]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
OpenZFS 9102 - zfs should be able to initialize storage devices
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
cc99f275 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
cc99f275 25 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
26 */
27
34dc7c2f 28#include <sys/zfs_context.h>
34dc7c2f
BB
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/space_map.h>
32#include <sys/metaslab_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio.h>
93cf2076 35#include <sys/spa_impl.h>
f3a7f661 36#include <sys/zfeature.h>
a1d477c2 37#include <sys/vdev_indirect_mapping.h>
d2734cce 38#include <sys/zap.h>
34dc7c2f 39
d1d7e268 40#define WITH_DF_BLOCK_ALLOCATOR
6d974228 41
3dfb57a3
DB
42#define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
22c81dd8 44
e8fe6684
ED
45/*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
99b14de4 51unsigned long metaslab_aliquot = 512 << 10;
e8fe6684 52
d830d479
MA
53/*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
34dc7c2f 57
d2734cce
SD
58/*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64int zfs_metaslab_sm_blksz = (1 << 12);
65
e51be066
GW
66/*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
4e21fd06 69 * space map representation must be before we compact it on-disk.
e51be066
GW
70 * Values should be greater than or equal to 100.
71 */
72int zfs_condense_pct = 200;
73
b02fe35d
AR
74/*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
96358617 77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87int zfs_metaslab_condense_block_threshold = 4;
88
ac72fac3
GW
89/*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 92 * free space. Metaslab groups that have more free space than
ac72fac3
GW
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102int zfs_mg_noalloc_threshold = 0;
6d974228 103
f3a7f661
GW
104/*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111int zfs_mg_fragmentation_threshold = 85;
112
113/*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119int zfs_metaslab_fragmentation_threshold = 70;
120
428870ff 121/*
aa7d06a9 122 * When set will load all metaslabs when pool is first opened.
428870ff 123 */
aa7d06a9
GW
124int metaslab_debug_load = 0;
125
126/*
127 * When set will prevent metaslabs from being unloaded.
128 */
129int metaslab_debug_unload = 0;
428870ff 130
9babb374
BB
131/*
132 * Minimum size which forces the dynamic allocator to change
428870ff 133 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
4e21fd06 137uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
9babb374
BB
138
139/*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
4e21fd06 142 * Once the space map's free space drops below this level we dynamically
9babb374
BB
143 * switch to using best-fit allocations.
144 */
428870ff
BB
145int metaslab_df_free_pct = 4;
146
428870ff 147/*
93cf2076 148 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 149 */
93cf2076 150int metaslab_load_pct = 50;
428870ff
BB
151
152/*
93cf2076
GW
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
428870ff 156 */
93cf2076 157int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 158
93cf2076
GW
159/*
160 * Max number of metaslabs per group to preload.
161 */
162int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164/*
165 * Enable/disable preloading of metaslab.
166 */
f3a7f661 167int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
168
169/*
f3a7f661 170 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 171 */
f3a7f661 172int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 173
f3a7f661
GW
174/*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177int metaslab_lba_weighting_enabled = B_TRUE;
178
179/*
180 * Enable/disable metaslab group biasing.
181 */
182int metaslab_bias_enabled = B_TRUE;
183
4e21fd06 184
a1d477c2
MA
185/*
186 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
187 */
188boolean_t zfs_remap_blkptr_enable = B_TRUE;
189
4e21fd06
DB
190/*
191 * Enable/disable segment-based metaslab selection.
192 */
193int zfs_metaslab_segment_weight_enabled = B_TRUE;
194
195/*
196 * When using segment-based metaslab selection, we will continue
197 * allocating from the active metaslab until we have exhausted
198 * zfs_metaslab_switch_threshold of its buckets.
199 */
200int zfs_metaslab_switch_threshold = 2;
201
202/*
203 * Internal switch to enable/disable the metaslab allocation tracing
204 * facility.
205 */
206#ifdef _METASLAB_TRACING
207boolean_t metaslab_trace_enabled = B_TRUE;
208#endif
209
210/*
211 * Maximum entries that the metaslab allocation tracing facility will keep
212 * in a given list when running in non-debug mode. We limit the number
213 * of entries in non-debug mode to prevent us from using up too much memory.
214 * The limit should be sufficiently large that we don't expect any allocation
215 * to every exceed this value. In debug mode, the system will panic if this
216 * limit is ever reached allowing for further investigation.
217 */
218#ifdef _METASLAB_TRACING
219uint64_t metaslab_trace_max_entries = 5000;
220#endif
221
222static uint64_t metaslab_weight(metaslab_t *);
223static void metaslab_set_fragmentation(metaslab_t *);
d2734cce 224static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
a1d477c2 225static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
4e21fd06 226
492f64e9
PD
227static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
228static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
4e21fd06
DB
229#ifdef _METASLAB_TRACING
230kmem_cache_t *metaslab_alloc_trace_cache;
231#endif
93cf2076 232
34dc7c2f
BB
233/*
234 * ==========================================================================
235 * Metaslab classes
236 * ==========================================================================
237 */
238metaslab_class_t *
93cf2076 239metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
240{
241 metaslab_class_t *mc;
242
79c76d5b 243 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 244
428870ff 245 mc->mc_spa = spa;
34dc7c2f 246 mc->mc_rotor = NULL;
9babb374 247 mc->mc_ops = ops;
3dfb57a3 248 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
492f64e9 249 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
c13060e4 250 sizeof (zfs_refcount_t), KM_SLEEP);
492f64e9
PD
251 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
252 sizeof (uint64_t), KM_SLEEP);
253 for (int i = 0; i < spa->spa_alloc_count; i++)
424fd7c3 254 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
34dc7c2f
BB
255
256 return (mc);
257}
258
259void
260metaslab_class_destroy(metaslab_class_t *mc)
261{
428870ff
BB
262 ASSERT(mc->mc_rotor == NULL);
263 ASSERT(mc->mc_alloc == 0);
264 ASSERT(mc->mc_deferred == 0);
265 ASSERT(mc->mc_space == 0);
266 ASSERT(mc->mc_dspace == 0);
34dc7c2f 267
492f64e9 268 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
424fd7c3 269 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
492f64e9 270 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
c13060e4 271 sizeof (zfs_refcount_t));
492f64e9
PD
272 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
273 sizeof (uint64_t));
3dfb57a3 274 mutex_destroy(&mc->mc_lock);
34dc7c2f
BB
275 kmem_free(mc, sizeof (metaslab_class_t));
276}
277
428870ff
BB
278int
279metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 280{
428870ff
BB
281 metaslab_group_t *mg;
282 vdev_t *vd;
34dc7c2f 283
428870ff
BB
284 /*
285 * Must hold one of the spa_config locks.
286 */
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
288 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 289
428870ff
BB
290 if ((mg = mc->mc_rotor) == NULL)
291 return (0);
292
293 do {
294 vd = mg->mg_vd;
295 ASSERT(vd->vdev_mg != NULL);
296 ASSERT3P(vd->vdev_top, ==, vd);
297 ASSERT3P(mg->mg_class, ==, mc);
298 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
299 } while ((mg = mg->mg_next) != mc->mc_rotor);
300
301 return (0);
34dc7c2f
BB
302}
303
cc99f275 304static void
428870ff
BB
305metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
306 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 307{
428870ff
BB
308 atomic_add_64(&mc->mc_alloc, alloc_delta);
309 atomic_add_64(&mc->mc_deferred, defer_delta);
310 atomic_add_64(&mc->mc_space, space_delta);
311 atomic_add_64(&mc->mc_dspace, dspace_delta);
312}
34dc7c2f 313
428870ff
BB
314uint64_t
315metaslab_class_get_alloc(metaslab_class_t *mc)
316{
317 return (mc->mc_alloc);
318}
34dc7c2f 319
428870ff
BB
320uint64_t
321metaslab_class_get_deferred(metaslab_class_t *mc)
322{
323 return (mc->mc_deferred);
324}
34dc7c2f 325
428870ff
BB
326uint64_t
327metaslab_class_get_space(metaslab_class_t *mc)
328{
329 return (mc->mc_space);
330}
34dc7c2f 331
428870ff
BB
332uint64_t
333metaslab_class_get_dspace(metaslab_class_t *mc)
334{
335 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
336}
337
f3a7f661
GW
338void
339metaslab_class_histogram_verify(metaslab_class_t *mc)
340{
cc99f275
DB
341 spa_t *spa = mc->mc_spa;
342 vdev_t *rvd = spa->spa_root_vdev;
f3a7f661 343 uint64_t *mc_hist;
1c27024e 344 int i;
f3a7f661
GW
345
346 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
347 return;
348
349 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 350 KM_SLEEP);
f3a7f661 351
1c27024e 352 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
353 vdev_t *tvd = rvd->vdev_child[c];
354 metaslab_group_t *mg = tvd->vdev_mg;
355
356 /*
357 * Skip any holes, uninitialized top-levels, or
358 * vdevs that are not in this metalab class.
359 */
a1d477c2 360 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
361 mg->mg_class != mc) {
362 continue;
363 }
364
365 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
366 mc_hist[i] += mg->mg_histogram[i];
367 }
368
369 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
370 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
371
372 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
373}
374
375/*
376 * Calculate the metaslab class's fragmentation metric. The metric
377 * is weighted based on the space contribution of each metaslab group.
378 * The return value will be a number between 0 and 100 (inclusive), or
379 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
380 * zfs_frag_table for more information about the metric.
381 */
382uint64_t
383metaslab_class_fragmentation(metaslab_class_t *mc)
384{
385 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386 uint64_t fragmentation = 0;
f3a7f661
GW
387
388 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
389
1c27024e 390 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
391 vdev_t *tvd = rvd->vdev_child[c];
392 metaslab_group_t *mg = tvd->vdev_mg;
393
394 /*
a1d477c2
MA
395 * Skip any holes, uninitialized top-levels,
396 * or vdevs that are not in this metalab class.
f3a7f661 397 */
a1d477c2 398 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
399 mg->mg_class != mc) {
400 continue;
401 }
402
403 /*
404 * If a metaslab group does not contain a fragmentation
405 * metric then just bail out.
406 */
407 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (ZFS_FRAG_INVALID);
410 }
411
412 /*
413 * Determine how much this metaslab_group is contributing
414 * to the overall pool fragmentation metric.
415 */
416 fragmentation += mg->mg_fragmentation *
417 metaslab_group_get_space(mg);
418 }
419 fragmentation /= metaslab_class_get_space(mc);
420
421 ASSERT3U(fragmentation, <=, 100);
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (fragmentation);
424}
425
426/*
427 * Calculate the amount of expandable space that is available in
428 * this metaslab class. If a device is expanded then its expandable
429 * space will be the amount of allocatable space that is currently not
430 * part of this metaslab class.
431 */
432uint64_t
433metaslab_class_expandable_space(metaslab_class_t *mc)
434{
435 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
436 uint64_t space = 0;
f3a7f661
GW
437
438 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 439 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
440 vdev_t *tvd = rvd->vdev_child[c];
441 metaslab_group_t *mg = tvd->vdev_mg;
442
a1d477c2 443 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
444 mg->mg_class != mc) {
445 continue;
446 }
447
0f676dc2
GM
448 /*
449 * Calculate if we have enough space to add additional
450 * metaslabs. We report the expandable space in terms
451 * of the metaslab size since that's the unit of expansion.
452 */
453 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
454 1ULL << tvd->vdev_ms_shift);
f3a7f661
GW
455 }
456 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
457 return (space);
458}
459
34dc7c2f
BB
460static int
461metaslab_compare(const void *x1, const void *x2)
462{
ee36c709
GN
463 const metaslab_t *m1 = (const metaslab_t *)x1;
464 const metaslab_t *m2 = (const metaslab_t *)x2;
34dc7c2f 465
492f64e9
PD
466 int sort1 = 0;
467 int sort2 = 0;
468 if (m1->ms_allocator != -1 && m1->ms_primary)
469 sort1 = 1;
470 else if (m1->ms_allocator != -1 && !m1->ms_primary)
471 sort1 = 2;
472 if (m2->ms_allocator != -1 && m2->ms_primary)
473 sort2 = 1;
474 else if (m2->ms_allocator != -1 && !m2->ms_primary)
475 sort2 = 2;
476
477 /*
478 * Sort inactive metaslabs first, then primaries, then secondaries. When
479 * selecting a metaslab to allocate from, an allocator first tries its
480 * primary, then secondary active metaslab. If it doesn't have active
481 * metaslabs, or can't allocate from them, it searches for an inactive
482 * metaslab to activate. If it can't find a suitable one, it will steal
483 * a primary or secondary metaslab from another allocator.
484 */
485 if (sort1 < sort2)
486 return (-1);
487 if (sort1 > sort2)
488 return (1);
489
ee36c709
GN
490 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
491 if (likely(cmp))
492 return (cmp);
34dc7c2f 493
ee36c709 494 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
34dc7c2f 495
ee36c709 496 return (AVL_CMP(m1->ms_start, m2->ms_start));
34dc7c2f
BB
497}
498
4e21fd06
DB
499/*
500 * Verify that the space accounting on disk matches the in-core range_trees.
501 */
502void
503metaslab_verify_space(metaslab_t *msp, uint64_t txg)
504{
505 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
506 uint64_t allocated = 0;
4e21fd06 507 uint64_t sm_free_space, msp_free_space;
4e21fd06
DB
508
509 ASSERT(MUTEX_HELD(&msp->ms_lock));
510
511 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
512 return;
513
514 /*
515 * We can only verify the metaslab space when we're called
516 * from syncing context with a loaded metaslab that has an allocated
517 * space map. Calling this in non-syncing context does not
518 * provide a consistent view of the metaslab since we're performing
519 * allocations in the future.
520 */
521 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
522 !msp->ms_loaded)
523 return;
524
525 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
526 space_map_alloc_delta(msp->ms_sm);
527
528 /*
529 * Account for future allocations since we would have already
530 * deducted that space from the ms_freetree.
531 */
1c27024e 532 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
4e21fd06 533 allocated +=
d2734cce 534 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
4e21fd06 535 }
4e21fd06 536
d2734cce
SD
537 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
538 msp->ms_deferspace + range_tree_space(msp->ms_freed);
4e21fd06
DB
539
540 VERIFY3U(sm_free_space, ==, msp_free_space);
541}
542
543/*
544 * ==========================================================================
545 * Metaslab groups
546 * ==========================================================================
547 */
ac72fac3
GW
548/*
549 * Update the allocatable flag and the metaslab group's capacity.
550 * The allocatable flag is set to true if the capacity is below
3dfb57a3
DB
551 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
552 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
553 * transitions from allocatable to non-allocatable or vice versa then the
554 * metaslab group's class is updated to reflect the transition.
ac72fac3
GW
555 */
556static void
557metaslab_group_alloc_update(metaslab_group_t *mg)
558{
559 vdev_t *vd = mg->mg_vd;
560 metaslab_class_t *mc = mg->mg_class;
561 vdev_stat_t *vs = &vd->vdev_stat;
562 boolean_t was_allocatable;
3dfb57a3 563 boolean_t was_initialized;
ac72fac3
GW
564
565 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
566 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
567 SCL_ALLOC);
ac72fac3
GW
568
569 mutex_enter(&mg->mg_lock);
570 was_allocatable = mg->mg_allocatable;
3dfb57a3 571 was_initialized = mg->mg_initialized;
ac72fac3
GW
572
573 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
574 (vs->vs_space + 1);
575
3dfb57a3
DB
576 mutex_enter(&mc->mc_lock);
577
578 /*
579 * If the metaslab group was just added then it won't
580 * have any space until we finish syncing out this txg.
581 * At that point we will consider it initialized and available
582 * for allocations. We also don't consider non-activated
583 * metaslab groups (e.g. vdevs that are in the middle of being removed)
584 * to be initialized, because they can't be used for allocation.
585 */
586 mg->mg_initialized = metaslab_group_initialized(mg);
587 if (!was_initialized && mg->mg_initialized) {
588 mc->mc_groups++;
589 } else if (was_initialized && !mg->mg_initialized) {
590 ASSERT3U(mc->mc_groups, >, 0);
591 mc->mc_groups--;
592 }
593 if (mg->mg_initialized)
594 mg->mg_no_free_space = B_FALSE;
595
f3a7f661
GW
596 /*
597 * A metaslab group is considered allocatable if it has plenty
598 * of free space or is not heavily fragmented. We only take
599 * fragmentation into account if the metaslab group has a valid
600 * fragmentation metric (i.e. a value between 0 and 100).
601 */
3dfb57a3
DB
602 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
603 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
f3a7f661
GW
604 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
605 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
606
607 /*
608 * The mc_alloc_groups maintains a count of the number of
609 * groups in this metaslab class that are still above the
610 * zfs_mg_noalloc_threshold. This is used by the allocating
611 * threads to determine if they should avoid allocations to
612 * a given group. The allocator will avoid allocations to a group
613 * if that group has reached or is below the zfs_mg_noalloc_threshold
614 * and there are still other groups that are above the threshold.
615 * When a group transitions from allocatable to non-allocatable or
616 * vice versa we update the metaslab class to reflect that change.
617 * When the mc_alloc_groups value drops to 0 that means that all
618 * groups have reached the zfs_mg_noalloc_threshold making all groups
619 * eligible for allocations. This effectively means that all devices
620 * are balanced again.
621 */
622 if (was_allocatable && !mg->mg_allocatable)
623 mc->mc_alloc_groups--;
624 else if (!was_allocatable && mg->mg_allocatable)
625 mc->mc_alloc_groups++;
3dfb57a3 626 mutex_exit(&mc->mc_lock);
f3a7f661 627
ac72fac3
GW
628 mutex_exit(&mg->mg_lock);
629}
630
34dc7c2f 631metaslab_group_t *
492f64e9 632metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
34dc7c2f
BB
633{
634 metaslab_group_t *mg;
635
79c76d5b 636 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f 637 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
619f0976
GW
638 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
639 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
492f64e9
PD
640 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
641 KM_SLEEP);
642 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
643 KM_SLEEP);
34dc7c2f
BB
644 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
645 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 646 mg->mg_vd = vd;
428870ff
BB
647 mg->mg_class = mc;
648 mg->mg_activation_count = 0;
3dfb57a3
DB
649 mg->mg_initialized = B_FALSE;
650 mg->mg_no_free_space = B_TRUE;
492f64e9
PD
651 mg->mg_allocators = allocators;
652
c13060e4
TS
653 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
654 sizeof (zfs_refcount_t), KM_SLEEP);
492f64e9
PD
655 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
656 sizeof (uint64_t), KM_SLEEP);
657 for (int i = 0; i < allocators; i++) {
424fd7c3 658 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
492f64e9
PD
659 mg->mg_cur_max_alloc_queue_depth[i] = 0;
660 }
34dc7c2f 661
3c51c5cb 662 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
1229323d 663 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
93cf2076 664
34dc7c2f
BB
665 return (mg);
666}
667
668void
669metaslab_group_destroy(metaslab_group_t *mg)
670{
428870ff
BB
671 ASSERT(mg->mg_prev == NULL);
672 ASSERT(mg->mg_next == NULL);
673 /*
674 * We may have gone below zero with the activation count
675 * either because we never activated in the first place or
676 * because we're done, and possibly removing the vdev.
