]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/include/sys/zap.h
Rebase master to b108
[mirror_zfs.git] / module / zfs / include / sys / zap.h
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
b128c09f 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
23 * Use is subject to license terms.
24 */
25
26#ifndef _SYS_ZAP_H
27#define _SYS_ZAP_H
28
b128c09f 29#pragma ident "%Z%%M% %I% %E% SMI"
34dc7c2f
BB
30
31/*
32 * ZAP - ZFS Attribute Processor
33 *
34 * The ZAP is a module which sits on top of the DMU (Data Management
35 * Unit) and implements a higher-level storage primitive using DMU
36 * objects. Its primary consumer is the ZPL (ZFS Posix Layer).
37 *
38 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
39 * Users should use only zap routines to access a zapobj - they should
40 * not access the DMU object directly using DMU routines.
41 *
42 * The attributes stored in a zapobj are name-value pairs. The name is
43 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
44 * terminating NULL). The value is an array of integers, which may be
45 * 1, 2, 4, or 8 bytes long. The total space used by the array (number
46 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
47 * Note that an 8-byte integer value can be used to store the location
48 * (object number) of another dmu object (which may be itself a zapobj).
49 * Note that you can use a zero-length attribute to store a single bit
50 * of information - the attribute is present or not.
51 *
52 * The ZAP routines are thread-safe. However, you must observe the
53 * DMU's restriction that a transaction may not be operated on
54 * concurrently.
55 *
56 * Any of the routines that return an int may return an I/O error (EIO
57 * or ECHECKSUM).
58 *
59 *
60 * Implementation / Performance Notes:
61 *
62 * The ZAP is intended to operate most efficiently on attributes with
63 * short (49 bytes or less) names and single 8-byte values, for which
64 * the microzap will be used. The ZAP should be efficient enough so
65 * that the user does not need to cache these attributes.
66 *
67 * The ZAP's locking scheme makes its routines thread-safe. Operations
68 * on different zapobjs will be processed concurrently. Operations on
69 * the same zapobj which only read data will be processed concurrently.
70 * Operations on the same zapobj which modify data will be processed
71 * concurrently when there are many attributes in the zapobj (because
72 * the ZAP uses per-block locking - more than 128 * (number of cpus)
73 * small attributes will suffice).
74 */
75
76/*
77 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
78 * strings) for the names of attributes, rather than a byte string
79 * bounded by an explicit length. If some day we want to support names
80 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
81 * we'll have to add routines for using length-bounded strings.
82 */
83
84#include <sys/dmu.h>
85
86#ifdef __cplusplus
87extern "C" {
88#endif
89
90#define ZAP_MAXNAMELEN 256
91#define ZAP_MAXVALUELEN 1024
92
93/*
94 * The matchtype specifies which entry will be accessed.
95 * MT_EXACT: only find an exact match (non-normalized)
96 * MT_FIRST: find the "first" normalized (case and Unicode
97 * form) match; the designated "first" match will not change as long
98 * as the set of entries with this normalization doesn't change
99 * MT_BEST: if there is an exact match, find that, otherwise find the
100 * first normalized match
101 */
102typedef enum matchtype
103{
104 MT_EXACT,
105 MT_BEST,
106 MT_FIRST
107} matchtype_t;
108
109/*
110 * Create a new zapobj with no attributes and return its object number.
111 * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
112 * otherwise any matchtype can be used for lookups.
113 *
114 * normflags specifies what normalization will be done. values are:
115 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
116 * only)
117 * U8_TEXTPREP_TOLOWER: case normalization will be performed.
118 * MT_FIRST/MT_BEST matching will find entries that match without
119 * regard to case (eg. looking for "foo" can find an entry "Foo").
120 * Eventually, other flags will permit unicode normalization as well.
121 */
122uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
123 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
124uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
125 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
126
127/*
128 * Create a new zapobj with no attributes from the given (unallocated)
129 * object number.
130 */
131int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
132 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
133int zap_create_claim_norm(objset_t *ds, uint64_t obj,
134 int normflags, dmu_object_type_t ot,
135 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136
137/*
138 * The zapobj passed in must be a valid ZAP object for all of the
139 * following routines.
140 */
141
142/*
143 * Destroy this zapobj and all its attributes.
144 *
145 * Frees the object number using dmu_object_free.
146 */
147int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
148
149/*
150 * Manipulate attributes.
151 *
152 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
153 */
154
155/*
156 * Retrieve the contents of the attribute with the given name.
157 *
158 * If the requested attribute does not exist, the call will fail and
159 * return ENOENT.
