
4060 * device is written to in a rotor fashion, sweeping writes through
4061 * available space then repeating.
4062 *
b128c09f 4063 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4064 * write buffers back to disk based storage.
4065 *
b128c09f 4066 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4067 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4068 *
4069 * The performance of the L2ARC can be tweaked by a number of tunables, which
4070 * may be necessary for different workloads:
4071 *
4072 * l2arc_write_max max write bytes per interval
b128c09f 4073 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
4074 * l2arc_noprefetch skip caching prefetched buffers
4075 * l2arc_headroom number of max device writes to precache
4076 * l2arc_feed_secs seconds between L2ARC writing
4077 *
4078 * Tunables may be removed or added as future performance improvements are
4079 * integrated, and also may become zpool properties.
d164b209
BB
4080 *
4081 * There are three key functions that control how the L2ARC warms up:
4082 *
4083 * l2arc_write_eligible() check if a buffer is eligible to cache
4084 * l2arc_write_size() calculate how much to write
4085 * l2arc_write_interval() calculate sleep delay between writes
4086 *
4087 * These three functions determine what to write, how much, and how quickly
4088 * to send writes.
34dc7c2f
BB
4089 */
4090
d164b209
BB
4091static boolean_t
4092l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4093{
4094 /*
4095 * A buffer is *not* eligible for the L2ARC if it:
4096 * 1. belongs to a different spa.
428870ff
BB
4097 * 2. is already cached on the L2ARC.
4098 * 3. has an I/O in progress (it may be an incomplete read).
4099 * 4. is flagged not eligible (zfs property).
d164b209 4100 */
428870ff 4101 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4102 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4103 return (B_FALSE);
4104
4105 return (B_TRUE);
4106}
4107
4108static uint64_t
4109l2arc_write_size(l2arc_dev_t *dev)
4110{
4111 uint64_t size;
4112
4113 size = dev->l2ad_write;
4114
4115 if (arc_warm == B_FALSE)
4116 size += dev->l2ad_boost;
4117
4118 return (size);
4119
4120}
4121
4122static clock_t
4123l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4124{
428870ff 4125 clock_t interval, next, now;
d164b209
BB
4126
4127 /*
4128 * If the ARC lists are busy, increase our write rate; if the
4129 * lists are stale, idle back. This is achieved by checking
4130 * how much we previously wrote - if it was more than half of
4131 * what we wanted, schedule the next write much sooner.
4132 */
4133 if (l2arc_feed_again && wrote > (wanted / 2))
4134 interval = (hz * l2arc_feed_min_ms) / 1000;
4135 else
4136 interval = hz * l2arc_feed_secs;
4137
428870ff
BB
4138 now = ddi_get_lbolt();
4139 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4140
4141 return (next);
4142}
4143
34dc7c2f
BB
4144static void
4145l2arc_hdr_stat_add(void)
4146{
6e1d7276 4147 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
34dc7c2f
BB
4148 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4149}
4150
4151static void
4152l2arc_hdr_stat_remove(void)
4153{
6e1d7276 4154 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
34dc7c2f
BB
4155 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4156}
4157
4158/*
4159 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4160 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4161 */
4162static l2arc_dev_t *
4163l2arc_dev_get_next(void)
4164{
b128c09f 4165 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4166
b128c09f
BB
4167 /*
4168 * Lock out the removal of spas (spa_namespace_lock), then removal
4169 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4170 * both locks will be dropped and a spa config lock held instead.
4171 */
4172 mutex_enter(&spa_namespace_lock);
4173 mutex_enter(&l2arc_dev_mtx);
4174
4175 /* if there are no vdevs, there is nothing to do */
4176 if (l2arc_ndev == 0)
4177 goto out;
4178
4179 first = NULL;
4180 next = l2arc_dev_last;
4181 do {
4182 /* loop around the list looking for a non-faulted vdev */
4183 if (next == NULL) {
34dc7c2f 4184 next = list_head(l2arc_dev_list);
b128c09f
BB
4185 } else {
4186 next = list_next(l2arc_dev_list, next);
4187 if (next == NULL)
4188 next = list_head(l2arc_dev_list);
4189 }
4190
4191 /* if we have come back to the start, bail out */
4192 if (first == NULL)
4193 first = next;
4194 else if (next == first)
4195 break;
4196
4197 } while (vdev_is_dead(next->l2ad_vdev));
4198
4199 /* if we were unable to find any usable vdevs, return NULL */
4200 if (vdev_is_dead(next->l2ad_vdev))
4201 next = NULL;
34dc7c2f
BB
4202
4203 l2arc_dev_last = next;
4204
b128c09f
BB
4205out:
4206 mutex_exit(&l2arc_dev_mtx);
4207
4208 /*
4209 * Grab the config lock to prevent the 'next' device from being
4210 * removed while we are writing to it.
