]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dsl_pool.c
OpenZFS 8607 - variable set but not used
[mirror_zfs.git] / module / zfs / dsl_pool.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
64fc7762 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
95fd54a1 24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
539d33c7 26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
428870ff 31#include <sys/dsl_prop.h>
34dc7c2f
BB
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
428870ff
BB
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
34dc7c2f
BB
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
b128c09f
BB
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
428870ff 45#include <sys/dsl_deadlist.h>
9ae529ec
CS
46#include <sys/bptree.h>
47#include <sys/zfeature.h>
29809a6c 48#include <sys/zil_impl.h>
13fe0198 49#include <sys/dsl_userhold.h>
49ee64e5 50#include <sys/trace_txg.h>
379ca9cf 51#include <sys/mmp.h>
34dc7c2f 52
e8b96c60
MA
53/*
54 * ZFS Write Throttle
55 * ------------------
56 *
57 * ZFS must limit the rate of incoming writes to the rate at which it is able
58 * to sync data modifications to the backend storage. Throttling by too much
59 * creates an artificial limit; throttling by too little can only be sustained
60 * for short periods and would lead to highly lumpy performance. On a per-pool
61 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
62 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
63 * of dirty data decreases. When the amount of dirty data exceeds a
64 * predetermined threshold further modifications are blocked until the amount
65 * of dirty data decreases (as data is synced out).
66 *
67 * The limit on dirty data is tunable, and should be adjusted according to
68 * both the IO capacity and available memory of the system. The larger the
69 * window, the more ZFS is able to aggregate and amortize metadata (and data)
70 * changes. However, memory is a limited resource, and allowing for more dirty
71 * data comes at the cost of keeping other useful data in memory (for example
72 * ZFS data cached by the ARC).
73 *
74 * Implementation
75 *
76 * As buffers are modified dsl_pool_willuse_space() increments both the per-
77 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
78 * dirty space used; dsl_pool_dirty_space() decrements those values as data
79 * is synced out from dsl_pool_sync(). While only the poolwide value is
80 * relevant, the per-txg value is useful for debugging. The tunable
81 * zfs_dirty_data_max determines the dirty space limit. Once that value is
82 * exceeded, new writes are halted until space frees up.
83 *
84 * The zfs_dirty_data_sync tunable dictates the threshold at which we
85 * ensure that there is a txg syncing (see the comment in txg.c for a full
86 * description of transaction group stages).
87 *
88 * The IO scheduler uses both the dirty space limit and current amount of
89 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
90 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
91 *
92 * The delay is also calculated based on the amount of dirty data. See the
93 * comment above dmu_tx_delay() for details.
94 */
95
96/*
97 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
98 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
99 * parameter.
100 */
101unsigned long zfs_dirty_data_max = 0;
102unsigned long zfs_dirty_data_max_max = 0;
103int zfs_dirty_data_max_percent = 10;
104int zfs_dirty_data_max_max_percent = 25;
b128c09f 105
e8b96c60
MA
106/*
107 * If there is at least this much dirty data, push out a txg.
108 */
109unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
34dc7c2f 110
e8b96c60
MA
111/*
112 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
113 * and delay each transaction.
114 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
115 */
116int zfs_delay_min_dirty_percent = 60;
b128c09f 117
e8b96c60
MA
118/*
119 * This controls how quickly the delay approaches infinity.
120 * Larger values cause it to delay more for a given amount of dirty data.
121 * Therefore larger values will cause there to be less dirty data for a
122 * given throughput.
123 *
124 * For the smoothest delay, this value should be about 1 billion divided
125 * by the maximum number of operations per second. This will smoothly
126 * handle between 10x and 1/10th this number.
127 *
128 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
129 * multiply in dmu_tx_delay().
130 */
131unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
b128c09f 132
64fc7762
MA
133/*
134 * This determines the number of threads used by the dp_sync_taskq.
135 */
136int zfs_sync_taskq_batch_pct = 75;
137
a032ac4b
BB
138/*
139 * These tunables determine the behavior of how zil_itxg_clean() is
140 * called via zil_clean() in the context of spa_sync(). When an itxg
141 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
142 * If the dispatch fails, the call to zil_itxg_clean() will occur
143 * synchronously in the context of spa_sync(), which can negatively
144 * impact the performance of spa_sync() (e.g. in the case of the itxg
145 * list having a large number of itxs that needs to be cleaned).
146 *
147 * Thus, these tunables can be used to manipulate the behavior of the
148 * taskq used by zil_clean(); they determine the number of taskq entries
149 * that are pre-populated when the taskq is first created (via the
150 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
151 * taskq entries that are cached after an on-demand allocation (via the
152 * "zfs_zil_clean_taskq_maxalloc").
153 *
154 * The idea being, we want to try reasonably hard to ensure there will
155 * already be a taskq entry pre-allocated by the time that it is needed
156 * by zil_clean(). This way, we can avoid the possibility of an
157 * on-demand allocation of a new taskq entry from failing, which would
158 * result in zil_itxg_clean() being called synchronously from zil_clean()
159 * (which can adversely affect performance of spa_sync()).