677 */
678 ASSERT(mg->mg_activation_count <= 0);
679
3c51c5cb 680 taskq_destroy(mg->mg_taskq);
34dc7c2f 681 avl_destroy(&mg->mg_metaslab_tree);
492f64e9
PD
682 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
683 kmem_free(mg->mg_secondaries, mg->mg_allocators *
684 sizeof (metaslab_t *));
34dc7c2f 685 mutex_destroy(&mg->mg_lock);
619f0976
GW
686 mutex_destroy(&mg->mg_ms_initialize_lock);
687 cv_destroy(&mg->mg_ms_initialize_cv);
492f64e9
PD
688
689 for (int i = 0; i < mg->mg_allocators; i++) {
424fd7c3 690 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
492f64e9
PD
691 mg->mg_cur_max_alloc_queue_depth[i] = 0;
692 }
693 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
c13060e4 694 sizeof (zfs_refcount_t));
492f64e9
PD
695 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
696 sizeof (uint64_t));
697
34dc7c2f
BB
698 kmem_free(mg, sizeof (metaslab_group_t));
699}
700
428870ff
BB
701void
702metaslab_group_activate(metaslab_group_t *mg)
703{
704 metaslab_class_t *mc = mg->mg_class;
705 metaslab_group_t *mgprev, *mgnext;
706
a1d477c2 707 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
428870ff
BB
708
709 ASSERT(mc->mc_rotor != mg);
710 ASSERT(mg->mg_prev == NULL);
711 ASSERT(mg->mg_next == NULL);
712 ASSERT(mg->mg_activation_count <= 0);
713
714 if (++mg->mg_activation_count <= 0)
715 return;
716
717 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
ac72fac3 718 metaslab_group_alloc_update(mg);
428870ff
BB
719
720 if ((mgprev = mc->mc_rotor) == NULL) {
721 mg->mg_prev = mg;
722 mg->mg_next = mg;
723 } else {
724 mgnext = mgprev->mg_next;
725 mg->mg_prev = mgprev;
726 mg->mg_next = mgnext;
727 mgprev->mg_next = mg;
728 mgnext->mg_prev = mg;
729 }
730 mc->mc_rotor = mg;
731}
732
a1d477c2
MA
733/*
734 * Passivate a metaslab group and remove it from the allocation rotor.
735 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
736 * a metaslab group. This function will momentarily drop spa_config_locks
737 * that are lower than the SCL_ALLOC lock (see comment below).
738 */
428870ff
BB
739void
740metaslab_group_passivate(metaslab_group_t *mg)
741{
742 metaslab_class_t *mc = mg->mg_class;
a1d477c2 743 spa_t *spa = mc->mc_spa;
428870ff 744 metaslab_group_t *mgprev, *mgnext;
a1d477c2 745 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
428870ff 746
a1d477c2
MA
747 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
748 (SCL_ALLOC | SCL_ZIO));
428870ff
BB
749
750 if (--mg->mg_activation_count != 0) {
751 ASSERT(mc->mc_rotor != mg);
752 ASSERT(mg->mg_prev == NULL);
753 ASSERT(mg->mg_next == NULL);
754 ASSERT(mg->mg_activation_count < 0);
755 return;
756 }
757
a1d477c2
MA
758 /*
759 * The spa_config_lock is an array of rwlocks, ordered as
760 * follows (from highest to lowest):
761 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
762 * SCL_ZIO > SCL_FREE > SCL_VDEV
763 * (For more information about the spa_config_lock see spa_misc.c)
764 * The higher the lock, the broader its coverage. When we passivate
765 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
766 * config locks. However, the metaslab group's taskq might be trying
767 * to preload metaslabs so we must drop the SCL_ZIO lock and any
768 * lower locks to allow the I/O to complete. At a minimum,
769 * we continue to hold the SCL_ALLOC lock, which prevents any future
770 * allocations from taking place and any changes to the vdev tree.
771 */
772 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
c5528b9b 773 taskq_wait_outstanding(mg->mg_taskq, 0);
a1d477c2 774 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
f3a7f661 775 metaslab_group_alloc_update(mg);
492f64e9
PD
776 for (int i = 0; i < mg->mg_allocators; i++) {
777 metaslab_t *msp = mg->mg_primaries[i];
778 if (msp != NULL) {
779 mutex_enter(&msp->ms_lock);
780 metaslab_passivate(msp,
781 metaslab_weight_from_range_tree(msp));
782 mutex_exit(&msp->ms_lock);
783 }
784 msp = mg->mg_secondaries[i];
785 if (msp != NULL) {
786 mutex_enter(&msp->ms_lock);
787 metaslab_passivate(msp,
788 metaslab_weight_from_range_tree(msp));
789 mutex_exit(&msp->ms_lock);
790 }
791 }
93cf2076 792
428870ff
BB
793 mgprev = mg->mg_prev;
794 mgnext = mg->mg_next;
795
796 if (mg == mgnext) {
797 mc->mc_rotor = NULL;
798 } else {
799 mc->mc_rotor = mgnext;
800 mgprev->mg_next = mgnext;
801 mgnext->mg_prev = mgprev;
802 }
803
804 mg->mg_prev = NULL;
805 mg->mg_next = NULL;
806}
807
3dfb57a3
DB
808boolean_t
809metaslab_group_initialized(metaslab_group_t *mg)
810{
811 vdev_t *vd = mg->mg_vd;
812 vdev_stat_t *vs = &vd->vdev_stat;
813
814 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
815}
816
f3a7f661
GW
817uint64_t
818metaslab_group_get_space(metaslab_group_t *mg)
819{
820 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
821}
822
823void
824metaslab_group_histogram_verify(metaslab_group_t *mg)
825{
826 uint64_t *mg_hist;
827 vdev_t *vd = mg->mg_vd;
828 uint64_t ashift = vd->vdev_ashift;
1c27024e 829 int i;
f3a7f661
GW
830
831 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
832 return;
833
834 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 835 KM_SLEEP);
f3a7f661
GW
836
837 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
838 SPACE_MAP_HISTOGRAM_SIZE + ashift);
839
1c27024e 840 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
841 metaslab_t *msp = vd->vdev_ms[m];
842
cc99f275
DB
843 /* skip if not active or not a member */
844 if (msp->ms_sm == NULL || msp->ms_group != mg)
f3a7f661
GW
845 continue;
846
847 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
848 mg_hist[i + ashift] +=
849 msp->ms_sm->sm_phys->smp_histogram[i];
850 }
851
852 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
853 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
854
855 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
856}
857
34dc7c2f 858static void
f3a7f661 859metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 860{
f3a7f661
GW
861 metaslab_class_t *mc = mg->mg_class;
862 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
863
864 ASSERT(MUTEX_HELD(&msp->ms_lock));
865 if (msp->ms_sm == NULL)
866 return;
867
34dc7c2f 868 mutex_enter(&mg->mg_lock);
1c27024e 869 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
870 mg->mg_histogram[i + ashift] +=
871 msp->ms_sm->sm_phys->smp_histogram[i];
872 mc->mc_histogram[i + ashift] +=
873 msp->ms_sm->sm_phys->smp_histogram[i];
874 }
875 mutex_exit(&mg->mg_lock);
876}
877
878void
879metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
880{
881 metaslab_class_t *mc = mg->mg_class;
882 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
883
884 ASSERT(MUTEX_HELD(&msp->ms_lock));
885 if (msp->ms_sm == NULL)
886 return;
887
888 mutex_enter(&mg->mg_lock);
1c27024e 889 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
890 ASSERT3U(mg->mg_histogram[i + ashift], >=,
891 msp->ms_sm->sm_phys->smp_histogram[i]);
892 ASSERT3U(mc->mc_histogram[i + ashift], >=,
893 msp->ms_sm->sm_phys->smp_histogram[i]);
894
895 mg->mg_histogram[i + ashift] -=
896 msp->ms_sm->sm_phys->smp_histogram[i];
897 mc->mc_histogram[i + ashift] -=
898 msp->ms_sm->sm_phys->smp_histogram[i];
899 }
900 mutex_exit(&mg->mg_lock);
901}
902
903static void
904metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
905{
34dc7c2f 906 ASSERT(msp->ms_group == NULL);
f3a7f661 907 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
908 msp->ms_group = mg;
909 msp->ms_weight = 0;
910 avl_add(&mg->mg_metaslab_tree, msp);
911 mutex_exit(&mg->mg_lock);
f3a7f661
GW
912
913 mutex_enter(&msp->ms_lock);
914 metaslab_group_histogram_add(mg, msp);
915 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
916}
917
918static void
919metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
920{
f3a7f661
GW
921 mutex_enter(&msp->ms_lock);
922 metaslab_group_histogram_remove(mg, msp);
923 mutex_exit(&msp->ms_lock);
924
34dc7c2f
BB
925 mutex_enter(&mg->mg_lock);
926 ASSERT(msp->ms_group == mg);
927 avl_remove(&mg->mg_metaslab_tree, msp);
928 msp->ms_group = NULL;
929 mutex_exit(&mg->mg_lock);
930}
931
492f64e9
PD
932static void
933metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
934{
935 ASSERT(MUTEX_HELD(&mg->mg_lock));
936 ASSERT(msp->ms_group == mg);
937 avl_remove(&mg->mg_metaslab_tree, msp);
938 msp->ms_weight = weight;
939 avl_add(&mg->mg_metaslab_tree, msp);
940
941}
942
34dc7c2f
BB
943static void
944metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
945{
946 /*
947 * Although in principle the weight can be any value, in
f3a7f661 948 * practice we do not use values in the range [1, 511].
34dc7c2f 949 */
f3a7f661 950 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
951 ASSERT(MUTEX_HELD(&msp->ms_lock));
952
953 mutex_enter(&mg->mg_lock);
492f64e9 954 metaslab_group_sort_impl(mg, msp, weight);
34dc7c2f
BB
955 mutex_exit(&mg->mg_lock);
956}
957
f3a7f661
GW
958/*
959 * Calculate the fragmentation for a given metaslab group. We can use
960 * a simple average here since all metaslabs within the group must have
961 * the same size. The return value will be a value between 0 and 100
962 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
963 * group have a fragmentation metric.
964 */
965uint64_t
966metaslab_group_fragmentation(metaslab_group_t *mg)
967{
968 vdev_t *vd = mg->mg_vd;
969 uint64_t fragmentation = 0;
970 uint64_t valid_ms = 0;
f3a7f661 971
1c27024e 972 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
973 metaslab_t *msp = vd->vdev_ms[m];
974
975 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
976 continue;
cc99f275
DB
977 if (msp->ms_group != mg)
978 continue;
f3a7f661
GW
979
980 valid_ms++;
981 fragmentation += msp->ms_fragmentation;
982 }
983
cc99f275 984 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
f3a7f661
GW
985 return (ZFS_FRAG_INVALID);
986
987 fragmentation /= valid_ms;
988 ASSERT3U(fragmentation, <=, 100);
989 return (fragmentation);
990}
991
ac72fac3
GW
992/*
993 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
994 * group should avoid allocations if its free capacity is less than the
995 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
996 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
3dfb57a3
DB
997 * that can still handle allocations. If the allocation throttle is enabled
998 * then we skip allocations to devices that have reached their maximum
999 * allocation queue depth unless the selected metaslab group is the only
1000 * eligible group remaining.
ac72fac3
GW
1001 */
1002static boolean_t
3dfb57a3 1003metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
c197a77c 1004 uint64_t psize, int allocator, int d)
ac72fac3 1005{
3dfb57a3 1006 spa_t *spa = mg->mg_vd->vdev_spa;
ac72fac3
GW
1007 metaslab_class_t *mc = mg->mg_class;
1008
1009 /*
3dfb57a3
DB
1010 * We can only consider skipping this metaslab group if it's
1011 * in the normal metaslab class and there are other metaslab
1012 * groups to select from. Otherwise, we always consider it eligible
f3a7f661 1013 * for allocations.
ac72fac3 1014 */
cc99f275
DB
1015 if ((mc != spa_normal_class(spa) &&
1016 mc != spa_special_class(spa) &&
1017 mc != spa_dedup_class(spa)) ||
1018 mc->mc_groups <= 1)
3dfb57a3
DB
1019 return (B_TRUE);
1020
1021 /*
1022 * If the metaslab group's mg_allocatable flag is set (see comments
1023 * in metaslab_group_alloc_update() for more information) and
1024 * the allocation throttle is disabled then allow allocations to this
1025 * device. However, if the allocation throttle is enabled then
1026 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1027 * to determine if we should allow allocations to this metaslab group.
1028 * If all metaslab groups are no longer considered allocatable
1029 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1030 * gang block size then we allow allocations on this metaslab group
1031 * regardless of the mg_allocatable or throttle settings.
1032 */
1033 if (mg->mg_allocatable) {
1034 metaslab_group_t *mgp;
1035 int64_t qdepth;
492f64e9 1036 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
3dfb57a3
DB
1037
1038 if (!mc->mc_alloc_throttle_enabled)
1039 return (B_TRUE);
1040
1041 /*
1042 * If this metaslab group does not have any free space, then
1043 * there is no point in looking further.
1044 */
1045 if (mg->mg_no_free_space)
1046 return (B_FALSE);
1047
c197a77c 1048 /*
1049 * Relax allocation throttling for ditto blocks. Due to
1050 * random imbalances in allocation it tends to push copies
1051 * to one vdev, that looks a bit better at the moment.
1052 */
1053 qmax = qmax * (4 + d) / 4;
1054
424fd7c3
TS
1055 qdepth = zfs_refcount_count(
1056 &mg->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1057
1058 /*
1059 * If this metaslab group is below its qmax or it's
1060 * the only allocatable metasable group, then attempt
1061 * to allocate from it.
1062 */
1063 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1064 return (B_TRUE);
1065 ASSERT3U(mc->mc_alloc_groups, >, 1);
1066
1067 /*
1068 * Since this metaslab group is at or over its qmax, we
1069 * need to determine if there are metaslab groups after this
1070 * one that might be able to handle this allocation. This is
1071 * racy since we can't hold the locks for all metaslab
1072 * groups at the same time when we make this check.
1073 */
1074 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
492f64e9 1075 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
c197a77c 1076 qmax = qmax * (4 + d) / 4;
424fd7c3 1077 qdepth = zfs_refcount_count(
492f64e9 1078 &mgp->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1079
1080 /*
1081 * If there is another metaslab group that
1082 * might be able to handle the allocation, then
1083 * we return false so that we skip this group.
1084 */
1085 if (qdepth < qmax && !mgp->mg_no_free_space)
1086 return (B_FALSE);
1087 }
1088
1089 /*
1090 * We didn't find another group to handle the allocation
1091 * so we can't skip this metaslab group even though
1092 * we are at or over our qmax.
1093 */
1094 return (B_TRUE);
1095
1096 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1097 return (B_TRUE);
1098 }
1099 return (B_FALSE);
ac72fac3
GW
1100}
1101
428870ff
BB
1102/*
1103 * ==========================================================================
93cf2076 1104 * Range tree callbacks
428870ff
BB
1105 * ==========================================================================
1106 */
93cf2076
GW
1107
1108/*
1109 * Comparison function for the private size-ordered tree. Tree is sorted
1110 * by size, larger sizes at the end of the tree.
1111 */
428870ff 1112static int
93cf2076 1113metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 1114{
93cf2076
GW
1115 const range_seg_t *r1 = x1;
1116 const range_seg_t *r2 = x2;
1117 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1118 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 1119
ee36c709
GN
1120 int cmp = AVL_CMP(rs_size1, rs_size2);
1121 if (likely(cmp))
1122 return (cmp);
428870ff 1123
ee36c709 1124 return (AVL_CMP(r1->rs_start, r2->rs_start));
428870ff
BB
1125}
1126
93cf2076
GW
1127/*
1128 * ==========================================================================
4e21fd06 1129 * Common allocator routines
93cf2076
GW
1130 * ==========================================================================
1131 */
1132
9babb374 1133/*
428870ff 1134 * Return the maximum contiguous segment within the metaslab.
9babb374 1135 */
9babb374 1136uint64_t
93cf2076 1137metaslab_block_maxsize(metaslab_t *msp)
9babb374 1138{
d2734cce 1139 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076 1140 range_seg_t *rs;
9babb374 1141
93cf2076 1142 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
1143 return (0ULL);
1144
93cf2076
GW
1145 return (rs->rs_end - rs->rs_start);
1146}
1147
4e21fd06
DB
1148static range_seg_t *
1149metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
93cf2076 1150{
4e21fd06
DB
1151 range_seg_t *rs, rsearch;
1152 avl_index_t where;
93cf2076 1153
4e21fd06
DB
1154 rsearch.rs_start = start;
1155 rsearch.rs_end = start + size;
93cf2076 1156
4e21fd06
DB
1157 rs = avl_find(t, &rsearch, &where);
1158 if (rs == NULL) {
1159 rs = avl_nearest(t, where, AVL_AFTER);
93cf2076 1160 }
93cf2076 1161
4e21fd06
DB
1162 return (rs);
1163}
93cf2076
GW
1164
1165#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1166 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1167 defined(WITH_CF_BLOCK_ALLOCATOR)
1168/*
1169 * This is a helper function that can be used by the allocator to find
1170 * a suitable block to allocate. This will search the specified AVL
1171 * tree looking for a block that matches the specified criteria.
1172 */
1173static uint64_t
1174metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1175 uint64_t align)
1176{
4e21fd06 1177 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
93cf2076
GW
1178
1179 while (rs != NULL) {
1180 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1181
1182 if (offset + size <= rs->rs_end) {
1183 *cursor = offset + size;
1184 return (offset);
1185 }
1186 rs = AVL_NEXT(t, rs);
1187 }
1188
1189 /*
1190 * If we know we've searched the whole map (*cursor == 0), give up.