4211 */
4212 if (next != NULL)
4213 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4214 mutex_exit(&spa_namespace_lock);
4215
34dc7c2f
BB
4216 return (next);
4217}
4218
b128c09f
BB
4219/*
4220 * Free buffers that were tagged for destruction.
4221 */
4222static void
0bc8fd78 4223l2arc_do_free_on_write(void)
b128c09f
BB
4224{
4225 list_t *buflist;
4226 l2arc_data_free_t *df, *df_prev;
4227
4228 mutex_enter(&l2arc_free_on_write_mtx);
4229 buflist = l2arc_free_on_write;
4230
4231 for (df = list_tail(buflist); df; df = df_prev) {
4232 df_prev = list_prev(buflist, df);
4233 ASSERT(df->l2df_data != NULL);
4234 ASSERT(df->l2df_func != NULL);
4235 df->l2df_func(df->l2df_data, df->l2df_size);
4236 list_remove(buflist, df);
4237 kmem_free(df, sizeof (l2arc_data_free_t));
4238 }
4239
4240 mutex_exit(&l2arc_free_on_write_mtx);
4241}
4242
34dc7c2f
BB
4243/*
4244 * A write to a cache device has completed. Update all headers to allow
4245 * reads from these buffers to begin.
4246 */
4247static void
4248l2arc_write_done(zio_t *zio)
4249{
4250 l2arc_write_callback_t *cb;
4251 l2arc_dev_t *dev;
4252 list_t *buflist;
34dc7c2f 4253 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4254 l2arc_buf_hdr_t *abl2;
34dc7c2f
BB
4255 kmutex_t *hash_lock;
4256
4257 cb = zio->io_private;
4258 ASSERT(cb != NULL);
4259 dev = cb->l2wcb_dev;
4260 ASSERT(dev != NULL);
4261 head = cb->l2wcb_head;
4262 ASSERT(head != NULL);
4263 buflist = dev->l2ad_buflist;
4264 ASSERT(buflist != NULL);
4265 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4266 l2arc_write_callback_t *, cb);
4267
4268 if (zio->io_error != 0)
4269 ARCSTAT_BUMP(arcstat_l2_writes_error);
4270
4271 mutex_enter(&l2arc_buflist_mtx);
4272
4273 /*
4274 * All writes completed, or an error was hit.
4275 */
4276 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4277 ab_prev = list_prev(buflist, ab);
4278
4279 hash_lock = HDR_LOCK(ab);
4280 if (!mutex_tryenter(hash_lock)) {
4281 /*
4282 * This buffer misses out. It may be in a stage
4283 * of eviction. Its ARC_L2_WRITING flag will be
4284 * left set, denying reads to this buffer.
4285 */
4286 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4287 continue;
4288 }
4289
4290 if (zio->io_error != 0) {
4291 /*
b128c09f 4292 * Error - drop L2ARC entry.
34dc7c2f 4293 */
b128c09f
BB
4294 list_remove(buflist, ab);
4295 abl2 = ab->b_l2hdr;
34dc7c2f 4296 ab->b_l2hdr = NULL;
b128c09f 4297 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
6e1d7276 4298 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
b128c09f 4299 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4300 }
4301
4302 /*
4303 * Allow ARC to begin reads to this L2ARC entry.