160 *
161 * Additionally, the number of threads used by the taskq can be
162 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
163 */
164int zfs_zil_clean_taskq_nthr_pct = 100;
165int zfs_zil_clean_taskq_minalloc = 1024;
166int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
167
428870ff 168int
b128c09f 169dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
34dc7c2f
BB
170{
171 uint64_t obj;
172 int err;
173
174 err = zap_lookup(dp->dp_meta_objset,
d683ddbb 175 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
b128c09f 176 name, sizeof (obj), 1, &obj);
34dc7c2f
BB
177 if (err)
178 return (err);
179
13fe0198 180 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
34dc7c2f
BB
181}
182
183static dsl_pool_t *
184dsl_pool_open_impl(spa_t *spa, uint64_t txg)
185{
186 dsl_pool_t *dp;
187 blkptr_t *bp = spa_get_rootblkptr(spa);
34dc7c2f
BB
188
189 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
190 dp->dp_spa = spa;
191 dp->dp_meta_rootbp = *bp;
13fe0198 192 rrw_init(&dp->dp_config_rwlock, B_TRUE);
34dc7c2f 193 txg_init(dp, txg);
379ca9cf 194 mmp_init(spa);
34dc7c2f 195
4747a7d3 196 txg_list_create(&dp->dp_dirty_datasets, spa,
34dc7c2f 197 offsetof(dsl_dataset_t, ds_dirty_link));
4747a7d3 198 txg_list_create(&dp->dp_dirty_zilogs, spa,
29809a6c 199 offsetof(zilog_t, zl_dirty_link));
4747a7d3 200 txg_list_create(&dp->dp_dirty_dirs, spa,
34dc7c2f 201 offsetof(dsl_dir_t, dd_dirty_link));
4747a7d3 202 txg_list_create(&dp->dp_sync_tasks, spa,
13fe0198 203 offsetof(dsl_sync_task_t, dst_node));
34dc7c2f 204
64fc7762
MA
205 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
206 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
207 TASKQ_THREADS_CPU_PCT);
208
a032ac4b
BB
209 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
210 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
211 zfs_zil_clean_taskq_minalloc,
212 zfs_zil_clean_taskq_maxalloc,
213 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
214
34dc7c2f 215 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
e8b96c60 216 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 217
1229323d 218 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
aa9af22c 219 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
9babb374 220
34dc7c2f
BB
221 return (dp);
222}
223
224int
9ae529ec 225dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
34dc7c2f
BB
226{
227 int err;
228 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
9ae529ec 229
b7faa7aa
G
230 /*
231 * Initialize the caller's dsl_pool_t structure before we actually open
232 * the meta objset. This is done because a self-healing write zio may
233 * be issued as part of dmu_objset_open_impl() and the spa needs its
234 * dsl_pool_t initialized in order to handle the write.
235 */
236 *dpp = dp;
237
9ae529ec
CS
238 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
239 &dp->dp_meta_objset);
b7faa7aa 240 if (err != 0) {
9ae529ec 241 dsl_pool_close(dp);
b7faa7aa
G
242 *dpp = NULL;
243 }
9ae529ec
CS
244
245 return (err);
246}
247
248int
249dsl_pool_open(dsl_pool_t *dp)
250{
251 int err;
b128c09f
BB
252 dsl_dir_t *dd;
253 dsl_dataset_t *ds;
428870ff 254 uint64_t obj;
34dc7c2f 255
13fe0198 256 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
34dc7c2f
BB
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
259 &dp->dp_root_dir_obj);
260 if (err)
261 goto out;
262
13fe0198 263 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
264 NULL, dp, &dp->dp_root_dir);
265 if (err)
266 goto out;
267
b128c09f 268 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
34dc7c2f
BB
269 if (err)
270 goto out;
271
9ae529ec 272 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
b128c09f
BB
273 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
274 if (err)
275 goto out;
d683ddbb
JG
276 err = dsl_dataset_hold_obj(dp,
277 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
9babb374
BB
278 if (err == 0) {
279 err = dsl_dataset_hold_obj(dp,
d683ddbb 280 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
9babb374
BB
281 &dp->dp_origin_snap);
282 dsl_dataset_rele(ds, FTAG);
283 }
13fe0198 284 dsl_dir_rele(dd, dp);
b128c09f
BB
285 if (err)
286 goto out;
b128c09f
BB
287 }
288
9ae529ec 289 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
428870ff
BB
290 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
291 &dp->dp_free_dir);
b128c09f
BB
292 if (err)
293 goto out;
428870ff 294
b128c09f 295 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 296 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
b128c09f
BB
297 if (err)
298 goto out;
13fe0198 299 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff 300 dp->dp_meta_objset, obj));
b128c09f
BB
301 }
302
fbeddd60
MA
303 /*
304 * Note: errors ignored, because the leak dir will not exist if we
305 * have not encountered a leak yet.
