]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dmu_recv.c
Provide macros for setting and getting blkptr birth times
[mirror_zfs.git] / module / zfs / dmu_recv.c
CommitLineData
03916905
PD
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
03916905
PD
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
196bee4c 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
03916905
PD
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
d8d418ff 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
10b3c7f5
MN
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
e8cf3a4f
AP
30 * Copyright (c) 2019 Datto Inc.
31 * Copyright (c) 2022 Axcient.
03916905
PD
32 */
33
73968def 34#include <sys/arc.h>
e8cf3a4f 35#include <sys/spa_impl.h>
03916905
PD
36#include <sys/dmu.h>
37#include <sys/dmu_impl.h>
30af21b0
PD
38#include <sys/dmu_send.h>
39#include <sys/dmu_recv.h>
03916905
PD
40#include <sys/dmu_tx.h>
41#include <sys/dbuf.h>
42#include <sys/dnode.h>
43#include <sys/zfs_context.h>
44#include <sys/dmu_objset.h>
45#include <sys/dmu_traverse.h>
46#include <sys/dsl_dataset.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_pool.h>
50#include <sys/dsl_synctask.h>
03916905
PD
51#include <sys/zfs_ioctl.h>
52#include <sys/zap.h>
30af21b0 53#include <sys/zvol.h>
03916905
PD
54#include <sys/zio_checksum.h>
55#include <sys/zfs_znode.h>
56#include <zfs_fletcher.h>
57#include <sys/avl.h>
58#include <sys/ddt.h>
59#include <sys/zfs_onexit.h>
03916905
PD
60#include <sys/dsl_destroy.h>
61#include <sys/blkptr.h>
62#include <sys/dsl_bookmark.h>
63#include <sys/zfeature.h>
64#include <sys/bqueue.h>
30af21b0
PD
65#include <sys/objlist.h>
66#ifdef _KERNEL
67#include <sys/zfs_vfsops.h>
68#endif
da92d5cb 69#include <sys/zfs_file.h>
03916905 70
fdc2d303
RY
71static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72static uint_t zfs_recv_queue_ff = 20;
73static uint_t zfs_recv_write_batch_size = 1024 * 1024;
e8cf3a4f 74static int zfs_recv_best_effort_corrective = 0;
03916905 75
a926aab9 76static const void *const dmu_recv_tag = "dmu_recv_tag";
18168da7 77const char *const recv_clone_name = "%recv";
03916905 78
37a27b43
DH
79typedef enum {
80 ORNS_NO,
81 ORNS_YES,
82 ORNS_MAYBE
83} or_need_sync_t;
84
30af21b0
PD
85static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86 void *buf);
87
88struct receive_record_arg {
89 dmu_replay_record_t header;
90 void *payload; /* Pointer to a buffer containing the payload */
91 /*
ba67d821 92 * If the record is a WRITE or SPILL, pointer to the abd containing the
30af21b0
PD
93 * payload.
94 */
ba67d821 95 abd_t *abd;
30af21b0
PD
96 int payload_size;
97 uint64_t bytes_read; /* bytes read from stream when record created */
98 boolean_t eos_marker; /* Marks the end of the stream */
99 bqueue_node_t node;
100};
101
102struct receive_writer_arg {
103 objset_t *os;
104 boolean_t byteswap;
105 bqueue_t q;
106
107 /*
ba67d821
MA
108 * These three members are used to signal to the main thread when
109 * we're done.
30af21b0
PD
110 */
111 kmutex_t mutex;
112 kcondvar_t cv;
113 boolean_t done;
114
115 int err;
e8cf3a4f
AP
116 const char *tofs;
117 boolean_t heal;
30af21b0
PD
118 boolean_t resumable;
119 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
120 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
7bcb7f08 121 boolean_t full; /* this is a full send stream */
30af21b0
PD
122 uint64_t last_object;
123 uint64_t last_offset;
124 uint64_t max_object; /* highest object ID referenced in stream */
125 uint64_t bytes_read; /* bytes read when current record created */
126
7261fc2e
MA
127 list_t write_batch;
128
30af21b0
PD
129 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 boolean_t or_crypt_params_present;
131 uint64_t or_firstobj;
132 uint64_t or_numslots;
133 uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 uint8_t or_iv[ZIO_DATA_IV_LEN];
135 uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 boolean_t or_byteorder;
e8cf3a4f 137 zio_t *heal_pio;
37a27b43
DH
138
139 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 or_need_sync_t or_need_sync;
30af21b0
PD
141};
142
03916905
PD
143typedef struct dmu_recv_begin_arg {
144 const char *drba_origin;
145 dmu_recv_cookie_t *drba_cookie;
146 cred_t *drba_cred;
e59a377a 147 proc_t *drba_proc;
03916905 148 dsl_crypto_params_t *drba_dcp;
03916905
PD
149} dmu_recv_begin_arg_t;
150
30af21b0
PD
151static void
152byteswap_record(dmu_replay_record_t *drr)
153{
154#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 drr->drr_type = BSWAP_32(drr->drr_type);
157 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158
159 switch (drr->drr_type) {
160 case DRR_BEGIN:
161 DO64(drr_begin.drr_magic);
162 DO64(drr_begin.drr_versioninfo);
163 DO64(drr_begin.drr_creation_time);
164 DO32(drr_begin.drr_type);
165 DO32(drr_begin.drr_flags);
166 DO64(drr_begin.drr_toguid);
167 DO64(drr_begin.drr_fromguid);
168 break;
169 case DRR_OBJECT:
170 DO64(drr_object.drr_object);
171 DO32(drr_object.drr_type);
172 DO32(drr_object.drr_bonustype);
173 DO32(drr_object.drr_blksz);
174 DO32(drr_object.drr_bonuslen);
175 DO32(drr_object.drr_raw_bonuslen);
176 DO64(drr_object.drr_toguid);
177 DO64(drr_object.drr_maxblkid);
178 break;
179 case DRR_FREEOBJECTS:
180 DO64(drr_freeobjects.drr_firstobj);
181 DO64(drr_freeobjects.drr_numobjs);
182 DO64(drr_freeobjects.drr_toguid);
183 break;
184 case DRR_WRITE:
185 DO64(drr_write.drr_object);
186 DO32(drr_write.drr_type);
187 DO64(drr_write.drr_offset);
188 DO64(drr_write.drr_logical_size);
189 DO64(drr_write.drr_toguid);
190 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 DO64(drr_write.drr_key.ddk_prop);
192 DO64(drr_write.drr_compressed_size);
193 break;
30af21b0
PD
194 case DRR_WRITE_EMBEDDED:
195 DO64(drr_write_embedded.drr_object);
196 DO64(drr_write_embedded.drr_offset);
197 DO64(drr_write_embedded.drr_length);
198 DO64(drr_write_embedded.drr_toguid);
199 DO32(drr_write_embedded.drr_lsize);
200 DO32(drr_write_embedded.drr_psize);
201 break;
202 case DRR_FREE:
203 DO64(drr_free.drr_object);
204 DO64(drr_free.drr_offset);
205 DO64(drr_free.drr_length);
206 DO64(drr_free.drr_toguid);
207 break;
208 case DRR_SPILL:
209 DO64(drr_spill.drr_object);
210 DO64(drr_spill.drr_length);
211 DO64(drr_spill.drr_toguid);
212 DO64(drr_spill.drr_compressed_size);
213 DO32(drr_spill.drr_type);
214 break;
215 case DRR_OBJECT_RANGE:
216 DO64(drr_object_range.drr_firstobj);
217 DO64(drr_object_range.drr_numslots);
218 DO64(drr_object_range.drr_toguid);
219 break;
220 case DRR_REDACT:
221 DO64(drr_redact.drr_object);
222 DO64(drr_redact.drr_offset);
223 DO64(drr_redact.drr_length);
224 DO64(drr_redact.drr_toguid);
225 break;
226 case DRR_END:
227 DO64(drr_end.drr_toguid);
228 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 break;
230 default:
231 break;
232 }
233
234 if (drr->drr_type != DRR_BEGIN) {
235 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 }
237
238#undef DO64
239#undef DO32
240}
241
242static boolean_t
243redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244{
245 for (int i = 0; i < num_snaps; i++) {
246 if (snaps[i] == guid)
247 return (B_TRUE);
248 }
249 return (B_FALSE);
250}
251
252/*
253 * Check that the new stream we're trying to receive is redacted with respect to
254 * a subset of the snapshots that the origin was redacted with respect to. For
255 * the reasons behind this, see the man page on redacted zfs sends and receives.
256 */
257static boolean_t
258compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259 uint64_t *redact_snaps, uint64_t num_redact_snaps)
260{
261 /*
262 * Short circuit the comparison; if we are redacted with respect to
263 * more snapshots than the origin, we can't be redacted with respect
264 * to a subset.
265 */
266 if (num_redact_snaps > origin_num_snaps) {
267 return (B_FALSE);
268 }
269
270 for (int i = 0; i < num_redact_snaps; i++) {
271 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 redact_snaps[i])) {
273 return (B_FALSE);
274 }
275 }
276 return (B_TRUE);
277}
278
279static boolean_t
280redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281{
282 uint64_t *origin_snaps;
283 uint64_t origin_num_snaps;
284 dmu_recv_cookie_t *drc = drba->drba_cookie;
285 struct drr_begin *drrb = drc->drc_drrb;
286 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 int err = 0;
288 boolean_t ret = B_TRUE;
289 uint64_t *redact_snaps;
290 uint_t numredactsnaps;
291
292 /*
293 * If this is a full send stream, we're safe no matter what.
294 */
295 if (drrb->drr_fromguid == 0)
296 return (ret);
297
298 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300
301 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 0) {
304 /*
305 * If the send stream was sent from the redaction bookmark or
306 * the redacted version of the dataset, then we're safe. Verify
307 * that this is from the a compatible redaction bookmark or
308 * redacted dataset.
309 */
310 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 redact_snaps, numredactsnaps)) {
312 err = EINVAL;
313 }
314 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 /*
316 * If the stream is redacted, it must be redacted with respect
317 * to a subset of what the origin is redacted with respect to.
318 * See case number 2 in the zfs man page section on redacted zfs
319 * send.
320 */
321 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323
324 if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 origin_num_snaps, redact_snaps, numredactsnaps)) {
326 err = EINVAL;
327 }
328 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 drrb->drr_toguid)) {
330 /*
331 * If the stream isn't redacted but the origin is, this must be
332 * one of the snapshots the origin is redacted with respect to.
333 * See case number 1 in the zfs man page section on redacted zfs
334 * send.
335 */
336 err = EINVAL;
337 }
338
339 if (err != 0)
340 ret = B_FALSE;
341 return (ret);
342}
343
7bcb7f08
MA
344/*
345 * If we previously received a stream with --large-block, we don't support
346 * receiving an incremental on top of it without --large-block. This avoids
347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348 * records.
349 */
350static int
351recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352{
353 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 return (0);
357}
358
03916905
PD
359static int
360recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361 uint64_t fromguid, uint64_t featureflags)
362{
e8cf3a4f 363 uint64_t obj;
d8d418ff 364 uint64_t children;
03916905 365 int error;
e8cf3a4f 366 dsl_dataset_t *snap;
03916905
PD
367 dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371
ebeb6f23 372 /* Temporary clone name must not exist. */
03916905
PD
373 error = zap_lookup(dp->dp_meta_objset,
374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
e8cf3a4f 375 8, 1, &obj);
03916905 376 if (error != ENOENT)
30af21b0 377 return (error == 0 ? SET_ERROR(EBUSY) : error);
03916905 378
ebeb6f23
AG
379 /* Resume state must not be set. */
380 if (dsl_dataset_has_resume_receive_state(ds))
381 return (SET_ERROR(EBUSY));
382
e8cf3a4f 383 /* New snapshot name must not exist if we're not healing it. */
03916905
PD
384 error = zap_lookup(dp->dp_meta_objset,
385 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
e8cf3a4f
AP
386 drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 if (drba->drba_cookie->drc_heal) {
388 if (error != 0)
389 return (error);
390 } else if (error != ENOENT) {
30af21b0 391 return (error == 0 ? SET_ERROR(EEXIST) : error);
e8cf3a4f 392 }
03916905 393
ebeb6f23 394 /* Must not have children if receiving a ZVOL. */
d8d418ff 395 error = zap_count(dp->dp_meta_objset,
396 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 if (error != 0)
398 return (error);
399 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 children > 0)
401 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402
03916905
PD
403 /*
404 * Check snapshot limit before receiving. We'll recheck again at the
405 * end, but might as well abort before receiving if we're already over
406 * the limit.
407 *
408 * Note that we do not check the file system limit with
409 * dsl_dir_fscount_check because the temporary %clones don't count
410 * against that limit.
411 */
412 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
e59a377a 413 NULL, drba->drba_cred, drba->drba_proc);
03916905
PD
414 if (error != 0)
415 return (error);
416
e8cf3a4f
AP
417 if (drba->drba_cookie->drc_heal) {
418 /* Encryption is incompatible with embedded data. */
419 if (encrypted && embed)
420 return (SET_ERROR(EINVAL));
421
422 /* Healing is not supported when in 'force' mode. */
423 if (drba->drba_cookie->drc_force)
424 return (SET_ERROR(EINVAL));
425
426 /* Must have keys loaded if doing encrypted non-raw recv. */
427 if (encrypted && !raw) {
428 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 NULL, NULL) != 0)
430 return (SET_ERROR(EACCES));
431 }
432
433 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 if (error != 0)
435 return (error);
436
437 /*
438 * When not doing best effort corrective recv healing can only
439 * be done if the send stream is for the same snapshot as the
440 * one we are trying to heal.
441 */
442 if (zfs_recv_best_effort_corrective == 0 &&
443 drba->drba_cookie->drc_drrb->drr_toguid !=
444 dsl_dataset_phys(snap)->ds_guid) {
445 dsl_dataset_rele(snap, FTAG);
446 return (SET_ERROR(ENOTSUP));
447 }
448 dsl_dataset_rele(snap, FTAG);
449 } else if (fromguid != 0) {
450 /* Sanity check the incremental recv */
03916905
PD
451 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452
30af21b0 453 /* Can't perform a raw receive on top of a non-raw receive */
03916905
PD
454 if (!encrypted && raw)
455 return (SET_ERROR(EINVAL));
456
457 /* Encryption is incompatible with embedded data */
458 if (encrypted && embed)
459 return (SET_ERROR(EINVAL));
460
461 /* Find snapshot in this dir that matches fromguid. */
462 while (obj != 0) {
463 error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 &snap);
465 if (error != 0)
466 return (SET_ERROR(ENODEV));
467 if (snap->ds_dir != ds->ds_dir) {
468 dsl_dataset_rele(snap, FTAG);
469 return (SET_ERROR(ENODEV));
470 }
471 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 break;
473 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 dsl_dataset_rele(snap, FTAG);
475 }
476 if (obj == 0)
477 return (SET_ERROR(ENODEV));
478
479 if (drba->drba_cookie->drc_force) {
f00ab3f2 480 drba->drba_cookie->drc_fromsnapobj = obj;
03916905
PD
481 } else {
482 /*
483 * If we are not forcing, there must be no
c08c30ed
TC
484 * changes since fromsnap. Raw sends have an
485 * additional constraint that requires that
486 * no "noop" snapshots exist between fromsnap
487 * and tosnap for the IVset checking code to
488 * work properly.
03916905 489 */
c08c30ed
TC
490 if (dsl_dataset_modified_since_snap(ds, snap) ||
491 (raw &&
492 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 snap->ds_object)) {
03916905
PD
494 dsl_dataset_rele(snap, FTAG);
495 return (SET_ERROR(ETXTBSY));
496 }
f00ab3f2
TC
497 drba->drba_cookie->drc_fromsnapobj =
498 ds->ds_prev->ds_object;
03916905
PD
499 }
500
30af21b0
PD
501 if (dsl_dataset_feature_is_active(snap,
502 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 snap)) {
504 dsl_dataset_rele(snap, FTAG);
505 return (SET_ERROR(EINVAL));
506 }
507
7bcb7f08
MA
508 error = recv_check_large_blocks(snap, featureflags);
509 if (error != 0) {
510 dsl_dataset_rele(snap, FTAG);
511 return (error);
512 }
513
03916905
PD
514 dsl_dataset_rele(snap, FTAG);
515 } else {
e8cf3a4f 516 /* If full and not healing then must be forced. */
03916905
PD
517 if (!drba->drba_cookie->drc_force)
518 return (SET_ERROR(EEXIST));
519
520 /*
521 * We don't support using zfs recv -F to blow away
522 * encrypted filesystems. This would require the
523 * dsl dir to point to the old encryption key and
524 * the new one at the same time during the receive.