4304 */
4305 ab->b_flags &= ~ARC_L2_WRITING;
4306
4307 mutex_exit(hash_lock);
4308 }
4309
4310 atomic_inc_64(&l2arc_writes_done);
4311 list_remove(buflist, head);
4312 kmem_cache_free(hdr_cache, head);
4313 mutex_exit(&l2arc_buflist_mtx);
4314
b128c09f 4315 l2arc_do_free_on_write();
34dc7c2f
BB
4316
4317 kmem_free(cb, sizeof (l2arc_write_callback_t));
4318}
4319
4320/*
4321 * A read to a cache device completed. Validate buffer contents before
4322 * handing over to the regular ARC routines.
4323 */
4324static void
4325l2arc_read_done(zio_t *zio)
4326{
4327 l2arc_read_callback_t *cb;
4328 arc_buf_hdr_t *hdr;
4329 arc_buf_t *buf;
34dc7c2f 4330 kmutex_t *hash_lock;
b128c09f
BB
4331 int equal;
4332
4333 ASSERT(zio->io_vd != NULL);
4334 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4335
4336 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4337
4338 cb = zio->io_private;
4339 ASSERT(cb != NULL);
4340 buf = cb->l2rcb_buf;
4341 ASSERT(buf != NULL);
34dc7c2f 4342
428870ff 4343 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4344 mutex_enter(hash_lock);
428870ff
BB
4345 hdr = buf->b_hdr;
4346 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
4347
4348 /*
4349 * Check this survived the L2ARC journey.
4350 */
4351 equal = arc_cksum_equal(buf);
4352 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4353 mutex_exit(hash_lock);
4354 zio->io_private = buf;
b128c09f
BB
4355 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4356 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4357 arc_read_done(zio);
4358 } else {
4359 mutex_exit(hash_lock);
4360 /*
4361 * Buffer didn't survive caching. Increment stats and
4362 * reissue to the original storage device.
4363 */
b128c09f 4364 if (zio->io_error != 0) {
34dc7c2f 4365 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f
BB
4366 } else {
4367 zio->io_error = EIO;
4368 }
34dc7c2f
BB
4369 if (!equal)
4370 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4371
34dc7c2f 4372 /*
b128c09f
BB
4373 * If there's no waiter, issue an async i/o to the primary
4374 * storage now. If there *is* a waiter, the caller must
4375 * issue the i/o in a context where it's OK to block.
34dc7c2f 4376 */
d164b209
BB
4377 if (zio->io_waiter == NULL) {
4378 zio_t *pio = zio_unique_parent(zio);
4379
4380 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4381
4382 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4383 buf->b_data, zio->io_size, arc_read_done, buf,
4384 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4385 }
34dc7c2f
BB
4386 }
4387
4388 kmem_free(cb, sizeof (l2arc_read_callback_t));
4389}
4390
4391/*
4392 * This is the list priority from which the L2ARC will search for pages to
4393 * cache. This is used within loops (0..3) to cycle through lists in the
4394 * desired order. This order can have a significant effect on cache
4395 * performance.
4396 *
4397 * Currently the metadata lists are hit first, MFU then MRU, followed by
4398 * the data lists. This function returns a locked list, and also returns
4399 * the lock pointer.
4400 */
4401static list_t *
4402l2arc_list_locked(int list_num, kmutex_t **lock)
4403{
d4ed6673 4404 list_t *list = NULL;
34dc7c2f
BB
4405
4406 ASSERT(list_num >= 0 && list_num <= 3);
4407
4408 switch (list_num) {
4409 case 0:
4410 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4411 *lock = &arc_mfu->arcs_mtx;
4412 break;
4413 case 1:
4414 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4415 *lock = &arc_mru->arcs_mtx;
4416 break;
4417 case 2:
4418 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4419 *lock = &arc_mfu->arcs_mtx;
4420 break;
4421 case 3:
4422 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4423 *lock = &arc_mru->arcs_mtx;
4424 break;
4425 }
4426
4427 ASSERT(!(MUTEX_HELD(*lock)));
4428 mutex_enter(*lock);
4429 return (list);
4430}
4431
4432/*
4433 * Evict buffers from the device write hand to the distance specified in
4434 * bytes. This distance may span populated buffers, it may span nothing.
4435 * This is clearing a region on the L2ARC device ready for writing.
4436 * If the 'all' boolean is set, every buffer is evicted.