160 *
161 * If 'integer_size' is smaller than the attribute's integer size, the
162 * call will fail and return EINVAL.
163 *
164 * If 'integer_size' is equal to or larger than the attribute's integer
165 * size, the call will succeed and return 0. * When converting to a
166 * larger integer size, the integers will be treated as unsigned (ie. no
167 * sign-extension will be performed).
168 *
169 * 'num_integers' is the length (in integers) of 'buf'.
170 *
171 * If the attribute is longer than the buffer, as many integers as will
172 * fit will be transferred to 'buf'. If the entire attribute was not
173 * transferred, the call will return EOVERFLOW.
174 *
175 * If rn_len is nonzero, realname will be set to the name of the found
176 * entry (which may be different from the requested name if matchtype is
177 * not MT_EXACT).
178 *
179 * If normalization_conflictp is not NULL, it will be set if there is
180 * another name with the same case/unicode normalized form.
181 */
182int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
183 uint64_t integer_size, uint64_t num_integers, void *buf);
184int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
185 uint64_t integer_size, uint64_t num_integers, void *buf,
186 matchtype_t mt, char *realname, int rn_len,
187 boolean_t *normalization_conflictp);
188
189/*
190 * Create an attribute with the given name and value.
191 *
192 * If an attribute with the given name already exists, the call will
193 * fail and return EEXIST.
194 */
195int zap_add(objset_t *ds, uint64_t zapobj, const char *name,
196 int integer_size, uint64_t num_integers,
197 const void *val, dmu_tx_t *tx);
198
199/*
200 * Set the attribute with the given name to the given value. If an
201 * attribute with the given name does not exist, it will be created. If
202 * an attribute with the given name already exists, the previous value
203 * will be overwritten. The integer_size may be different from the
204 * existing attribute's integer size, in which case the attribute's
205 * integer size will be updated to the new value.
206 */
207int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
208 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
209
210/*
211 * Get the length (in integers) and the integer size of the specified
212 * attribute.
213 *
214 * If the requested attribute does not exist, the call will fail and
215 * return ENOENT.
216 */
217int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
218 uint64_t *integer_size, uint64_t *num_integers);
219
220/*
221 * Remove the specified attribute.
222 *
223 * If the specified attribute does not exist, the call will fail and
224 * return ENOENT.
225 */
226int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
227int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
228 matchtype_t mt, dmu_tx_t *tx);
229
230/*
231 * Returns (in *count) the number of attributes in the specified zap
232 * object.
233 */
234int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
235
236
237/*
238 * Returns (in name) the name of the entry whose (value & mask)
239 * (za_first_integer) is value, or ENOENT if not found. The string
240 * pointed to by name must be at least 256 bytes long. If mask==0, the
241 * match must be exact (ie, same as mask=-1ULL).
242 */
243int zap_value_search(objset_t *os, uint64_t zapobj,
244 uint64_t value, uint64_t mask, char *name);
245
b128c09f
BB
246/*
247 * Transfer all the entries from fromobj into intoobj. Only works on
248 * int_size=8 num_integers=1 values. Fails if there are any duplicated
249 * entries.
250 */
251int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
252
253/*
254 * Manipulate entries where the name + value are the "same" (the name is
255 * a stringified version of the value).
256 */
257int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
258int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
259int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
260
34dc7c2f
BB
261struct zap;
262struct zap_leaf;
263typedef struct zap_cursor {
264 /* This structure is opaque! */
265 objset_t *zc_objset;
266 struct zap *zc_zap;
267 struct zap_leaf *zc_leaf;
268 uint64_t zc_zapobj;
269 uint64_t zc_hash;
270 uint32_t zc_cd;
271} zap_cursor_t;
272
273typedef struct {
274 int za_integer_length;
275 /*
276 * za_normalization_conflict will be set if there are additional
277 * entries with this normalized form (eg, "foo" and "Foo").
278 */
279 boolean_t za_normalization_conflict;
280 uint64_t za_num_integers;
281 uint64_t za_first_integer; /* no sign extension for <8byte ints */
282 char za_name[MAXNAMELEN];
283} zap_attribute_t;
284
285/*
286 * The interface for listing all the attributes of a zapobj can be
287 * thought of as cursor moving down a list of the attributes one by
288 * one. The cookie returned by the zap_cursor_serialize routine is
289 * persistent across system calls (and across reboot, even).
290 */
291
292/*
293 * Initialize a zap cursor, pointing to the "first" attribute of the
294 * zapobj. You must _fini the cursor when you are done with it.