525 */
526 if ((!encrypted && raw) || encrypted)
527 return (SET_ERROR(EINVAL));
528
529 /*
530 * Perform the same encryption checks we would if
531 * we were creating a new dataset from scratch.
532 */
533 if (!raw) {
534 boolean_t will_encrypt;
535
536 error = dmu_objset_create_crypt_check(
537 ds->ds_dir->dd_parent, drba->drba_dcp,
538 &will_encrypt);
539 if (error != 0)
540 return (error);
541
542 if (will_encrypt && embed)
543 return (SET_ERROR(EINVAL));
544 }
03916905
PD
545 }
546
547 return (0);
03916905
PD
548}
549
30af21b0
PD
550/*
551 * Check that any feature flags used in the data stream we're receiving are
552 * supported by the pool we are receiving into.
553 *
554 * Note that some of the features we explicitly check here have additional
555 * (implicit) features they depend on, but those dependencies are enforced
556 * through the zfeature_register() calls declaring the features that we
557 * explicitly check.
558 */
559static int
560recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561{
562 /*
563 * Check if there are any unsupported feature flags.
564 */
565 if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 }
568
569 /* Verify pool version supports SA if SA_SPILL feature set */
570 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 spa_version(spa) < SPA_VERSION_SA)
572 return (SET_ERROR(ENOTSUP));
573
574 /*
10b3c7f5
MN
575 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 * and large_dnodes in the stream can only be used if those pool
577 * features are enabled because we don't attempt to decompress /
578 * un-embed / un-mooch / split up the blocks / dnodes during the
579 * receive process.
30af21b0
PD
580 */
581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 return (SET_ERROR(ENOTSUP));
10b3c7f5
MN
584 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 return (SET_ERROR(ENOTSUP));
30af21b0
PD
587 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 return (SET_ERROR(ENOTSUP));
590 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 return (SET_ERROR(ENOTSUP));
593 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 return (SET_ERROR(ENOTSUP));
596
597 /*
598 * Receiving redacted streams requires that redacted datasets are
599 * enabled.
600 */
601 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603 return (SET_ERROR(ENOTSUP));
604
605 return (0);
606}
607
03916905
PD
608static int
609dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610{
611 dmu_recv_begin_arg_t *drba = arg;
612 dsl_pool_t *dp = dmu_tx_pool(tx);
613 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614 uint64_t fromguid = drrb->drr_fromguid;
615 int flags = drrb->drr_flags;
40ab927a 616 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 617 int error;
30af21b0 618 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905
PD
619 dsl_dataset_t *ds;
620 const char *tofs = drba->drba_cookie->drc_tofs;
621
622 /* already checked */
623 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625
626 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627 DMU_COMPOUNDSTREAM ||
628 drrb->drr_type >= DMU_OST_NUMTYPES ||
629 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630 return (SET_ERROR(EINVAL));
631
30af21b0
PD
632 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633 if (error != 0)
634 return (error);
03916905 635
30af21b0 636 /* Resumable receives require extensible datasets */
03916905
PD
637 if (drba->drba_cookie->drc_resumable &&
638 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639 return (SET_ERROR(ENOTSUP));
640
03916905
PD
641 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642 /* raw receives require the encryption feature */
643 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644 return (SET_ERROR(ENOTSUP));
645
646 /* embedded data is incompatible with encryption and raw recv */
647 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648 return (SET_ERROR(EINVAL));
caf9dd20
BB
649
650 /* raw receives require spill block allocation flag */
651 if (!(flags & DRR_FLAG_SPILL_BLOCK))
652 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
03916905 653 } else {
68ddc06b
AF
654 /*
655 * We support unencrypted datasets below encrypted ones now,
656 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657 * with a dataset we may encrypt.
658 */
211ec1b9 659 if (drba->drba_dcp == NULL ||
68ddc06b
AF
660 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661 dsflags |= DS_HOLD_FLAG_DECRYPT;
662 }
03916905
PD
663 }
664
665 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666 if (error == 0) {
667 /* target fs already exists; recv into temp clone */
668
669 /* Can't recv a clone into an existing fs */
670 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671 dsl_dataset_rele_flags(ds, dsflags, FTAG);
672 return (SET_ERROR(EINVAL));
673 }
674
675 error = recv_begin_check_existing_impl(drba, ds, fromguid,
676 featureflags);
677 dsl_dataset_rele_flags(ds, dsflags, FTAG);
678 } else if (error == ENOENT) {
679 /* target fs does not exist; must be a full backup or clone */
680 char buf[ZFS_MAX_DATASET_NAME_LEN];
d8d418ff 681 objset_t *os;
03916905 682
e8cf3a4f
AP
683 /* healing recv must be done "into" an existing snapshot */
684 if (drba->drba_cookie->drc_heal == B_TRUE)
685 return (SET_ERROR(ENOTSUP));
686
03916905
PD
687 /*
688 * If it's a non-clone incremental, we are missing the
689 * target fs, so fail the recv.
690 */
30af21b0 691 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
03916905
PD
692 drba->drba_origin))
693 return (SET_ERROR(ENOENT));
694
695 /*
696 * If we're receiving a full send as a clone, and it doesn't
697 * contain all the necessary free records and freeobject
698 * records, reject it.
699 */
30af21b0 700 if (fromguid == 0 && drba->drba_origin != NULL &&
03916905
PD
701 !(flags & DRR_FLAG_FREERECORDS))
702 return (SET_ERROR(EINVAL));
703
704 /* Open the parent of tofs */
705 ASSERT3U(strlen(tofs), <, sizeof (buf));
706 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
da689887 707 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
03916905
PD
708 if (error != 0)
709 return (error);
710
711 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712 drba->drba_origin == NULL) {
713 boolean_t will_encrypt;
714
715 /*
716 * Check that we aren't breaking any encryption rules
717 * and that we have all the parameters we need to
718 * create an encrypted dataset if necessary. If we are
719 * making an encrypted dataset the stream can't have
720 * embedded data.
721 */
722 error = dmu_objset_create_crypt_check(ds->ds_dir,
723 drba->drba_dcp, &will_encrypt);
724 if (error != 0) {
da689887 725 dsl_dataset_rele(ds, FTAG);
03916905
PD
726 return (error);
727 }
728
729 if (will_encrypt &&
730 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
da689887 731 dsl_dataset_rele(ds, FTAG);
03916905
PD
732 return (SET_ERROR(EINVAL));
733 }
734 }
735
736 /*
737 * Check filesystem and snapshot limits before receiving. We'll
738 * recheck snapshot limits again at the end (we create the
739 * filesystems and increment those counts during begin_sync).
740 */
741 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
742 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743 drba->drba_cred, drba->drba_proc);
03916905 744 if (error != 0) {
da689887 745 dsl_dataset_rele(ds, FTAG);
03916905
PD
746 return (error);
747 }
748
749 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
e59a377a
MA
750 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751 drba->drba_cred, drba->drba_proc);
03916905 752 if (error != 0) {
da689887 753 dsl_dataset_rele(ds, FTAG);
03916905
PD
754 return (error);
755 }
756
d8d418ff 757 /* can't recv below anything but filesystems (eg. no ZVOLs) */
758 error = dmu_objset_from_ds(ds, &os);
759 if (error != 0) {
da689887 760 dsl_dataset_rele(ds, FTAG);
d8d418ff 761 return (error);
762 }
763 if (dmu_objset_type(os) != DMU_OST_ZFS) {
da689887 764 dsl_dataset_rele(ds, FTAG);
d8d418ff 765 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766 }
767
03916905
PD
768 if (drba->drba_origin != NULL) {
769 dsl_dataset_t *origin;
03916905
PD
770 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771 dsflags, FTAG, &origin);
772 if (error != 0) {
da689887 773 dsl_dataset_rele(ds, FTAG);
03916905
PD
774 return (error);
775 }
776 if (!origin->ds_is_snapshot) {
777 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 778 dsl_dataset_rele(ds, FTAG);
03916905
PD
779 return (SET_ERROR(EINVAL));
780 }
781 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782 fromguid != 0) {
783 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 784 dsl_dataset_rele(ds, FTAG);
03916905
PD
785 return (SET_ERROR(ENODEV));
786 }
30af21b0 787
03916905
PD
788 if (origin->ds_dir->dd_crypto_obj != 0 &&
789 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790 dsl_dataset_rele_flags(origin, dsflags, FTAG);
da689887 791 dsl_dataset_rele(ds, FTAG);
03916905
PD
792 return (SET_ERROR(EINVAL));
793 }
30af21b0
PD
794
795 /*
796 * If the origin is redacted we need to verify that this
797 * send stream can safely be received on top of the
798 * origin.
799 */
800 if (dsl_dataset_feature_is_active(origin,
801 SPA_FEATURE_REDACTED_DATASETS)) {
802 if (!redact_check(drba, origin)) {
803 dsl_dataset_rele_flags(origin, dsflags,
804 FTAG);
805 dsl_dataset_rele_flags(ds, dsflags,
806 FTAG);
807 return (SET_ERROR(EINVAL));
808 }
809 }
810
7bcb7f08
MA
811 error = recv_check_large_blocks(ds, featureflags);
812 if (error != 0) {
813 dsl_dataset_rele_flags(origin, dsflags, FTAG);
814 dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 return (error);
816 }
817
30af21b0 818 dsl_dataset_rele_flags(origin, dsflags, FTAG);
03916905 819 }
d8d418ff 820
da689887 821 dsl_dataset_rele(ds, FTAG);
03916905
PD
822 error = 0;
823 }
824 return (error);
825}
826
827static void
828dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829{
830 dmu_recv_begin_arg_t *drba = arg;
831 dsl_pool_t *dp = dmu_tx_pool(tx);
832 objset_t *mos = dp->dp_meta_objset;
30af21b0
PD
833 dmu_recv_cookie_t *drc = drba->drba_cookie;
834 struct drr_begin *drrb = drc->drc_drrb;
835 const char *tofs = drc->drc_tofs;
836 uint64_t featureflags = drc->drc_featureflags;
03916905
PD
837 dsl_dataset_t *ds, *newds;
838 objset_t *os;
839 uint64_t dsobj;
40ab927a 840 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
841 int error;
842 uint64_t crflags = 0;
843 dsl_crypto_params_t dummy_dcp = { 0 };
844 dsl_crypto_params_t *dcp = drba->drba_dcp;
845
846 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847 crflags |= DS_FLAG_CI_DATASET;
848
849 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850 dsflags |= DS_HOLD_FLAG_DECRYPT;
851
852 /*
853 * Raw, non-incremental recvs always use a dummy dcp with
854 * the raw cmd set. Raw incremental recvs do not use a dcp
855 * since the encryption parameters are already set in stone.
856 */
30af21b0 857 if (dcp == NULL && drrb->drr_fromguid == 0 &&
03916905
PD
858 drba->drba_origin == NULL) {
859 ASSERT3P(dcp, ==, NULL);
860 dcp = &dummy_dcp;
861
862 if (featureflags & DMU_BACKUP_FEATURE_RAW)
863 dcp->cp_cmd = DCP_CMD_RAW_RECV;
864 }
865
866 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867 if (error == 0) {
e8cf3a4f 868 /* Create temporary clone unless we're doing corrective recv */
03916905
PD
869 dsl_dataset_t *snap = NULL;
870
f00ab3f2 871 if (drba->drba_cookie->drc_fromsnapobj != 0) {
03916905 872 VERIFY0(dsl_dataset_hold_obj(dp,
f00ab3f2 873 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
03916905
PD
874 ASSERT3P(dcp, ==, NULL);
875 }
e8cf3a4f
AP
876 if (drc->drc_heal) {
877 /* When healing we want to use the provided snapshot */
878 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879 &dsobj));
880 } else {
881 dsobj = dsl_dataset_create_sync(ds->ds_dir,
882 recv_clone_name, snap, crflags, drba->drba_cred,
883 dcp, tx);
884 }
f00ab3f2 885 if (drba->drba_cookie->drc_fromsnapobj != 0)
03916905
PD
886 dsl_dataset_rele(snap, FTAG);
887 dsl_dataset_rele_flags(ds, dsflags, FTAG);
888 } else {
889 dsl_dir_t *dd;
890 const char *tail;
891 dsl_dataset_t *origin = NULL;
892
893 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894
895 if (drba->drba_origin != NULL) {
896 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897 FTAG, &origin));
898 ASSERT3P(dcp, ==, NULL);
899 }
900
901 /* Create new dataset. */
902 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903 origin, crflags, drba->drba_cred, dcp, tx);
904 if (origin != NULL)
905 dsl_dataset_rele(origin, FTAG);
906 dsl_dir_rele(dd, FTAG);
30af21b0
PD
907 drc->drc_newfs = B_TRUE;
908 }
909 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910 &newds));
911 if (dsl_dataset_feature_is_active(newds,
912 SPA_FEATURE_REDACTED_DATASETS)) {
913 /*
914 * If the origin dataset is redacted, the child will be redacted
915 * when we create it. We clear the new dataset's
916 * redaction info; if it should be redacted, we'll fill
917 * in its information later.
918 */
919 dsl_dataset_deactivate_feature(newds,
920 SPA_FEATURE_REDACTED_DATASETS, tx);
03916905 921 }
03916905
PD
922 VERIFY0(dmu_objset_from_ds(newds, &os));
923
30af21b0 924 if (drc->drc_resumable) {
03916905
PD
925 dsl_dataset_zapify(newds, tx);
926 if (drrb->drr_fromguid != 0) {
927 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928 8, 1, &drrb->drr_fromguid, tx));
929 }
930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931 8, 1, &drrb->drr_toguid, tx));
932 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934 uint64_t one = 1;
935 uint64_t zero = 0;
936 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937 8, 1, &one, tx));
938 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939 8, 1, &zero, tx));
940 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941 8, 1, &zero, tx));
942 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944 8, 1, &one, tx));
945 }
946 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948 8, 1, &one, tx));
949 }
950 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952 8, 1, &one, tx));
953 }
954 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956 8, 1, &one, tx));
957 }
30af21b0
PD
958
959 uint64_t *redact_snaps;
960 uint_t numredactsnaps;
961 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963 &numredactsnaps) == 0) {
964 VERIFY0(zap_add(mos, dsobj,
965 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966 sizeof (*redact_snaps), numredactsnaps,
967 redact_snaps, tx));
968 }
03916905
PD
969 }
970
971 /*
972 * Usually the os->os_encrypted value is tied to the presence of a
973 * DSL Crypto Key object in the dd. However, that will not be received
974 * until dmu_recv_stream(), so we set the value manually for now.
975 */
976 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977 os->os_encrypted = B_TRUE;
978 drba->drba_cookie->drc_raw = B_TRUE;
979 }
980
30af21b0
PD
981 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982 uint64_t *redact_snaps;
983 uint_t numredactsnaps;
984 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986 dsl_dataset_activate_redaction(newds, redact_snaps,
987 numredactsnaps, tx);
988 }
989
03916905
PD
990 dmu_buf_will_dirty(newds->ds_dbuf, tx);
991 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992
993 /*
994 * If we actually created a non-clone, we need to create the objset
995 * in our new dataset. If this is a raw send we postpone this until
996 * dmu_recv_stream() so that we can allocate the metadnode with the
997 * properties from the DRR_BEGIN payload.