4437 */
4438static void
4439l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4440{
4441 list_t *buflist;
4442 l2arc_buf_hdr_t *abl2;
4443 arc_buf_hdr_t *ab, *ab_prev;
4444 kmutex_t *hash_lock;
4445 uint64_t taddr;
4446
34dc7c2f
BB
4447 buflist = dev->l2ad_buflist;
4448
4449 if (buflist == NULL)
4450 return;
4451
4452 if (!all && dev->l2ad_first) {
4453 /*
4454 * This is the first sweep through the device. There is
4455 * nothing to evict.
4456 */
4457 return;
4458 }
4459
b128c09f 4460 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4461 /*
4462 * When nearing the end of the device, evict to the end
4463 * before the device write hand jumps to the start.
4464 */
4465 taddr = dev->l2ad_end;
4466 } else {
4467 taddr = dev->l2ad_hand + distance;
4468 }
4469 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4470 uint64_t, taddr, boolean_t, all);
4471
4472top:
4473 mutex_enter(&l2arc_buflist_mtx);
4474 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4475 ab_prev = list_prev(buflist, ab);
4476
4477 hash_lock = HDR_LOCK(ab);
4478 if (!mutex_tryenter(hash_lock)) {
4479 /*
4480 * Missed the hash lock. Retry.
4481 */
4482 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4483 mutex_exit(&l2arc_buflist_mtx);
4484 mutex_enter(hash_lock);
4485 mutex_exit(hash_lock);
4486 goto top;
4487 }
4488
4489 if (HDR_L2_WRITE_HEAD(ab)) {
4490 /*
4491 * We hit a write head node. Leave it for
4492 * l2arc_write_done().
4493 */
4494 list_remove(buflist, ab);
4495 mutex_exit(hash_lock);
4496 continue;
4497 }
4498
4499 if (!all && ab->b_l2hdr != NULL &&
4500 (ab->b_l2hdr->b_daddr > taddr ||
4501 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4502 /*
4503 * We've evicted to the target address,
4504 * or the end of the device.
4505 */
4506 mutex_exit(hash_lock);
4507 break;
4508 }
4509
4510 if (HDR_FREE_IN_PROGRESS(ab)) {
4511 /*
4512 * Already on the path to destruction.
4513 */
4514 mutex_exit(hash_lock);
4515 continue;
4516 }
4517
4518 if (ab->b_state == arc_l2c_only) {
4519 ASSERT(!HDR_L2_READING(ab));
4520 /*
4521 * This doesn't exist in the ARC. Destroy.
4522 * arc_hdr_destroy() will call list_remove()
4523 * and decrement arcstat_l2_size.
4524 */
4525 arc_change_state(arc_anon, ab, hash_lock);
4526 arc_hdr_destroy(ab);
4527 } else {
b128c09f
BB
4528 /*
4529 * Invalidate issued or about to be issued
4530 * reads, since we may be about to write
4531 * over this location.
4532 */
4533 if (HDR_L2_READING(ab)) {
4534 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4535 ab->b_flags |= ARC_L2_EVICTED;
4536 }
4537
34dc7c2f
BB
4538 /*
4539 * Tell ARC this no longer exists in L2ARC.
4540 */
4541 if (ab->b_l2hdr != NULL) {
4542 abl2 = ab->b_l2hdr;
4543 ab->b_l2hdr = NULL;
4544 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
6e1d7276 4545 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4546 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4547 }
4548 list_remove(buflist, ab);
4549
4550 /*
4551 * This may have been leftover after a
4552 * failed write.
4553 */
4554 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4555 }
4556 mutex_exit(hash_lock);
4557 }
4558 mutex_exit(&l2arc_buflist_mtx);
4559
428870ff 4560 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
34dc7c2f
BB
4561 dev->l2ad_evict = taddr;
4562}
4563
4564/*
4565 * Find and write ARC buffers to the L2ARC device.
4566 *
4567 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4568 * for reading until they have completed writing.