1191 * Otherwise, reset the cursor to the beginning and try again.
1192 */
1193 if (*cursor == 0)
1194 return (-1ULL);
1195
1196 *cursor = 0;
1197 return (metaslab_block_picker(t, cursor, size, align));
9babb374 1198}
93cf2076 1199#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
9babb374 1200
22c81dd8 1201#if defined(WITH_FF_BLOCK_ALLOCATOR)
428870ff
BB
1202/*
1203 * ==========================================================================
1204 * The first-fit block allocator
1205 * ==========================================================================
1206 */
1207static uint64_t
93cf2076 1208metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
9babb374 1209{
93cf2076
GW
1210 /*
1211 * Find the largest power of 2 block size that evenly divides the
1212 * requested size. This is used to try to allocate blocks with similar
1213 * alignment from the same area of the metaslab (i.e. same cursor
1214 * bucket) but it does not guarantee that other allocations sizes
1215 * may exist in the same region.
1216 */
428870ff 1217 uint64_t align = size & -size;
9bd274dd 1218 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1219 avl_tree_t *t = &msp->ms_allocatable->rt_root;
9babb374 1220
428870ff 1221 return (metaslab_block_picker(t, cursor, size, align));
9babb374
BB
1222}
1223
93cf2076 1224static metaslab_ops_t metaslab_ff_ops = {
f3a7f661 1225 metaslab_ff_alloc
428870ff 1226};
9babb374 1227
93cf2076 1228metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
22c81dd8
BB
1229#endif /* WITH_FF_BLOCK_ALLOCATOR */
1230
1231#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1232/*
1233 * ==========================================================================
1234 * Dynamic block allocator -
1235 * Uses the first fit allocation scheme until space get low and then
1236 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1237 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1238 * ==========================================================================
1239 */
9babb374 1240static uint64_t
93cf2076 1241metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1242{
93cf2076
GW
1243 /*
1244 * Find the largest power of 2 block size that evenly divides the
1245 * requested size. This is used to try to allocate blocks with similar
1246 * alignment from the same area of the metaslab (i.e. same cursor
1247 * bucket) but it does not guarantee that other allocations sizes
1248 * may exist in the same region.
1249 */
9babb374 1250 uint64_t align = size & -size;
9bd274dd 1251 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1252 range_tree_t *rt = msp->ms_allocatable;
93cf2076
GW
1253 avl_tree_t *t = &rt->rt_root;
1254 uint64_t max_size = metaslab_block_maxsize(msp);
1255 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
9babb374 1256
93cf2076 1257 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce
SD
1258 ASSERT3U(avl_numnodes(t), ==,
1259 avl_numnodes(&msp->ms_allocatable_by_size));
9babb374
BB
1260
1261 if (max_size < size)
1262 return (-1ULL);
1263
1264 /*
1265 * If we're running low on space switch to using the size
1266 * sorted AVL tree (best-fit).
1267 */
1268 if (max_size < metaslab_df_alloc_threshold ||
1269 free_pct < metaslab_df_free_pct) {
d2734cce 1270 t = &msp->ms_allocatable_by_size;
9babb374
BB
1271 *cursor = 0;
1272 }
1273
1274 return (metaslab_block_picker(t, cursor, size, 1ULL));
1275}
1276
93cf2076 1277static metaslab_ops_t metaslab_df_ops = {
f3a7f661 1278 metaslab_df_alloc
34dc7c2f
BB
1279};
1280
93cf2076 1281metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1282#endif /* WITH_DF_BLOCK_ALLOCATOR */
1283
93cf2076 1284#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1285/*
1286 * ==========================================================================
93cf2076
GW
1287 * Cursor fit block allocator -
1288 * Select the largest region in the metaslab, set the cursor to the beginning
1289 * of the range and the cursor_end to the end of the range. As allocations
1290 * are made advance the cursor. Continue allocating from the cursor until
1291 * the range is exhausted and then find a new range.
428870ff
BB
1292 * ==========================================================================
1293 */
1294static uint64_t
93cf2076 1295metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1296{
d2734cce
SD
1297 range_tree_t *rt = msp->ms_allocatable;
1298 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076
GW
1299 uint64_t *cursor = &msp->ms_lbas[0];
1300 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1301 uint64_t offset = 0;
1302
93cf2076
GW
1303 ASSERT(MUTEX_HELD(&msp->ms_lock));
1304 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1305
93cf2076 1306 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1307
93cf2076
GW
1308 if ((*cursor + size) > *cursor_end) {
1309 range_seg_t *rs;
428870ff 1310
d2734cce 1311 rs = avl_last(&msp->ms_allocatable_by_size);
93cf2076
GW
1312 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1313 return (-1ULL);
428870ff 1314
93cf2076
GW
1315 *cursor = rs->rs_start;
1316 *cursor_end = rs->rs_end;
428870ff 1317 }
93cf2076
GW
1318
1319 offset = *cursor;
1320 *cursor += size;
1321
428870ff
BB
1322 return (offset);
1323}
1324
93cf2076 1325static metaslab_ops_t metaslab_cf_ops = {
f3a7f661 1326 metaslab_cf_alloc
428870ff
BB
1327};
1328
93cf2076
GW
1329metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1330#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1331
1332#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1333/*
1334 * ==========================================================================
1335 * New dynamic fit allocator -
1336 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1337 * contiguous blocks. If no region is found then just use the largest segment
1338 * that remains.
1339 * ==========================================================================
1340 */
1341
1342/*
1343 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1344 * to request from the allocator.
1345 */
428870ff
BB
1346uint64_t metaslab_ndf_clump_shift = 4;
1347
1348static uint64_t
93cf2076 1349metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1350{
d2734cce 1351 avl_tree_t *t = &msp->ms_allocatable->rt_root;
428870ff 1352 avl_index_t where;
93cf2076 1353 range_seg_t *rs, rsearch;
9bd274dd 1354 uint64_t hbit = highbit64(size);
93cf2076
GW
1355 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1356 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1357
93cf2076 1358 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce
SD
1359 ASSERT3U(avl_numnodes(t), ==,
1360 avl_numnodes(&msp->ms_allocatable_by_size));
428870ff
BB
1361
1362 if (max_size < size)
1363 return (-1ULL);
1364
93cf2076
GW
1365 rsearch.rs_start = *cursor;
1366 rsearch.rs_end = *cursor + size;
428870ff 1367
93cf2076
GW
1368 rs = avl_find(t, &rsearch, &where);
1369 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
d2734cce 1370 t = &msp->ms_allocatable_by_size;
428870ff 1371
93cf2076
GW
1372 rsearch.rs_start = 0;
1373 rsearch.rs_end = MIN(max_size,
428870ff 1374 1ULL << (hbit + metaslab_ndf_clump_shift));
93cf2076
GW
1375 rs = avl_find(t, &rsearch, &where);
1376 if (rs == NULL)
1377 rs = avl_nearest(t, where, AVL_AFTER);
1378 ASSERT(rs != NULL);
428870ff
BB
1379 }
1380
93cf2076
GW
1381 if ((rs->rs_end - rs->rs_start) >= size) {
1382 *cursor = rs->rs_start + size;
1383 return (rs->rs_start);
428870ff
BB
1384 }
1385 return (-1ULL);
1386}
1387
93cf2076 1388static metaslab_ops_t metaslab_ndf_ops = {
f3a7f661 1389 metaslab_ndf_alloc
428870ff
BB
1390};
1391
93cf2076 1392metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1393#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1394
93cf2076 1395
34dc7c2f
BB
1396/*
1397 * ==========================================================================
1398 * Metaslabs
1399 * ==========================================================================
1400 */
93cf2076
GW
1401
1402/*
1403 * Wait for any in-progress metaslab loads to complete.
1404 */
1405void
1406metaslab_load_wait(metaslab_t *msp)
1407{
1408 ASSERT(MUTEX_HELD(&msp->ms_lock));
1409
1410 while (msp->ms_loading) {
1411 ASSERT(!msp->ms_loaded);
1412 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1413 }
1414}
1415
1416int
1417metaslab_load(metaslab_t *msp)
1418{
1419 int error = 0;
4e21fd06 1420 boolean_t success = B_FALSE;
93cf2076
GW
1421
1422 ASSERT(MUTEX_HELD(&msp->ms_lock));
1423 ASSERT(!msp->ms_loaded);
1424 ASSERT(!msp->ms_loading);
1425
1426 msp->ms_loading = B_TRUE;
a1d477c2
MA
1427 /*
1428 * Nobody else can manipulate a loading metaslab, so it's now safe
1429 * to drop the lock. This way we don't have to hold the lock while
1430 * reading the spacemap from disk.
1431 */
1432 mutex_exit(&msp->ms_lock);
93cf2076
GW
1433
1434 /*
1435 * If the space map has not been allocated yet, then treat
d2734cce 1436 * all the space in the metaslab as free and add it to ms_allocatable.
93cf2076 1437 */
d2734cce
SD
1438 if (msp->ms_sm != NULL) {
1439 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1440 SM_FREE);
1441 } else {
1442 range_tree_add(msp->ms_allocatable,
1443 msp->ms_start, msp->ms_size);
1444 }
93cf2076 1445
4e21fd06 1446 success = (error == 0);
a1d477c2
MA
1447
1448 mutex_enter(&msp->ms_lock);
93cf2076
GW
1449 msp->ms_loading = B_FALSE;
1450
4e21fd06
DB
1451 if (success) {
1452 ASSERT3P(msp->ms_group, !=, NULL);
1453 msp->ms_loaded = B_TRUE;
1454
d2734cce
SD
1455 /*
1456 * If the metaslab already has a spacemap, then we need to
1457 * remove all segments from the defer tree; otherwise, the
1458 * metaslab is completely empty and we can skip this.
1459 */
1460 if (msp->ms_sm != NULL) {
1461 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1462 range_tree_walk(msp->ms_defer[t],
1463 range_tree_remove, msp->ms_allocatable);
1464 }
93cf2076 1465 }
4e21fd06 1466 msp->ms_max_size = metaslab_block_maxsize(msp);
93cf2076
GW
1467 }
1468 cv_broadcast(&msp->ms_load_cv);
1469 return (error);
1470}
1471
1472void
1473metaslab_unload(metaslab_t *msp)
1474{
1475 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce 1476 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
93cf2076
GW
1477 msp->ms_loaded = B_FALSE;
1478 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
4e21fd06 1479 msp->ms_max_size = 0;
93cf2076
GW
1480}
1481
cc99f275
DB
1482static void
1483metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1484 int64_t defer_delta, int64_t space_delta)
1485{
1486 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1487
1488 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1489 ASSERT(vd->vdev_ms_count != 0);
1490
1491 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1492 vdev_deflated_space(vd, space_delta));
1493}
1494
fb42a493
PS
1495int
1496metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1497 metaslab_t **msp)
34dc7c2f
BB
1498{
1499 vdev_t *vd = mg->mg_vd;
cc99f275
DB
1500 spa_t *spa = vd->vdev_spa;
1501 objset_t *mos = spa->spa_meta_objset;
fb42a493
PS
1502 metaslab_t *ms;
1503 int error;
34dc7c2f 1504
79c76d5b 1505 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493 1506 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
a1d477c2 1507 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
fb42a493 1508 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
619f0976 1509
fb42a493
PS
1510 ms->ms_id = id;
1511 ms->ms_start = id << vd->vdev_ms_shift;
1512 ms->ms_size = 1ULL << vd->vdev_ms_shift;
492f64e9
PD
1513 ms->ms_allocator = -1;
1514 ms->ms_new = B_TRUE;
34dc7c2f 1515
93cf2076
GW
1516 /*
1517 * We only open space map objects that already exist. All others
afe37326 1518 * will be opened when we finally allocate an object for it.
93cf2076 1519 */
afe37326 1520 if (object != 0) {
fb42a493 1521 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
a1d477c2 1522 ms->ms_size, vd->vdev_ashift);
fb42a493
PS
1523
1524 if (error != 0) {
1525 kmem_free(ms, sizeof (metaslab_t));
1526 return (error);
1527 }
1528
1529 ASSERT(ms->ms_sm != NULL);
93cf2076 1530 }
34dc7c2f
BB
1531
1532 /*
93cf2076 1533 * We create the main range tree here, but we don't create the
258553d3 1534 * other range trees until metaslab_sync_done(). This serves
34dc7c2f
BB
1535 * two purposes: it allows metaslab_sync_done() to detect the
1536 * addition of new space; and for debugging, it ensures that we'd
1537 * data fault on any attempt to use this metaslab before it's ready.
1538 */
d2734cce
SD
1539 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1540 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
fb42a493 1541 metaslab_group_add(mg, ms);
34dc7c2f 1542
4e21fd06 1543 metaslab_set_fragmentation(ms);
428870ff 1544
34dc7c2f
BB
1545 /*
1546 * If we're opening an existing pool (txg == 0) or creating
1547 * a new one (txg == TXG_INITIAL), all space is available now.
1548 * If we're adding space to an existing pool, the new space
1549 * does not become available until after this txg has synced.
4e21fd06
DB
1550 * The metaslab's weight will also be initialized when we sync
1551 * out this txg. This ensures that we don't attempt to allocate
1552 * from it before we have initialized it completely.
34dc7c2f
BB
1553 */
1554 if (txg <= TXG_INITIAL)
fb42a493 1555 metaslab_sync_done(ms, 0);
34dc7c2f 1556
93cf2076
GW
1557 /*
1558 * If metaslab_debug_load is set and we're initializing a metaslab
cc99f275
DB
1559 * that has an allocated space map object then load the space map
1560 * so that we can verify frees.
93cf2076 1561 */
fb42a493
PS
1562 if (metaslab_debug_load && ms->ms_sm != NULL) {
1563 mutex_enter(&ms->ms_lock);
1564 VERIFY0(metaslab_load(ms));
1565 mutex_exit(&ms->ms_lock);
93cf2076
GW
1566 }
1567
34dc7c2f 1568 if (txg != 0) {
34dc7c2f 1569 vdev_dirty(vd, 0, NULL, txg);
fb42a493 1570 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1571 }
1572
fb42a493
PS
1573 *msp = ms;
1574
1575 return (0);
34dc7c2f
BB
1576}
1577
1578void
1579metaslab_fini(metaslab_t *msp)
1580{
93cf2076 1581 metaslab_group_t *mg = msp->ms_group;
cc99f275 1582 vdev_t *vd = mg->mg_vd;
34dc7c2f
BB
1583
1584 metaslab_group_remove(mg, msp);
1585
1586 mutex_enter(&msp->ms_lock);
93cf2076 1587 VERIFY(msp->ms_group == NULL);
cc99f275
DB
1588 metaslab_space_update(vd, mg->mg_class,
1589 -space_map_allocated(msp->ms_sm), 0, -msp->ms_size);
1590
93cf2076
GW
1591 space_map_close(msp->ms_sm);
1592
1593 metaslab_unload(msp);
cc99f275 1594
d2734cce
SD
1595 range_tree_destroy(msp->ms_allocatable);
1596 range_tree_destroy(msp->ms_freeing);
1597 range_tree_destroy(msp->ms_freed);
34dc7c2f 1598
1c27024e 1599 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 1600 range_tree_destroy(msp->ms_allocating[t]);
34dc7c2f
BB
1601 }
1602
1c27024e 1603 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 1604 range_tree_destroy(msp->ms_defer[t]);
e51be066 1605 }
c99c9001 1606 ASSERT0(msp->ms_deferspace);
428870ff 1607
d2734cce
SD
1608 range_tree_destroy(msp->ms_checkpointing);
1609
34dc7c2f 1610 mutex_exit(&msp->ms_lock);
93cf2076 1611 cv_destroy(&msp->ms_load_cv);
34dc7c2f 1612 mutex_destroy(&msp->ms_lock);
a1d477c2 1613 mutex_destroy(&msp->ms_sync_lock);
492f64e9 1614 ASSERT3U(msp->ms_allocator, ==, -1);
34dc7c2f
BB
1615
1616 kmem_free(msp, sizeof (metaslab_t));
1617}
1618
f3a7f661
GW
1619#define FRAGMENTATION_TABLE_SIZE 17
1620
93cf2076 1621/*
f3a7f661
GW
1622 * This table defines a segment size based fragmentation metric that will
1623 * allow each metaslab to derive its own fragmentation value. This is done
1624 * by calculating the space in each bucket of the spacemap histogram and
1625 * multiplying that by the fragmetation metric in this table. Doing
1626 * this for all buckets and dividing it by the total amount of free
1627 * space in this metaslab (i.e. the total free space in all buckets) gives
1628 * us the fragmentation metric. This means that a high fragmentation metric
1629 * equates to most of the free space being comprised of small segments.
1630 * Conversely, if the metric is low, then most of the free space is in
1631 * large segments. A 10% change in fragmentation equates to approximately
1632 * double the number of segments.
93cf2076 1633 *
f3a7f661
GW
1634 * This table defines 0% fragmented space using 16MB segments. Testing has
1635 * shown that segments that are greater than or equal to 16MB do not suffer
1636 * from drastic performance problems. Using this value, we derive the rest
1637 * of the table. Since the fragmentation value is never stored on disk, it
1638 * is possible to change these calculations in the future.
1639 */
1640int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1641 100, /* 512B */
1642 100, /* 1K */
1643 98, /* 2K */
1644 95, /* 4K */
1645 90, /* 8K */
1646 80, /* 16K */
1647 70, /* 32K */
1648 60, /* 64K */
1649 50, /* 128K */
1650 40, /* 256K */
1651 30, /* 512K */
1652 20, /* 1M */
1653 15, /* 2M */
1654 10, /* 4M */
1655 5, /* 8M */
1656 0 /* 16M */
1657};
1658
1659/*
1660 * Calclate the metaslab's fragmentation metric. A return value
1661 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1662 * not support this metric. Otherwise, the return value should be in the
1663 * range [0, 100].
93cf2076 1664 */
4e21fd06
DB
1665static void
1666metaslab_set_fragmentation(metaslab_t *msp)
93cf2076 1667{
f3a7f661
GW
1668 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1669 uint64_t fragmentation = 0;
1670 uint64_t total = 0;
1671 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1672 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076 1673
4e21fd06
DB
1674 if (!feature_enabled) {
1675 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1676 return;
1677 }
f3a7f661 1678
93cf2076 1679 /*
f3a7f661
GW
1680 * A null space map means that the entire metaslab is free
1681 * and thus is not fragmented.