998 */
999 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
e8cf3a4f
AP
1001 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002 !drc->drc_heal) {
03916905
PD
1003 (void) dmu_objset_create_impl(dp->dp_spa,
1004 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005 }
1006 rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007
1008 drba->drba_cookie->drc_ds = newds;
0fdd6106 1009 drba->drba_cookie->drc_os = os;
03916905 1010
74756182 1011 spa_history_log_internal_ds(newds, "receive", tx, " ");
03916905
PD
1012}
1013
1014static int
1015dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016{
1017 dmu_recv_begin_arg_t *drba = arg;
30af21b0 1018 dmu_recv_cookie_t *drc = drba->drba_cookie;
03916905 1019 dsl_pool_t *dp = dmu_tx_pool(tx);
30af21b0 1020 struct drr_begin *drrb = drc->drc_drrb;
03916905 1021 int error;
40ab927a 1022 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905 1023 dsl_dataset_t *ds;
30af21b0 1024 const char *tofs = drc->drc_tofs;
03916905
PD
1025
1026 /* already checked */
1027 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
30af21b0 1028 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
03916905
PD
1029
1030 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031 DMU_COMPOUNDSTREAM ||
1032 drrb->drr_type >= DMU_OST_NUMTYPES)
1033 return (SET_ERROR(EINVAL));
1034
03916905 1035 /*
30af21b0
PD
1036 * This is mostly a sanity check since we should have already done these
1037 * checks during a previous attempt to receive the data.
03916905 1038 */
30af21b0
PD
1039 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040 dp->dp_spa);
1041 if (error != 0)
1042 return (error);
03916905
PD
1043
1044 /* 6 extra bytes for /%recv */
1045 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
30af21b0 1046
03916905
PD
1047 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048 tofs, recv_clone_name);
1049
30af21b0 1050 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
caf9dd20
BB
1051 /* raw receives require spill block allocation flag */
1052 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054 } else {
03916905 1055 dsflags |= DS_HOLD_FLAG_DECRYPT;
caf9dd20 1056 }
03916905 1057
3ed9d688 1058 boolean_t recvexist = B_TRUE;
03916905
PD
1059 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060 /* %recv does not exist; continue in tofs */
3ed9d688 1061 recvexist = B_FALSE;
03916905
PD
1062 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063 if (error != 0)
1064 return (error);
1065 }
1066
3ed9d688
JP
1067 /*
1068 * Resume of full/newfs recv on existing dataset should be done with
1069 * force flag
1070 */
1071 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074 }
1075
03916905
PD
1076 /* check that ds is marked inconsistent */
1077 if (!DS_IS_INCONSISTENT(ds)) {
1078 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079 return (SET_ERROR(EINVAL));
1080 }
1081
1082 /* check that there is resuming data, and that the toguid matches */
1083 if (!dsl_dataset_is_zapified(ds)) {
1084 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 return (SET_ERROR(EINVAL));
1086 }
1087 uint64_t val;
1088 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090 if (error != 0 || drrb->drr_toguid != val) {
1091 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092 return (SET_ERROR(EINVAL));
1093 }
1094
1095 /*
1096 * Check if the receive is still running. If so, it will be owned.
1097 * Note that nothing else can own the dataset (e.g. after the receive
1098 * fails) because it will be marked inconsistent.
1099 */
1100 if (dsl_dataset_has_owner(ds)) {
1101 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102 return (SET_ERROR(EBUSY));
1103 }
1104
1105 /* There should not be any snapshots of this fs yet. */
1106 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108 return (SET_ERROR(EINVAL));
1109 }
1110
1111 /*
1112 * Note: resume point will be checked when we process the first WRITE
1113 * record.
1114 */
1115
1116 /* check that the origin matches */
1117 val = 0;
1118 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120 if (drrb->drr_fromguid != val) {
1121 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122 return (SET_ERROR(EINVAL));
1123 }
1124
aa646323 1125 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
61152d10
TC
1126 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127
30af21b0
PD
1128 /*
1129 * If we're resuming, and the send is redacted, then the original send
1130 * must have been redacted, and must have been redacted with respect to
1131 * the same snapshots.
1132 */
1133 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134 uint64_t num_ds_redact_snaps;
1135 uint64_t *ds_redact_snaps;
1136
1137 uint_t num_stream_redact_snaps;
1138 uint64_t *stream_redact_snaps;
1139
1140 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142 &num_stream_redact_snaps) != 0) {
1143 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144 return (SET_ERROR(EINVAL));
1145 }
1146
1147 if (!dsl_dataset_get_uint64_array_feature(ds,
1148 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149 &ds_redact_snaps)) {
1150 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151 return (SET_ERROR(EINVAL));
1152 }
1153
1154 for (int i = 0; i < num_ds_redact_snaps; i++) {
1155 if (!redact_snaps_contains(ds_redact_snaps,
1156 num_ds_redact_snaps, stream_redact_snaps[i])) {
1157 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158 return (SET_ERROR(EINVAL));
1159 }
1160 }
1161 }
7bcb7f08
MA
1162
1163 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164 if (error != 0) {
1165 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166 return (error);
1167 }
1168
03916905
PD
1169 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170 return (0);
1171}
1172
1173static void
1174dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175{
1176 dmu_recv_begin_arg_t *drba = arg;
1177 dsl_pool_t *dp = dmu_tx_pool(tx);
1178 const char *tofs = drba->drba_cookie->drc_tofs;
30af21b0 1179 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
03916905 1180 dsl_dataset_t *ds;
40ab927a 1181 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
03916905
PD
1182 /* 6 extra bytes for /%recv */
1183 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184
30af21b0
PD
1185 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186 recv_clone_name);
03916905
PD
1187
1188 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189 drba->drba_cookie->drc_raw = B_TRUE;
1190 } else {
1191 dsflags |= DS_HOLD_FLAG_DECRYPT;
1192 }
1193
30af21b0
PD
1194 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195 != 0) {
03916905 1196 /* %recv does not exist; continue in tofs */
30af21b0
PD
1197 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198 &ds));
03916905
PD
1199 drba->drba_cookie->drc_newfs = B_TRUE;
1200 }
1201
03916905 1202 ASSERT(DS_IS_INCONSISTENT(ds));
03916905
PD
1203 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205 drba->drba_cookie->drc_raw);
1206 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207
1208 drba->drba_cookie->drc_ds = ds;
0fdd6106 1209 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
61152d10 1210 drba->drba_cookie->drc_should_save = B_TRUE;
03916905 1211
74756182 1212 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
03916905
PD
1213}
1214
1215/*
1216 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217 * succeeds; otherwise we will leak the holds on the datasets.
1218 */
1219int
d1807f16
RY
1220dmu_recv_begin(const char *tofs, const char *tosnap,
1221 dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1222 boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1223 const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1224 offset_t *voffp)
03916905
PD
1225{
1226 dmu_recv_begin_arg_t drba = { 0 };
1c212d1b 1227 int err = 0;
03916905 1228
861166b0 1229 memset(drc, 0, sizeof (dmu_recv_cookie_t));
03916905
PD
1230 drc->drc_drr_begin = drr_begin;
1231 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1232 drc->drc_tosnap = tosnap;
1233 drc->drc_tofs = tofs;
1234 drc->drc_force = force;
e8cf3a4f 1235 drc->drc_heal = heal;
03916905
PD
1236 drc->drc_resumable = resumable;
1237 drc->drc_cred = CRED();
e59a377a 1238 drc->drc_proc = curproc;
03916905
PD
1239 drc->drc_clone = (origin != NULL);
1240
1241 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1242 drc->drc_byteswap = B_TRUE;
1243 (void) fletcher_4_incremental_byteswap(drr_begin,
1244 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1245 byteswap_record(drr_begin);
1246 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1247 (void) fletcher_4_incremental_native(drr_begin,
1248 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1249 } else {
1250 return (SET_ERROR(EINVAL));
1251 }
1252
da92d5cb 1253 drc->drc_fp = fp;
30af21b0
PD
1254 drc->drc_voff = *voffp;
1255 drc->drc_featureflags =
1256 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1257
1258 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
73968def
RY
1259
1260 /*
1261 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263 * upper limit. Systems with less than 1GB of RAM will see a lower
1264 * limit from `arc_all_memory() / 4`.
1265 */
1266 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267 return (E2BIG);
1268
30af21b0 1269
30af21b0 1270 if (payloadlen != 0) {
da19d919
PD
1271 void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1272 /*
1273 * For compatibility with recursive send streams, we don't do
1274 * this here if the stream could be part of a package. Instead,
1275 * we'll do it in dmu_recv_stream. If we pull the next header
1276 * too early, and it's the END record, we break the `recv_skip`
1277 * logic.
1278 */
1279
1280 err = receive_read_payload_and_next_header(drc, payloadlen,
1281 payload);
1282 if (err != 0) {
1283 vmem_free(payload, payloadlen);
1284 return (err);
1285 }
30af21b0
PD
1286 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1287 KM_SLEEP);
73968def 1288 vmem_free(payload, payloadlen);
30af21b0
PD
1289 if (err != 0) {
1290 kmem_free(drc->drc_next_rrd,
1291 sizeof (*drc->drc_next_rrd));
1292 return (err);
1293 }
1294 }
1295
caf9dd20
BB
1296 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1297 drc->drc_spill = B_TRUE;
1298
03916905
PD
1299 drba.drba_origin = origin;
1300 drba.drba_cookie = drc;
1301 drba.drba_cred = CRED();
e59a377a 1302 drba.drba_proc = curproc;
03916905 1303
30af21b0
PD
1304 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1305 err = dsl_sync_task(tofs,
03916905 1306 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
30af21b0
PD
1307 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1308 } else {
03916905
PD
1309 /*
1310 * For non-raw, non-incremental, non-resuming receives the
1311 * user can specify encryption parameters on the command line
1312 * with "zfs recv -o". For these receives we create a dcp and
1313 * pass it to the sync task. Creating the dcp will implicitly
1314 * remove the encryption params from the localprops nvlist,
1315 * which avoids errors when trying to set these normally
1316 * read-only properties. Any other kind of receive that
1317 * attempts to set these properties will fail as a result.
1318 */
1319 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1320 DMU_BACKUP_FEATURE_RAW) == 0 &&
1321 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1322 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1323 localprops, hidden_args, &drba.drba_dcp);
03916905
PD
1324 }
1325
30af21b0
PD
1326 if (err == 0) {
1327 err = dsl_sync_task(tofs,
1328 dmu_recv_begin_check, dmu_recv_begin_sync,
1329 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1330 dsl_crypto_params_free(drba.drba_dcp, !!err);
1331 }
1332 }
03916905 1333
30af21b0
PD
1334 if (err != 0) {
1335 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1336 nvlist_free(drc->drc_begin_nvl);
03916905 1337 }
30af21b0 1338 return (err);
03916905
PD
1339}
1340
e8cf3a4f
AP
1341/*
1342 * Holds data need for corrective recv callback
1343 */
1344typedef struct cr_cb_data {
1345 uint64_t size;
1346 zbookmark_phys_t zb;
1347 spa_t *spa;
1348} cr_cb_data_t;
1349
1350static void
1351corrective_read_done(zio_t *zio)
1352{
1353 cr_cb_data_t *data = zio->io_private;
1354 /* Corruption corrected; update error log if needed */
493fcce9
GW
1355 if (zio->io_error == 0) {
1356 spa_remove_error(data->spa, &data->zb,
1357 BP_GET_LOGICAL_BIRTH(zio->io_bp));
1358 }
e8cf3a4f
AP
1359 kmem_free(data, sizeof (cr_cb_data_t));
1360 abd_free(zio->io_abd);
1361}
1362
1363/*
1364 * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1365 */
1366static int
1367do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1368 struct receive_record_arg *rrd, blkptr_t *bp)
1369{
1370 int err;
1371 zio_t *io;
1372 zbookmark_phys_t zb;
1373 dnode_t *dn;
1374 abd_t *abd = rrd->abd;
1375 zio_cksum_t bp_cksum = bp->blk_cksum;
70ea484e
AM
1376 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1377 ZIO_FLAG_CANFAIL;
e8cf3a4f
AP
1378
1379 if (rwa->raw)
1380 flags |= ZIO_FLAG_RAW;
1381
1382 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1383 if (err != 0)
1384 return (err);
1385 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1386 dbuf_whichblock(dn, 0, drrw->drr_offset));
1387 dnode_rele(dn, FTAG);
1388
1389 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1390 /* Decompress the stream data */
1391 abd_t *dabd = abd_alloc_linear(
1392 drrw->drr_logical_size, B_FALSE);
1393 err = zio_decompress_data(drrw->drr_compressiontype,
1394 abd, abd_to_buf(dabd), abd_get_size(abd),
1395 abd_get_size(dabd), NULL);
1396
1397 if (err != 0) {
1398 abd_free(dabd);
1399 return (err);
1400 }
1401 /* Swap in the newly decompressed data into the abd */
1402 abd_free(abd);
1403 abd = dabd;
1404 }
1405
1406 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1407 /* Recompress the data */
1408 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1409 B_FALSE);
bff26b02 1410 void *buf = abd_to_buf(cabd);
e8cf3a4f 1411 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
bff26b02 1412 abd, &buf, abd_get_size(abd),
e8cf3a4f
AP
1413 rwa->os->os_complevel);
1414 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1415 /* Swap in newly compressed data into the abd */
1416 abd_free(abd);
1417 abd = cabd;
1418 flags |= ZIO_FLAG_RAW_COMPRESS;
1419 }
1420
1421 /*
1422 * The stream is not encrypted but the data on-disk is.
1423 * We need to re-encrypt the buf using the same
1424 * encryption type, salt, iv, and mac that was used to encrypt
1425 * the block previosly.
1426 */
1427 if (!rwa->raw && BP_USES_CRYPT(bp)) {
1428 dsl_dataset_t *ds;
1429 dsl_crypto_key_t *dck = NULL;
1430 uint8_t salt[ZIO_DATA_SALT_LEN];
1431 uint8_t iv[ZIO_DATA_IV_LEN];
1432 uint8_t mac[ZIO_DATA_MAC_LEN];
1433 boolean_t no_crypt = B_FALSE;
1434 dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1435 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1436
1437 zio_crypt_decode_params_bp(bp, salt, iv);
1438 zio_crypt_decode_mac_bp(bp, mac);
1439
1440 dsl_pool_config_enter(dp, FTAG);
1441 err = dsl_dataset_hold_flags(dp, rwa->tofs,
1442 DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1443 if (err != 0) {
1444 dsl_pool_config_exit(dp, FTAG);
1445 abd_free(eabd);
1446 return (SET_ERROR(EACCES));
1447 }
1448
1449 /* Look up the key from the spa's keystore */
1450 err = spa_keystore_lookup_key(rwa->os->os_spa,
1451 zb.zb_objset, FTAG, &dck);
1452 if (err != 0) {
1453 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1454 FTAG);
1455 dsl_pool_config_exit(dp, FTAG);
1456 abd_free(eabd);
1457 return (SET_ERROR(EACCES));
1458 }
1459
1460 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1461 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1462 mac, abd_get_size(abd), abd, eabd, &no_crypt);
1463
1464 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1465 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1466 dsl_pool_config_exit(dp, FTAG);
1467
1468 ASSERT0(no_crypt);
1469 if (err != 0) {
1470 abd_free(eabd);
1471 return (err);
1472 }
1473 /* Swap in the newly encrypted data into the abd */
1474 abd_free(abd);
1475 abd = eabd;
1476
1477 /*
1478 * We want to prevent zio_rewrite() from trying to
1479 * encrypt the data again
1480 */
1481 flags |= ZIO_FLAG_RAW_ENCRYPT;
1482 }
1483 rrd->abd = abd;
1484
493fcce9
GW
1485 io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1486 abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1487 &zb);
e8cf3a4f
AP
1488
1489 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1490 abd_get_size(abd) == BP_GET_PSIZE(bp));
1491
1492 /* compute new bp checksum value and make sure it matches the old one */
1493 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1494 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1495 zio_destroy(io);
1496 if (zfs_recv_best_effort_corrective != 0)
1497 return (0);
1498 return (SET_ERROR(ECKSUM));
1499 }
1500
1501 /* Correct the corruption in place */
1502 err = zio_wait(io);
1503 if (err == 0) {
1504 cr_cb_data_t *cb_data =
1505 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1506 cb_data->spa = rwa->os->os_spa;
1507 cb_data->size = drrw->drr_logical_size;
1508 cb_data->zb = zb;
1509 /* Test if healing worked by re-reading the bp */
1510 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1511 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1512 drrw->drr_logical_size, corrective_read_done,
1513 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1514 }
1515 if (err != 0 && zfs_recv_best_effort_corrective != 0)
1516 err = 0;
1517
1518 return (err);
1519}
1520
03916905 1521static int
30af21b0 1522receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
1523{
1524 int done = 0;
1525
1526 /*
1527 * The code doesn't rely on this (lengths being multiples of 8). See
1528 * comment in dump_bytes.