4569 */
d164b209 4570static uint64_t
b128c09f 4571l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f
BB
4572{
4573 arc_buf_hdr_t *ab, *ab_prev, *head;
4574 l2arc_buf_hdr_t *hdrl2;
4575 list_t *list;
b128c09f 4576 uint64_t passed_sz, write_sz, buf_sz, headroom;
34dc7c2f 4577 void *buf_data;
d4ed6673 4578 kmutex_t *hash_lock, *list_lock = NULL;
34dc7c2f
BB
4579 boolean_t have_lock, full;
4580 l2arc_write_callback_t *cb;
4581 zio_t *pio, *wzio;
3541dc6d 4582 uint64_t guid = spa_load_guid(spa);
d6320ddb 4583 int try;
34dc7c2f 4584
34dc7c2f
BB
4585 ASSERT(dev->l2ad_vdev != NULL);
4586
4587 pio = NULL;
4588 write_sz = 0;
4589 full = B_FALSE;
4590 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4591 head->b_flags |= ARC_L2_WRITE_HEAD;
4592
4593 /*
4594 * Copy buffers for L2ARC writing.
4595 */
4596 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4597 for (try = 0; try <= 3; try++) {
34dc7c2f
BB
4598 list = l2arc_list_locked(try, &list_lock);
4599 passed_sz = 0;
4600
b128c09f
BB
4601 /*
4602 * L2ARC fast warmup.
4603 *
4604 * Until the ARC is warm and starts to evict, read from the
4605 * head of the ARC lists rather than the tail.
4606 */
4607 headroom = target_sz * l2arc_headroom;
4608 if (arc_warm == B_FALSE)
4609 ab = list_head(list);
4610 else
4611 ab = list_tail(list);
4612
4613 for (; ab; ab = ab_prev) {
4614 if (arc_warm == B_FALSE)
4615 ab_prev = list_next(list, ab);
4616 else
4617 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4618
4619 hash_lock = HDR_LOCK(ab);
4620 have_lock = MUTEX_HELD(hash_lock);
4621 if (!have_lock && !mutex_tryenter(hash_lock)) {
4622 /*
4623 * Skip this buffer rather than waiting.
4624 */
4625 continue;
4626 }
4627
4628 passed_sz += ab->b_size;
4629 if (passed_sz > headroom) {
4630 /*
4631 * Searched too far.
4632 */
4633 mutex_exit(hash_lock);
4634 break;
4635 }
4636
d164b209 4637 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4638 mutex_exit(hash_lock);
4639 continue;
4640 }
4641
4642 if ((write_sz + ab->b_size) > target_sz) {
4643 full = B_TRUE;
4644 mutex_exit(hash_lock);
4645 break;
4646 }
4647
34dc7c2f
BB
4648 if (pio == NULL) {
4649 /*
4650 * Insert a dummy header on the buflist so
4651 * l2arc_write_done() can find where the
4652 * write buffers begin without searching.
4653 */
4654 list_insert_head(dev->l2ad_buflist, head);
4655
409dc1a5
PS
4656 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
4657 KM_PUSHPAGE);
34dc7c2f
BB
4658 cb->l2wcb_dev = dev;
4659 cb->l2wcb_head = head;
4660 pio = zio_root(spa, l2arc_write_done, cb,
4661 ZIO_FLAG_CANFAIL);
4662 }
4663
4664 /*
4665 * Create and add a new L2ARC header.
4666 */
409dc1a5
PS
4667 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t),
4668 KM_PUSHPAGE);
34dc7c2f
BB
4669 hdrl2->b_dev = dev;
4670 hdrl2->b_daddr = dev->l2ad_hand;
6e1d7276 4671 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4672
4673 ab->b_flags |= ARC_L2_WRITING;
4674 ab->b_l2hdr = hdrl2;
4675 list_insert_head(dev->l2ad_buflist, ab);
4676 buf_data = ab->b_buf->b_data;
4677 buf_sz = ab->b_size;
4678
4679 /*
4680 * Compute and store the buffer cksum before
4681 * writing. On debug the cksum is verified first.
4682 */
4683 arc_cksum_verify(ab->b_buf);
4684 arc_cksum_compute(ab->b_buf, B_TRUE);
4685
4686 mutex_exit(hash_lock);
4687
4688 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4689 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4690 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4691 ZIO_FLAG_CANFAIL, B_FALSE);
4692
4693 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4694 zio_t *, wzio);
4695 (void) zio_nowait(wzio);
4696
b128c09f
BB
4697 /*
4698 * Keep the clock hand suitably device-aligned.