93cf2076 1682 */
4e21fd06
DB
1683 if (msp->ms_sm == NULL) {
1684 msp->ms_fragmentation = 0;
1685 return;
1686 }
f3a7f661
GW
1687
1688 /*
4e21fd06 1689 * If this metaslab's space map has not been upgraded, flag it
f3a7f661
GW
1690 * so that we upgrade next time we encounter it.
1691 */
1692 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3b7f360c 1693 uint64_t txg = spa_syncing_txg(spa);
93cf2076
GW
1694 vdev_t *vd = msp->ms_group->mg_vd;
1695
3b7f360c
GW
1696 /*
1697 * If we've reached the final dirty txg, then we must
1698 * be shutting down the pool. We don't want to dirty
1699 * any data past this point so skip setting the condense
1700 * flag. We can retry this action the next time the pool
1701 * is imported.
1702 */
1703 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
8b0a0840
TC
1704 msp->ms_condense_wanted = B_TRUE;
1705 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
964c2d69 1706 zfs_dbgmsg("txg %llu, requesting force condense: "
3b7f360c
GW
1707 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1708 vd->vdev_id);
8b0a0840 1709 }
4e21fd06
DB
1710 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1711 return;
93cf2076
GW
1712 }
1713
1c27024e 1714 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
1715 uint64_t space = 0;
1716 uint8_t shift = msp->ms_sm->sm_shift;
4e21fd06 1717
f3a7f661
GW
1718 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1719 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 1720
93cf2076
GW
1721 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1722 continue;
1723
f3a7f661
GW
1724 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1725 total += space;
1726
1727 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1728 fragmentation += space * zfs_frag_table[idx];
93cf2076 1729 }
f3a7f661
GW
1730
1731 if (total > 0)
1732 fragmentation /= total;
1733 ASSERT3U(fragmentation, <=, 100);
4e21fd06
DB
1734
1735 msp->ms_fragmentation = fragmentation;
93cf2076 1736}
34dc7c2f 1737
f3a7f661
GW
1738/*
1739 * Compute a weight -- a selection preference value -- for the given metaslab.
1740 * This is based on the amount of free space, the level of fragmentation,
1741 * the LBA range, and whether the metaslab is loaded.
1742 */
34dc7c2f 1743static uint64_t
4e21fd06 1744metaslab_space_weight(metaslab_t *msp)
34dc7c2f
BB
1745{
1746 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
1747 vdev_t *vd = mg->mg_vd;
1748 uint64_t weight, space;
1749
1750 ASSERT(MUTEX_HELD(&msp->ms_lock));
4e21fd06 1751 ASSERT(!vd->vdev_removing);
c2e42f9d 1752
34dc7c2f
BB
1753 /*
1754 * The baseline weight is the metaslab's free space.
1755 */
93cf2076 1756 space = msp->ms_size - space_map_allocated(msp->ms_sm);
f3a7f661 1757
f3a7f661
GW
1758 if (metaslab_fragmentation_factor_enabled &&
1759 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1760 /*
1761 * Use the fragmentation information to inversely scale
1762 * down the baseline weight. We need to ensure that we
1763 * don't exclude this metaslab completely when it's 100%
1764 * fragmented. To avoid this we reduce the fragmented value
1765 * by 1.
1766 */
1767 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1768
1769 /*
1770 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1771 * this metaslab again. The fragmentation metric may have
1772 * decreased the space to something smaller than
1773 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1774 * so that we can consume any remaining space.
1775 */
1776 if (space > 0 && space < SPA_MINBLOCKSIZE)
1777 space = SPA_MINBLOCKSIZE;
1778 }
34dc7c2f
BB
1779 weight = space;
1780
1781 /*
1782 * Modern disks have uniform bit density and constant angular velocity.
1783 * Therefore, the outer recording zones are faster (higher bandwidth)
1784 * than the inner zones by the ratio of outer to inner track diameter,
1785 * which is typically around 2:1. We account for this by assigning
1786 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1787 * In effect, this means that we'll select the metaslab with the most
1788 * free bandwidth rather than simply the one with the most free space.
1789 */
fb40095f 1790 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
f3a7f661
GW
1791 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1792 ASSERT(weight >= space && weight <= 2 * space);
1793 }
428870ff 1794
f3a7f661
GW
1795 /*
1796 * If this metaslab is one we're actively using, adjust its
1797 * weight to make it preferable to any inactive metaslab so
1798 * we'll polish it off. If the fragmentation on this metaslab
1799 * has exceed our threshold, then don't mark it active.
1800 */
1801 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1802 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
1803 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1804 }
34dc7c2f 1805
4e21fd06
DB
1806 WEIGHT_SET_SPACEBASED(weight);
1807 return (weight);
1808}
1809
1810/*
1811 * Return the weight of the specified metaslab, according to the segment-based
1812 * weighting algorithm. The metaslab must be loaded. This function can
1813 * be called within a sync pass since it relies only on the metaslab's
1814 * range tree which is always accurate when the metaslab is loaded.
1815 */
1816static uint64_t
1817metaslab_weight_from_range_tree(metaslab_t *msp)
1818{
1819 uint64_t weight = 0;
1820 uint32_t segments = 0;
4e21fd06
DB
1821
1822 ASSERT(msp->ms_loaded);
1823
1c27024e
DB
1824 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1825 i--) {
4e21fd06
DB
1826 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1827 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1828
1829 segments <<= 1;
d2734cce 1830 segments += msp->ms_allocatable->rt_histogram[i];
4e21fd06
DB
1831
1832 /*
1833 * The range tree provides more precision than the space map
1834 * and must be downgraded so that all values fit within the
1835 * space map's histogram. This allows us to compare loaded
1836 * vs. unloaded metaslabs to determine which metaslab is
1837 * considered "best".
1838 */
1839 if (i > max_idx)
1840 continue;
1841
1842 if (segments != 0) {
1843 WEIGHT_SET_COUNT(weight, segments);
1844 WEIGHT_SET_INDEX(weight, i);
1845 WEIGHT_SET_ACTIVE(weight, 0);
1846 break;
1847 }
1848 }
1849 return (weight);
1850}
1851
1852/*
1853 * Calculate the weight based on the on-disk histogram. This should only
1854 * be called after a sync pass has completely finished since the on-disk
1855 * information is updated in metaslab_sync().
1856 */
1857static uint64_t
1858metaslab_weight_from_spacemap(metaslab_t *msp)
1859{
1860 uint64_t weight = 0;
4e21fd06 1861
1c27024e 1862 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
4e21fd06
DB
1863 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1864 WEIGHT_SET_COUNT(weight,
1865 msp->ms_sm->sm_phys->smp_histogram[i]);
1866 WEIGHT_SET_INDEX(weight, i +
1867 msp->ms_sm->sm_shift);
1868 WEIGHT_SET_ACTIVE(weight, 0);
1869 break;
1870 }
1871 }
1872 return (weight);
1873}
1874
1875/*
1876 * Compute a segment-based weight for the specified metaslab. The weight
1877 * is determined by highest bucket in the histogram. The information
1878 * for the highest bucket is encoded into the weight value.
1879 */
1880static uint64_t
1881metaslab_segment_weight(metaslab_t *msp)
1882{
1883 metaslab_group_t *mg = msp->ms_group;
1884 uint64_t weight = 0;
1885 uint8_t shift = mg->mg_vd->vdev_ashift;
1886
1887 ASSERT(MUTEX_HELD(&msp->ms_lock));
1888
1889 /*
1890 * The metaslab is completely free.
1891 */
1892 if (space_map_allocated(msp->ms_sm) == 0) {
1893 int idx = highbit64(msp->ms_size) - 1;
1894 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1895
1896 if (idx < max_idx) {
1897 WEIGHT_SET_COUNT(weight, 1ULL);
1898 WEIGHT_SET_INDEX(weight, idx);
1899 } else {
1900 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1901 WEIGHT_SET_INDEX(weight, max_idx);
1902 }
1903 WEIGHT_SET_ACTIVE(weight, 0);
1904 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1905
1906 return (weight);
1907 }
1908
1909 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1910
1911 /*
1912 * If the metaslab is fully allocated then just make the weight 0.
1913 */
1914 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1915 return (0);
1916 /*
1917 * If the metaslab is already loaded, then use the range tree to
1918 * determine the weight. Otherwise, we rely on the space map information
1919 * to generate the weight.
1920 */
1921 if (msp->ms_loaded) {
1922 weight = metaslab_weight_from_range_tree(msp);
1923 } else {
1924 weight = metaslab_weight_from_spacemap(msp);
1925 }
1926
1927 /*
1928 * If the metaslab was active the last time we calculated its weight
1929 * then keep it active. We want to consume the entire region that
1930 * is associated with this weight.
1931 */
1932 if (msp->ms_activation_weight != 0 && weight != 0)
1933 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1934 return (weight);
1935}
1936
1937/*
1938 * Determine if we should attempt to allocate from this metaslab. If the
1939 * metaslab has a maximum size then we can quickly determine if the desired
1940 * allocation size can be satisfied. Otherwise, if we're using segment-based
1941 * weighting then we can determine the maximum allocation that this metaslab
1942 * can accommodate based on the index encoded in the weight. If we're using
1943 * space-based weights then rely on the entire weight (excluding the weight
1944 * type bit).
1945 */
1946boolean_t
1947metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1948{
1949 boolean_t should_allocate;
1950
1951 if (msp->ms_max_size != 0)
1952 return (msp->ms_max_size >= asize);
1953
1954 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1955 /*
1956 * The metaslab segment weight indicates segments in the
1957 * range [2^i, 2^(i+1)), where i is the index in the weight.
1958 * Since the asize might be in the middle of the range, we
1959 * should attempt the allocation if asize < 2^(i+1).
1960 */
1961 should_allocate = (asize <
1962 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1963 } else {
1964 should_allocate = (asize <=
1965 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1966 }
1967 return (should_allocate);
1968}
1969static uint64_t
1970metaslab_weight(metaslab_t *msp)
1971{
1972 vdev_t *vd = msp->ms_group->mg_vd;
1973 spa_t *spa = vd->vdev_spa;
1974 uint64_t weight;
1975
1976 ASSERT(MUTEX_HELD(&msp->ms_lock));
1977
1978 /*
a1d477c2 1979 * If this vdev is in the process of being removed, there is nothing
4e21fd06
DB
1980 * for us to do here.
1981 */
a1d477c2 1982 if (vd->vdev_removing)
4e21fd06 1983 return (0);
4e21fd06
DB
1984
1985 metaslab_set_fragmentation(msp);
1986
1987 /*
1988 * Update the maximum size if the metaslab is loaded. This will
1989 * ensure that we get an accurate maximum size if newly freed space
1990 * has been added back into the free tree.
1991 */
1992 if (msp->ms_loaded)
1993 msp->ms_max_size = metaslab_block_maxsize(msp);
1994
1995 /*
1996 * Segment-based weighting requires space map histogram support.
1997 */
1998 if (zfs_metaslab_segment_weight_enabled &&
1999 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2000 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2001 sizeof (space_map_phys_t))) {
2002 weight = metaslab_segment_weight(msp);
2003 } else {
2004 weight = metaslab_space_weight(msp);
2005 }
93cf2076 2006 return (weight);
34dc7c2f
BB
2007}
2008
2009static int
492f64e9
PD
2010metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2011 int allocator, uint64_t activation_weight)
2012{
2013 /*
2014 * If we're activating for the claim code, we don't want to actually
2015 * set the metaslab up for a specific allocator.
2016 */
2017 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2018 return (0);
2019 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2020 mg->mg_primaries : mg->mg_secondaries);
2021
2022 ASSERT(MUTEX_HELD(&msp->ms_lock));
2023 mutex_enter(&mg->mg_lock);
2024 if (arr[allocator] != NULL) {
2025 mutex_exit(&mg->mg_lock);
2026 return (EEXIST);
2027 }
2028
2029 arr[allocator] = msp;
2030 ASSERT3S(msp->ms_allocator, ==, -1);
2031 msp->ms_allocator = allocator;
2032 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2033 mutex_exit(&mg->mg_lock);
2034
2035 return (0);
2036}
2037
2038static int
2039metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
34dc7c2f 2040{
34dc7c2f
BB
2041 ASSERT(MUTEX_HELD(&msp->ms_lock));
2042
2043 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
492f64e9 2044 int error = 0;
93cf2076
GW
2045 metaslab_load_wait(msp);
2046 if (!msp->ms_loaded) {
492f64e9 2047 if ((error = metaslab_load(msp)) != 0) {
428870ff
BB
2048 metaslab_group_sort(msp->ms_group, msp, 0);
2049 return (error);
2050 }
34dc7c2f 2051 }
492f64e9
PD
2052 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2053 /*
2054 * The metaslab was activated for another allocator
2055 * while we were waiting, we should reselect.
2056 */
7ab96299 2057 return (SET_ERROR(EBUSY));
492f64e9
PD
2058 }
2059 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2060 allocator, activation_weight)) != 0) {
2061 return (error);
2062 }
9babb374 2063
4e21fd06 2064 msp->ms_activation_weight = msp->ms_weight;
34dc7c2f
BB
2065 metaslab_group_sort(msp->ms_group, msp,
2066 msp->ms_weight | activation_weight);
2067 }
93cf2076 2068 ASSERT(msp->ms_loaded);
34dc7c2f
BB
2069 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2070
2071 return (0);
2072}
2073
492f64e9
PD
2074static void
2075metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2076 uint64_t weight)
2077{
2078 ASSERT(MUTEX_HELD(&msp->ms_lock));
2079 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2080 metaslab_group_sort(mg, msp, weight);
2081 return;
2082 }
2083
2084 mutex_enter(&mg->mg_lock);
2085 ASSERT3P(msp->ms_group, ==, mg);
2086 if (msp->ms_primary) {
2087 ASSERT3U(0, <=, msp->ms_allocator);
2088 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2089 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2090 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2091 mg->mg_primaries[msp->ms_allocator] = NULL;
2092 } else {
2093 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2094 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2095 mg->mg_secondaries[msp->ms_allocator] = NULL;
2096 }
2097 msp->ms_allocator = -1;
2098 metaslab_group_sort_impl(mg, msp, weight);
2099 mutex_exit(&mg->mg_lock);
2100}
2101
34dc7c2f 2102static void
4e21fd06 2103metaslab_passivate(metaslab_t *msp, uint64_t weight)
34dc7c2f 2104{
4e21fd06
DB
2105 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2106
34dc7c2f
BB
2107 /*
2108 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2109 * this metaslab again. In that case, it had better be empty,
2110 * or we would be leaving space on the table.
2111 */
94d49e8f
TC
2112 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2113 size >= SPA_MINBLOCKSIZE ||
d2734cce 2114 range_tree_space(msp->ms_allocatable) == 0);
4e21fd06
DB
2115 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2116
2117 msp->ms_activation_weight = 0;
492f64e9 2118 metaslab_passivate_allocator(msp->ms_group, msp, weight);
34dc7c2f
BB
2119 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2120}
2121
4e21fd06
DB
2122/*
2123 * Segment-based metaslabs are activated once and remain active until
2124 * we either fail an allocation attempt (similar to space-based metaslabs)
2125 * or have exhausted the free space in zfs_metaslab_switch_threshold
2126 * buckets since the metaslab was activated. This function checks to see
2127 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2128 * metaslab and passivates it proactively. This will allow us to select a
2129 * metaslab with a larger contiguous region, if any, remaining within this
2130 * metaslab group. If we're in sync pass > 1, then we continue using this
2131 * metaslab so that we don't dirty more block and cause more sync passes.
2132 */
2133void
2134metaslab_segment_may_passivate(metaslab_t *msp)
2135{
2136 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4e21fd06
DB
2137
2138 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2139 return;
2140
2141 /*
2142 * Since we are in the middle of a sync pass, the most accurate
2143 * information that is accessible to us is the in-core range tree
2144 * histogram; calculate the new weight based on that information.
2145 */
1c27024e
DB
2146 uint64_t weight = metaslab_weight_from_range_tree(msp);
2147 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2148 int current_idx = WEIGHT_GET_INDEX(weight);
4e21fd06
DB
2149
2150 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2151 metaslab_passivate(msp, weight);
2152}
2153
93cf2076
GW
2154static void
2155metaslab_preload(void *arg)
2156{
2157 metaslab_t *msp = arg;
2158 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1cd77734 2159 fstrans_cookie_t cookie = spl_fstrans_mark();
93cf2076 2160
080b3100
GW
2161 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2162
93cf2076
GW
2163 mutex_enter(&msp->ms_lock);
2164 metaslab_load_wait(msp);
2165 if (!msp->ms_loaded)
2166 (void) metaslab_load(msp);
4e21fd06 2167 msp->ms_selected_txg = spa_syncing_txg(spa);
93cf2076 2168 mutex_exit(&msp->ms_lock);
1cd77734 2169 spl_fstrans_unmark(cookie);
93cf2076
GW
2170}
2171
2172static void
2173metaslab_group_preload(metaslab_group_t *mg)
2174{
2175 spa_t *spa = mg->mg_vd->vdev_spa;
2176 metaslab_t *msp;
2177 avl_tree_t *t = &mg->mg_metaslab_tree;
2178 int m = 0;
2179
2180 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
c5528b9b 2181 taskq_wait_outstanding(mg->mg_taskq, 0);
93cf2076
GW
2182 return;
2183 }
93cf2076 2184
080b3100 2185 mutex_enter(&mg->mg_lock);
a1d477c2 2186
93cf2076 2187 /*
080b3100 2188 * Load the next potential metaslabs
93cf2076 2189 */
4e21fd06 2190 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
a1d477c2
MA
2191 ASSERT3P(msp->ms_group, ==, mg);
2192
f3a7f661
GW
2193 /*
2194 * We preload only the maximum number of metaslabs specified
2195 * by metaslab_preload_limit. If a metaslab is being forced
2196 * to condense then we preload it too. This will ensure
2197 * that force condensing happens in the next txg.