306 */
307 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
308 &dp->dp_leak_dir);
309
fa86b5db 310 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
9ae529ec
CS
311 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
312 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
313 &dp->dp_bptree_obj);
314 if (err != 0)
315 goto out;
316 }
317
fa86b5db 318 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
753c3839
MA
319 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
320 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
321 &dp->dp_empty_bpobj);
322 if (err != 0)
323 goto out;
324 }
325
428870ff
BB
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
328 &dp->dp_tmp_userrefs_obj);
329 if (err == ENOENT)
330 err = 0;
331 if (err)
332 goto out;
333
9ae529ec 334 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
428870ff 335
34dc7c2f 336out:
13fe0198 337 rrw_exit(&dp->dp_config_rwlock, FTAG);
34dc7c2f
BB
338 return (err);
339}
340
341void
342dsl_pool_close(dsl_pool_t *dp)
343{
b128c09f 344 /*
e8b96c60
MA
345 * Drop our references from dsl_pool_open().
346 *
b128c09f
BB
347 * Since we held the origin_snap from "syncing" context (which
348 * includes pool-opening context), it actually only got a "ref"
349 * and not a hold, so just drop that here.
350 */
351 if (dp->dp_origin_snap)
13fe0198 352 dsl_dataset_rele(dp->dp_origin_snap, dp);
34dc7c2f 353 if (dp->dp_mos_dir)
13fe0198 354 dsl_dir_rele(dp->dp_mos_dir, dp);
428870ff 355 if (dp->dp_free_dir)
13fe0198 356 dsl_dir_rele(dp->dp_free_dir, dp);
fbeddd60
MA
357 if (dp->dp_leak_dir)
358 dsl_dir_rele(dp->dp_leak_dir, dp);
34dc7c2f 359 if (dp->dp_root_dir)
13fe0198 360 dsl_dir_rele(dp->dp_root_dir, dp);
34dc7c2f 361
428870ff
BB
362 bpobj_close(&dp->dp_free_bpobj);
363
34dc7c2f
BB
364 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
365 if (dp->dp_meta_objset)
428870ff 366 dmu_objset_evict(dp->dp_meta_objset);
34dc7c2f
BB
367
368 txg_list_destroy(&dp->dp_dirty_datasets);
29809a6c 369 txg_list_destroy(&dp->dp_dirty_zilogs);
428870ff 370 txg_list_destroy(&dp->dp_sync_tasks);
34dc7c2f 371 txg_list_destroy(&dp->dp_dirty_dirs);
34dc7c2f 372
a032ac4b 373 taskq_destroy(dp->dp_zil_clean_taskq);
64fc7762
MA
374 taskq_destroy(dp->dp_sync_taskq);
375
ca0bf58d
PS
376 /*
377 * We can't set retry to TRUE since we're explicitly specifying
378 * a spa to flush. This is good enough; any missed buffers for
379 * this spa won't cause trouble, and they'll eventually fall
380 * out of the ARC just like any other unused buffer.
381 */
382 arc_flush(dp->dp_spa, FALSE);
383
379ca9cf 384 mmp_fini(dp->dp_spa);
34dc7c2f 385 txg_fini(dp);
428870ff 386 dsl_scan_fini(dp);
0c66c32d
JG
387 dmu_buf_user_evict_wait();
388
13fe0198 389 rrw_destroy(&dp->dp_config_rwlock);
34dc7c2f 390 mutex_destroy(&dp->dp_lock);
c17486b2 391 cv_destroy(&dp->dp_spaceavail_cv);
3558fd73 392 taskq_destroy(dp->dp_iput_taskq);
b128c09f 393 if (dp->dp_blkstats)
79c76d5b 394 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
34dc7c2f
BB
395 kmem_free(dp, sizeof (dsl_pool_t));
396}
397
398dsl_pool_t *
b5256303
TC
399dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
400 uint64_t txg)
34dc7c2f
BB
401{
402 int err;
403 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
404 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
b128c09f 405 dsl_dataset_t *ds;
428870ff 406 uint64_t obj;
b128c09f 407
13fe0198
MA
408 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
409
b128c09f 410 /* create and open the MOS (meta-objset) */
428870ff
BB
411 dp->dp_meta_objset = dmu_objset_create_impl(spa,
412 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
b5256303 413 spa->spa_meta_objset = dp->dp_meta_objset;
34dc7c2f
BB
414
415 /* create the pool directory */
416 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
417 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
c99c9001 418 ASSERT0(err);
34dc7c2f 419
428870ff 420 /* Initialize scan structures */
13fe0198 421 VERIFY0(dsl_scan_init(dp, txg));
428870ff 422
34dc7c2f 423 /* create and open the root dir */
b128c09f 424 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
13fe0198 425 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
34dc7c2f
BB
426 NULL, dp, &dp->dp_root_dir));
427
428 /* create and open the meta-objset dir */
b128c09f 429 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
13fe0198 430 VERIFY0(dsl_pool_open_special_dir(dp,
b128c09f
BB
431 MOS_DIR_NAME, &dp->dp_mos_dir));
432
428870ff
BB
433 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
434 /* create and open the free dir */
435 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
436 FREE_DIR_NAME, tx);
13fe0198 437 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
438 FREE_DIR_NAME, &dp->dp_free_dir));
439
440 /* create and open the free_bplist */
f1512ee6 441 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
428870ff
BB
442 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
443 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
13fe0198 444 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
428870ff
BB
445 dp->dp_meta_objset, obj));
446 }
447
b128c09f
BB
448 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
449 dsl_pool_create_origin(dp, tx);
450
b5256303
TC
451 /*
452 * Some features may be needed when creating the root dataset, so we
453 * create the feature objects here.