4699 */
4700 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4701
34dc7c2f
BB
4702 write_sz += buf_sz;
4703 dev->l2ad_hand += buf_sz;
4704 }
4705
4706 mutex_exit(list_lock);
4707
4708 if (full == B_TRUE)
4709 break;
4710 }
4711 mutex_exit(&l2arc_buflist_mtx);
4712
4713 if (pio == NULL) {
c99c9001 4714 ASSERT0(write_sz);
34dc7c2f 4715 kmem_cache_free(hdr_cache, head);
d164b209 4716 return (0);
34dc7c2f
BB
4717 }
4718
4719 ASSERT3U(write_sz, <=, target_sz);
4720 ARCSTAT_BUMP(arcstat_l2_writes_sent);
d164b209 4721 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
34dc7c2f 4722 ARCSTAT_INCR(arcstat_l2_size, write_sz);
428870ff 4723 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
34dc7c2f
BB
4724
4725 /*
4726 * Bump device hand to the device start if it is approaching the end.
4727 * l2arc_evict() will already have evicted ahead for this case.
4728 */
b128c09f 4729 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
428870ff
BB
4730 vdev_space_update(dev->l2ad_vdev,
4731 dev->l2ad_end - dev->l2ad_hand, 0, 0);
34dc7c2f
BB
4732 dev->l2ad_hand = dev->l2ad_start;
4733 dev->l2ad_evict = dev->l2ad_start;
4734 dev->l2ad_first = B_FALSE;
4735 }
4736
d164b209 4737 dev->l2ad_writing = B_TRUE;
34dc7c2f 4738 (void) zio_wait(pio);
d164b209
BB
4739 dev->l2ad_writing = B_FALSE;
4740
4741 return (write_sz);
34dc7c2f
BB
4742}
4743
4744/*
4745 * This thread feeds the L2ARC at regular intervals. This is the beating
4746 * heart of the L2ARC.
4747 */
4748static void
4749l2arc_feed_thread(void)
4750{
4751 callb_cpr_t cpr;
4752 l2arc_dev_t *dev;
4753 spa_t *spa;
d164b209 4754 uint64_t size, wrote;
428870ff 4755 clock_t begin, next = ddi_get_lbolt();
34dc7c2f
BB
4756
4757 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4758
4759 mutex_enter(&l2arc_feed_thr_lock);
4760
4761 while (l2arc_thread_exit == 0) {
34dc7c2f 4762 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
4763 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
4764 &l2arc_feed_thr_lock, next);
34dc7c2f 4765 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 4766 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
4767
4768 /*
b128c09f 4769 * Quick check for L2ARC devices.
34dc7c2f
BB
4770 */
4771 mutex_enter(&l2arc_dev_mtx);
4772 if (l2arc_ndev == 0) {
4773 mutex_exit(&l2arc_dev_mtx);
4774 continue;
4775 }
b128c09f 4776 mutex_exit(&l2arc_dev_mtx);
428870ff 4777 begin = ddi_get_lbolt();
34dc7c2f
BB
4778
4779 /*
b128c09f
BB
4780 * This selects the next l2arc device to write to, and in
4781 * doing so the next spa to feed from: dev->l2ad_spa. This
4782 * will return NULL if there are now no l2arc devices or if
4783 * they are all faulted.
4784 *
4785 * If a device is returned, its spa's config lock is also
4786 * held to prevent device removal. l2arc_dev_get_next()
4787 * will grab and release l2arc_dev_mtx.
34dc7c2f 4788 */
b128c09f 4789 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 4790 continue;
b128c09f
BB
4791
4792 spa = dev->l2ad_spa;
4793 ASSERT(spa != NULL);
34dc7c2f 4794
572e2857
BB
4795 /*
4796 * If the pool is read-only then force the feed thread to
4797 * sleep a little longer.
4798 */
4799 if (!spa_writeable(spa)) {
4800 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4801 spa_config_exit(spa, SCL_L2ARC, dev);
4802 continue;
4803 }
4804
34dc7c2f 4805 /*
b128c09f 4806 * Avoid contributing to memory pressure.