2198 */
2199 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
f3a7f661
GW
2200 continue;
2201 }
93cf2076
GW
2202
2203 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
48d3eb40 2204 msp, TQ_SLEEP) != TASKQID_INVALID);
93cf2076
GW
2205 }
2206 mutex_exit(&mg->mg_lock);
2207}
2208
e51be066 2209/*
93cf2076
GW
2210 * Determine if the space map's on-disk footprint is past our tolerance
2211 * for inefficiency. We would like to use the following criteria to make
2212 * our decision:
e51be066
GW
2213 *
2214 * 1. The size of the space map object should not dramatically increase as a
93cf2076 2215 * result of writing out the free space range tree.
e51be066
GW
2216 *
2217 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
93cf2076 2218 * times the size than the free space range tree representation
a1d477c2 2219 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
e51be066 2220 *
b02fe35d
AR
2221 * 3. The on-disk size of the space map should actually decrease.
2222 *
b02fe35d
AR
2223 * Unfortunately, we cannot compute the on-disk size of the space map in this
2224 * context because we cannot accurately compute the effects of compression, etc.
2225 * Instead, we apply the heuristic described in the block comment for
2226 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2227 * is greater than a threshold number of blocks.
e51be066
GW
2228 */
2229static boolean_t
2230metaslab_should_condense(metaslab_t *msp)
2231{
93cf2076 2232 space_map_t *sm = msp->ms_sm;
d2734cce
SD
2233 vdev_t *vd = msp->ms_group->mg_vd;
2234 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2235 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
e51be066
GW
2236
2237 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2238 ASSERT(msp->ms_loaded);
e51be066
GW
2239
2240 /*
d2734cce
SD
2241 * Allocations and frees in early passes are generally more space
2242 * efficient (in terms of blocks described in space map entries)
2243 * than the ones in later passes (e.g. we don't compress after
2244 * sync pass 5) and condensing a metaslab multiple times in a txg
2245 * could degrade performance.
2246 *
2247 * Thus we prefer condensing each metaslab at most once every txg at
2248 * the earliest sync pass possible. If a metaslab is eligible for
2249 * condensing again after being considered for condensing within the
2250 * same txg, it will hopefully be dirty in the next txg where it will
2251 * be condensed at an earlier pass.
2252 */
2253 if (msp->ms_condense_checked_txg == current_txg)
2254 return (B_FALSE);
2255 msp->ms_condense_checked_txg = current_txg;
2256
2257 /*
4d044c4c
SD
2258 * We always condense metaslabs that are empty and metaslabs for
2259 * which a condense request has been made.
e51be066 2260 */
4d044c4c
SD
2261 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2262 msp->ms_condense_wanted)
e51be066
GW
2263 return (B_TRUE);
2264
4d044c4c
SD
2265 uint64_t object_size = space_map_length(msp->ms_sm);
2266 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2267 msp->ms_allocatable, SM_NO_VDEVID);
b02fe35d 2268
4d044c4c 2269 dmu_object_info_t doi;
b02fe35d 2270 dmu_object_info_from_db(sm->sm_dbuf, &doi);
4d044c4c 2271 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
b02fe35d 2272
4d044c4c 2273 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
b02fe35d 2274 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
2275}
2276
2277/*
2278 * Condense the on-disk space map representation to its minimized form.
2279 * The minimized form consists of a small number of allocations followed by
93cf2076 2280 * the entries of the free range tree.
e51be066
GW
2281 */
2282static void
2283metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2284{
93cf2076
GW
2285 range_tree_t *condense_tree;
2286 space_map_t *sm = msp->ms_sm;
e51be066
GW
2287
2288 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2289 ASSERT(msp->ms_loaded);
e51be066 2290
f3a7f661 2291
964c2d69 2292 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
5f3d9c69
JS
2293 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2294 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2295 msp->ms_group->mg_vd->vdev_spa->spa_name,
d2734cce
SD
2296 space_map_length(msp->ms_sm),
2297 avl_numnodes(&msp->ms_allocatable->rt_root),
f3a7f661
GW
2298 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2299
2300 msp->ms_condense_wanted = B_FALSE;
e51be066
GW
2301
2302 /*
93cf2076 2303 * Create an range tree that is 100% allocated. We remove segments
e51be066
GW
2304 * that have been freed in this txg, any deferred frees that exist,
2305 * and any allocation in the future. Removing segments should be
93cf2076
GW
2306 * a relatively inexpensive operation since we expect these trees to
2307 * have a small number of nodes.
e51be066 2308 */
a1d477c2 2309 condense_tree = range_tree_create(NULL, NULL);
93cf2076 2310 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
e51be066 2311
d2734cce
SD
2312 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2313 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
e51be066 2314
1c27024e 2315 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 2316 range_tree_walk(msp->ms_defer[t],
93cf2076
GW
2317 range_tree_remove, condense_tree);
2318 }
e51be066 2319
1c27024e 2320 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
d2734cce 2321 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
93cf2076
GW
2322 range_tree_remove, condense_tree);
2323 }
e51be066
GW
2324
2325 /*
2326 * We're about to drop the metaslab's lock thus allowing
2327 * other consumers to change it's content. Set the
93cf2076 2328 * metaslab's ms_condensing flag to ensure that
e51be066
GW
2329 * allocations on this metaslab do not occur while we're
2330 * in the middle of committing it to disk. This is only critical
d2734cce 2331 * for ms_allocatable as all other range trees use per txg
e51be066
GW
2332 * views of their content.
2333 */
93cf2076 2334 msp->ms_condensing = B_TRUE;
e51be066
GW
2335
2336 mutex_exit(&msp->ms_lock);
d2734cce 2337 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
e51be066
GW
2338
2339 /*
4e21fd06 2340 * While we would ideally like to create a space map representation
e51be066 2341 * that consists only of allocation records, doing so can be
93cf2076 2342 * prohibitively expensive because the in-core free tree can be
e51be066 2343 * large, and therefore computationally expensive to subtract
93cf2076
GW
2344 * from the condense_tree. Instead we sync out two trees, a cheap
2345 * allocation only tree followed by the in-core free tree. While not
e51be066
GW
2346 * optimal, this is typically close to optimal, and much cheaper to
2347 * compute.
2348 */
4d044c4c 2349 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
93cf2076
GW
2350 range_tree_vacate(condense_tree, NULL, NULL);
2351 range_tree_destroy(condense_tree);
e51be066 2352
4d044c4c 2353 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
a1d477c2 2354 mutex_enter(&msp->ms_lock);
93cf2076 2355 msp->ms_condensing = B_FALSE;
e51be066
GW
2356}
2357
34dc7c2f
BB
2358/*
2359 * Write a metaslab to disk in the context of the specified transaction group.
2360 */
2361void
2362metaslab_sync(metaslab_t *msp, uint64_t txg)
2363{
93cf2076
GW
2364 metaslab_group_t *mg = msp->ms_group;
2365 vdev_t *vd = mg->mg_vd;
34dc7c2f 2366 spa_t *spa = vd->vdev_spa;
428870ff 2367 objset_t *mos = spa_meta_objset(spa);
d2734cce 2368 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
34dc7c2f 2369 dmu_tx_t *tx;
93cf2076 2370 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 2371
428870ff
BB
2372 ASSERT(!vd->vdev_ishole);
2373
e51be066
GW
2374 /*
2375 * This metaslab has just been added so there's no work to do now.
2376 */
d2734cce 2377 if (msp->ms_freeing == NULL) {
93cf2076 2378 ASSERT3P(alloctree, ==, NULL);
e51be066
GW
2379 return;
2380 }
2381
93cf2076 2382 ASSERT3P(alloctree, !=, NULL);
d2734cce
SD
2383 ASSERT3P(msp->ms_freeing, !=, NULL);
2384 ASSERT3P(msp->ms_freed, !=, NULL);
2385 ASSERT3P(msp->ms_checkpointing, !=, NULL);
e51be066 2386
f3a7f661 2387 /*
d2734cce
SD
2388 * Normally, we don't want to process a metaslab if there are no
2389 * allocations or frees to perform. However, if the metaslab is being
2390 * forced to condense and it's loaded, we need to let it through.
f3a7f661 2391 */
d2734cce
SD
2392 if (range_tree_is_empty(alloctree) &&
2393 range_tree_is_empty(msp->ms_freeing) &&
2394 range_tree_is_empty(msp->ms_checkpointing) &&
3b7f360c 2395 !(msp->ms_loaded && msp->ms_condense_wanted))
428870ff 2396 return;
34dc7c2f 2397
3b7f360c
GW
2398
2399 VERIFY(txg <= spa_final_dirty_txg(spa));
2400
34dc7c2f
BB
2401 /*
2402 * The only state that can actually be changing concurrently with
d2734cce
SD
2403 * metaslab_sync() is the metaslab's ms_allocatable. No other
2404 * thread can be modifying this txg's alloc, freeing,
2405 * freed, or space_map_phys_t. We drop ms_lock whenever we
2406 * could call into the DMU, because the DMU can call down to us
a1d477c2
MA
2407 * (e.g. via zio_free()) at any time.
2408 *
2409 * The spa_vdev_remove_thread() can be reading metaslab state
2410 * concurrently, and it is locked out by the ms_sync_lock. Note
2411 * that the ms_lock is insufficient for this, because it is dropped
2412 * by space_map_write().
34dc7c2f 2413 */
428870ff 2414 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 2415
93cf2076
GW
2416 if (msp->ms_sm == NULL) {
2417 uint64_t new_object;
2418
d2734cce 2419 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
93cf2076
GW
2420 VERIFY3U(new_object, !=, 0);
2421
2422 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
a1d477c2 2423 msp->ms_start, msp->ms_size, vd->vdev_ashift));
93cf2076 2424 ASSERT(msp->ms_sm != NULL);
34dc7c2f
BB
2425 }
2426
d2734cce
SD
2427 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2428 vd->vdev_checkpoint_sm == NULL) {
2429 ASSERT(spa_has_checkpoint(spa));
2430
2431 uint64_t new_object = space_map_alloc(mos,
2432 vdev_standard_sm_blksz, tx);
2433 VERIFY3U(new_object, !=, 0);
2434
2435 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2436 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2437 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2438
2439 /*
2440 * We save the space map object as an entry in vdev_top_zap
2441 * so it can be retrieved when the pool is reopened after an
2442 * export or through zdb.
2443 */
2444 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2445 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2446 sizeof (new_object), 1, &new_object, tx));
2447 }
2448
a1d477c2 2449 mutex_enter(&msp->ms_sync_lock);
428870ff
BB
2450 mutex_enter(&msp->ms_lock);
2451
96358617 2452 /*
4e21fd06
DB
2453 * Note: metaslab_condense() clears the space map's histogram.
2454 * Therefore we must verify and remove this histogram before
96358617
MA
2455 * condensing.
2456 */
2457 metaslab_group_histogram_verify(mg);
2458 metaslab_class_histogram_verify(mg->mg_class);
2459 metaslab_group_histogram_remove(mg, msp);
2460
d2734cce 2461 if (msp->ms_loaded && metaslab_should_condense(msp)) {
e51be066
GW
2462 metaslab_condense(msp, txg, tx);
2463 } else {
a1d477c2 2464 mutex_exit(&msp->ms_lock);
4d044c4c
SD
2465 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2466 SM_NO_VDEVID, tx);
2467 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2468 SM_NO_VDEVID, tx);
a1d477c2 2469 mutex_enter(&msp->ms_lock);
e51be066 2470 }
428870ff 2471
d2734cce
SD
2472 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2473 ASSERT(spa_has_checkpoint(spa));
2474 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2475
2476 /*
2477 * Since we are doing writes to disk and the ms_checkpointing
2478 * tree won't be changing during that time, we drop the
2479 * ms_lock while writing to the checkpoint space map.
2480 */
2481 mutex_exit(&msp->ms_lock);
2482 space_map_write(vd->vdev_checkpoint_sm,
4d044c4c 2483 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
d2734cce
SD
2484 mutex_enter(&msp->ms_lock);
2485 space_map_update(vd->vdev_checkpoint_sm);
2486
2487 spa->spa_checkpoint_info.sci_dspace +=
2488 range_tree_space(msp->ms_checkpointing);
2489 vd->vdev_stat.vs_checkpoint_space +=
2490 range_tree_space(msp->ms_checkpointing);
2491 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2492 -vd->vdev_checkpoint_sm->sm_alloc);
2493
2494 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2495 }
2496
93cf2076
GW
2497 if (msp->ms_loaded) {
2498 /*
a1d477c2 2499 * When the space map is loaded, we have an accurate
93cf2076
GW
2500 * histogram in the range tree. This gives us an opportunity
2501 * to bring the space map's histogram up-to-date so we clear
2502 * it first before updating it.
2503 */
2504 space_map_histogram_clear(msp->ms_sm);
d2734cce 2505 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4e21fd06
DB
2506
2507 /*
2508 * Since we've cleared the histogram we need to add back
2509 * any free space that has already been processed, plus
2510 * any deferred space. This allows the on-disk histogram
2511 * to accurately reflect all free space even if some space
2512 * is not yet available for allocation (i.e. deferred).
2513 */
d2734cce 2514 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4e21fd06 2515
93cf2076 2516 /*
4e21fd06
DB
2517 * Add back any deferred free space that has not been
2518 * added back into the in-core free tree yet. This will
2519 * ensure that we don't end up with a space map histogram
2520 * that is completely empty unless the metaslab is fully
2521 * allocated.
93cf2076 2522 */
1c27024e 2523 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4e21fd06 2524 space_map_histogram_add(msp->ms_sm,
d2734cce 2525 msp->ms_defer[t], tx);
4e21fd06 2526 }
93cf2076 2527 }
4e21fd06
DB
2528
2529 /*
2530 * Always add the free space from this sync pass to the space
2531 * map histogram. We want to make sure that the on-disk histogram
2532 * accounts for all free space. If the space map is not loaded,
2533 * then we will lose some accuracy but will correct it the next
2534 * time we load the space map.
2535 */
d2734cce 2536 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4e21fd06 2537
f3a7f661
GW
2538 metaslab_group_histogram_add(mg, msp);
2539 metaslab_group_histogram_verify(mg);
2540 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 2541
e51be066 2542 /*
93cf2076 2543 * For sync pass 1, we avoid traversing this txg's free range tree
d2734cce
SD
2544 * and instead will just swap the pointers for freeing and
2545 * freed. We can safely do this since the freed_tree is
e51be066
GW
2546 * guaranteed to be empty on the initial pass.
2547 */
2548 if (spa_sync_pass(spa) == 1) {
d2734cce 2549 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
e51be066 2550 } else {
d2734cce
SD
2551 range_tree_vacate(msp->ms_freeing,
2552 range_tree_add, msp->ms_freed);
34dc7c2f 2553 }
f3a7f661 2554 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 2555
d2734cce
SD
2556 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2557 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2558 & TXG_MASK]));
2559 ASSERT0(range_tree_space(msp->ms_freeing));
2560 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f
BB
2561
2562 mutex_exit(&msp->ms_lock);
2563
93cf2076
GW
2564 if (object != space_map_object(msp->ms_sm)) {
2565 object = space_map_object(msp->ms_sm);
2566 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2567 msp->ms_id, sizeof (uint64_t), &object, tx);
2568 }
a1d477c2 2569 mutex_exit(&msp->ms_sync_lock);
34dc7c2f
BB
2570 dmu_tx_commit(tx);
2571}
2572
2573/*
2574 * Called after a transaction group has completely synced to mark
2575 * all of the metaslab's free space as usable.
2576 */
2577void
2578metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2579{
34dc7c2f
BB
2580 metaslab_group_t *mg = msp->ms_group;
2581 vdev_t *vd = mg->mg_vd;
4e21fd06 2582 spa_t *spa = vd->vdev_spa;
93cf2076 2583 range_tree_t **defer_tree;
428870ff 2584 int64_t alloc_delta, defer_delta;
4e21fd06 2585 boolean_t defer_allowed = B_TRUE;
428870ff
BB
2586
2587 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
2588
2589 mutex_enter(&msp->ms_lock);
2590
2591 /*
2592 * If this metaslab is just becoming available, initialize its
258553d3 2593 * range trees and add its capacity to the vdev.
34dc7c2f 2594 */
d2734cce 2595 if (msp->ms_freed == NULL) {
1c27024e 2596 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 2597 ASSERT(msp->ms_allocating[t] == NULL);
93cf2076 2598
d2734cce 2599 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
34dc7c2f 2600 }
428870ff 2601
d2734cce
SD
2602 ASSERT3P(msp->ms_freeing, ==, NULL);
2603 msp->ms_freeing = range_tree_create(NULL, NULL);
258553d3 2604
d2734cce
SD
2605 ASSERT3P(msp->ms_freed, ==, NULL);
2606 msp->ms_freed = range_tree_create(NULL, NULL);
258553d3 2607
1c27024e 2608 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 2609 ASSERT(msp->ms_defer[t] == NULL);
e51be066 2610
d2734cce 2611 msp->ms_defer[t] = range_tree_create(NULL, NULL);
93cf2076 2612 }
428870ff 2613
d2734cce
SD
2614 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2615 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2616
cc99f275 2617 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
34dc7c2f 2618 }
d2734cce
SD
2619 ASSERT0(range_tree_space(msp->ms_freeing));
2620 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f 2621
d2734cce 2622 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
93cf2076 2623
1c27024e 2624 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4e21fd06 2625 metaslab_class_get_alloc(spa_normal_class(spa));
a1d477c2 2626 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4e21fd06
DB
2627 defer_allowed = B_FALSE;
2628 }
2629
2630 defer_delta = 0;
93cf2076 2631 alloc_delta = space_map_alloc_delta(msp->ms_sm);
4e21fd06 2632 if (defer_allowed) {
d2734cce 2633 defer_delta = range_tree_space(msp->ms_freed) -
4e21fd06
DB
2634 range_tree_space(*defer_tree);
2635 } else {
2636 defer_delta -= range_tree_space(*defer_tree);
2637 }
428870ff 2638
cc99f275
DB
2639 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
2640 defer_delta, 0);
34dc7c2f 2641
34dc7c2f 2642 /*
93cf2076 2643 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 2644 * so that we have a consistent view of the in-core space map.