1529 */
1530 ASSERT(len % 8 == 0 ||
30af21b0 1531 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
03916905
PD
1532
1533 while (done < len) {
71974946 1534 ssize_t resid = len - done;
8b240f14
MA
1535 zfs_file_t *fp = drc->drc_fp;
1536 int err = zfs_file_read(fp, (char *)buf + done,
da92d5cb 1537 len - done, &resid);
71974946 1538 if (err == 0 && resid == len - done) {
03916905 1539 /*
7145123b
PD
1540 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1541 * that the receive was interrupted and can
1542 * potentially be resumed.
03916905 1543 */
8b240f14 1544 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
03916905 1545 }
30af21b0 1546 drc->drc_voff += len - done - resid;
03916905 1547 done = len - resid;
8b240f14
MA
1548 if (err != 0)
1549 return (err);
03916905
PD
1550 }
1551
30af21b0 1552 drc->drc_bytes_read += len;
03916905
PD
1553
1554 ASSERT3U(done, ==, len);
1555 return (0);
1556}
1557
03916905
PD
1558static inline uint8_t
1559deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1560{
1561 if (bonus_type == DMU_OT_SA) {
1562 return (1);
1563 } else {
1564 return (1 +
1565 ((DN_OLD_MAX_BONUSLEN -
1566 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1567 }
1568}
1569
1570static void
1571save_resume_state(struct receive_writer_arg *rwa,
1572 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1573{
1574 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1575
1576 if (!rwa->resumable)
1577 return;
1578
1579 /*
1580 * We use ds_resume_bytes[] != 0 to indicate that we need to
1581 * update this on disk, so it must not be 0.
1582 */
1583 ASSERT(rwa->bytes_read != 0);
1584
1585 /*
1586 * We only resume from write records, which have a valid
1587 * (non-meta-dnode) object number.
1588 */
1589 ASSERT(object != 0);
1590
1591 /*
1592 * For resuming to work correctly, we must receive records in order,
1593 * sorted by object,offset. This is checked by the callers, but
1594 * assert it here for good measure.
1595 */
1596 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1597 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1598 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1599 ASSERT3U(rwa->bytes_read, >=,
1600 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1601
1602 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1603 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1604 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1605}
1606
7bcb7f08
MA
1607static int
1608receive_object_is_same_generation(objset_t *os, uint64_t object,
1609 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1610 const void *new_bonus, boolean_t *samegenp)
1611{
1612 zfs_file_info_t zoi;
1613 int err;
1614
1615 dmu_buf_t *old_bonus_dbuf;
1616 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1617 if (err != 0)
1618 return (err);
1619 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1620 &zoi);
1621 dmu_buf_rele(old_bonus_dbuf, FTAG);
1622 if (err != 0)
1623 return (err);
1624 uint64_t old_gen = zoi.zfi_generation;
1625
1626 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1627 if (err != 0)
1628 return (err);
1629 uint64_t new_gen = zoi.zfi_generation;
1630
1631 *samegenp = (old_gen == new_gen);
1632 return (0);
1633}
1634
1635static int
1636receive_handle_existing_object(const struct receive_writer_arg *rwa,
1637 const struct drr_object *drro, const dmu_object_info_t *doi,
1638 const void *bonus_data,
1639 uint64_t *object_to_hold, uint32_t *new_blksz)
1640{
1641 uint32_t indblksz = drro->drr_indblkshift ?
1642 1ULL << drro->drr_indblkshift : 0;
1643 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1644 drro->drr_bonuslen);
1645 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1646 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1647 boolean_t do_free_range = B_FALSE;
1648 int err;
1649
1650 *object_to_hold = drro->drr_object;
1651
1652 /* nblkptr should be bounded by the bonus size and type */
1653 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1654 return (SET_ERROR(EINVAL));
1655
1656 /*
1657 * After the previous send stream, the sending system may
1658 * have freed this object, and then happened to re-allocate
1659 * this object number in a later txg. In this case, we are
1660 * receiving a different logical file, and the block size may
1661 * appear to be different. i.e. we may have a different
1662 * block size for this object than what the send stream says.
1663 * In this case we need to remove the object's contents,
1664 * so that its structure can be changed and then its contents
1665 * entirely replaced by subsequent WRITE records.
1666 *
1667 * If this is a -L (--large-block) incremental stream, and
1668 * the previous stream was not -L, the block size may appear
1669 * to increase. i.e. we may have a smaller block size for
1670 * this object than what the send stream says. In this case
1671 * we need to keep the object's contents and block size
1672 * intact, so that we don't lose parts of the object's
1673 * contents that are not changed by this incremental send
1674 * stream.
1675 *
1676 * We can distinguish between the two above cases by using
1677 * the ZPL's generation number (see
1678 * receive_object_is_same_generation()). However, we only
1679 * want to rely on the generation number when absolutely
1680 * necessary, because with raw receives, the generation is
1681 * encrypted. We also want to minimize dependence on the
1682 * ZPL, so that other types of datasets can also be received
1683 * (e.g. ZVOLs, although note that ZVOLS currently do not
1684 * reallocate their objects or change their structure).
1685 * Therefore, we check a number of different cases where we
1686 * know it is safe to discard the object's contents, before
1687 * using the ZPL's generation number to make the above
1688 * distinction.
1689 */
1690 if (drro->drr_blksz != doi->doi_data_block_size) {
1691 if (rwa->raw) {
1692 /*
1693 * RAW streams always have large blocks, so
1694 * we are sure that the data is not needed
1695 * due to changing --large-block to be on.
1696 * Which is fortunate since the bonus buffer
1697 * (which contains the ZPL generation) is
1698 * encrypted, and the key might not be
1699 * loaded.
1700 */
1701 do_free_range = B_TRUE;
1702 } else if (rwa->full) {
1703 /*
1704 * This is a full send stream, so it always
1705 * replaces what we have. Even if the
1706 * generation numbers happen to match, this
1707 * can not actually be the same logical file.
1708 * This is relevant when receiving a full
1709 * send as a clone.
1710 */
1711 do_free_range = B_TRUE;
1712 } else if (drro->drr_type !=
1713 DMU_OT_PLAIN_FILE_CONTENTS ||
1714 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1715 /*
1716 * PLAIN_FILE_CONTENTS are the only type of
1717 * objects that have ever been stored with
1718 * large blocks, so we don't need the special
1719 * logic below. ZAP blocks can shrink (when
1720 * there's only one block), so we don't want
1721 * to hit the error below about block size
1722 * only increasing.
1723 */
1724 do_free_range = B_TRUE;
1725 } else if (doi->doi_max_offset <=
1726 doi->doi_data_block_size) {
1727 /*
1728 * There is only one block. We can free it,
1729 * because its contents will be replaced by a
1730 * WRITE record. This can not be the no-L ->
1731 * -L case, because the no-L case would have
1732 * resulted in multiple blocks. If we
1733 * supported -L -> no-L, it would not be safe
1734 * to free the file's contents. Fortunately,
1735 * that is not allowed (see
1736 * recv_check_large_blocks()).
1737 */
1738 do_free_range = B_TRUE;
1739 } else {
1740 boolean_t is_same_gen;
1741 err = receive_object_is_same_generation(rwa->os,
1742 drro->drr_object, doi->doi_bonus_type,
1743 drro->drr_bonustype, bonus_data, &is_same_gen);
1744 if (err != 0)
1745 return (SET_ERROR(EINVAL));
1746
1747 if (is_same_gen) {
1748 /*
1749 * This is the same logical file, and
1750 * the block size must be increasing.
1751 * It could only decrease if
1752 * --large-block was changed to be
1753 * off, which is checked in
1754 * recv_check_large_blocks().
1755 */
1756 if (drro->drr_blksz <=
1757 doi->doi_data_block_size)
1758 return (SET_ERROR(EINVAL));
1759 /*
1760 * We keep the existing blocksize and
1761 * contents.
1762 */
1763 *new_blksz =
1764 doi->doi_data_block_size;
1765 } else {
1766 do_free_range = B_TRUE;
1767 }
1768 }
1769 }
1770
1771 /* nblkptr can only decrease if the object was reallocated */
1772 if (nblkptr < doi->doi_nblkptr)
1773 do_free_range = B_TRUE;
1774
1775 /* number of slots can only change on reallocation */
1776 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1777 do_free_range = B_TRUE;
1778
1779 /*
1780 * For raw sends we also check a few other fields to
1781 * ensure we are preserving the objset structure exactly
1782 * as it was on the receive side:
1783 * - A changed indirect block size
1784 * - A smaller nlevels
1785 */
1786 if (rwa->raw) {
1787 if (indblksz != doi->doi_metadata_block_size)
1788 do_free_range = B_TRUE;
1789 if (drro->drr_nlevels < doi->doi_indirection)
1790 do_free_range = B_TRUE;
1791 }
1792
1793 if (do_free_range) {
1794 err = dmu_free_long_range(rwa->os, drro->drr_object,
1795 0, DMU_OBJECT_END);
1796 if (err != 0)
1797 return (SET_ERROR(EINVAL));
1798 }
1799
1800 /*
c4e87421
AM
1801 * The dmu does not currently support decreasing nlevels or changing
1802 * indirect block size if there is already one, same as changing the
1803 * number of of dnode slots on an object. For non-raw sends this
1804 * does not matter and the new object can just use the previous one's
1805 * parameters. For raw sends, however, the structure of the received
1806 * dnode (including indirects and dnode slots) must match that of the
1807 * send side. Therefore, instead of using dmu_object_reclaim(), we
1808 * must free the object completely and call dmu_object_claim_dnsize()
1809 * instead.
7bcb7f08 1810 */
c4e87421
AM
1811 if ((rwa->raw && ((doi->doi_indirection > 1 &&
1812 indblksz != doi->doi_metadata_block_size) ||
1813 drro->drr_nlevels < doi->doi_indirection)) ||
7bcb7f08
MA
1814 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1815 err = dmu_free_long_object(rwa->os, drro->drr_object);
1816 if (err != 0)
1817 return (SET_ERROR(EINVAL));
1818
1819 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1820 *object_to_hold = DMU_NEW_OBJECT;
1821 }
1822
1823 /*
1824 * For raw receives, free everything beyond the new incoming
1825 * maxblkid. Normally this would be done with a DRR_FREE
1826 * record that would come after this DRR_OBJECT record is
1827 * processed. However, for raw receives we manually set the
1828 * maxblkid from the drr_maxblkid and so we must first free
1829 * everything above that blkid to ensure the DMU is always
1830 * consistent with itself. We will never free the first block
1831 * of the object here because a maxblkid of 0 could indicate
1832 * an object with a single block or one with no blocks. This
1833 * free may be skipped when dmu_free_long_range() was called
1834 * above since it covers the entire object's contents.
1835 */
1836 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1837 err = dmu_free_long_range(rwa->os, drro->drr_object,
1838 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1839 DMU_OBJECT_END);
1840 if (err != 0)
1841 return (SET_ERROR(EINVAL));
1842 }
1843 return (0);
1844}
1845
03916905
PD
1846noinline static int
1847receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1848 void *data)
1849{
1850 dmu_object_info_t doi;
1851 dmu_tx_t *tx;
03916905 1852 int err;
7bcb7f08 1853 uint32_t new_blksz = drro->drr_blksz;
03916905
PD
1854 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1855 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1856
1857 if (drro->drr_type == DMU_OT_NONE ||
1858 !DMU_OT_IS_VALID(drro->drr_type) ||
1859 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1860 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1861 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1862 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1863 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1864 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1865 drro->drr_bonuslen >
1866 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1867 dn_slots >
30af21b0 1868 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
03916905
PD
1869 return (SET_ERROR(EINVAL));
1870 }
1871
1872 if (rwa->raw) {
1873 /*
1874 * We should have received a DRR_OBJECT_RANGE record
1875 * containing this block and stored it in rwa.
1876 */
1877 if (drro->drr_object < rwa->or_firstobj ||
1878 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1879 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1880 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1881 drro->drr_nlevels > DN_MAX_LEVELS ||
1882 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1883 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1884 drro->drr_raw_bonuslen)
1885 return (SET_ERROR(EINVAL));
1886 } else {
caf9dd20
BB
1887 /*
1888 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1889 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1890 */
1891 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1892 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1893 return (SET_ERROR(EINVAL));
1894 }
1895
1896 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1897 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
03916905 1898 return (SET_ERROR(EINVAL));
caf9dd20 1899 }
03916905
PD
1900 }
1901
1902 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
30af21b0 1903
03916905
PD
1904 if (err != 0 && err != ENOENT && err != EEXIST)
1905 return (SET_ERROR(EINVAL));
1906
1907 if (drro->drr_object > rwa->max_object)
1908 rwa->max_object = drro->drr_object;
1909
1910 /*
1911 * If we are losing blkptrs or changing the block size this must
1912 * be a new file instance. We must clear out the previous file
1913 * contents before we can change this type of metadata in the dnode.
1914 * Raw receives will also check that the indirect structure of the
1915 * dnode hasn't changed.
1916 */
7bcb7f08 1917 uint64_t object_to_hold;
03916905 1918 if (err == 0) {
7bcb7f08
MA
1919 err = receive_handle_existing_object(rwa, drro, &doi, data,
1920 &object_to_hold, &new_blksz);
2a493a4c
RY
1921 if (err != 0)
1922 return (err);
03916905
PD
1923 } else if (err == EEXIST) {
1924 /*
1925 * The object requested is currently an interior slot of a
1926 * multi-slot dnode. This will be resolved when the next txg
1927 * is synced out, since the send stream will have told us
1928 * to free this slot when we freed the associated dnode
1929 * earlier in the stream.
1930 */
1931 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
b92f5d9f
BB
1932
1933 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1934 return (SET_ERROR(EINVAL));
1935
1936 /* object was freed and we are about to allocate a new one */
7bcb7f08 1937 object_to_hold = DMU_NEW_OBJECT;
03916905 1938 } else {
37a27b43
DH
1939 /*
1940 * If the only record in this range so far was DRR_FREEOBJECTS
1941 * with at least one actually freed object, it's possible that
1942 * the block will now be converted to a hole. We need to wait
1943 * for the txg to sync to prevent races.
1944 */
1945 if (rwa->or_need_sync == ORNS_YES)
1946 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1947
03916905 1948 /* object is free and we are about to allocate a new one */
7bcb7f08 1949 object_to_hold = DMU_NEW_OBJECT;
03916905
PD
1950 }
1951
37a27b43
DH
1952 /* Only relevant for the first object in the range */
1953 rwa->or_need_sync = ORNS_NO;
1954
03916905
PD
1955 /*
1956 * If this is a multi-slot dnode there is a chance that this
1957 * object will expand into a slot that is already used by
1958 * another object from the previous snapshot. We must free
1959 * these objects before we attempt to allocate the new dnode.