34dc7c2f 4807 */
302f753f 4808 if (arc_no_grow) {
b128c09f
BB
4809 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4810 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4811 continue;
4812 }
b128c09f 4813
34dc7c2f
BB
4814 ARCSTAT_BUMP(arcstat_l2_feeds);
4815
d164b209 4816 size = l2arc_write_size(dev);
b128c09f 4817
34dc7c2f
BB
4818 /*
4819 * Evict L2ARC buffers that will be overwritten.
4820 */
b128c09f 4821 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
4822
4823 /*
4824 * Write ARC buffers.
4825 */
d164b209
BB
4826 wrote = l2arc_write_buffers(spa, dev, size);
4827
4828 /*
4829 * Calculate interval between writes.
4830 */
4831 next = l2arc_write_interval(begin, size, wrote);
b128c09f 4832 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
4833 }
4834
4835 l2arc_thread_exit = 0;
4836 cv_broadcast(&l2arc_feed_thr_cv);
4837 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4838 thread_exit();
4839}
4840
b128c09f
BB
4841boolean_t
4842l2arc_vdev_present(vdev_t *vd)
4843{
4844 l2arc_dev_t *dev;
4845
4846 mutex_enter(&l2arc_dev_mtx);
4847 for (dev = list_head(l2arc_dev_list); dev != NULL;
4848 dev = list_next(l2arc_dev_list, dev)) {
4849 if (dev->l2ad_vdev == vd)
4850 break;
4851 }
4852 mutex_exit(&l2arc_dev_mtx);
4853
4854 return (dev != NULL);
4855}
4856
34dc7c2f
BB
4857/*
4858 * Add a vdev for use by the L2ARC. By this point the spa has already
4859 * validated the vdev and opened it.
4860 */
4861void
9babb374 4862l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
4863{
4864 l2arc_dev_t *adddev;
4865
b128c09f
BB
4866 ASSERT(!l2arc_vdev_present(vd));
4867
34dc7c2f
BB
4868 /*
4869 * Create a new l2arc device entry.
4870 */
4871 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4872 adddev->l2ad_spa = spa;
4873 adddev->l2ad_vdev = vd;
4874 adddev->l2ad_write = l2arc_write_max;
b128c09f 4875 adddev->l2ad_boost = l2arc_write_boost;
9babb374
BB
4876 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4877 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
4878 adddev->l2ad_hand = adddev->l2ad_start;
4879 adddev->l2ad_evict = adddev->l2ad_start;
4880 adddev->l2ad_first = B_TRUE;
d164b209 4881 adddev->l2ad_writing = B_FALSE;
98f72a53 4882 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
4883 ASSERT3U(adddev->l2ad_write, >, 0);
4884
4885 /*
4886 * This is a list of all ARC buffers that are still valid on the
4887 * device.
4888 */
4889 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4890 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4891 offsetof(arc_buf_hdr_t, b_l2node));
4892
428870ff 4893 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
4894
4895 /*
4896 * Add device to global list
4897 */
4898 mutex_enter(&l2arc_dev_mtx);
4899 list_insert_head(l2arc_dev_list, adddev);
4900 atomic_inc_64(&l2arc_ndev);
4901 mutex_exit(&l2arc_dev_mtx);
4902}
4903
4904/*
4905 * Remove a vdev from the L2ARC.
4906 */
4907void
4908l2arc_remove_vdev(vdev_t *vd)
4909{
4910 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4911
34dc7c2f
BB
4912 /*
4913 * Find the device by vdev
4914 */
4915 mutex_enter(&l2arc_dev_mtx);
4916 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4917 nextdev = list_next(l2arc_dev_list, dev);
4918 if (vd == dev->l2ad_vdev) {
4919 remdev = dev;
4920 break;
4921 }
4922 }
4923 ASSERT(remdev != NULL);
4924
4925 /*
4926 * Remove device from global list
4927 */
4928 list_remove(l2arc_dev_list, remdev);
4929 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
4930 atomic_dec_64(&l2arc_ndev);
4931 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
4932
4933 /*
4934 * Clear all buflists and ARC references. L2ARC device flush.