454 */
455 if (spa_version(spa) >= SPA_VERSION_FEATURES)
456 spa_feature_create_zap_objects(spa, tx);
457
458 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
459 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
460 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
461
b128c09f 462 /* create the root dataset */
b5256303 463 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
b128c09f
BB
464
465 /* create the root objset */
13fe0198 466 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
b128c09f 467#ifdef _KERNEL
d8fdfc2d
BB
468 {
469 objset_t *os;
470 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
471 os = dmu_objset_create_impl(dp->dp_spa, ds,
472 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
473 rrw_exit(&ds->ds_bp_rwlock, FTAG);
474 zfs_create_fs(os, kcred, zplprops, tx);
475 }
b128c09f
BB
476#endif
477 dsl_dataset_rele(ds, FTAG);
34dc7c2f
BB
478
479 dmu_tx_commit(tx);
480
13fe0198
MA
481 rrw_exit(&dp->dp_config_rwlock, FTAG);
482
34dc7c2f
BB
483 return (dp);
484}
485
29809a6c
MA
486/*
487 * Account for the meta-objset space in its placeholder dsl_dir.
488 */
489void
490dsl_pool_mos_diduse_space(dsl_pool_t *dp,
491 int64_t used, int64_t comp, int64_t uncomp)
492{
493 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
494 mutex_enter(&dp->dp_lock);
495 dp->dp_mos_used_delta += used;
496 dp->dp_mos_compressed_delta += comp;
497 dp->dp_mos_uncompressed_delta += uncomp;
498 mutex_exit(&dp->dp_lock);
499}
500
e8b96c60
MA
501static void
502dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
503{
504 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
505 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
506 VERIFY0(zio_wait(zio));
507 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
508 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
509}
510
511static void
512dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
513{
514 ASSERT(MUTEX_HELD(&dp->dp_lock));
515
516 if (delta < 0)
517 ASSERT3U(-delta, <=, dp->dp_dirty_total);
518
519 dp->dp_dirty_total += delta;
520
521 /*
522 * Note: we signal even when increasing dp_dirty_total.
523 * This ensures forward progress -- each thread wakes the next waiter.
524 */
c0c8cc7b 525 if (dp->dp_dirty_total < zfs_dirty_data_max)
e8b96c60
MA
526 cv_signal(&dp->dp_spaceavail_cv);
527}
528
34dc7c2f
BB
529void
530dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
531{
532 zio_t *zio;
533 dmu_tx_t *tx;
534 dsl_dir_t *dd;
535 dsl_dataset_t *ds;
428870ff 536 objset_t *mos = dp->dp_meta_objset;
29809a6c
MA
537 list_t synced_datasets;
538
539 list_create(&synced_datasets, sizeof (dsl_dataset_t),
540 offsetof(dsl_dataset_t, ds_synced_link));
34dc7c2f
BB
541
542 tx = dmu_tx_create_assigned(dp, txg);
543
e8b96c60
MA
544 /*
545 * Write out all dirty blocks of dirty datasets.
546 */
34dc7c2f 547 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 548 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
549 /*
550 * We must not sync any non-MOS datasets twice, because
551 * we may have taken a snapshot of them. However, we
552 * may sync newly-created datasets on pass 2.
553 */
554 ASSERT(!list_link_active(&ds->ds_synced_link));
29809a6c 555 list_insert_tail(&synced_datasets, ds);
34dc7c2f
BB
556 dsl_dataset_sync(ds, zio, tx);
557 }
e8b96c60 558 VERIFY0(zio_wait(zio));
9babb374 559
e8b96c60
MA
560 /*
561 * We have written all of the accounted dirty data, so our
562 * dp_space_towrite should now be zero. However, some seldom-used
563 * code paths do not adhere to this (e.g. dbuf_undirty(), also
564 * rounding error in dbuf_write_physdone).
565 * Shore up the accounting of any dirtied space now.
566 */
567 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
34dc7c2f 568
539d33c7
GM
569 /*
570 * Update the long range free counter after
571 * we're done syncing user data
572 */
573 mutex_enter(&dp->dp_lock);
574 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
575 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
576 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
577 mutex_exit(&dp->dp_lock);
578
29809a6c
MA
579 /*
580 * After the data blocks have been written (ensured by the zio_wait()
64fc7762
MA
581 * above), update the user/group space accounting. This happens
582 * in tasks dispatched to dp_sync_taskq, so wait for them before
583 * continuing.
29809a6c 584 */
e8b96c60
MA
585 for (ds = list_head(&synced_datasets); ds != NULL;
586 ds = list_next(&synced_datasets, ds)) {
428870ff 587 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
e8b96c60 588 }
64fc7762 589 taskq_wait(dp->dp_sync_taskq);
9babb374
BB
590
591 /*
592 * Sync the datasets again to push out the changes due to
428870ff 593 * userspace updates. This must be done before we process the
29809a6c
MA
594 * sync tasks, so that any snapshots will have the correct
595 * user accounting information (and we won't get confused
596 * about which blocks are part of the snapshot).