1960 */
1961 if (dn_slots > 1) {
1962 boolean_t need_sync = B_FALSE;
1963
1964 for (uint64_t slot = drro->drr_object + 1;
1965 slot < drro->drr_object + dn_slots;
1966 slot++) {
1967 dmu_object_info_t slot_doi;
1968
1969 err = dmu_object_info(rwa->os, slot, &slot_doi);
1970 if (err == ENOENT || err == EEXIST)
1971 continue;
1972 else if (err != 0)
1973 return (err);
1974
1975 err = dmu_free_long_object(rwa->os, slot);
03916905
PD
1976 if (err != 0)
1977 return (err);
1978
1979 need_sync = B_TRUE;
1980 }
1981
1982 if (need_sync)
1983 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1984 }
1985
1986 tx = dmu_tx_create(rwa->os);
7bcb7f08
MA
1987 dmu_tx_hold_bonus(tx, object_to_hold);
1988 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
03916905
PD
1989 err = dmu_tx_assign(tx, TXG_WAIT);
1990 if (err != 0) {
1991 dmu_tx_abort(tx);
1992 return (err);
1993 }
1994
7bcb7f08 1995 if (object_to_hold == DMU_NEW_OBJECT) {
caf9dd20 1996 /* Currently free, wants to be allocated */
03916905 1997 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 1998 drro->drr_type, new_blksz,
03916905
PD
1999 drro->drr_bonustype, drro->drr_bonuslen,
2000 dn_slots << DNODE_SHIFT, tx);
2001 } else if (drro->drr_type != doi.doi_type ||
7bcb7f08 2002 new_blksz != doi.doi_data_block_size ||
03916905
PD
2003 drro->drr_bonustype != doi.doi_bonus_type ||
2004 drro->drr_bonuslen != doi.doi_bonus_size) {
caf9dd20 2005 /* Currently allocated, but with different properties */
03916905 2006 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
7bcb7f08 2007 drro->drr_type, new_blksz,
03916905 2008 drro->drr_bonustype, drro->drr_bonuslen,
caf9dd20
BB
2009 dn_slots << DNODE_SHIFT, rwa->spill ?
2010 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2011 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2012 /*
2013 * Currently allocated, the existing version of this object
2014 * may reference a spill block that is no longer allocated
2015 * at the source and needs to be freed.
2016 */
2017 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
03916905 2018 }
3fa93bb8 2019
03916905
PD
2020 if (err != 0) {
2021 dmu_tx_commit(tx);
2022 return (SET_ERROR(EINVAL));
2023 }
2024
2025 if (rwa->or_crypt_params_present) {
2026 /*
2027 * Set the crypt params for the buffer associated with this
2028 * range of dnodes. This causes the blkptr_t to have the
2029 * same crypt params (byteorder, salt, iv, mac) as on the
2030 * sending side.
2031 *
2032 * Since we are committing this tx now, it is possible for
2033 * the dnode block to end up on-disk with the incorrect MAC,
2034 * if subsequent objects in this block are received in a
2035 * different txg. However, since the dataset is marked as
2036 * inconsistent, no code paths will do a non-raw read (or
2037 * decrypt the block / verify the MAC). The receive code and
2038 * scrub code can safely do raw reads and verify the
2039 * checksum. They don't need to verify the MAC.
2040 */
2041 dmu_buf_t *db = NULL;
2042 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2043
2044 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2045 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2046 if (err != 0) {
2047 dmu_tx_commit(tx);
2048 return (SET_ERROR(EINVAL));
2049 }
2050
2051 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2052 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2053
2054 dmu_buf_rele(db, FTAG);
2055
2056 rwa->or_crypt_params_present = B_FALSE;
2057 }
2058
2059 dmu_object_set_checksum(rwa->os, drro->drr_object,
2060 drro->drr_checksumtype, tx);
2061 dmu_object_set_compress(rwa->os, drro->drr_object,
2062 drro->drr_compress, tx);
2063
2064 /* handle more restrictive dnode structuring for raw recvs */
2065 if (rwa->raw) {
2066 /*
369aa501
TC
2067 * Set the indirect block size, block shift, nlevels.
2068 * This will not fail because we ensured all of the
2069 * blocks were freed earlier if this is a new object.
2070 * For non-new objects block size and indirect block
2071 * shift cannot change and nlevels can only increase.
03916905 2072 */
7bcb7f08 2073 ASSERT3U(new_blksz, ==, drro->drr_blksz);
03916905
PD
2074 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2075 drro->drr_blksz, drro->drr_indblkshift, tx));
2076 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2077 drro->drr_nlevels, tx));
369aa501
TC
2078
2079 /*
c2c6eadf
TC
2080 * Set the maxblkid. This will always succeed because
2081 * we freed all blocks beyond the new maxblkid above.
369aa501 2082 */
03916905
PD
2083 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2084 drro->drr_maxblkid, tx));
2085 }
2086
2087 if (data != NULL) {
2088 dmu_buf_t *db;
6955b401 2089 dnode_t *dn;
03916905
PD
2090 uint32_t flags = DMU_READ_NO_PREFETCH;
2091
2092 if (rwa->raw)
2093 flags |= DMU_READ_NO_DECRYPT;
2094
6955b401
BB
2095 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2096 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2097
03916905
PD
2098 dmu_buf_will_dirty(db, tx);
2099
2100 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
861166b0 2101 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
03916905
PD
2102
2103 /*
2104 * Raw bonus buffers have their byteorder determined by the
2105 * DRR_OBJECT_RANGE record.
2106 */
2107 if (rwa->byteswap && !rwa->raw) {
2108 dmu_object_byteswap_t byteswap =
2109 DMU_OT_BYTESWAP(drro->drr_bonustype);
2110 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2111 DRR_OBJECT_PAYLOAD_SIZE(drro));
2112 }
2113 dmu_buf_rele(db, FTAG);
6955b401 2114 dnode_rele(dn, FTAG);
03916905 2115 }
45e23abe
AM
2116
2117 /*
2118 * If the receive fails, we want the resume stream to start with the
2119 * same record that we last successfully received. There is no way to
2120 * request resume from the object record, but we can benefit from the
2121 * fact that sender always sends object record before anything else,
2122 * after which it will "resend" data at offset 0 and resume normally.
2123 */
2124 save_resume_state(rwa, drro->drr_object, 0, tx);
2125
03916905
PD
2126 dmu_tx_commit(tx);
2127
2128 return (0);
2129}
2130
03916905
PD
2131noinline static int
2132receive_freeobjects(struct receive_writer_arg *rwa,
2133 struct drr_freeobjects *drrfo)
2134{
2135 uint64_t obj;
2136 int next_err = 0;
2137
2138 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2139 return (SET_ERROR(EINVAL));
2140
2141 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
30af21b0
PD
2142 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2143 obj < DN_MAX_OBJECT && next_err == 0;
03916905
PD
2144 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2145 dmu_object_info_t doi;
2146 int err;
2147
2148 err = dmu_object_info(rwa->os, obj, &doi);
2149 if (err == ENOENT)
2150 continue;
2151 else if (err != 0)
2152 return (err);
2153
2154 err = dmu_free_long_object(rwa->os, obj);
2155
2156 if (err != 0)
2157 return (err);
37a27b43
DH
2158
2159 if (rwa->or_need_sync == ORNS_MAYBE)
2160 rwa->or_need_sync = ORNS_YES;
03916905
PD
2161 }
2162 if (next_err != ESRCH)
2163 return (next_err);
2164 return (0);
2165}
2166
7261fc2e
MA
2167/*
2168 * Note: if this fails, the caller will clean up any records left on the
2169 * rwa->write_batch list.
2170 */
2171static int
2172flush_write_batch_impl(struct receive_writer_arg *rwa)
03916905 2173{
03916905 2174 dnode_t *dn;
7261fc2e
MA
2175 int err;
2176
2177 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2178 return (SET_ERROR(EINVAL));
2179
2180 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2181 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2182
2183 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2184 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2185
2186 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2187 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2188
2189 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2190 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2191 last_drrw->drr_offset - first_drrw->drr_offset +
2192 last_drrw->drr_logical_size);
2193 err = dmu_tx_assign(tx, TXG_WAIT);
2194 if (err != 0) {
2195 dmu_tx_abort(tx);
2196 dnode_rele(dn, FTAG);
2197 return (err);
2198 }
2199
2200 struct receive_record_arg *rrd;
2201 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2202 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
ba67d821 2203 abd_t *abd = rrd->abd;
7261fc2e
MA
2204
2205 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2206
ba67d821
MA
2207 if (drrw->drr_logical_size != dn->dn_datablksz) {
2208 /*
2209 * The WRITE record is larger than the object's block
2210 * size. We must be receiving an incremental
2211 * large-block stream into a dataset that previously did
2212 * a non-large-block receive. Lightweight writes must
2213 * be exactly one block, so we need to decompress the
2214 * data (if compressed) and do a normal dmu_write().
2215 */
7bcb7f08 2216 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
ba67d821
MA
2217 if (DRR_WRITE_COMPRESSED(drrw)) {
2218 abd_t *decomp_abd =
2219 abd_alloc_linear(drrw->drr_logical_size,
2220 B_FALSE);
2221
2222 err = zio_decompress_data(
2223 drrw->drr_compressiontype,
2224 abd, abd_to_buf(decomp_abd),
2225 abd_get_size(abd),
2226 abd_get_size(decomp_abd), NULL);
2227
2228 if (err == 0) {
2229 dmu_write_by_dnode(dn,
2230 drrw->drr_offset,
2231 drrw->drr_logical_size,
2232 abd_to_buf(decomp_abd), tx);
2233 }
2234 abd_free(decomp_abd);
2235 } else {
2236 dmu_write_by_dnode(dn,
2237 drrw->drr_offset,
2238 drrw->drr_logical_size,
2239 abd_to_buf(abd), tx);
2240 }
2241 if (err == 0)
2242 abd_free(abd);
2243 } else {
24e61911 2244 zio_prop_t zp = {0};
ba67d821
MA
2245 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2246
4938d01d 2247 zio_flag_t zio_flags = 0;
ba67d821
MA
2248
2249 if (rwa->raw) {
2250 zp.zp_encrypt = B_TRUE;
2251 zp.zp_compress = drrw->drr_compressiontype;
2252 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2253 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2254 rwa->byteswap;
861166b0 2255 memcpy(zp.zp_salt, drrw->drr_salt,
ba67d821 2256 ZIO_DATA_SALT_LEN);
861166b0 2257 memcpy(zp.zp_iv, drrw->drr_iv,
ba67d821 2258 ZIO_DATA_IV_LEN);
861166b0 2259 memcpy(zp.zp_mac, drrw->drr_mac,
ba67d821
MA
2260 ZIO_DATA_MAC_LEN);
2261 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2262 zp.zp_nopwrite = B_FALSE;
2263 zp.zp_copies = MIN(zp.zp_copies,
2264 SPA_DVAS_PER_BP - 1);
2265 }
2266 zio_flags |= ZIO_FLAG_RAW;
2267 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2268 ASSERT3U(drrw->drr_compressed_size, >, 0);
2269 ASSERT3U(drrw->drr_logical_size, >=,
2270 drrw->drr_compressed_size);
2271 zp.zp_compress = drrw->drr_compressiontype;
2272 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2273 } else if (rwa->byteswap) {
2274 /*
2275 * Note: compressed blocks never need to be
2276 * byteswapped, because WRITE records for
2277 * metadata blocks are never compressed. The
2278 * exception is raw streams, which are written
2279 * in the original byteorder, and the byteorder
2280 * bit is preserved in the BP by setting
2281 * zp_byteorder above.
2282 */
2283 dmu_object_byteswap_t byteswap =
2284 DMU_OT_BYTESWAP(drrw->drr_type);
2285 dmu_ot_byteswap[byteswap].ob_func(
2286 abd_to_buf(abd),
2287 DRR_WRITE_PAYLOAD_SIZE(drrw));
2288 }
7bcb7f08
MA
2289
2290 /*
ba67d821
MA
2291 * Since this data can't be read until the receive
2292 * completes, we can do a "lightweight" write for
2293 * improved performance.
7bcb7f08 2294 */
ba67d821
MA
2295 err = dmu_lightweight_write_by_dnode(dn,
2296 drrw->drr_offset, abd, &zp, zio_flags, tx);
7bcb7f08
MA
2297 }
2298
7261fc2e
MA
2299 if (err != 0) {
2300 /*
2301 * This rrd is left on the list, so the caller will
ba67d821 2302 * free it (and the abd).
7261fc2e
MA
2303 */
2304 break;
2305 }
2306
2307 /*
2308 * Note: If the receive fails, we want the resume stream to
2309 * start with the same record that we last successfully
2310 * received (as opposed to the next record), so that we can
2311 * verify that we are resuming from the correct location.
2312 */
2313 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2314
2315 list_remove(&rwa->write_batch, rrd);
2316 kmem_free(rrd, sizeof (*rrd));
2317 }
2318
2319 dmu_tx_commit(tx);
2320 dnode_rele(dn, FTAG);
2321 return (err);
2322}
2323
2324noinline static int
2325flush_write_batch(struct receive_writer_arg *rwa)
2326{
2327 if (list_is_empty(&rwa->write_batch))
2328 return (0);
2329 int err = rwa->err;
2330 if (err == 0)
2331 err = flush_write_batch_impl(rwa);
2332 if (err != 0) {
2333 struct receive_record_arg *rrd;
2334 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
ba67d821 2335 abd_free(rrd->abd);
7261fc2e
MA
2336 kmem_free(rrd, sizeof (*rrd));
2337 }
2338 }
2339 ASSERT(list_is_empty(&rwa->write_batch));
2340 return (err);
2341}
2342
2343noinline static int
2344receive_process_write_record(struct receive_writer_arg *rwa,
2345 struct receive_record_arg *rrd)
2346{
2347 int err = 0;
2348
2349 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2350 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
03916905
PD
2351
2352 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2353 !DMU_OT_IS_VALID(drrw->drr_type))
2354 return (SET_ERROR(EINVAL));
2355
e8cf3a4f
AP
2356 if (rwa->heal) {
2357 blkptr_t *bp;
2358 dmu_buf_t *dbp;
e8cf3a4f
AP
2359 int flags = DB_RF_CANFAIL;
2360
2361 if (rwa->raw)
2362 flags |= DB_RF_NO_DECRYPT;
2363
2364 if (rwa->byteswap) {
2365 dmu_object_byteswap_t byteswap =
2366 DMU_OT_BYTESWAP(drrw->drr_type);
2367 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2368 DRR_WRITE_PAYLOAD_SIZE(drrw));
2369 }
2370
2371 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2372 drrw->drr_offset, FTAG, &dbp);
2373 if (err != 0)
2374 return (err);
2375
2376 /* Try to read the object to see if it needs healing */
2377 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2378 /*
2379 * We only try to heal when dbuf_read() returns a ECKSUMs.
2380 * Other errors (even EIO) get returned to caller.
2381 * EIO indicates that the device is not present/accessible,
2382 * so writing to it will likely fail.
2383 * If the block is healthy, we don't want to overwrite it
2384 * unnecessarily.
2385 */
2386 if (err != ECKSUM) {
2387 dmu_buf_rele(dbp, FTAG);
2388 return (err);
2389 }
e8cf3a4f 2390 /* Make sure the on-disk block and recv record sizes match */
80cc5162 2391 if (drrw->drr_logical_size != dbp->db_size) {
e8cf3a4f 2392 err = ENOTSUP;
e8cf3a4f
AP
2393 dmu_buf_rele(dbp, FTAG);
2394 return (err);
2395 }
2396 /* Get the block pointer for the corrupted block */
2397 bp = dmu_buf_get_blkptr(dbp);
2398 err = do_corrective_recv(rwa, drrw, rrd, bp);
e8cf3a4f
AP
2399 dmu_buf_rele(dbp, FTAG);
2400 return (err);
2401 }
2402
03916905
PD
2403 /*
2404 * For resuming to work, records must be in increasing order
2405 * by (object, offset).