4935 */
4936 l2arc_evict(remdev, 0, B_TRUE);
4937 list_destroy(remdev->l2ad_buflist);
4938 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4939 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
4940}
4941
4942void
b128c09f 4943l2arc_init(void)
34dc7c2f
BB
4944{
4945 l2arc_thread_exit = 0;
4946 l2arc_ndev = 0;
4947 l2arc_writes_sent = 0;
4948 l2arc_writes_done = 0;
4949
4950 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4951 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4952 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4953 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4954 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4955
4956 l2arc_dev_list = &L2ARC_dev_list;
4957 l2arc_free_on_write = &L2ARC_free_on_write;
4958 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4959 offsetof(l2arc_dev_t, l2ad_node));
4960 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4961 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
4962}
4963
4964void
b128c09f 4965l2arc_fini(void)
34dc7c2f 4966{
b128c09f
BB
4967 /*
4968 * This is called from dmu_fini(), which is called from spa_fini();
4969 * Because of this, we can assume that all l2arc devices have
4970 * already been removed when the pools themselves were removed.
4971 */
4972
4973 l2arc_do_free_on_write();
34dc7c2f
BB
4974
4975 mutex_destroy(&l2arc_feed_thr_lock);
4976 cv_destroy(&l2arc_feed_thr_cv);
4977 mutex_destroy(&l2arc_dev_mtx);
4978 mutex_destroy(&l2arc_buflist_mtx);
4979 mutex_destroy(&l2arc_free_on_write_mtx);
4980
4981 list_destroy(l2arc_dev_list);
4982 list_destroy(l2arc_free_on_write);
4983}
b128c09f
BB
4984
4985void
4986l2arc_start(void)
4987{
fb5f0bc8 4988 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4989 return;
4990
4991 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4992 TS_RUN, minclsyspri);
4993}
4994
4995void
4996l2arc_stop(void)
4997{
fb5f0bc8 4998 if (!(spa_mode_global & FWRITE))
b128c09f
BB
4999 return;
5000
5001 mutex_enter(&l2arc_feed_thr_lock);
5002 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5003 l2arc_thread_exit = 1;
5004 while (l2arc_thread_exit != 0)
5005 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5006 mutex_exit(&l2arc_feed_thr_lock);
5007}
c28b2279
BB
5008
5009#if defined(_KERNEL) && defined(HAVE_SPL)
5010EXPORT_SYMBOL(arc_read);
5011EXPORT_SYMBOL(arc_buf_remove_ref);
5012EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
5013EXPORT_SYMBOL(arc_add_prune_callback);
5014EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 5015
c409e464
BB
5016module_param(zfs_arc_min, ulong, 0444);
5017MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 5018
c409e464
BB
5019module_param(zfs_arc_max, ulong, 0444);
5020MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 5021
c409e464 5022module_param(zfs_arc_meta_limit, ulong, 0444);
c28b2279 5023MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 5024
ab26409d
BB
5025module_param(zfs_arc_meta_prune, int, 0444);
5026MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
c409e464
BB
5027
5028module_param(zfs_arc_grow_retry, int, 0444);
5029MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5030
5031module_param(zfs_arc_shrink_shift, int, 0444);
5032MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5033
5034module_param(zfs_arc_p_min_shift, int, 0444);
5035MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
5036
1f7c30df
BB
5037module_param(zfs_disable_dup_eviction, int, 0644);
5038MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5039
0c5493d4
BB
5040module_param(zfs_arc_memory_throttle_disable, int, 0644);
5041MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5042
abd8610c
BB
5043module_param(l2arc_write_max, ulong, 0444);
5044MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5045
5046module_param(l2arc_write_boost, ulong, 0444);
5047MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5048
5049module_param(l2arc_headroom, ulong, 0444);
5050MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5051
5052module_param(l2arc_feed_secs, ulong, 0444);
5053MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5054
5055module_param(l2arc_feed_min_ms, ulong, 0444);
5056MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5057
5058module_param(l2arc_noprefetch, int, 0444);
5059MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5060
5061module_param(l2arc_feed_again, int, 0444);
5062MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5063
5064module_param(l2arc_norw, int, 0444);
5065MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5066
c28b2279 5067#endif