9babb374
BB
597 */
598 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
e8b96c60 599 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
9babb374
BB
600 ASSERT(list_link_active(&ds->ds_synced_link));
601 dmu_buf_rele(ds->ds_dbuf, ds);
602 dsl_dataset_sync(ds, zio, tx);
603 }
e8b96c60 604 VERIFY0(zio_wait(zio));
9babb374 605
428870ff 606 /*
29809a6c
MA
607 * Now that the datasets have been completely synced, we can
608 * clean up our in-memory structures accumulated while syncing:
609 *
610 * - move dead blocks from the pending deadlist to the on-disk deadlist
29809a6c 611 * - release hold from dsl_dataset_dirty()
428870ff 612 */
e8b96c60 613 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
0efd9791 614 dsl_dataset_sync_done(ds, tx);
428870ff
BB
615 }
616
e8b96c60 617 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
34dc7c2f 618 dsl_dir_sync(dd, tx);
e8b96c60 619 }
b128c09f 620
29809a6c
MA
621 /*
622 * The MOS's space is accounted for in the pool/$MOS
623 * (dp_mos_dir). We can't modify the mos while we're syncing
624 * it, so we remember the deltas and apply them here.
625 */
626 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
627 dp->dp_mos_uncompressed_delta != 0) {
628 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
629 dp->dp_mos_used_delta,
630 dp->dp_mos_compressed_delta,
631 dp->dp_mos_uncompressed_delta, tx);
632 dp->dp_mos_used_delta = 0;
633 dp->dp_mos_compressed_delta = 0;
634 dp->dp_mos_uncompressed_delta = 0;
635 }
636
64fc7762 637 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
e8b96c60 638 dsl_pool_sync_mos(dp, tx);
34dc7c2f
BB
639 }
640
29809a6c
MA
641 /*
642 * If we modify a dataset in the same txg that we want to destroy it,
643 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
644 * dsl_dir_destroy_check() will fail if there are unexpected holds.
645 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
646 * and clearing the hold on it) before we process the sync_tasks.
647 * The MOS data dirtied by the sync_tasks will be synced on the next
648 * pass.
649 */
29809a6c 650 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
13fe0198 651 dsl_sync_task_t *dst;
29809a6c
MA
652 /*
653 * No more sync tasks should have been added while we
654 * were syncing.
655 */
e8b96c60
MA
656 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
657 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
13fe0198 658 dsl_sync_task_sync(dst, tx);
29809a6c
MA
659 }
660
34dc7c2f 661 dmu_tx_commit(tx);
b128c09f 662
e8b96c60 663 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
34dc7c2f
BB
664}
665
666void
428870ff 667dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
34dc7c2f 668{
29809a6c 669 zilog_t *zilog;
34dc7c2f 670
55922e73 671 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
e8b96c60 672 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
55922e73
GW
673 /*
674 * We don't remove the zilog from the dp_dirty_zilogs
675 * list until after we've cleaned it. This ensures that
676 * callers of zilog_is_dirty() receive an accurate
677 * answer when they are racing with the spa sync thread.
678 */
29809a6c 679 zil_clean(zilog, txg);
55922e73 680 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
29809a6c
MA
681 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
682 dmu_buf_rele(ds->ds_dbuf, zilog);
34dc7c2f 683 }
428870ff 684 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
34dc7c2f
BB
685}
686
687/*
688 * TRUE if the current thread is the tx_sync_thread or if we
689 * are being called from SPA context during pool initialization.
690 */
691int
692dsl_pool_sync_context(dsl_pool_t *dp)
693{
694 return (curthread == dp->dp_tx.tx_sync_thread ||
64fc7762
MA
695 spa_is_initializing(dp->dp_spa) ||
696 taskq_member(dp->dp_sync_taskq, curthread));
34dc7c2f
BB
697}
698
699uint64_t
700dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
701{
702 uint64_t space, resv;
703
704 /*
34dc7c2f
BB
705 * If we're trying to assess whether it's OK to do a free,
706 * cut the reservation in half to allow forward progress
707 * (e.g. make it possible to rm(1) files from a full pool).