2406 */
2407 if (drrw->drr_object < rwa->last_object ||
2408 (drrw->drr_object == rwa->last_object &&
2409 drrw->drr_offset < rwa->last_offset)) {
2410 return (SET_ERROR(EINVAL));
2411 }
7261fc2e
MA
2412
2413 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2414 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2415 uint64_t batch_size =
2416 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2417 if (first_rrd != NULL &&
2418 (drrw->drr_object != first_drrw->drr_object ||
2419 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2420 err = flush_write_batch(rwa);
2421 if (err != 0)
2422 return (err);
2423 }
2424
03916905
PD
2425 rwa->last_object = drrw->drr_object;
2426 rwa->last_offset = drrw->drr_offset;
2427
2428 if (rwa->last_object > rwa->max_object)
2429 rwa->max_object = rwa->last_object;
2430
7261fc2e 2431 list_insert_tail(&rwa->write_batch, rrd);
03916905 2432 /*
7261fc2e
MA
2433 * Return EAGAIN to indicate that we will use this rrd again,
2434 * so the caller should not free it
03916905 2435 */
7261fc2e 2436 return (EAGAIN);
03916905
PD
2437}
2438
03916905
PD
2439static int
2440receive_write_embedded(struct receive_writer_arg *rwa,
2441 struct drr_write_embedded *drrwe, void *data)
2442{
2443 dmu_tx_t *tx;
2444 int err;
2445
2446 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2447 return (SET_ERROR(EINVAL));
2448
2449 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2450 return (SET_ERROR(EINVAL));
2451
2452 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2453 return (SET_ERROR(EINVAL));
2454 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2455 return (SET_ERROR(EINVAL));
2456 if (rwa->raw)
2457 return (SET_ERROR(EINVAL));
2458
2459 if (drrwe->drr_object > rwa->max_object)
2460 rwa->max_object = drrwe->drr_object;
2461
2462 tx = dmu_tx_create(rwa->os);
2463
2464 dmu_tx_hold_write(tx, drrwe->drr_object,
2465 drrwe->drr_offset, drrwe->drr_length);
2466 err = dmu_tx_assign(tx, TXG_WAIT);
2467 if (err != 0) {
2468 dmu_tx_abort(tx);
2469 return (err);
2470 }
2471
2472 dmu_write_embedded(rwa->os, drrwe->drr_object,
2473 drrwe->drr_offset, data, drrwe->drr_etype,
2474 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2475 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2476
2477 /* See comment in restore_write. */
2478 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2479 dmu_tx_commit(tx);
2480 return (0);
2481}
2482
2483static int
2484receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
ba67d821 2485 abd_t *abd)
03916905 2486{
03916905
PD
2487 dmu_buf_t *db, *db_spill;
2488 int err;
03916905
PD
2489
2490 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2491 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2492 return (SET_ERROR(EINVAL));
2493
caf9dd20
BB
2494 /*
2495 * This is an unmodified spill block which was added to the stream
2496 * to resolve an issue with incorrectly removing spill blocks. It
2497 * should be ignored by current versions of the code which support
2498 * the DRR_FLAG_SPILL_BLOCK flag.
2499 */
2500 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
ba67d821 2501 abd_free(abd);
caf9dd20
BB
2502 return (0);
2503 }
2504
03916905
PD
2505 if (rwa->raw) {
2506 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2507 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2508 drrs->drr_compressed_size == 0)
2509 return (SET_ERROR(EINVAL));
03916905
PD
2510 }
2511
2512 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2513 return (SET_ERROR(EINVAL));
2514
2515 if (drrs->drr_object > rwa->max_object)
2516 rwa->max_object = drrs->drr_object;
2517
2518 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2519 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2520 &db_spill)) != 0) {
2521 dmu_buf_rele(db, FTAG);
2522 return (err);
2523 }
2524
ba67d821 2525 dmu_tx_t *tx = dmu_tx_create(rwa->os);
03916905
PD
2526
2527 dmu_tx_hold_spill(tx, db->db_object);
2528
2529 err = dmu_tx_assign(tx, TXG_WAIT);
2530 if (err != 0) {
2531 dmu_buf_rele(db, FTAG);
2532 dmu_buf_rele(db_spill, FTAG);
2533 dmu_tx_abort(tx);
2534 return (err);
2535 }
2536
caf9dd20
BB
2537 /*
2538 * Spill blocks may both grow and shrink. When a change in size
2539 * occurs any existing dbuf must be updated to match the logical
2540 * size of the provided arc_buf_t.
2541 */
2542 if (db_spill->db_size != drrs->drr_length) {
9b1677fb 2543 dmu_buf_will_fill(db_spill, tx, B_FALSE);
ba67d821 2544 VERIFY0(dbuf_spill_set_blksz(db_spill,
03916905 2545 drrs->drr_length, tx));
caf9dd20 2546 }
03916905 2547
ba67d821
MA
2548 arc_buf_t *abuf;
2549 if (rwa->raw) {
2550 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2551 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2552 rwa->byteswap;
2553
2554 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2555 drrs->drr_object, byteorder, drrs->drr_salt,
2556 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2557 drrs->drr_compressed_size, drrs->drr_length,
2558 drrs->drr_compressiontype, 0);
2559 } else {
2560 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2561 DMU_OT_IS_METADATA(drrs->drr_type),
2562 drrs->drr_length);
2563 if (rwa->byteswap) {
2564 dmu_object_byteswap_t byteswap =
2565 DMU_OT_BYTESWAP(drrs->drr_type);
2566 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2567 DRR_SPILL_PAYLOAD_SIZE(drrs));
2568 }
03916905
PD
2569 }
2570
861166b0 2571 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
ba67d821 2572 abd_free(abd);
03916905
PD
2573 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2574
2575 dmu_buf_rele(db, FTAG);
2576 dmu_buf_rele(db_spill, FTAG);
2577
2578 dmu_tx_commit(tx);
2579 return (0);
2580}
2581
03916905
PD
2582noinline static int
2583receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2584{
2585 int err;
2586
30af21b0 2587 if (drrf->drr_length != -1ULL &&
03916905
PD
2588 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2589 return (SET_ERROR(EINVAL));
2590
2591 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2592 return (SET_ERROR(EINVAL));
2593
2594 if (drrf->drr_object > rwa->max_object)
2595 rwa->max_object = drrf->drr_object;
2596
2597 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2598 drrf->drr_offset, drrf->drr_length);
2599
2600 return (err);
2601}
2602
2603static int
2604receive_object_range(struct receive_writer_arg *rwa,
2605 struct drr_object_range *drror)
2606{
2607 /*
2608 * By default, we assume this block is in our native format
2609 * (ZFS_HOST_BYTEORDER). We then take into account whether
2610 * the send stream is byteswapped (rwa->byteswap). Finally,
2611 * we need to byteswap again if this particular block was
2612 * in non-native format on the send side.
2613 */
2614 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2615 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2616
2617 /*
2618 * Since dnode block sizes are constant, we should not need to worry
2619 * about making sure that the dnode block size is the same on the
2620 * sending and receiving sides for the time being. For non-raw sends,
2621 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2622 * record at all). Raw sends require this record type because the
2623 * encryption parameters are used to protect an entire block of bonus
2624 * buffers. If the size of dnode blocks ever becomes variable,
2625 * handling will need to be added to ensure that dnode block sizes
2626 * match on the sending and receiving side.
2627 */
2628 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2629 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2630 !rwa->raw)
2631 return (SET_ERROR(EINVAL));
2632
2633 if (drror->drr_firstobj > rwa->max_object)
2634 rwa->max_object = drror->drr_firstobj;
2635
2636 /*
2637 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2638 * so that the block of dnodes is not written out when it's empty,
2639 * and converted to a HOLE BP.
2640 */
2641 rwa->or_crypt_params_present = B_TRUE;
2642 rwa->or_firstobj = drror->drr_firstobj;
2643 rwa->or_numslots = drror->drr_numslots;
861166b0
AZ
2644 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2645 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2646 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
03916905
PD
2647 rwa->or_byteorder = byteorder;
2648
37a27b43
DH
2649 rwa->or_need_sync = ORNS_MAYBE;
2650
03916905
PD
2651 return (0);
2652}
2653
30af21b0
PD
2654/*
2655 * Until we have the ability to redact large ranges of data efficiently, we
2656 * process these records as frees.
2657 */
30af21b0
PD
2658noinline static int
2659receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2660{
2661 struct drr_free drrf = {0};
2662 drrf.drr_length = drrr->drr_length;
2663 drrf.drr_object = drrr->drr_object;
2664 drrf.drr_offset = drrr->drr_offset;
2665 drrf.drr_toguid = drrr->drr_toguid;
2666 return (receive_free(rwa, &drrf));
2667}
2668
03916905
PD
2669/* used to destroy the drc_ds on error */
2670static void
2671dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2672{
2673 dsl_dataset_t *ds = drc->drc_ds;
40ab927a 2674 ds_hold_flags_t dsflags;
03916905 2675
40ab927a 2676 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
03916905
PD
2677 /*
2678 * Wait for the txg sync before cleaning up the receive. For
2679 * resumable receives, this ensures that our resume state has
2680 * been written out to disk. For raw receives, this ensures
2681 * that the user accounting code will not attempt to do anything
2682 * after we stopped receiving the dataset.
2683 */
2684 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2685 ds->ds_objset->os_raw_receive = B_FALSE;
2686
2687 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
61152d10
TC
2688 if (drc->drc_resumable && drc->drc_should_save &&
2689 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
03916905
PD
2690 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2691 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2692 } else {
2693 char name[ZFS_MAX_DATASET_NAME_LEN];
2694 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2695 dsl_dataset_name(ds, name);
2696 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
e8cf3a4f
AP
2697 if (!drc->drc_heal)
2698 (void) dsl_destroy_head(name);
03916905
PD
2699 }
2700}
2701
2702static void
30af21b0 2703receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
03916905 2704{
30af21b0
PD
2705 if (drc->drc_byteswap) {
2706 (void) fletcher_4_incremental_byteswap(buf, len,
2707 &drc->drc_cksum);
03916905 2708 } else {
30af21b0 2709 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
03916905
PD
2710 }
2711}
2712
2713/*
2714 * Read the payload into a buffer of size len, and update the current record's
2715 * payload field.
30af21b0
PD
2716 * Allocate drc->drc_next_rrd and read the next record's header into
2717 * drc->drc_next_rrd->header.
03916905
PD
2718 * Verify checksum of payload and next record.
2719 */
2720static int
30af21b0 2721receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
03916905
PD
2722{
2723 int err;
03916905
PD
2724
2725 if (len != 0) {
2726 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
30af21b0 2727 err = receive_read(drc, len, buf);
03916905
PD
2728 if (err != 0)
2729 return (err);
30af21b0 2730 receive_cksum(drc, len, buf);
03916905
PD
2731
2732 /* note: rrd is NULL when reading the begin record's payload */
30af21b0
PD
2733 if (drc->drc_rrd != NULL) {
2734 drc->drc_rrd->payload = buf;
2735 drc->drc_rrd->payload_size = len;
2736 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
03916905 2737 }
960347d3
TC
2738 } else {
2739 ASSERT3P(buf, ==, NULL);
03916905
PD
2740 }
2741
30af21b0 2742 drc->drc_prev_cksum = drc->drc_cksum;
03916905 2743
30af21b0
PD
2744 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2745 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2746 &drc->drc_next_rrd->header);
2747 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
03916905
PD
2748
2749 if (err != 0) {
30af21b0
PD
2750 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2751 drc->drc_next_rrd = NULL;
03916905
PD
2752 return (err);
2753 }
30af21b0
PD
2754 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2755 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2756 drc->drc_next_rrd = NULL;
03916905
PD
2757 return (SET_ERROR(EINVAL));
2758 }
2759
2760 /*
2761 * Note: checksum is of everything up to but not including the
2762 * checksum itself.
2763 */
2764 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2765 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
30af21b0 2766 receive_cksum(drc,
03916905 2767 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
30af21b0 2768 &drc->drc_next_rrd->header);
03916905 2769
30af21b0
PD
2770 zio_cksum_t cksum_orig =
2771 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2772 zio_cksum_t *cksump =
2773 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
03916905 2774
30af21b0
PD
2775 if (drc->drc_byteswap)
2776 byteswap_record(&drc->drc_next_rrd->header);
03916905
PD
2777
2778 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
30af21b0
PD
2779 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2780 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2781 drc->drc_next_rrd = NULL;
03916905
PD
2782 return (SET_ERROR(ECKSUM));
2783 }
2784
30af21b0 2785 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
03916905
PD
2786
2787 return (0);
2788}
2789
03916905
PD
2790/*
2791 * Issue the prefetch reads for any necessary indirect blocks.
2792 *
2793 * We use the object ignore list to tell us whether or not to issue prefetches
2794 * for a given object. We do this for both correctness (in case the blocksize
2795 * of an object has changed) and performance (if the object doesn't exist, don't
2796 * needlessly try to issue prefetches). We also trim the list as we go through
2797 * the stream to prevent it from growing to an unbounded size.
2798 *
2799 * The object numbers within will always be in sorted order, and any write
2800 * records we see will also be in sorted order, but they're not sorted with
2801 * respect to each other (i.e. we can get several object records before
2802 * receiving each object's write records). As a result, once we've reached a
2803 * given object number, we can safely remove any reference to lower object
2804 * numbers in the ignore list. In practice, we receive up to 32 object records
2805 * before receiving write records, so the list can have up to 32 nodes in it.
2806 */
03916905 2807static void
30af21b0
PD
2808receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2809 uint64_t length)
03916905 2810{
30af21b0
PD
2811 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2812 dmu_prefetch(drc->drc_os, object, 1, offset, length,
03916905
PD
2813 ZIO_PRIORITY_SYNC_READ);
2814 }
2815}
2816
2817/*
2818 * Read records off the stream, issuing any necessary prefetches.
2819 */
2820static int
30af21b0 2821receive_read_record(dmu_recv_cookie_t *drc)
03916905
PD
2822{
2823 int err;
2824
30af21b0 2825 switch (drc->drc_rrd->header.drr_type) {
03916905
PD
2826 case DRR_OBJECT:
2827 {
30af21b0
PD
2828 struct drr_object *drro =
2829 &drc->drc_rrd->header.drr_u.drr_object;
03916905 2830 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
960347d3 2831 void *buf = NULL;
03916905
PD
2832 dmu_object_info_t doi;
2833
960347d3
TC
2834 if (size != 0)
2835 buf = kmem_zalloc(size, KM_SLEEP);
2836
30af21b0 2837 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2838 if (err != 0) {
2839 kmem_free(buf, size);
2840 return (err);
2841 }
30af21b0 2842 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
03916905
PD
2843 /*
2844 * See receive_read_prefetch for an explanation why we're
2845 * storing this object in the ignore_obj_list.
2846 */
2847 if (err == ENOENT || err == EEXIST ||
2848 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
30af21b0
PD
2849 objlist_insert(drc->drc_ignore_objlist,
2850 drro->drr_object);
03916905
PD
2851 err = 0;
2852 }
2853 return (err);
2854 }
2855 case DRR_FREEOBJECTS:
2856 {
30af21b0 2857 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2858 return (err);
2859 }
2860 case DRR_WRITE:
2861 {
30af21b0 2862 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
ba67d821
MA
2863 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2864 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2865 err = receive_read_payload_and_next_header(drc, size,
2866 abd_to_buf(abd));
03916905 2867 if (err != 0) {
ba67d821 2868 abd_free(abd);
03916905
PD
2869 return (err);
2870 }
ba67d821 2871 drc->drc_rrd->abd = abd;
30af21b0 2872 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
03916905
PD
2873 drrw->drr_logical_size);
2874 return (err);
2875 }
03916905
PD
2876 case DRR_WRITE_EMBEDDED:
2877 {
2878 struct drr_write_embedded *drrwe =
30af21b0 2879 &drc->drc_rrd->header.drr_u.drr_write_embedded;
03916905
PD
2880 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2881 void *buf = kmem_zalloc(size, KM_SLEEP);
2882
30af21b0 2883 err = receive_read_payload_and_next_header(drc, size, buf);
03916905
PD
2884 if (err != 0) {
2885 kmem_free(buf, size);
2886 return (err);
2887 }
2888
30af21b0 2889 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
03916905
PD
2890 drrwe->drr_length);
2891 return (err);
2892 }
2893 case DRR_FREE:
30af21b0 2894 case DRR_REDACT:
03916905
PD
2895 {
2896 /*
2897 * It might be beneficial to prefetch indirect blocks here, but
2898 * we don't really have the data to decide for sure.