295 */
296void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
297void zap_cursor_fini(zap_cursor_t *zc);
298
299/*
300 * Get the attribute currently pointed to by the cursor. Returns
301 * ENOENT if at the end of the attributes.
302 */
303int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
304
305/*
306 * Advance the cursor to the next attribute.
307 */
308void zap_cursor_advance(zap_cursor_t *zc);
309
310/*
311 * Get a persistent cookie pointing to the current position of the zap
312 * cursor. The low 4 bits in the cookie are always zero, and thus can
313 * be used as to differentiate a serialized cookie from a different type
314 * of value. The cookie will be less than 2^32 as long as there are
315 * fewer than 2^22 (4.2 million) entries in the zap object.
316 */
317uint64_t zap_cursor_serialize(zap_cursor_t *zc);
318
319/*
320 * Initialize a zap cursor pointing to the position recorded by
321 * zap_cursor_serialize (in the "serialized" argument). You can also
322 * use a "serialized" argument of 0 to start at the beginning of the
323 * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to
324 * zap_cursor_init(...).)
325 */
326void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
327 uint64_t zapobj, uint64_t serialized);
328
329
330#define ZAP_HISTOGRAM_SIZE 10
331
332typedef struct zap_stats {
333 /*
334 * Size of the pointer table (in number of entries).
335 * This is always a power of 2, or zero if it's a microzap.
336 * In general, it should be considerably greater than zs_num_leafs.
337 */
338 uint64_t zs_ptrtbl_len;
339
340 uint64_t zs_blocksize; /* size of zap blocks */
341
342 /*
343 * The number of blocks used. Note that some blocks may be
344 * wasted because old ptrtbl's and large name/value blocks are
345 * not reused. (Although their space is reclaimed, we don't
346 * reuse those offsets in the object.)
347 */
348 uint64_t zs_num_blocks;
349
350 /*
351 * Pointer table values from zap_ptrtbl in the zap_phys_t
352 */
353 uint64_t zs_ptrtbl_nextblk; /* next (larger) copy start block */
354 uint64_t zs_ptrtbl_blks_copied; /* number source blocks copied */
355 uint64_t zs_ptrtbl_zt_blk; /* starting block number */
356 uint64_t zs_ptrtbl_zt_numblks; /* number of blocks */
357 uint64_t zs_ptrtbl_zt_shift; /* bits to index it */
358
359 /*
360 * Values of the other members of the zap_phys_t
361 */
362 uint64_t zs_block_type; /* ZBT_HEADER */
363 uint64_t zs_magic; /* ZAP_MAGIC */
364 uint64_t zs_num_leafs; /* The number of leaf blocks */
365 uint64_t zs_num_entries; /* The number of zap entries */
366 uint64_t zs_salt; /* salt to stir into hash function */
367
368 /*
369 * Histograms. For all histograms, the last index
370 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
371 * than what can be represented. For example
372 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
373 * of leafs with more than 45 entries.
374 */
375
376 /*
377 * zs_leafs_with_n_pointers[n] is the number of leafs with
378 * 2^n pointers to it.
379 */
380 uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
381
382 /*
383 * zs_leafs_with_n_entries[n] is the number of leafs with
384 * [n*5, (n+1)*5) entries. In the current implementation, there
385 * can be at most 55 entries in any block, but there may be
386 * fewer if the name or value is large, or the block is not
387 * completely full.
388 */
389 uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
390
391 /*
392 * zs_leafs_n_tenths_full[n] is the number of leafs whose
393 * fullness is in the range [n/10, (n+1)/10).
394 */
395 uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
396
397 /*
398 * zs_entries_using_n_chunks[n] is the number of entries which
399 * consume n 24-byte chunks. (Note, large names/values only use
400 * one chunk, but contribute to zs_num_blocks_large.)
401 */
402 uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
403
404 /*
405 * zs_buckets_with_n_entries[n] is the number of buckets (each
406 * leaf has 64 buckets) with n entries.
407 * zs_buckets_with_n_entries[1] should be very close to
408 * zs_num_entries.
409 */
410 uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
411} zap_stats_t;
412
413/*
414 * Get statistics about a ZAP object. Note: you need to be aware of the
415 * internal implementation of the ZAP to correctly interpret some of the
416 * statistics. This interface shouldn't be relied on unless you really
417 * know what you're doing.
418 */
419int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
420
421#ifdef __cplusplus
422}
423#endif
424
425#endif /* _SYS_ZAP_H */