34dc7c2f 2645 */
93cf2076 2646 metaslab_load_wait(msp);
c2e42f9d
GW
2647
2648 /*
93cf2076 2649 * Move the frees from the defer_tree back to the free
d2734cce
SD
2650 * range tree (if it's loaded). Swap the freed_tree and
2651 * the defer_tree -- this is safe to do because we've
2652 * just emptied out the defer_tree.
c2e42f9d 2653 */
93cf2076 2654 range_tree_vacate(*defer_tree,
d2734cce 2655 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4e21fd06 2656 if (defer_allowed) {
d2734cce 2657 range_tree_swap(&msp->ms_freed, defer_tree);
4e21fd06 2658 } else {
d2734cce
SD
2659 range_tree_vacate(msp->ms_freed,
2660 msp->ms_loaded ? range_tree_add : NULL,
2661 msp->ms_allocatable);
4e21fd06 2662 }
93cf2076 2663 space_map_update(msp->ms_sm);
34dc7c2f 2664
428870ff
BB
2665 msp->ms_deferspace += defer_delta;
2666 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 2667 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
2668 if (msp->ms_deferspace != 0) {
2669 /*
2670 * Keep syncing this metaslab until all deferred frees
2671 * are back in circulation.
2672 */
2673 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2674 }
2675
492f64e9
PD
2676 if (msp->ms_new) {
2677 msp->ms_new = B_FALSE;
2678 mutex_enter(&mg->mg_lock);
2679 mg->mg_ms_ready++;
2680 mutex_exit(&mg->mg_lock);
2681 }
4e21fd06
DB
2682 /*
2683 * Calculate the new weights before unloading any metaslabs.
2684 * This will give us the most accurate weighting.
2685 */
492f64e9
PD
2686 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2687 (msp->ms_weight & METASLAB_ACTIVE_MASK));
4e21fd06
DB
2688
2689 /*
2690 * If the metaslab is loaded and we've not tried to load or allocate
2691 * from it in 'metaslab_unload_delay' txgs, then unload it.
2692 */
2693 if (msp->ms_loaded &&
619f0976 2694 msp->ms_initializing == 0 &&
4e21fd06
DB
2695 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2696
1c27024e 2697 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
93cf2076 2698 VERIFY0(range_tree_space(
d2734cce 2699 msp->ms_allocating[(txg + t) & TXG_MASK]));
93cf2076 2700 }
492f64e9
PD
2701 if (msp->ms_allocator != -1) {
2702 metaslab_passivate(msp, msp->ms_weight &
2703 ~METASLAB_ACTIVE_MASK);
2704 }
34dc7c2f 2705
93cf2076
GW
2706 if (!metaslab_debug_unload)
2707 metaslab_unload(msp);
34dc7c2f
BB
2708 }
2709
d2734cce
SD
2710 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2711 ASSERT0(range_tree_space(msp->ms_freeing));
2712 ASSERT0(range_tree_space(msp->ms_freed));
2713 ASSERT0(range_tree_space(msp->ms_checkpointing));
a1d477c2 2714
34dc7c2f
BB
2715 mutex_exit(&msp->ms_lock);
2716}
2717
428870ff
BB
2718void
2719metaslab_sync_reassess(metaslab_group_t *mg)
2720{
a1d477c2
MA
2721 spa_t *spa = mg->mg_class->mc_spa;
2722
2723 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1be627f5 2724 metaslab_group_alloc_update(mg);
f3a7f661 2725 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 2726
428870ff 2727 /*
a1d477c2
MA
2728 * Preload the next potential metaslabs but only on active
2729 * metaslab groups. We can get into a state where the metaslab
2730 * is no longer active since we dirty metaslabs as we remove a
2731 * a device, thus potentially making the metaslab group eligible
2732 * for preloading.
428870ff 2733 */
a1d477c2
MA
2734 if (mg->mg_activation_count > 0) {
2735 metaslab_group_preload(mg);
2736 }
2737 spa_config_exit(spa, SCL_ALLOC, FTAG);
428870ff
BB
2738}
2739
cc99f275
DB
2740/*
2741 * When writing a ditto block (i.e. more than one DVA for a given BP) on
2742 * the same vdev as an existing DVA of this BP, then try to allocate it
2743 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
2744 */
2745static boolean_t
2746metaslab_is_unique(metaslab_t *msp, dva_t *dva)
34dc7c2f 2747{
cc99f275
DB
2748 uint64_t dva_ms_id;
2749
2750 if (DVA_GET_ASIZE(dva) == 0)
2751 return (B_TRUE);
34dc7c2f
BB
2752
2753 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
cc99f275 2754 return (B_TRUE);
34dc7c2f 2755
cc99f275
DB
2756 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
2757
2758 return (msp->ms_id != dva_ms_id);
34dc7c2f
BB
2759}
2760
4e21fd06
DB
2761/*
2762 * ==========================================================================
2763 * Metaslab allocation tracing facility
2764 * ==========================================================================
2765 */
2766#ifdef _METASLAB_TRACING
2767kstat_t *metaslab_trace_ksp;
2768kstat_named_t metaslab_trace_over_limit;
2769
2770void
2771metaslab_alloc_trace_init(void)
2772{
2773 ASSERT(metaslab_alloc_trace_cache == NULL);
2774 metaslab_alloc_trace_cache = kmem_cache_create(
2775 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2776 0, NULL, NULL, NULL, NULL, NULL, 0);
2777 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2778 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2779 if (metaslab_trace_ksp != NULL) {
2780 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2781 kstat_named_init(&metaslab_trace_over_limit,
2782 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2783 kstat_install(metaslab_trace_ksp);
2784 }
2785}
2786
2787void
2788metaslab_alloc_trace_fini(void)
2789{
2790 if (metaslab_trace_ksp != NULL) {
2791 kstat_delete(metaslab_trace_ksp);
2792 metaslab_trace_ksp = NULL;
2793 }
2794 kmem_cache_destroy(metaslab_alloc_trace_cache);
2795 metaslab_alloc_trace_cache = NULL;
2796}
2797
2798/*
2799 * Add an allocation trace element to the allocation tracing list.
2800 */
2801static void
2802metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
492f64e9
PD
2803 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2804 int allocator)
4e21fd06
DB
2805{
2806 metaslab_alloc_trace_t *mat;
2807
2808 if (!metaslab_trace_enabled)
2809 return;
2810
2811 /*
2812 * When the tracing list reaches its maximum we remove
2813 * the second element in the list before adding a new one.
2814 * By removing the second element we preserve the original
2815 * entry as a clue to what allocations steps have already been
2816 * performed.
2817 */
2818 if (zal->zal_size == metaslab_trace_max_entries) {
2819 metaslab_alloc_trace_t *mat_next;
2820#ifdef DEBUG
2821 panic("too many entries in allocation list");
2822#endif
2823 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2824 zal->zal_size--;
2825 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2826 list_remove(&zal->zal_list, mat_next);
2827 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2828 }
2829
2830 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2831 list_link_init(&mat->mat_list_node);
2832 mat->mat_mg = mg;
2833 mat->mat_msp = msp;
2834 mat->mat_size = psize;
2835 mat->mat_dva_id = dva_id;
2836 mat->mat_offset = offset;
2837 mat->mat_weight = 0;
492f64e9 2838 mat->mat_allocator = allocator;
4e21fd06
DB
2839
2840 if (msp != NULL)
2841 mat->mat_weight = msp->ms_weight;
2842
2843 /*
2844 * The list is part of the zio so locking is not required. Only
2845 * a single thread will perform allocations for a given zio.
2846 */
2847 list_insert_tail(&zal->zal_list, mat);
2848 zal->zal_size++;
2849
2850 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2851}
2852
2853void
2854metaslab_trace_init(zio_alloc_list_t *zal)
2855{
2856 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2857 offsetof(metaslab_alloc_trace_t, mat_list_node));
2858 zal->zal_size = 0;
2859}
2860
2861void
2862metaslab_trace_fini(zio_alloc_list_t *zal)
2863{
2864 metaslab_alloc_trace_t *mat;
2865
2866 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2867 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2868 list_destroy(&zal->zal_list);
2869 zal->zal_size = 0;
2870}
2871#else
2872
492f64e9 2873#define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
4e21fd06
DB
2874
2875void
2876metaslab_alloc_trace_init(void)
2877{
2878}
2879
2880void
2881metaslab_alloc_trace_fini(void)
2882{
2883}
2884
2885void
2886metaslab_trace_init(zio_alloc_list_t *zal)
2887{
2888}
2889
2890void
2891metaslab_trace_fini(zio_alloc_list_t *zal)
2892{
2893}
2894
2895#endif /* _METASLAB_TRACING */
2896
3dfb57a3
DB
2897/*
2898 * ==========================================================================
2899 * Metaslab block operations
2900 * ==========================================================================
2901 */
2902
2903static void
492f64e9
PD
2904metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2905 int allocator)
3dfb57a3 2906{
3dfb57a3 2907 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 2908 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
2909 return;
2910
1c27024e 2911 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
2912 if (!mg->mg_class->mc_alloc_throttle_enabled)
2913 return;
2914
c13060e4 2915 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
492f64e9
PD
2916}
2917
2918static void
2919metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2920{
2921 uint64_t max = mg->mg_max_alloc_queue_depth;
2922 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2923 while (cur < max) {
2924 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2925 cur, cur + 1) == cur) {
2926 atomic_inc_64(
2927 &mg->mg_class->mc_alloc_max_slots[allocator]);
2928 return;
2929 }
2930 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2931 }
3dfb57a3
DB
2932}
2933
2934void
492f64e9
PD
2935metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2936 int allocator, boolean_t io_complete)
3dfb57a3 2937{
3dfb57a3 2938 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 2939 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
2940 return;
2941
1c27024e 2942 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
2943 if (!mg->mg_class->mc_alloc_throttle_enabled)
2944 return;
2945
424fd7c3 2946 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
492f64e9
PD
2947 if (io_complete)
2948 metaslab_group_increment_qdepth(mg, allocator);
3dfb57a3
DB
2949}
2950
2951void
492f64e9
PD
2952metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2953 int allocator)
3dfb57a3
DB
2954{
2955#ifdef ZFS_DEBUG
2956 const dva_t *dva = bp->blk_dva;
2957 int ndvas = BP_GET_NDVAS(bp);
3dfb57a3 2958
1c27024e 2959 for (int d = 0; d < ndvas; d++) {
3dfb57a3
DB
2960 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2961 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
424fd7c3
TS
2962 VERIFY(zfs_refcount_not_held(
2963 &mg->mg_alloc_queue_depth[allocator], tag));
3dfb57a3
DB
2964 }
2965#endif
2966}
2967
34dc7c2f 2968static uint64_t
4e21fd06
DB
2969metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2970{
2971 uint64_t start;
d2734cce 2972 range_tree_t *rt = msp->ms_allocatable;
4e21fd06
DB
2973 metaslab_class_t *mc = msp->ms_group->mg_class;
2974
2975 VERIFY(!msp->ms_condensing);
619f0976 2976 VERIFY0(msp->ms_initializing);
4e21fd06
DB
2977
2978 start = mc->mc_ops->msop_alloc(msp, size);
2979 if (start != -1ULL) {
2980 metaslab_group_t *mg = msp->ms_group;
2981 vdev_t *vd = mg->mg_vd;
2982
2983 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2984 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2985 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2986 range_tree_remove(rt, start, size);
2987
d2734cce 2988 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4e21fd06
DB
2989 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2990
d2734cce 2991 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4e21fd06
DB
2992
2993 /* Track the last successful allocation */
2994 msp->ms_alloc_txg = txg;
2995 metaslab_verify_space(msp, txg);
2996 }
2997
2998 /*
2999 * Now that we've attempted the allocation we need to update the
3000 * metaslab's maximum block size since it may have changed.
3001 */
3002 msp->ms_max_size = metaslab_block_maxsize(msp);
3003 return (start);
3004}
3005
492f64e9
PD
3006/*
3007 * Find the metaslab with the highest weight that is less than what we've
3008 * already tried. In the common case, this means that we will examine each
3009 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3010 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3011 * activated by another thread, and we fail to allocate from the metaslab we
3012 * have selected, we may not try the newly-activated metaslab, and instead
3013 * activate another metaslab. This is not optimal, but generally does not cause
3014 * any problems (a possible exception being if every metaslab is completely full
3015 * except for the the newly-activated metaslab which we fail to examine).
3016 */
3017static metaslab_t *
3018find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
cc99f275 3019 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
492f64e9
PD
3020 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3021{
3022 avl_index_t idx;
3023 avl_tree_t *t = &mg->mg_metaslab_tree;
3024 metaslab_t *msp = avl_find(t, search, &idx);
3025 if (msp == NULL)
3026 msp = avl_nearest(t, idx, AVL_AFTER);
3027
3028 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3029 int i;
3030 if (!metaslab_should_allocate(msp, asize)) {
3031 metaslab_trace_add(zal, mg, msp, asize, d,
3032 TRACE_TOO_SMALL, allocator);
3033 continue;
3034 }
3035
3036 /*
619f0976
GW
3037 * If the selected metaslab is condensing or being
3038 * initialized, skip it.
492f64e9 3039 */
619f0976 3040 if (msp->ms_condensing || msp->ms_initializing > 0)
492f64e9
PD
3041 continue;
3042
3043 *was_active = msp->ms_allocator != -1;
3044 /*
3045 * If we're activating as primary, this is our first allocation
3046 * from this disk, so we don't need to check how close we are.
3047 * If the metaslab under consideration was already active,
3048 * we're getting desperate enough to steal another allocator's
3049 * metaslab, so we still don't care about distances.
3050 */
3051 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3052 break;
3053
492f64e9 3054 for (i = 0; i < d; i++) {
cc99f275
DB
3055 if (want_unique &&
3056 !metaslab_is_unique(msp, &dva[i]))
3057 break; /* try another metaslab */
492f64e9
PD
3058 }
3059 if (i == d)
3060 break;
3061 }
3062
3063 if (msp != NULL) {
3064 search->ms_weight = msp->ms_weight;
3065 search->ms_start = msp->ms_start + 1;
3066 search->ms_allocator = msp->ms_allocator;
3067 search->ms_primary = msp->ms_primary;
3068 }
3069 return (msp);
3070}
3071
3072/* ARGSUSED */
4e21fd06
DB
3073static uint64_t
3074metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
cc99f275
DB
3075 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3076 int d, int allocator)
34dc7c2f
BB
3077{
3078 metaslab_t *msp = NULL;
3079 uint64_t offset = -1ULL;
34dc7c2f 3080 uint64_t activation_weight;
34dc7c2f
BB
3081
3082 activation_weight = METASLAB_WEIGHT_PRIMARY;
492f64e9
PD
3083 for (int i = 0; i < d; i++) {
3084 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3085 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 3086 activation_weight = METASLAB_WEIGHT_SECONDARY;
492f64e9
PD
3087 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3088 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
e38afd34 3089 activation_weight = METASLAB_WEIGHT_CLAIM;
9babb374
BB
3090 break;
3091 }
3092 }
34dc7c2f 3093
492f64e9
PD
3094 /*
3095 * If we don't have enough metaslabs active to fill the entire array, we
3096 * just use the 0th slot.
3097 */
e38afd34 3098 if (mg->mg_ms_ready < mg->mg_allocators * 3)
492f64e9 3099 allocator = 0;
492f64e9
PD
3100
3101 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3102
1c27024e 3103 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4e21fd06
DB
3104 search->ms_weight = UINT64_MAX;
3105 search->ms_start = 0;
492f64e9
PD
3106 /*
3107 * At the end of the metaslab tree are the already-active metaslabs,
3108 * first the primaries, then the secondaries. When we resume searching
3109 * through the tree, we need to consider ms_allocator and ms_primary so
3110 * we start in the location right after where we left off, and don't
3111 * accidentally loop forever considering the same metaslabs.
3112 */
3113 search->ms_allocator = -1;
3114 search->ms_primary = B_TRUE;
34dc7c2f 3115 for (;;) {
492f64e9 3116 boolean_t was_active = B_FALSE;
9babb374 3117
34dc7c2f 3118 mutex_enter(&mg->mg_lock);
4e21fd06 3119
492f64e9
PD
3120 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3121 mg->mg_primaries[allocator] != NULL) {
3122 msp = mg->mg_primaries[allocator];
3123 was_active = B_TRUE;
3124 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
e38afd34 3125 mg->mg_secondaries[allocator] != NULL) {
492f64e9
PD
3126 msp = mg->mg_secondaries[allocator];
3127 was_active = B_TRUE;
3128 } else {
3129 msp = find_valid_metaslab(mg, activation_weight, dva, d,
cc99f275 3130 want_unique, asize, allocator, zal, search,
492f64e9 3131 &was_active);
34dc7c2f 3132 }
492f64e9 3133
34dc7c2f 3134 mutex_exit(&mg->mg_lock);
4e21fd06
DB
3135 if (msp == NULL) {
3136 kmem_free(search, sizeof (*search));
34dc7c2f 3137 return (-1ULL);
4e21fd06 3138 }
34dc7c2f 3139
ac72fac3 3140 mutex_enter(&msp->ms_lock);
34dc7c2f
BB
3141 /*
3142 * Ensure that the metaslab we have selected is still
3143 * capable of handling our request. It's possible that
3144 * another thread may have changed the weight while we
4e21fd06
DB
3145 * were blocked on the metaslab lock. We check the
3146 * active status first to see if we need to reselect
3147 * a new metaslab.
34dc7c2f 3148 */
4e21fd06 3149 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
34dc7c2f
BB
3150 mutex_exit(&msp->ms_lock);
3151 continue;
3152 }
3153
492f64e9
PD
3154 /*
3155 * If the metaslab is freshly activated for an allocator that
3156 * isn't the one we're allocating from, or if it's a primary and
3157 * we're seeking a secondary (or vice versa), we go back and
3158 * select a new metaslab.
3159 */
3160 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3161 (msp->ms_allocator != -1) &&
3162 (msp->ms_allocator != allocator || ((activation_weight ==
3163 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3164 mutex_exit(&msp->ms_lock);
3165 continue;
3166 }
3167
e38afd34 3168 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3169 activation_weight != METASLAB_WEIGHT_CLAIM) {
492f64e9
PD
3170 metaslab_passivate(msp, msp->ms_weight &
3171 ~METASLAB_WEIGHT_CLAIM);
34dc7c2f
BB
3172 mutex_exit(&msp->ms_lock);
3173 continue;
3174 }
3175
492f64e9 3176 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
34dc7c2f
BB
3177 mutex_exit(&msp->ms_lock);
3178 continue;
3179 }
492f64e9 3180
4e21fd06
DB
3181 msp->ms_selected_txg = txg;
3182
3183 /*
3184 * Now that we have the lock, recheck to see if we should
3185 * continue to use this metaslab for this allocation. The
3186 * the metaslab is now loaded so metaslab_should_allocate() can
3187 * accurately determine if the allocation attempt should
3188 * proceed.