2899 */
30af21b0 2900 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905
PD
2901 return (err);
2902 }
2903 case DRR_END:
2904 {
30af21b0
PD
2905 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2906 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2907 drre->drr_checksum))
03916905
PD
2908 return (SET_ERROR(ECKSUM));
2909 return (0);
2910 }
2911 case DRR_SPILL:
2912 {
30af21b0 2913 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
ba67d821
MA
2914 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2915 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2916 err = receive_read_payload_and_next_header(drc, size,
2917 abd_to_buf(abd));
30af21b0 2918 if (err != 0)
ba67d821 2919 abd_free(abd);
30af21b0 2920 else
ba67d821 2921 drc->drc_rrd->abd = abd;
03916905
PD
2922 return (err);
2923 }
2924 case DRR_OBJECT_RANGE:
2925 {
30af21b0 2926 err = receive_read_payload_and_next_header(drc, 0, NULL);
03916905 2927 return (err);
30af21b0 2928
03916905
PD
2929 }
2930 default:
2931 return (SET_ERROR(EINVAL));
2932 }
2933}
2934
30af21b0
PD
2935
2936
03916905
PD
2937static void
2938dprintf_drr(struct receive_record_arg *rrd, int err)
2939{
2940#ifdef ZFS_DEBUG
2941 switch (rrd->header.drr_type) {
2942 case DRR_OBJECT:
2943 {
2944 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2945 dprintf("drr_type = OBJECT obj = %llu type = %u "
2946 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2947 "compress = %u dn_slots = %u err = %d\n",
8e739b2c
RE
2948 (u_longlong_t)drro->drr_object, drro->drr_type,
2949 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
03916905
PD
2950 drro->drr_checksumtype, drro->drr_compress,
2951 drro->drr_dn_slots, err);
2952 break;
2953 }
2954 case DRR_FREEOBJECTS:
2955 {
2956 struct drr_freeobjects *drrfo =
2957 &rrd->header.drr_u.drr_freeobjects;
2958 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2959 "numobjs = %llu err = %d\n",
8e739b2c
RE
2960 (u_longlong_t)drrfo->drr_firstobj,
2961 (u_longlong_t)drrfo->drr_numobjs, err);
03916905
PD
2962 break;
2963 }
2964 case DRR_WRITE:
2965 {
2966 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2967 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
5dbf8b4e 2968 "lsize = %llu cksumtype = %u flags = %u "
03916905 2969 "compress = %u psize = %llu err = %d\n",
8e739b2c
RE
2970 (u_longlong_t)drrw->drr_object, drrw->drr_type,
2971 (u_longlong_t)drrw->drr_offset,
2972 (u_longlong_t)drrw->drr_logical_size,
2973 drrw->drr_checksumtype, drrw->drr_flags,
2974 drrw->drr_compressiontype,
2975 (u_longlong_t)drrw->drr_compressed_size, err);
03916905
PD
2976 break;
2977 }
2978 case DRR_WRITE_BYREF:
2979 {
2980 struct drr_write_byref *drrwbr =
2981 &rrd->header.drr_u.drr_write_byref;
2982 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2983 "length = %llu toguid = %llx refguid = %llx "
2984 "refobject = %llu refoffset = %llu cksumtype = %u "
5dbf8b4e 2985 "flags = %u err = %d\n",
8e739b2c
RE
2986 (u_longlong_t)drrwbr->drr_object,
2987 (u_longlong_t)drrwbr->drr_offset,
2988 (u_longlong_t)drrwbr->drr_length,
2989 (u_longlong_t)drrwbr->drr_toguid,
2990 (u_longlong_t)drrwbr->drr_refguid,
2991 (u_longlong_t)drrwbr->drr_refobject,
2992 (u_longlong_t)drrwbr->drr_refoffset,
2993 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
03916905
PD
2994 break;
2995 }
2996 case DRR_WRITE_EMBEDDED:
2997 {
2998 struct drr_write_embedded *drrwe =
2999 &rrd->header.drr_u.drr_write_embedded;
3000 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3001 "length = %llu compress = %u etype = %u lsize = %u "
3002 "psize = %u err = %d\n",
8e739b2c
RE
3003 (u_longlong_t)drrwe->drr_object,
3004 (u_longlong_t)drrwe->drr_offset,
3005 (u_longlong_t)drrwe->drr_length,
03916905
PD
3006 drrwe->drr_compression, drrwe->drr_etype,
3007 drrwe->drr_lsize, drrwe->drr_psize, err);
3008 break;
3009 }
3010 case DRR_FREE:
3011 {
3012 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3013 dprintf("drr_type = FREE obj = %llu offset = %llu "
3014 "length = %lld err = %d\n",
8e739b2c
RE
3015 (u_longlong_t)drrf->drr_object,
3016 (u_longlong_t)drrf->drr_offset,
3017 (longlong_t)drrf->drr_length,
03916905
PD
3018 err);
3019 break;
3020 }
3021 case DRR_SPILL:
3022 {
3023 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3024 dprintf("drr_type = SPILL obj = %llu length = %llu "
8e739b2c
RE
3025 "err = %d\n", (u_longlong_t)drrs->drr_object,
3026 (u_longlong_t)drrs->drr_length, err);
03916905
PD
3027 break;
3028 }
5dbf8b4e
TC
3029 case DRR_OBJECT_RANGE:
3030 {
3031 struct drr_object_range *drror =
3032 &rrd->header.drr_u.drr_object_range;
3033 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3034 "numslots = %llu flags = %u err = %d\n",
8e739b2c
RE
3035 (u_longlong_t)drror->drr_firstobj,
3036 (u_longlong_t)drror->drr_numslots,
5dbf8b4e
TC
3037 drror->drr_flags, err);
3038 break;
3039 }
03916905
PD
3040 default:
3041 return;
3042 }
3043#endif
3044}
3045
3046/*
3047 * Commit the records to the pool.
3048 */
3049static int
3050receive_process_record(struct receive_writer_arg *rwa,
3051 struct receive_record_arg *rrd)
3052{
3053 int err;
3054
3055 /* Processing in order, therefore bytes_read should be increasing. */
3056 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3057 rwa->bytes_read = rrd->bytes_read;
3058
e8cf3a4f
AP
3059 /* We can only heal write records; other ones get ignored */
3060 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3061 if (rrd->abd != NULL) {
3062 abd_free(rrd->abd);
3063 rrd->abd = NULL;
3064 } else if (rrd->payload != NULL) {
3065 kmem_free(rrd->payload, rrd->payload_size);
3066 rrd->payload = NULL;
3067 }
3068 return (0);
3069 }
3070
3071 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
7261fc2e
MA
3072 err = flush_write_batch(rwa);
3073 if (err != 0) {
ba67d821
MA
3074 if (rrd->abd != NULL) {
3075 abd_free(rrd->abd);
3076 rrd->abd = NULL;
7261fc2e
MA
3077 rrd->payload = NULL;
3078 } else if (rrd->payload != NULL) {
3079 kmem_free(rrd->payload, rrd->payload_size);
3080 rrd->payload = NULL;
3081 }
3082
3083 return (err);
3084 }
3085 }
3086
03916905
PD
3087 switch (rrd->header.drr_type) {
3088 case DRR_OBJECT:
3089 {
3090 struct drr_object *drro = &rrd->header.drr_u.drr_object;
3091 err = receive_object(rwa, drro, rrd->payload);
3092 kmem_free(rrd->payload, rrd->payload_size);
3093 rrd->payload = NULL;
3094 break;
3095 }
3096 case DRR_FREEOBJECTS:
3097 {
3098 struct drr_freeobjects *drrfo =
3099 &rrd->header.drr_u.drr_freeobjects;
3100 err = receive_freeobjects(rwa, drrfo);
3101 break;
3102 }
3103 case DRR_WRITE:
3104 {
7261fc2e 3105 err = receive_process_write_record(rwa, rrd);
e8cf3a4f
AP
3106 if (rwa->heal) {
3107 /*
3108 * If healing - always free the abd after processing
3109 */
3110 abd_free(rrd->abd);
3111 rrd->abd = NULL;
3112 } else if (err != EAGAIN) {
7261fc2e 3113 /*
e8cf3a4f
AP
3114 * On success, a non-healing
3115 * receive_process_write_record() returns
7261fc2e
MA
3116 * EAGAIN to indicate that we do not want to free
3117 * the rrd or arc_buf.
3118 */
3119 ASSERT(err != 0);
ba67d821
MA
3120 abd_free(rrd->abd);
3121 rrd->abd = NULL;
7261fc2e 3122 }
03916905
PD
3123 break;
3124 }
03916905
PD
3125 case DRR_WRITE_EMBEDDED:
3126 {
3127 struct drr_write_embedded *drrwe =
3128 &rrd->header.drr_u.drr_write_embedded;
3129 err = receive_write_embedded(rwa, drrwe, rrd->payload);
3130 kmem_free(rrd->payload, rrd->payload_size);
3131 rrd->payload = NULL;
3132 break;
3133 }
3134 case DRR_FREE:
3135 {
3136 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3137 err = receive_free(rwa, drrf);
3138 break;
3139 }
3140 case DRR_SPILL:
3141 {
3142 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
ba67d821 3143 err = receive_spill(rwa, drrs, rrd->abd);
03916905 3144 if (err != 0)
ba67d821
MA
3145 abd_free(rrd->abd);
3146 rrd->abd = NULL;
03916905
PD
3147 rrd->payload = NULL;
3148 break;
3149 }
3150 case DRR_OBJECT_RANGE:
3151 {
3152 struct drr_object_range *drror =
3153 &rrd->header.drr_u.drr_object_range;
5dbf8b4e
TC
3154 err = receive_object_range(rwa, drror);
3155 break;
03916905 3156 }
30af21b0
PD
3157 case DRR_REDACT:
3158 {
3159 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3160 err = receive_redact(rwa, drrr);
3161 break;
3162 }
03916905 3163 default:
5dbf8b4e 3164 err = (SET_ERROR(EINVAL));
03916905
PD
3165 }
3166
3167 if (err != 0)
3168 dprintf_drr(rrd, err);
3169
3170 return (err);
3171}
3172
3173/*
3174 * dmu_recv_stream's worker thread; pull records off the queue, and then call
3175 * receive_process_record When we're done, signal the main thread and exit.
3176 */
460748d4 3177static __attribute__((noreturn)) void
03916905
PD
3178receive_writer_thread(void *arg)
3179{
3180 struct receive_writer_arg *rwa = arg;
3181 struct receive_record_arg *rrd;
3182 fstrans_cookie_t cookie = spl_fstrans_mark();
3183
3184 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3185 rrd = bqueue_dequeue(&rwa->q)) {
3186 /*
3187 * If there's an error, the main thread will stop putting things
3188 * on the queue, but we need to clear everything in it before we
3189 * can exit.
3190 */
7261fc2e 3191 int err = 0;
03916905 3192 if (rwa->err == 0) {
7261fc2e 3193 err = receive_process_record(rwa, rrd);
ba67d821
MA
3194 } else if (rrd->abd != NULL) {
3195 abd_free(rrd->abd);
3196 rrd->abd = NULL;
03916905
PD
3197 rrd->payload = NULL;
3198 } else if (rrd->payload != NULL) {
3199 kmem_free(rrd->payload, rrd->payload_size);
3200 rrd->payload = NULL;
3201 }
7261fc2e
MA
3202 /*
3203 * EAGAIN indicates that this record has been saved (on
3204 * raw->write_batch), and will be used again, so we don't
3205 * free it.
e8cf3a4f 3206 * When healing data we always need to free the record.
7261fc2e 3207 */
e8cf3a4f 3208 if (err != EAGAIN || rwa->heal) {
1b9cd1a9
MA
3209 if (rwa->err == 0)
3210 rwa->err = err;
7261fc2e
MA
3211 kmem_free(rrd, sizeof (*rrd));
3212 }
03916905
PD
3213 }
3214 kmem_free(rrd, sizeof (*rrd));
7261fc2e 3215
e8cf3a4f
AP
3216 if (rwa->heal) {
3217 zio_wait(rwa->heal_pio);
3218 } else {
3219 int err = flush_write_batch(rwa);
3220 if (rwa->err == 0)
3221 rwa->err = err;
3222 }
03916905
PD
3223 mutex_enter(&rwa->mutex);
3224 rwa->done = B_TRUE;
3225 cv_signal(&rwa->cv);
3226 mutex_exit(&rwa->mutex);
3227 spl_fstrans_unmark(cookie);
3228 thread_exit();
3229}
3230
3231static int
30af21b0 3232resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
03916905
PD
3233{
3234 uint64_t val;
30af21b0
PD
3235 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3236 uint64_t dsobj = dmu_objset_id(drc->drc_os);
03916905
PD
3237 uint64_t resume_obj, resume_off;
3238
3239 if (nvlist_lookup_uint64(begin_nvl,
3240 "resume_object", &resume_obj) != 0 ||
3241 nvlist_lookup_uint64(begin_nvl,
3242 "resume_offset", &resume_off) != 0) {
3243 return (SET_ERROR(EINVAL));
3244 }
3245 VERIFY0(zap_lookup(mos, dsobj,
3246 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3247 if (resume_obj != val)
3248 return (SET_ERROR(EINVAL));
3249 VERIFY0(zap_lookup(mos, dsobj,
3250 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3251 if (resume_off != val)
3252 return (SET_ERROR(EINVAL));
3253
3254 return (0);
3255}
3256
3257/*
3258 * Read in the stream's records, one by one, and apply them to the pool. There
3259 * are two threads involved; the thread that calls this function will spin up a
3260 * worker thread, read the records off the stream one by one, and issue
3261 * prefetches for any necessary indirect blocks. It will then push the records
3262 * onto an internal blocking queue. The worker thread will pull the records off
3263 * the queue, and actually write the data into the DMU. This way, the worker
3264 * thread doesn't have to wait for reads to complete, since everything it needs
3265 * (the indirect blocks) will be prefetched.
3266 *
3267 * NB: callers *must* call dmu_recv_end() if this succeeds.
3268 */
3269int
196bee4c 3270dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
03916905
PD
3271{
3272 int err = 0;
30af21b0 3273 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
03916905 3274
fce29d6a
PZ
3275 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3276 uint64_t bytes = 0;
03916905
PD
3277 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3278 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
30af21b0
PD
3279 sizeof (bytes), 1, &bytes);
3280 drc->drc_bytes_read += bytes;
03916905
PD
3281 }
3282
30af21b0 3283 drc->drc_ignore_objlist = objlist_create();
03916905
PD
3284
3285 /* these were verified in dmu_recv_begin */
3286 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3287 DMU_SUBSTREAM);
3288 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3289
03916905 3290 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
30af21b0
PD
3291 ASSERT0(drc->drc_os->os_encrypted &&
3292 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
03916905 3293
03916905 3294 /* handle DSL encryption key payload */
30af21b0 3295 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
03916905
PD
3296 nvlist_t *keynvl = NULL;
3297
30af21b0 3298 ASSERT(drc->drc_os->os_encrypted);
03916905
PD
3299 ASSERT(drc->drc_raw);
3300
30af21b0
PD
3301 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3302 &keynvl);
03916905
PD
3303 if (err != 0)
3304 goto out;
3305
e8cf3a4f
AP
3306 if (!drc->drc_heal) {
3307 /*
3308 * If this is a new dataset we set the key immediately.
3309 * Otherwise we don't want to change the key until we
3310 * are sure the rest of the receive succeeded so we
3311 * stash the keynvl away until then.
3312 */
3313 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3314 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3315 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3316 if (err != 0)
3317 goto out;
3318 }
03916905 3319
f00ab3f2
TC
3320 /* see comment in dmu_recv_end_sync() */
3321 drc->drc_ivset_guid = 0;
3322 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3323 &drc->drc_ivset_guid);
3324
03916905
PD
3325 if (!drc->drc_newfs)
3326 drc->drc_keynvl = fnvlist_dup(keynvl);
3327 }
3328
30af21b0
PD
3329 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3330 err = resume_check(drc, drc->drc_begin_nvl);
03916905
PD
3331 if (err != 0)
3332 goto out;
3333 }
3334
da19d919
PD
3335 /*
3336 * For compatibility with recursive send streams, we do this here,
3337 * rather than in dmu_recv_begin. If we pull the next header too
3338 * early, and it's the END record, we break the `recv_skip` logic.