708 */
709 space = spa_get_dspace(dp->dp_spa);
0c60cc32 710 resv = spa_get_slop_space(dp->dp_spa);
34dc7c2f
BB
711 if (netfree)
712 resv >>= 1;
713
714 return (space - resv);
715}
716
e8b96c60
MA
717boolean_t
718dsl_pool_need_dirty_delay(dsl_pool_t *dp)
34dc7c2f 719{
e8b96c60
MA
720 uint64_t delay_min_bytes =
721 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
722 boolean_t rv;
34dc7c2f 723
e8b96c60
MA
724 mutex_enter(&dp->dp_lock);
725 if (dp->dp_dirty_total > zfs_dirty_data_sync)
726 txg_kick(dp);
727 rv = (dp->dp_dirty_total > delay_min_bytes);
728 mutex_exit(&dp->dp_lock);
729 return (rv);
34dc7c2f
BB
730}
731
732void
e8b96c60 733dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
34dc7c2f 734{
e8b96c60
MA
735 if (space > 0) {
736 mutex_enter(&dp->dp_lock);
737 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
738 dsl_pool_dirty_delta(dp, space);
739 mutex_exit(&dp->dp_lock);
740 }
34dc7c2f
BB
741}
742
743void
e8b96c60 744dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
34dc7c2f 745{
e8b96c60
MA
746 ASSERT3S(space, >=, 0);
747 if (space == 0)
34dc7c2f
BB
748 return;
749
e8b96c60
MA
750 mutex_enter(&dp->dp_lock);
751 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
752 /* XXX writing something we didn't dirty? */
753 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
34dc7c2f 754 }
e8b96c60
MA
755 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
756 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
757 ASSERT3U(dp->dp_dirty_total, >=, space);
758 dsl_pool_dirty_delta(dp, -space);
759 mutex_exit(&dp->dp_lock);
34dc7c2f 760}
b128c09f
BB
761
762/* ARGSUSED */
763static int
13fe0198 764upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
b128c09f
BB
765{
766 dmu_tx_t *tx = arg;
767 dsl_dataset_t *ds, *prev = NULL;
768 int err;
b128c09f 769
13fe0198 770 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
b128c09f
BB
771 if (err)
772 return (err);
773
d683ddbb
JG
774 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
775 err = dsl_dataset_hold_obj(dp,
776 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
b128c09f
BB
777 if (err) {
778 dsl_dataset_rele(ds, FTAG);
779 return (err);
780 }
781
d683ddbb 782 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
b128c09f
BB
783 break;
784 dsl_dataset_rele(ds, FTAG);
785 ds = prev;
786 prev = NULL;
787 }
788
789 if (prev == NULL) {
790 prev = dp->dp_origin_snap;
791
792 /*
793 * The $ORIGIN can't have any data, or the accounting
794 * will be wrong.
795 */
cc9bb3e5 796 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
d683ddbb 797 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
cc9bb3e5 798 rrw_exit(&ds->ds_bp_rwlock, FTAG);
b128c09f
BB
799
800 /* The origin doesn't get attached to itself */
801 if (ds->ds_object == prev->ds_object) {
802 dsl_dataset_rele(ds, FTAG);
803 return (0);
804 }
805
806 dmu_buf_will_dirty(ds->ds_dbuf, tx);
d683ddbb
JG
807 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
808 dsl_dataset_phys(ds)->ds_prev_snap_txg =
809 dsl_dataset_phys(prev)->ds_creation_txg;
b128c09f
BB
810
811 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
d683ddbb 812 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
b128c09f
BB
813
814 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 815 dsl_dataset_phys(prev)->ds_num_children++;
b128c09f 816
d683ddbb 817 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
b128c09f 818 ASSERT(ds->ds_prev == NULL);
13fe0198 819 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb
JG
820 dsl_dataset_phys(ds)->ds_prev_snap_obj,
821 ds, &ds->ds_prev));
b128c09f
BB
822 }
823 }
824
d683ddbb
JG
825 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
826 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
b128c09f 827
d683ddbb 828 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
428870ff 829 dmu_buf_will_dirty(prev->ds_dbuf, tx);
d683ddbb 830 dsl_dataset_phys(prev)->ds_next_clones_obj =
b128c09f
BB
831 zap_create(dp->dp_meta_objset,
832 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
833 }
13fe0198 834 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb 835 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
b128c09f
BB
836
837 dsl_dataset_rele(ds, FTAG);
838 if (prev != dp->dp_origin_snap)
839 dsl_dataset_rele(prev, FTAG);
840 return (0);
841}
842
843void
844dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
845{
846 ASSERT(dmu_tx_is_syncing(tx));
847 ASSERT(dp->dp_origin_snap != NULL);
848
13fe0198 849 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
9c43027b 850 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
428870ff
BB
851}
852
853/* ARGSUSED */
854static int
13fe0198 855upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
428870ff
BB
856{
857 dmu_tx_t *tx = arg;
428870ff
BB
858 objset_t *mos = dp->dp_meta_objset;
859
d683ddbb 860 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
428870ff
BB
861 dsl_dataset_t *origin;
862
13fe0198 863 VERIFY0(dsl_dataset_hold_obj(dp,
d683ddbb 864 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
428870ff 865
d683ddbb 866 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
428870ff 867 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
d683ddbb
JG
868 dsl_dir_phys(origin->ds_dir)->dd_clones =
869 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
870 0, tx);
428870ff
BB
871 }
872
13fe0198 873 VERIFY0(zap_add_int(dp->dp_meta_objset,
d683ddbb
JG
874 dsl_dir_phys(origin->ds_dir)->dd_clones,
875 ds->ds_object, tx));
428870ff
BB
876
877 dsl_dataset_rele(origin, FTAG);
878 }
428870ff
BB
879 return (0);
880}
881
882void
883dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
884{
428870ff
BB
885 uint64_t obj;
886
d6320ddb
BB
887 ASSERT(dmu_tx_is_syncing(tx));
888
428870ff 889 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
13fe0198 890 VERIFY0(dsl_pool_open_special_dir(dp,
428870ff
BB
891 FREE_DIR_NAME, &dp->dp_free_dir));
892
893 /*
894 * We can't use bpobj_alloc(), because spa_version() still
895 * returns the old version, and we need a new-version bpobj with
896 * subobj support. So call dmu_object_alloc() directly.