3189 */
3190 if (!metaslab_should_allocate(msp, asize)) {
3191 /* Passivate this metaslab and select a new one. */
3192 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 3193 TRACE_TOO_SMALL, allocator);
4e21fd06
DB
3194 goto next;
3195 }
3196
34dc7c2f 3197
7a614407
GW
3198 /*
3199 * If this metaslab is currently condensing then pick again as
3200 * we can't manipulate this metaslab until it's committed
619f0976
GW
3201 * to disk. If this metaslab is being initialized, we shouldn't
3202 * allocate from it since the allocated region might be
3203 * overwritten after allocation.
7a614407 3204 */
93cf2076 3205 if (msp->ms_condensing) {
4e21fd06 3206 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9
PD
3207 TRACE_CONDENSING, allocator);
3208 metaslab_passivate(msp, msp->ms_weight &
3209 ~METASLAB_ACTIVE_MASK);
7a614407
GW
3210 mutex_exit(&msp->ms_lock);
3211 continue;
619f0976
GW
3212 } else if (msp->ms_initializing > 0) {
3213 metaslab_trace_add(zal, mg, msp, asize, d,
3214 TRACE_INITIALIZING, allocator);
3215 metaslab_passivate(msp, msp->ms_weight &
3216 ~METASLAB_ACTIVE_MASK);
3217 mutex_exit(&msp->ms_lock);
3218 continue;
7a614407
GW
3219 }
3220
4e21fd06 3221 offset = metaslab_block_alloc(msp, asize, txg);
492f64e9 3222 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4e21fd06
DB
3223
3224 if (offset != -1ULL) {
3225 /* Proactively passivate the metaslab, if needed */
3226 metaslab_segment_may_passivate(msp);
34dc7c2f 3227 break;
4e21fd06
DB
3228 }
3229next:
3230 ASSERT(msp->ms_loaded);
3231
3232 /*
3233 * We were unable to allocate from this metaslab so determine
3234 * a new weight for this metaslab. Now that we have loaded
3235 * the metaslab we can provide a better hint to the metaslab
3236 * selector.
3237 *
3238 * For space-based metaslabs, we use the maximum block size.
3239 * This information is only available when the metaslab
3240 * is loaded and is more accurate than the generic free
3241 * space weight that was calculated by metaslab_weight().
3242 * This information allows us to quickly compare the maximum
3243 * available allocation in the metaslab to the allocation
3244 * size being requested.
3245 *
3246 * For segment-based metaslabs, determine the new weight
3247 * based on the highest bucket in the range tree. We
3248 * explicitly use the loaded segment weight (i.e. the range
3249 * tree histogram) since it contains the space that is
3250 * currently available for allocation and is accurate
3251 * even within a sync pass.
3252 */
3253 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3254 uint64_t weight = metaslab_block_maxsize(msp);
3255 WEIGHT_SET_SPACEBASED(weight);
3256 metaslab_passivate(msp, weight);
3257 } else {
3258 metaslab_passivate(msp,
3259 metaslab_weight_from_range_tree(msp));
3260 }
34dc7c2f 3261
4e21fd06
DB
3262 /*
3263 * We have just failed an allocation attempt, check
3264 * that metaslab_should_allocate() agrees. Otherwise,
3265 * we may end up in an infinite loop retrying the same
3266 * metaslab.
3267 */
3268 ASSERT(!metaslab_should_allocate(msp, asize));
cc99f275 3269
34dc7c2f
BB
3270 mutex_exit(&msp->ms_lock);
3271 }
4e21fd06
DB
3272 mutex_exit(&msp->ms_lock);
3273 kmem_free(search, sizeof (*search));
3274 return (offset);
3275}
34dc7c2f 3276
4e21fd06
DB
3277static uint64_t
3278metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
cc99f275
DB
3279 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3280 int d, int allocator)
4e21fd06
DB
3281{
3282 uint64_t offset;
3283 ASSERT(mg->mg_initialized);
34dc7c2f 3284
cc99f275
DB
3285 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3286 dva, d, allocator);
34dc7c2f 3287
4e21fd06
DB
3288 mutex_enter(&mg->mg_lock);
3289 if (offset == -1ULL) {
3290 mg->mg_failed_allocations++;
3291 metaslab_trace_add(zal, mg, NULL, asize, d,
492f64e9 3292 TRACE_GROUP_FAILURE, allocator);
4e21fd06
DB
3293 if (asize == SPA_GANGBLOCKSIZE) {
3294 /*
3295 * This metaslab group was unable to allocate
3296 * the minimum gang block size so it must be out of
3297 * space. We must notify the allocation throttle
3298 * to start skipping allocation attempts to this
3299 * metaslab group until more space becomes available.
3300 * Note: this failure cannot be caused by the
3301 * allocation throttle since the allocation throttle
3302 * is only responsible for skipping devices and
3303 * not failing block allocations.
3304 */
3305 mg->mg_no_free_space = B_TRUE;
3306 }
3307 }
3308 mg->mg_allocations++;
3309 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
3310 return (offset);
3311}
3312
3313/*
3314 * Allocate a block for the specified i/o.
3315 */
a1d477c2 3316int
34dc7c2f 3317metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4e21fd06 3318 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
492f64e9 3319 zio_alloc_list_t *zal, int allocator)
34dc7c2f 3320{
920dd524 3321 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f 3322 vdev_t *vd;
4e21fd06 3323 boolean_t try_hard = B_FALSE;
34dc7c2f
BB
3324
3325 ASSERT(!DVA_IS_VALID(&dva[d]));
3326
3327 /*
3328 * For testing, make some blocks above a certain size be gang blocks.
09b85f2d
BB
3329 * This will result in more split blocks when using device removal,
3330 * and a large number of split blocks coupled with ztest-induced
3331 * damage can result in extremely long reconstruction times. This
3332 * will also test spilling from special to normal.
34dc7c2f 3333 */
09b85f2d 3334 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
492f64e9
PD
3335 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3336 allocator);
2e528b49 3337 return (SET_ERROR(ENOSPC));
4e21fd06 3338 }
34dc7c2f
BB
3339
3340 /*
3341 * Start at the rotor and loop through all mgs until we find something.
428870ff 3342 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
3343 * nothing actually breaks if we miss a few updates -- we just won't
3344 * allocate quite as evenly. It all balances out over time.
3345 *
3346 * If we are doing ditto or log blocks, try to spread them across
3347 * consecutive vdevs. If we're forced to reuse a vdev before we've
3348 * allocated all of our ditto blocks, then try and spread them out on
3349 * that vdev as much as possible. If it turns out to not be possible,
3350 * gradually lower our standards until anything becomes acceptable.
3351 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3352 * gives us hope of containing our fault domains to something we're
3353 * able to reason about. Otherwise, any two top-level vdev failures
3354 * will guarantee the loss of data. With consecutive allocation,
3355 * only two adjacent top-level vdev failures will result in data loss.
3356 *
3357 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3358 * ourselves on the same vdev as our gang block header. That
3359 * way, we can hope for locality in vdev_cache, plus it makes our
3360 * fault domains something tractable.
3361 */
3362 if (hintdva) {
3363 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
3364
3365 /*
3366 * It's possible the vdev we're using as the hint no
a1d477c2
MA
3367 * longer exists or its mg has been closed (e.g. by
3368 * device removal). Consult the rotor when
428870ff
BB
3369 * all else fails.
3370 */
a1d477c2 3371 if (vd != NULL && vd->vdev_mg != NULL) {
34dc7c2f 3372 mg = vd->vdev_mg;
428870ff
BB
3373
3374 if (flags & METASLAB_HINTBP_AVOID &&
3375 mg->mg_next != NULL)
3376 mg = mg->mg_next;
3377 } else {
3378 mg = mc->mc_rotor;
3379 }
34dc7c2f
BB
3380 } else if (d != 0) {
3381 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3382 mg = vd->vdev_mg->mg_next;
920dd524
ED
3383 } else if (flags & METASLAB_FASTWRITE) {
3384 mg = fast_mg = mc->mc_rotor;
3385
3386 do {
3387 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3388 mg->mg_vd->vdev_pending_fastwrite)
3389 mg = fast_mg;
3390 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3391
34dc7c2f 3392 } else {
cc99f275 3393 ASSERT(mc->mc_rotor != NULL);
34dc7c2f
BB
3394 mg = mc->mc_rotor;
3395 }
3396
3397 /*
428870ff
BB
3398 * If the hint put us into the wrong metaslab class, or into a
3399 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 3400 */
428870ff 3401 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
3402 mg = mc->mc_rotor;
3403
3404 rotor = mg;
3405top:
34dc7c2f 3406 do {
4e21fd06 3407 boolean_t allocatable;
428870ff 3408
3dfb57a3 3409 ASSERT(mg->mg_activation_count == 1);
34dc7c2f 3410 vd = mg->mg_vd;
fb5f0bc8 3411
34dc7c2f 3412 /*
b128c09f 3413 * Don't allocate from faulted devices.
34dc7c2f 3414 */
4e21fd06 3415 if (try_hard) {
fb5f0bc8
BB
3416 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3417 allocatable = vdev_allocatable(vd);
3418 spa_config_exit(spa, SCL_ZIO, FTAG);
3419 } else {
3420 allocatable = vdev_allocatable(vd);
3421 }
ac72fac3
GW
3422
3423 /*
3424 * Determine if the selected metaslab group is eligible
3dfb57a3
DB
3425 * for allocations. If we're ganging then don't allow
3426 * this metaslab group to skip allocations since that would
3427 * inadvertently return ENOSPC and suspend the pool
ac72fac3
GW
3428 * even though space is still available.
3429 */
4e21fd06 3430 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3dfb57a3 3431 allocatable = metaslab_group_allocatable(mg, rotor,
c197a77c 3432 psize, allocator, d);
3dfb57a3 3433 }
ac72fac3 3434
4e21fd06
DB
3435 if (!allocatable) {
3436 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 3437 TRACE_NOT_ALLOCATABLE, allocator);
34dc7c2f 3438 goto next;
4e21fd06 3439 }
fb5f0bc8 3440
3dfb57a3
DB
3441 ASSERT(mg->mg_initialized);
3442
34dc7c2f 3443 /*
4e21fd06
DB
3444 * Avoid writing single-copy data to a failing,
3445 * non-redundant vdev, unless we've already tried all
3446 * other vdevs.
34dc7c2f
BB
3447 */
3448 if ((vd->vdev_stat.vs_write_errors > 0 ||
3449 vd->vdev_state < VDEV_STATE_HEALTHY) &&
4e21fd06
DB
3450 d == 0 && !try_hard && vd->vdev_children == 0) {
3451 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 3452 TRACE_VDEV_ERROR, allocator);
34dc7c2f
BB
3453 goto next;
3454 }
3455
3456 ASSERT(mg->mg_class == mc);
3457
1c27024e 3458 uint64_t asize = vdev_psize_to_asize(vd, psize);
34dc7c2f
BB
3459 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3460
cc99f275
DB
3461 /*
3462 * If we don't need to try hard, then require that the
3463 * block be on an different metaslab from any other DVAs
3464 * in this BP (unique=true). If we are trying hard, then
3465 * allow any metaslab to be used (unique=false).
3466 */
1c27024e 3467 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
cc99f275 3468 !try_hard, dva, d, allocator);
3dfb57a3 3469
34dc7c2f
BB
3470 if (offset != -1ULL) {
3471 /*
3472 * If we've just selected this metaslab group,
3473 * figure out whether the corresponding vdev is
3474 * over- or under-used relative to the pool,
3475 * and set an allocation bias to even it out.
bb3250d0
ED
3476 *
3477 * Bias is also used to compensate for unequally
3478 * sized vdevs so that space is allocated fairly.
34dc7c2f 3479 */
f3a7f661 3480 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 3481 vdev_stat_t *vs = &vd->vdev_stat;
bb3250d0
ED
3482 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3483 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3484 int64_t ratio;
34dc7c2f
BB
3485
3486 /*
6d974228
GW
3487 * Calculate how much more or less we should
3488 * try to allocate from this device during
3489 * this iteration around the rotor.
6d974228 3490 *
bb3250d0
ED
3491 * This basically introduces a zero-centered
3492 * bias towards the devices with the most
3493 * free space, while compensating for vdev
3494 * size differences.
3495 *
3496 * Examples:
3497 * vdev V1 = 16M/128M
3498 * vdev V2 = 16M/128M
3499 * ratio(V1) = 100% ratio(V2) = 100%
3500 *
3501 * vdev V1 = 16M/128M
3502 * vdev V2 = 64M/128M
3503 * ratio(V1) = 127% ratio(V2) = 72%
6d974228 3504 *
bb3250d0
ED
3505 * vdev V1 = 16M/128M
3506 * vdev V2 = 64M/512M
3507 * ratio(V1) = 40% ratio(V2) = 160%
34dc7c2f 3508 */
bb3250d0
ED
3509 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3510 (mc_free + 1);
3511 mg->mg_bias = ((ratio - 100) *
6d974228 3512 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
3513 } else if (!metaslab_bias_enabled) {
3514 mg->mg_bias = 0;
34dc7c2f
BB
3515 }
3516
920dd524
ED
3517 if ((flags & METASLAB_FASTWRITE) ||
3518 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
3519 mg->mg_aliquot + mg->mg_bias) {
3520 mc->mc_rotor = mg->mg_next;
428870ff 3521 mc->mc_aliquot = 0;
34dc7c2f
BB
3522 }
3523
3524 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3525 DVA_SET_OFFSET(&dva[d], offset);
e3e7cf60
D
3526 DVA_SET_GANG(&dva[d],
3527 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
34dc7c2f
BB
3528 DVA_SET_ASIZE(&dva[d], asize);
3529
920dd524
ED
3530 if (flags & METASLAB_FASTWRITE) {
3531 atomic_add_64(&vd->vdev_pending_fastwrite,
3532 psize);
920dd524
ED
3533 }
3534
34dc7c2f
BB
3535 return (0);
3536 }
3537next:
3538 mc->mc_rotor = mg->mg_next;
428870ff 3539 mc->mc_aliquot = 0;
34dc7c2f
BB
3540 } while ((mg = mg->mg_next) != rotor);
3541
4e21fd06
DB
3542 /*
3543 * If we haven't tried hard, do so now.
3544 */
3545 if (!try_hard) {
3546 try_hard = B_TRUE;
fb5f0bc8
BB
3547 goto top;
3548 }
3549
34dc7c2f
BB
3550 bzero(&dva[d], sizeof (dva_t));
3551
492f64e9 3552 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
2e528b49 3553 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
3554}
3555
a1d477c2
MA
3556void
3557metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
d2734cce 3558 boolean_t checkpoint)
a1d477c2
MA
3559{
3560 metaslab_t *msp;
d2734cce 3561 spa_t *spa = vd->vdev_spa;
a1d477c2 3562
a1d477c2
MA
3563 ASSERT(vdev_is_concrete(vd));
3564 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3565 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3566
3567 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3568
3569 VERIFY(!msp->ms_condensing);
3570 VERIFY3U(offset, >=, msp->ms_start);
3571 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3572 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3573 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3574
3575 metaslab_check_free_impl(vd, offset, asize);
d2734cce 3576
a1d477c2 3577 mutex_enter(&msp->ms_lock);
d2734cce
SD
3578 if (range_tree_is_empty(msp->ms_freeing) &&
3579 range_tree_is_empty(msp->ms_checkpointing)) {
3580 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3581 }
3582
3583 if (checkpoint) {
3584 ASSERT(spa_has_checkpoint(spa));
3585 range_tree_add(msp->ms_checkpointing, offset, asize);
3586 } else {
3587 range_tree_add(msp->ms_freeing, offset, asize);
a1d477c2 3588 }
a1d477c2
MA
3589 mutex_exit(&msp->ms_lock);
3590}
3591
3592/* ARGSUSED */
3593void
3594metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3595 uint64_t size, void *arg)
3596{
d2734cce
SD
3597 boolean_t *checkpoint = arg;
3598
3599 ASSERT3P(checkpoint, !=, NULL);
a1d477c2
MA
3600
3601 if (vd->vdev_ops->vdev_op_remap != NULL)
d2734cce 3602 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 3603 else
d2734cce 3604 metaslab_free_impl(vd, offset, size, *checkpoint);
a1d477c2
MA
3605}
3606
3607static void
3608metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
d2734cce 3609 boolean_t checkpoint)
a1d477c2
MA
3610{
3611 spa_t *spa = vd->vdev_spa;
3612
3613 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3614
d2734cce 3615 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
a1d477c2
MA
3616 return;
3617
3618 if (spa->spa_vdev_removal != NULL &&
9e052db4 3619 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
a1d477c2
MA
3620 vdev_is_concrete(vd)) {
3621 /*
3622 * Note: we check if the vdev is concrete because when
3623 * we complete the removal, we first change the vdev to be
3624 * an indirect vdev (in open context), and then (in syncing
3625 * context) clear spa_vdev_removal.
3626 */
d2734cce 3627 free_from_removing_vdev(vd, offset, size);
a1d477c2 3628 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
d2734cce 3629 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 3630 vd->vdev_ops->vdev_op_remap(vd, offset, size,
d2734cce 3631 metaslab_free_impl_cb, &checkpoint);
a1d477c2 3632 } else {
d2734cce 3633 metaslab_free_concrete(vd, offset, size, checkpoint);
a1d477c2
MA
3634 }
3635}
3636
3637typedef struct remap_blkptr_cb_arg {
3638 blkptr_t *rbca_bp;
3639 spa_remap_cb_t rbca_cb;
3640 vdev_t *rbca_remap_vd;
3641 uint64_t rbca_remap_offset;
3642 void *rbca_cb_arg;
3643} remap_blkptr_cb_arg_t;
3644
3645void
3646remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3647 uint64_t size, void *arg)
3648{
3649 remap_blkptr_cb_arg_t *rbca = arg;
3650 blkptr_t *bp = rbca->rbca_bp;
3651
3652 /* We can not remap split blocks. */
3653 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3654 return;
3655 ASSERT0(inner_offset);
3656
3657 if (rbca->rbca_cb != NULL) {
3658 /*
3659 * At this point we know that we are not handling split
3660 * blocks and we invoke the callback on the previous
3661 * vdev which must be indirect.