3339 */
3340 if (drc->drc_drr_begin->drr_payloadlen == 0) {
3341 err = receive_read_payload_and_next_header(drc, 0, NULL);
3342 if (err != 0)
3343 goto out;
3344 }
3345
61152d10
TC
3346 /*
3347 * If we failed before this point we will clean up any new resume
3348 * state that was created. Now that we've gotten past the initial
3349 * checks we are ok to retain that resume state.
3350 */
3351 drc->drc_should_save = B_TRUE;
3352
30af21b0 3353 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
03916905
PD
3354 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3355 offsetof(struct receive_record_arg, node));
3356 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3357 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
30af21b0 3358 rwa->os = drc->drc_os;
03916905 3359 rwa->byteswap = drc->drc_byteswap;
e8cf3a4f
AP
3360 rwa->heal = drc->drc_heal;
3361 rwa->tofs = drc->drc_tofs;
03916905
PD
3362 rwa->resumable = drc->drc_resumable;
3363 rwa->raw = drc->drc_raw;
caf9dd20 3364 rwa->spill = drc->drc_spill;
7bcb7f08 3365 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
03916905 3366 rwa->os->os_raw_receive = drc->drc_raw;
e8cf3a4f
AP
3367 if (drc->drc_heal) {
3368 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3369 ZIO_FLAG_GODFATHER);
3370 }
7261fc2e
MA
3371 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3372 offsetof(struct receive_record_arg, node.bqn_node));
03916905
PD
3373
3374 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3375 TS_RUN, minclsyspri);
3376 /*
3377 * We're reading rwa->err without locks, which is safe since we are the
3378 * only reader, and the worker thread is the only writer. It's ok if we
3379 * miss a write for an iteration or two of the loop, since the writer
3380 * thread will keep freeing records we send it until we send it an eos
3381 * marker.
3382 *
3383 * We can leave this loop in 3 ways: First, if rwa->err is
3384 * non-zero. In that case, the writer thread will free the rrd we just
3385 * pushed. Second, if we're interrupted; in that case, either it's the
30af21b0
PD
3386 * first loop and drc->drc_rrd was never allocated, or it's later, and
3387 * drc->drc_rrd has been handed off to the writer thread who will free
3388 * it. Finally, if receive_read_record fails or we're at the end of the
3389 * stream, then we free drc->drc_rrd and exit.
03916905
PD
3390 */
3391 while (rwa->err == 0) {
3392 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3393 err = SET_ERROR(EINTR);
3394 break;
3395 }
3396
30af21b0
PD
3397 ASSERT3P(drc->drc_rrd, ==, NULL);
3398 drc->drc_rrd = drc->drc_next_rrd;
3399 drc->drc_next_rrd = NULL;
3400 /* Allocates and loads header into drc->drc_next_rrd */
3401 err = receive_read_record(drc);
03916905 3402
30af21b0
PD
3403 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3404 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3405 drc->drc_rrd = NULL;
03916905
PD
3406 break;
3407 }
3408
30af21b0
PD
3409 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3410 sizeof (struct receive_record_arg) +
3411 drc->drc_rrd->payload_size);
3412 drc->drc_rrd = NULL;
03916905 3413 }
30af21b0
PD
3414
3415 ASSERT3P(drc->drc_rrd, ==, NULL);
3416 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3417 drc->drc_rrd->eos_marker = B_TRUE;
3418 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
03916905
PD
3419
3420 mutex_enter(&rwa->mutex);
3421 while (!rwa->done) {
30af21b0
PD
3422 /*
3423 * We need to use cv_wait_sig() so that any process that may
3424 * be sleeping here can still fork.
3425 */
3426 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
03916905
PD
3427 }
3428 mutex_exit(&rwa->mutex);
3429
3430 /*
3431 * If we are receiving a full stream as a clone, all object IDs which
3432 * are greater than the maximum ID referenced in the stream are
3433 * by definition unused and must be freed.
3434 */
3435 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3436 uint64_t obj = rwa->max_object + 1;
3437 int free_err = 0;
3438 int next_err = 0;
3439
3440 while (next_err == 0) {
3441 free_err = dmu_free_long_object(rwa->os, obj);
3442 if (free_err != 0 && free_err != ENOENT)
3443 break;
3444
3445 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3446 }
3447
3448 if (err == 0) {
3449 if (free_err != 0 && free_err != ENOENT)
3450 err = free_err;
3451 else if (next_err != ESRCH)
3452 err = next_err;
3453 }
3454 }
3455
3456 cv_destroy(&rwa->cv);
3457 mutex_destroy(&rwa->mutex);
3458 bqueue_destroy(&rwa->q);
7261fc2e 3459 list_destroy(&rwa->write_batch);
03916905
PD
3460 if (err == 0)
3461 err = rwa->err;
3462
3463out:
f00ab3f2
TC
3464 /*
3465 * If we hit an error before we started the receive_writer_thread
3466 * we need to clean up the next_rrd we create by processing the
3467 * DRR_BEGIN record.
3468 */
30af21b0
PD
3469 if (drc->drc_next_rrd != NULL)
3470 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
f00ab3f2 3471
ec213971
MA
3472 /*
3473 * The objset will be invalidated by dmu_recv_end() when we do
3474 * dsl_dataset_clone_swap_sync_impl().
3475 */
3476 drc->drc_os = NULL;
3477
30af21b0
PD
3478 kmem_free(rwa, sizeof (*rwa));
3479 nvlist_free(drc->drc_begin_nvl);
03916905
PD
3480
3481 if (err != 0) {
3482 /*
3483 * Clean up references. If receive is not resumable,
3484 * destroy what we created, so we don't leave it in
3485 * the inconsistent state.
3486 */
3487 dmu_recv_cleanup_ds(drc);
3488 nvlist_free(drc->drc_keynvl);
3489 }
3490
30af21b0
PD
3491 objlist_destroy(drc->drc_ignore_objlist);
3492 drc->drc_ignore_objlist = NULL;
3493 *voffp = drc->drc_voff;
03916905
PD
3494 return (err);
3495}
3496
3497static int
3498dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3499{
3500 dmu_recv_cookie_t *drc = arg;
3501 dsl_pool_t *dp = dmu_tx_pool(tx);
3502 int error;
3503
3504 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3505
e8cf3a4f
AP
3506 if (drc->drc_heal) {
3507 error = 0;
3508 } else if (!drc->drc_newfs) {
03916905
PD
3509 dsl_dataset_t *origin_head;
3510
3511 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3512 if (error != 0)
3513 return (error);
3514 if (drc->drc_force) {
3515 /*
3516 * We will destroy any snapshots in tofs (i.e. before
3517 * origin_head) that are after the origin (which is
3518 * the snap before drc_ds, because drc_ds can not
3519 * have any snaps of its own).
3520 */
3521 uint64_t obj;
3522
3523 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3524 while (obj !=
3525 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3526 dsl_dataset_t *snap;
3527 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3528 &snap);
3529 if (error != 0)
3530 break;
3531 if (snap->ds_dir != origin_head->ds_dir)
3532 error = SET_ERROR(EINVAL);
3533 if (error == 0) {
3534 error = dsl_destroy_snapshot_check_impl(
3535 snap, B_FALSE);
3536 }
3537 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3538 dsl_dataset_rele(snap, FTAG);
3539 if (error != 0)
3540 break;
3541 }
3542 if (error != 0) {
3543 dsl_dataset_rele(origin_head, FTAG);
3544 return (error);
3545 }
3546 }
3547 if (drc->drc_keynvl != NULL) {
3548 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3549 drc->drc_keynvl, tx);
3550 if (error != 0) {
3551 dsl_dataset_rele(origin_head, FTAG);
3552 return (error);
3553 }
3554 }
3555
3556 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3557 origin_head, drc->drc_force, drc->drc_owner, tx);
3558 if (error != 0) {
3559 dsl_dataset_rele(origin_head, FTAG);
3560 return (error);
3561 }
3562 error = dsl_dataset_snapshot_check_impl(origin_head,
e59a377a
MA
3563 drc->drc_tosnap, tx, B_TRUE, 1,
3564 drc->drc_cred, drc->drc_proc);
03916905
PD
3565 dsl_dataset_rele(origin_head, FTAG);
3566 if (error != 0)
3567 return (error);
3568
3569 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3570 } else {
3571 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
e59a377a
MA
3572 drc->drc_tosnap, tx, B_TRUE, 1,
3573 drc->drc_cred, drc->drc_proc);
03916905
PD
3574 }
3575 return (error);
3576}
3577
3578static void
3579dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3580{
3581 dmu_recv_cookie_t *drc = arg;
3582 dsl_pool_t *dp = dmu_tx_pool(tx);
3583 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
e8cf3a4f 3584 uint64_t newsnapobj = 0;
03916905
PD
3585
3586 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3587 tx, "snap=%s", drc->drc_tosnap);
3588 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3589
e8cf3a4f
AP
3590 if (drc->drc_heal) {
3591 if (drc->drc_keynvl != NULL) {
3592 nvlist_free(drc->drc_keynvl);
3593 drc->drc_keynvl = NULL;
3594 }
3595 } else if (!drc->drc_newfs) {
03916905
PD
3596 dsl_dataset_t *origin_head;
3597
3598 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3599 &origin_head));
3600
3601 if (drc->drc_force) {
3602 /*
3603 * Destroy any snapshots of drc_tofs (origin_head)
3604 * after the origin (the snap before drc_ds).
3605 */
3606 uint64_t obj;
3607
3608 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3609 while (obj !=
3610 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3611 dsl_dataset_t *snap;
3612 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3613 &snap));
3614 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3615 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3616 dsl_destroy_snapshot_sync_impl(snap,
3617 B_FALSE, tx);
3618 dsl_dataset_rele(snap, FTAG);
3619 }
3620 }
3621 if (drc->drc_keynvl != NULL) {
3622 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3623 drc->drc_keynvl, tx);
3624 nvlist_free(drc->drc_keynvl);
3625 drc->drc_keynvl = NULL;
3626 }
3627
30af21b0
PD
3628 VERIFY3P(drc->drc_ds->ds_prev, ==,
3629 origin_head->ds_prev);
03916905
PD
3630
3631 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3632 origin_head, tx);
0fdd6106
MA
3633 /*
3634 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3635 * so drc_os is no longer valid.
3636 */
3637 drc->drc_os = NULL;
3638
03916905
PD
3639 dsl_dataset_snapshot_sync_impl(origin_head,
3640 drc->drc_tosnap, tx);
3641
3642 /* set snapshot's creation time and guid */
3643 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3644 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3645 drc->drc_drrb->drr_creation_time;
3646 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3647 drc->drc_drrb->drr_toguid;
3648 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3649 ~DS_FLAG_INCONSISTENT;
3650
3651 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3652 dsl_dataset_phys(origin_head)->ds_flags &=
3653 ~DS_FLAG_INCONSISTENT;
3654
196bee4c 3655 newsnapobj =
03916905
PD
3656 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3657
3658 dsl_dataset_rele(origin_head, FTAG);
3659 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3660
3661 if (drc->drc_owner != NULL)
3662 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3663 } else {
3664 dsl_dataset_t *ds = drc->drc_ds;
3665
3666 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3667
3668 /* set snapshot's creation time and guid */
3669 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3670 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3671 drc->drc_drrb->drr_creation_time;
3672 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3673 drc->drc_drrb->drr_toguid;
3674 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3675 ~DS_FLAG_INCONSISTENT;
3676
3677 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3678 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3679 if (dsl_dataset_has_resume_receive_state(ds)) {
3680 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3681 DS_FIELD_RESUME_FROMGUID, tx);
3682 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3683 DS_FIELD_RESUME_OBJECT, tx);
3684 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3685 DS_FIELD_RESUME_OFFSET, tx);
3686 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3687 DS_FIELD_RESUME_BYTES, tx);
3688 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3689 DS_FIELD_RESUME_TOGUID, tx);
3690 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3691 DS_FIELD_RESUME_TONAME, tx);
30af21b0
PD
3692 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3693 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
03916905 3694 }
196bee4c 3695 newsnapobj =
03916905
PD
3696 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3697 }
f00ab3f2
TC
3698
3699 /*
3700 * If this is a raw receive, the crypt_keydata nvlist will include
3701 * a to_ivset_guid for us to set on the new snapshot. This value
3702 * will override the value generated by the snapshot code. However,
3703 * this value may not be present, because older implementations of
3704 * the raw send code did not include this value, and we are still
3705 * allowed to receive them if the zfs_disable_ivset_guid_check
3706 * tunable is set, in which case we will leave the newly-generated
3707 * value.
3708 */
e8cf3a4f 3709 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
196bee4c 3710 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
f00ab3f2 3711 DMU_OT_DSL_DATASET, tx);
196bee4c 3712 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
f00ab3f2
TC
3713 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3714 &drc->drc_ivset_guid, tx));
3715 }
3716
03916905
PD
3717 /*
3718 * Release the hold from dmu_recv_begin. This must be done before
3719 * we return to open context, so that when we free the dataset's dnode
3720 * we can evict its bonus buffer. Since the dataset may be destroyed
3721 * at this point (and therefore won't have a valid pointer to the spa)
3722 * we release the key mapping manually here while we do have a valid
3723 * pointer, if it exists.
3724 */
3725 if (!drc->drc_raw && encrypted) {
3726 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3727 drc->drc_ds->ds_object, drc->drc_ds);
3728 }
3729 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3730 drc->drc_ds = NULL;
3731}
3732
03916905
PD
3733static int dmu_recv_end_modified_blocks = 3;
3734
3735static int
3736dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3737{
3738#ifdef _KERNEL
3739 /*
3740 * We will be destroying the ds; make sure its origin is unmounted if
3741 * necessary.
3742 */
3743 char name[ZFS_MAX_DATASET_NAME_LEN];
3744 dsl_dataset_name(drc->drc_ds, name);
3745 zfs_destroy_unmount_origin(name);
3746#endif
3747
3748 return (dsl_sync_task(drc->drc_tofs,
3749 dmu_recv_end_check, dmu_recv_end_sync, drc,
3750 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3751}
3752
3753static int
3754dmu_recv_new_end(dmu_recv_cookie_t *drc)
3755{
3756 return (dsl_sync_task(drc->drc_tofs,
3757 dmu_recv_end_check, dmu_recv_end_sync, drc,
3758 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3759}
3760
3761int
3762dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3763{
3764 int error;
3765
3766 drc->drc_owner = owner;
3767
3768 if (drc->drc_newfs)
3769 error = dmu_recv_new_end(drc);
3770 else
3771 error = dmu_recv_existing_end(drc);
3772
3773 if (error != 0) {
3774 dmu_recv_cleanup_ds(drc);
3775 nvlist_free(drc->drc_keynvl);
e8cf3a4f 3776 } else if (!drc->drc_heal) {
ec213971
MA
3777 if (drc->drc_newfs) {
3778 zvol_create_minor(drc->drc_tofs);
3779 }
3780 char *snapname = kmem_asprintf("%s@%s",
3781 drc->drc_tofs, drc->drc_tosnap);
3782 zvol_create_minor(snapname);
3783 kmem_strfree(snapname);
03916905
PD
3784 }
3785 return (error);
3786}
3787
3788/*
3789 * Return TRUE if this objset is currently being received into.
3790 */
3791boolean_t
3792dmu_objset_is_receiving(objset_t *os)
3793{
3794 return (os->os_dsl_dataset != NULL &&
3795 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3796}
3797
fdc2d303 3798ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
03fdcb9a 3799 "Maximum receive queue length");
30af21b0 3800
fdc2d303 3801ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
03fdcb9a 3802 "Receive queue fill fraction");
7261fc2e 3803
fdc2d303 3804ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
7261fc2e 3805 "Maximum amount of writes to batch into one transaction");
e8cf3a4f
AP
3806
3807ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3808 "Ignore errors during corrective receive");
3809/* END CSTYLED */