897 */
898 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
f1512ee6 899 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
13fe0198 900 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428870ff 901 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
13fe0198 902 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
428870ff 903
13fe0198 904 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
9c43027b 905 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
b128c09f
BB
906}
907
908void
909dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
910{
911 uint64_t dsobj;
912 dsl_dataset_t *ds;
913
914 ASSERT(dmu_tx_is_syncing(tx));
915 ASSERT(dp->dp_origin_snap == NULL);
13fe0198 916 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
b128c09f
BB
917
918 /* create the origin dir, ds, & snap-ds */
b128c09f 919 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
b5256303 920 NULL, 0, kcred, NULL, tx);
13fe0198
MA
921 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
922 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
d683ddbb 923 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
b128c09f
BB
924 dp, &dp->dp_origin_snap));
925 dsl_dataset_rele(ds, FTAG);
b128c09f 926}
9babb374
BB
927
928taskq_t *
3558fd73 929dsl_pool_iput_taskq(dsl_pool_t *dp)
9babb374 930{
3558fd73 931 return (dp->dp_iput_taskq);
9babb374 932}
428870ff
BB
933
934/*
935 * Walk through the pool-wide zap object of temporary snapshot user holds
936 * and release them.
937 */
938void
939dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
940{
941 zap_attribute_t za;
942 zap_cursor_t zc;
943 objset_t *mos = dp->dp_meta_objset;
944 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
95fd54a1 945 nvlist_t *holds;
428870ff
BB
946
947 if (zapobj == 0)
948 return;
949 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
950
95fd54a1
SH
951 holds = fnvlist_alloc();
952
428870ff
BB
953 for (zap_cursor_init(&zc, mos, zapobj);
954 zap_cursor_retrieve(&zc, &za) == 0;
955 zap_cursor_advance(&zc)) {
956 char *htag;
95fd54a1 957 nvlist_t *tags;
428870ff
BB
958
959 htag = strchr(za.za_name, '-');
960 *htag = '\0';
961 ++htag;
95fd54a1
SH
962 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
963 tags = fnvlist_alloc();
964 fnvlist_add_boolean(tags, htag);
965 fnvlist_add_nvlist(holds, za.za_name, tags);
966 fnvlist_free(tags);
967 } else {
968 fnvlist_add_boolean(tags, htag);
969 }
428870ff 970 }
95fd54a1
SH
971 dsl_dataset_user_release_tmp(dp, holds);
972 fnvlist_free(holds);
428870ff
BB
973 zap_cursor_fini(&zc);
974}
975
976/*
977 * Create the pool-wide zap object for storing temporary snapshot holds.
978 */
979void
980dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
981{
982 objset_t *mos = dp->dp_meta_objset;
983
984 ASSERT(dp->dp_tmp_userrefs_obj == 0);
985 ASSERT(dmu_tx_is_syncing(tx));
986
9ae529ec
CS
987 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
988 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
428870ff
BB
989}
990
991static int
992dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
13fe0198 993 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
428870ff
BB
994{
995 objset_t *mos = dp->dp_meta_objset;
996 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
997 char *name;
998 int error;
999
1000 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1001 ASSERT(dmu_tx_is_syncing(tx));
1002
1003 /*
1004 * If the pool was created prior to SPA_VERSION_USERREFS, the
1005 * zap object for temporary holds might not exist yet.
1006 */
1007 if (zapobj == 0) {
1008 if (holding) {
1009 dsl_pool_user_hold_create_obj(dp, tx);
1010 zapobj = dp->dp_tmp_userrefs_obj;
1011 } else {
2e528b49 1012 return (SET_ERROR(ENOENT));
428870ff
BB
1013 }
1014 }
1015
1016 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1017 if (holding)
13fe0198 1018 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
428870ff
BB
1019 else
1020 error = zap_remove(mos, zapobj, name, tx);
1021 strfree(name);
1022
1023 return (error);
1024}
1025
1026/*
1027 * Add a temporary hold for the given dataset object and tag.
1028 */
1029int
1030dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
13fe0198 1031 uint64_t now, dmu_tx_t *tx)
428870ff
BB
1032{
1033 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1034}
1035
1036/*
1037 * Release a temporary hold for the given dataset object and tag.
1038 */
1039int
1040dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1041 dmu_tx_t *tx)
1042{
13fe0198 1043 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
428870ff
BB
1044 tx, B_FALSE));
1045}
c409e464 1046
13fe0198
MA
1047/*
1048 * DSL Pool Configuration Lock
1049 *
1050 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1051 * creation / destruction / rename / property setting). It must be held for
1052 * read to hold a dataset or dsl_dir. I.e. you must call
1053 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1054 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1055 * must be held continuously until all datasets and dsl_dirs are released.
1056 *
1057 * The only exception to this rule is that if a "long hold" is placed on
1058 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1059 * is still held. The long hold will prevent the dataset from being
1060 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1061 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1062 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1063 *
1064 * Legitimate long-holders (including owners) should be long-running, cancelable
1065 * tasks that should cause "zfs destroy" to fail. This includes DMU
1066 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1067 * "zfs send", and "zfs diff". There are several other long-holders whose
1068 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1069 *
1070 * The usual formula for long-holding would be:
1071 * dsl_pool_hold()
1072 * dsl_dataset_hold()
1073 * ... perform checks ...
1074 * dsl_dataset_long_hold()
1075 * dsl_pool_rele()
1076 * ... perform long-running task ...
1077 * dsl_dataset_long_rele()
1078 * dsl_dataset_rele()
1079 *
1080 * Note that when the long hold is released, the dataset is still held but
1081 * the pool is not held. The dataset may change arbitrarily during this time
1082 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1083 * dataset except release it.
1084 *
1085 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1086 * or modifying operations.
1087 *
1088 * Modifying operations should generally use dsl_sync_task(). The synctask
1089 * infrastructure enforces proper locking strategy with respect to the
1090 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1091 *
1092 * Read-only operations will manually hold the pool, then the dataset, obtain
1093 * information from the dataset, then release the pool and dataset.
1094 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1095 * hold/rele.
1096 */
1097
1098int
1099dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1100{
1101 spa_t *spa;
1102 int error;
1103
1104 error = spa_open(name, &spa, tag);
1105 if (error == 0) {
1106 *dp = spa_get_dsl(spa);
1107 dsl_pool_config_enter(*dp, tag);
1108 }
1109 return (error);
1110}
1111
1112void
1113dsl_pool_rele(dsl_pool_t *dp, void *tag)
1114{
1115 dsl_pool_config_exit(dp, tag);
1116 spa_close(dp->dp_spa, tag);
1117}
1118
1119void
1120dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1121{
1122 /*
1123 * We use a "reentrant" reader-writer lock, but not reentrantly.
1124 *
1125 * The rrwlock can (with the track_all flag) track all reading threads,
1126 * which is very useful for debugging which code path failed to release
1127 * the lock, and for verifying that the *current* thread does hold
1128 * the lock.
1129 *
1130 * (Unlike a rwlock, which knows that N threads hold it for
1131 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1132 * if any thread holds it for read, even if this thread doesn't).
1133 */
1134 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1135 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1136}
1137
5e8cd5d1
AJ
1138void
1139dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1140{
1141 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1142 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1143}
1144
13fe0198
MA
1145void
1146dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1147{
1148 rrw_exit(&dp->dp_config_rwlock, tag);
1149}
1150
1151boolean_t
1152dsl_pool_config_held(dsl_pool_t *dp)
1153{
1154 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1155}
1156
9c43027b
AJ
1157boolean_t
1158dsl_pool_config_held_writer(dsl_pool_t *dp)
1159{
1160 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1161}
1162
c409e464 1163#if defined(_KERNEL) && defined(HAVE_SPL)
40a806df
NB
1164EXPORT_SYMBOL(dsl_pool_config_enter);
1165EXPORT_SYMBOL(dsl_pool_config_exit);
1166
02730c33 1167/* BEGIN CSTYLED */
d1d7e268 1168/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
e8b96c60
MA
1169module_param(zfs_dirty_data_max_percent, int, 0444);
1170MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
c409e464 1171
d1d7e268 1172/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
e8b96c60
MA
1173module_param(zfs_dirty_data_max_max_percent, int, 0444);
1174MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
d1d7e268 1175 "zfs_dirty_data_max upper bound as % of RAM");
c409e464 1176
e8b96c60
MA
1177module_param(zfs_delay_min_dirty_percent, int, 0644);
1178MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
c409e464 1179
e8b96c60
MA
1180module_param(zfs_dirty_data_max, ulong, 0644);
1181MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
c409e464 1182
d1d7e268 1183/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
e8b96c60
MA
1184module_param(zfs_dirty_data_max_max, ulong, 0444);
1185MODULE_PARM_DESC(zfs_dirty_data_max_max,
d1d7e268 1186 "zfs_dirty_data_max upper bound in bytes");
c409e464 1187
e8b96c60
MA
1188module_param(zfs_dirty_data_sync, ulong, 0644);
1189MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
c409e464 1190
e8b96c60
MA
1191module_param(zfs_delay_scale, ulong, 0644);
1192MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
64fc7762
MA
1193
1194module_param(zfs_sync_taskq_batch_pct, int, 0644);
1195MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
1196 "max percent of CPUs that are used to sync dirty data");
a032ac4b
BB
1197
1198module_param(zfs_zil_clean_taskq_nthr_pct, int, 0644);
1199MODULE_PARM_DESC(zfs_zil_clean_taskq_nthr_pct,
1200 "max percent of CPUs that are used per dp_sync_taskq");
1201
1202module_param(zfs_zil_clean_taskq_minalloc, int, 0644);
1203MODULE_PARM_DESC(zfs_zil_clean_taskq_minalloc,
1204 "number of taskq entries that are pre-populated");
1205
1206module_param(zfs_zil_clean_taskq_maxalloc, int, 0644);
1207MODULE_PARM_DESC(zfs_zil_clean_taskq_maxalloc,
1208 "max number of taskq entries that are cached");
1209
02730c33 1210/* END CSTYLED */
c409e464 1211#endif