3662 */
3663 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3664
3665 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3666 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3667
3668 /* set up remap_blkptr_cb_arg for the next call */
3669 rbca->rbca_remap_vd = vd;
3670 rbca->rbca_remap_offset = offset;
3671 }
3672
3673 /*
3674 * The phys birth time is that of dva[0]. This ensures that we know
3675 * when each dva was written, so that resilver can determine which
3676 * blocks need to be scrubbed (i.e. those written during the time
3677 * the vdev was offline). It also ensures that the key used in
3678 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3679 * we didn't change the phys_birth, a lookup in the ARC for a
3680 * remapped BP could find the data that was previously stored at
3681 * this vdev + offset.
3682 */
3683 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3684 DVA_GET_VDEV(&bp->blk_dva[0]));
3685 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3686 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3687 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3688
3689 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3690 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3691}
3692
34dc7c2f 3693/*
a1d477c2
MA
3694 * If the block pointer contains any indirect DVAs, modify them to refer to
3695 * concrete DVAs. Note that this will sometimes not be possible, leaving
3696 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3697 * segments in the mapping (i.e. it is a "split block").
3698 *
3699 * If the BP was remapped, calls the callback on the original dva (note the
3700 * callback can be called multiple times if the original indirect DVA refers
3701 * to another indirect DVA, etc).
3702 *
3703 * Returns TRUE if the BP was remapped.
34dc7c2f 3704 */
a1d477c2
MA
3705boolean_t
3706spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
34dc7c2f 3707{
a1d477c2
MA
3708 remap_blkptr_cb_arg_t rbca;
3709
3710 if (!zfs_remap_blkptr_enable)
3711 return (B_FALSE);
3712
3713 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3714 return (B_FALSE);
3715
3716 /*
3717 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3718 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3719 */
3720 if (BP_GET_DEDUP(bp))
3721 return (B_FALSE);
3722
3723 /*
3724 * Gang blocks can not be remapped, because
3725 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3726 * the BP used to read the gang block header (GBH) being the same
3727 * as the DVA[0] that we allocated for the GBH.
3728 */
3729 if (BP_IS_GANG(bp))
3730 return (B_FALSE);
3731
3732 /*
3733 * Embedded BP's have no DVA to remap.
3734 */
3735 if (BP_GET_NDVAS(bp) < 1)
3736 return (B_FALSE);
3737
3738 /*
3739 * Note: we only remap dva[0]. If we remapped other dvas, we
3740 * would no longer know what their phys birth txg is.
3741 */
3742 dva_t *dva = &bp->blk_dva[0];
3743
34dc7c2f
BB
3744 uint64_t offset = DVA_GET_OFFSET(dva);
3745 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2
MA
3746 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3747
3748 if (vd->vdev_ops->vdev_op_remap == NULL)
3749 return (B_FALSE);
3750
3751 rbca.rbca_bp = bp;
3752 rbca.rbca_cb = callback;
3753 rbca.rbca_remap_vd = vd;
3754 rbca.rbca_remap_offset = offset;
3755 rbca.rbca_cb_arg = arg;
3756
3757 /*
3758 * remap_blkptr_cb() will be called in order for each level of
3759 * indirection, until a concrete vdev is reached or a split block is
3760 * encountered. old_vd and old_offset are updated within the callback
3761 * as we go from the one indirect vdev to the next one (either concrete
3762 * or indirect again) in that order.
3763 */
3764 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3765
3766 /* Check if the DVA wasn't remapped because it is a split block */
3767 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3768 return (B_FALSE);
3769
3770 return (B_TRUE);
3771}
3772
3773/*
3774 * Undo the allocation of a DVA which happened in the given transaction group.
3775 */
3776void
3777metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3778{
34dc7c2f 3779 metaslab_t *msp;
a1d477c2
MA
3780 vdev_t *vd;
3781 uint64_t vdev = DVA_GET_VDEV(dva);
3782 uint64_t offset = DVA_GET_OFFSET(dva);
3783 uint64_t size = DVA_GET_ASIZE(dva);
3784
3785 ASSERT(DVA_IS_VALID(dva));
3786 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 3787
34dc7c2f
BB
3788 if (txg > spa_freeze_txg(spa))
3789 return;
3790
7d2868d5 3791 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 3792 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
7d2868d5
BB
3793 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3794 (u_longlong_t)vdev, (u_longlong_t)offset,
3795 (u_longlong_t)size);
34dc7c2f
BB
3796 return;
3797 }
3798
a1d477c2
MA
3799 ASSERT(!vd->vdev_removing);
3800 ASSERT(vdev_is_concrete(vd));
3801 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3802 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
34dc7c2f
BB
3803
3804 if (DVA_GET_GANG(dva))
3805 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3806
a1d477c2 3807 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
93cf2076 3808
a1d477c2 3809 mutex_enter(&msp->ms_lock);
d2734cce 3810 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
a1d477c2 3811 offset, size);
34dc7c2f 3812
a1d477c2
MA
3813 VERIFY(!msp->ms_condensing);
3814 VERIFY3U(offset, >=, msp->ms_start);
3815 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
d2734cce 3816 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
a1d477c2
MA
3817 msp->ms_size);
3818 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3819 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce 3820 range_tree_add(msp->ms_allocatable, offset, size);
34dc7c2f
BB
3821 mutex_exit(&msp->ms_lock);
3822}
3823
3824/*
d2734cce 3825 * Free the block represented by the given DVA.
34dc7c2f 3826 */
a1d477c2 3827void
d2734cce 3828metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
34dc7c2f
BB
3829{
3830 uint64_t vdev = DVA_GET_VDEV(dva);
3831 uint64_t offset = DVA_GET_OFFSET(dva);
3832 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2 3833 vdev_t *vd = vdev_lookup_top(spa, vdev);
34dc7c2f
BB
3834
3835 ASSERT(DVA_IS_VALID(dva));
a1d477c2 3836 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 3837
a1d477c2 3838 if (DVA_GET_GANG(dva)) {
34dc7c2f 3839 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
34dc7c2f
BB
3840 }
3841
d2734cce 3842 metaslab_free_impl(vd, offset, size, checkpoint);
34dc7c2f
BB
3843}
3844
3dfb57a3
DB
3845/*
3846 * Reserve some allocation slots. The reservation system must be called
3847 * before we call into the allocator. If there aren't any available slots
3848 * then the I/O will be throttled until an I/O completes and its slots are
3849 * freed up. The function returns true if it was successful in placing
3850 * the reservation.
3851 */
3852boolean_t
492f64e9
PD
3853metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3854 zio_t *zio, int flags)
3dfb57a3
DB
3855{
3856 uint64_t available_slots = 0;
3dfb57a3 3857 boolean_t slot_reserved = B_FALSE;
492f64e9 3858 uint64_t max = mc->mc_alloc_max_slots[allocator];
3dfb57a3
DB
3859
3860 ASSERT(mc->mc_alloc_throttle_enabled);
3861 mutex_enter(&mc->mc_lock);
3862
492f64e9 3863 uint64_t reserved_slots =
424fd7c3 3864 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
492f64e9
PD
3865 if (reserved_slots < max)
3866 available_slots = max - reserved_slots;
3dfb57a3 3867
cc99f275
DB
3868 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
3869 flags & METASLAB_MUST_RESERVE) {
3dfb57a3
DB
3870 /*
3871 * We reserve the slots individually so that we can unreserve
3872 * them individually when an I/O completes.
3873 */
1c27024e 3874 for (int d = 0; d < slots; d++) {
492f64e9 3875 reserved_slots =
c13060e4 3876 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
492f64e9 3877 zio);
3dfb57a3
DB
3878 }
3879 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3880 slot_reserved = B_TRUE;
3881 }
3882
3883 mutex_exit(&mc->mc_lock);
3884 return (slot_reserved);
3885}
3886
3887void
492f64e9
PD
3888metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3889 int allocator, zio_t *zio)
3dfb57a3 3890{
3dfb57a3
DB
3891 ASSERT(mc->mc_alloc_throttle_enabled);
3892 mutex_enter(&mc->mc_lock);
1c27024e 3893 for (int d = 0; d < slots; d++) {
424fd7c3 3894 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
492f64e9 3895 zio);
3dfb57a3
DB
3896 }
3897 mutex_exit(&mc->mc_lock);
3898}
3899
a1d477c2
MA
3900static int
3901metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3902 uint64_t txg)
3903{
3904 metaslab_t *msp;
3905 spa_t *spa = vd->vdev_spa;
3906 int error = 0;
3907
3908 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
7ab96299 3909 return (SET_ERROR(ENXIO));
a1d477c2
MA
3910
3911 ASSERT3P(vd->vdev_ms, !=, NULL);
3912 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3913
3914 mutex_enter(&msp->ms_lock);
3915
7ab96299 3916 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
492f64e9 3917 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
7ab96299
TC
3918 if (error == EBUSY) {
3919 ASSERT(msp->ms_loaded);
3920 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3921 error = 0;
3922 }
3923 }
a1d477c2 3924
d2734cce
SD
3925 if (error == 0 &&
3926 !range_tree_contains(msp->ms_allocatable, offset, size))
a1d477c2
MA
3927 error = SET_ERROR(ENOENT);
3928
3929 if (error || txg == 0) { /* txg == 0 indicates dry run */
3930 mutex_exit(&msp->ms_lock);
3931 return (error);
3932 }
3933
3934 VERIFY(!msp->ms_condensing);
3935 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3936 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce
SD
3937 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3938 msp->ms_size);
3939 range_tree_remove(msp->ms_allocatable, offset, size);
a1d477c2
MA
3940
3941 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
d2734cce 3942 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
a1d477c2 3943 vdev_dirty(vd, VDD_METASLAB, msp, txg);
d2734cce
SD
3944 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3945 offset, size);
a1d477c2
MA
3946 }
3947
3948 mutex_exit(&msp->ms_lock);
3949
3950 return (0);
3951}
3952
3953typedef struct metaslab_claim_cb_arg_t {
3954 uint64_t mcca_txg;
3955 int mcca_error;
3956} metaslab_claim_cb_arg_t;
3957
3958/* ARGSUSED */
3959static void
3960metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3961 uint64_t size, void *arg)
3962{
3963 metaslab_claim_cb_arg_t *mcca_arg = arg;
3964
3965 if (mcca_arg->mcca_error == 0) {
3966 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3967 size, mcca_arg->mcca_txg);
3968 }
3969}
3970
3971int
3972metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3973{
3974 if (vd->vdev_ops->vdev_op_remap != NULL) {
3975 metaslab_claim_cb_arg_t arg;
3976
3977 /*
3978 * Only zdb(1M) can claim on indirect vdevs. This is used
3979 * to detect leaks of mapped space (that are not accounted
3980 * for in the obsolete counts, spacemap, or bpobj).
3981 */
3982 ASSERT(!spa_writeable(vd->vdev_spa));
3983 arg.mcca_error = 0;
3984 arg.mcca_txg = txg;
3985
3986 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3987 metaslab_claim_impl_cb, &arg);
3988
3989 if (arg.mcca_error == 0) {
3990 arg.mcca_error = metaslab_claim_concrete(vd,
3991 offset, size, txg);
3992 }
3993 return (arg.mcca_error);
3994 } else {
3995 return (metaslab_claim_concrete(vd, offset, size, txg));
3996 }
3997}
3998
3999/*
4000 * Intent log support: upon opening the pool after a crash, notify the SPA
4001 * of blocks that the intent log has allocated for immediate write, but
4002 * which are still considered free by the SPA because the last transaction
4003 * group didn't commit yet.
4004 */
4005static int
4006metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4007{
4008 uint64_t vdev = DVA_GET_VDEV(dva);
4009 uint64_t offset = DVA_GET_OFFSET(dva);
4010 uint64_t size = DVA_GET_ASIZE(dva);
4011 vdev_t *vd;
4012
4013 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4014 return (SET_ERROR(ENXIO));
4015 }
4016
4017 ASSERT(DVA_IS_VALID(dva));
4018
4019 if (DVA_GET_GANG(dva))
4020 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4021
4022 return (metaslab_claim_impl(vd, offset, size, txg));
4023}
4024
34dc7c2f
BB
4025int
4026metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4e21fd06 4027 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
492f64e9 4028 zio_alloc_list_t *zal, zio_t *zio, int allocator)
34dc7c2f
BB
4029{
4030 dva_t *dva = bp->blk_dva;
4031 dva_t *hintdva = hintbp->blk_dva;
1c27024e 4032 int error = 0;
34dc7c2f 4033
b128c09f 4034 ASSERT(bp->blk_birth == 0);
428870ff 4035 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
4036
4037 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4038
4039 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4040 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 4041 return (SET_ERROR(ENOSPC));
b128c09f 4042 }
34dc7c2f
BB
4043
4044 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4045 ASSERT(BP_GET_NDVAS(bp) == 0);
4046 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4e21fd06 4047 ASSERT3P(zal, !=, NULL);
34dc7c2f 4048
1c27024e 4049 for (int d = 0; d < ndvas; d++) {
34dc7c2f 4050 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
492f64e9 4051 txg, flags, zal, allocator);
93cf2076 4052 if (error != 0) {
34dc7c2f 4053 for (d--; d >= 0; d--) {
a1d477c2 4054 metaslab_unalloc_dva(spa, &dva[d], txg);
3dfb57a3 4055 metaslab_group_alloc_decrement(spa,
492f64e9
PD
4056 DVA_GET_VDEV(&dva[d]), zio, flags,
4057 allocator, B_FALSE);
34dc7c2f
BB
4058 bzero(&dva[d], sizeof (dva_t));
4059 }
b128c09f 4060 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 4061 return (error);
3dfb57a3
DB
4062 } else {
4063 /*
4064 * Update the metaslab group's queue depth
4065 * based on the newly allocated dva.
4066 */
4067 metaslab_group_alloc_increment(spa,
492f64e9 4068 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
34dc7c2f 4069 }
3dfb57a3 4070
34dc7c2f
BB
4071 }
4072 ASSERT(error == 0);
4073 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4074
b128c09f
BB
4075 spa_config_exit(spa, SCL_ALLOC, FTAG);
4076
efe7978d 4077 BP_SET_BIRTH(bp, txg, 0);
b128c09f 4078
34dc7c2f
BB
4079 return (0);
4080}
4081
4082void
4083metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4084{
4085 const dva_t *dva = bp->blk_dva;
1c27024e 4086 int ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
4087
4088 ASSERT(!BP_IS_HOLE(bp));
428870ff 4089 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f 4090
d2734cce
SD
4091 /*
4092 * If we have a checkpoint for the pool we need to make sure that
4093 * the blocks that we free that are part of the checkpoint won't be
4094 * reused until the checkpoint is discarded or we revert to it.
4095 *
4096 * The checkpoint flag is passed down the metaslab_free code path
4097 * and is set whenever we want to add a block to the checkpoint's
4098 * accounting. That is, we "checkpoint" blocks that existed at the
4099 * time the checkpoint was created and are therefore referenced by
4100 * the checkpointed uberblock.
4101 *
4102 * Note that, we don't checkpoint any blocks if the current
4103 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4104 * normally as they will be referenced by the checkpointed uberblock.
4105 */
4106 boolean_t checkpoint = B_FALSE;
4107 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4108 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4109 /*
4110 * At this point, if the block is part of the checkpoint
4111 * there is no way it was created in the current txg.
4112 */
4113 ASSERT(!now);
4114 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4115 checkpoint = B_TRUE;
4116 }
4117
b128c09f 4118 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 4119
a1d477c2
MA
4120 for (int d = 0; d < ndvas; d++) {
4121 if (now) {
4122 metaslab_unalloc_dva(spa, &dva[d], txg);
4123 } else {
d2734cce
SD
4124 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4125 metaslab_free_dva(spa, &dva[d], checkpoint);
a1d477c2
MA
4126 }
4127 }
b128c09f
BB
4128
4129 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
4130}
4131
4132int
4133metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4134{
4135 const dva_t *dva = bp->blk_dva;
4136 int ndvas = BP_GET_NDVAS(bp);
1c27024e 4137 int error = 0;
34dc7c2f
BB
4138
4139 ASSERT(!BP_IS_HOLE(bp));
4140
b128c09f
BB
4141 if (txg != 0) {
4142 /*
4143 * First do a dry run to make sure all DVAs are claimable,
4144 * so we don't have to unwind from partial failures below.
4145 */
4146 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4147 return (error);
4148 }
4149
4150 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4151
cc99f275
DB
4152 for (int d = 0; d < ndvas; d++) {
4153 error = metaslab_claim_dva(spa, &dva[d], txg);
4154 if (error != 0)
b128c09f 4155 break;
cc99f275 4156 }
b128c09f
BB
4157
4158 spa_config_exit(spa, SCL_ALLOC, FTAG);
4159
4160 ASSERT(error == 0 || txg == 0);
34dc7c2f 4161
b128c09f 4162 return (error);
34dc7c2f 4163}
920dd524 4164
d1d7e268
MK
4165void
4166metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4167{
4168 const dva_t *dva = bp->blk_dva;
4169 int ndvas = BP_GET_NDVAS(bp);
4170 uint64_t psize = BP_GET_PSIZE(bp);
4171 int d;
4172 vdev_t *vd;
4173
4174 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4175 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4176 ASSERT(psize > 0);
4177
4178 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4179
4180 for (d = 0; d < ndvas; d++) {
4181 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4182 continue;
4183 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4184 }
4185
4186 spa_config_exit(spa, SCL_VDEV, FTAG);
4187}
4188
d1d7e268
MK
4189void
4190metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4191{
4192 const dva_t *dva = bp->blk_dva;
4193 int ndvas = BP_GET_NDVAS(bp);
4194 uint64_t psize = BP_GET_PSIZE(bp);
4195 int d;
4196 vdev_t *vd;
4197
4198 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4199 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4200 ASSERT(psize > 0);
4201
4202 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4203
4204 for (d = 0; d < ndvas; d++) {
4205 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4206 continue;
4207 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4208 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4209 }
4210
4211 spa_config_exit(spa, SCL_VDEV, FTAG);
4212}
30b92c1d 4213
a1d477c2
MA
4214/* ARGSUSED */
4215static void
4216metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4217 uint64_t size, void *arg)
4218{
4219 if (vd->vdev_ops == &vdev_indirect_ops)
4220 return;
4221
4222 metaslab_check_free_impl(vd, offset, size);
4223}
4224
4225static void
4226metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4227{
4228 metaslab_t *msp;
4229 ASSERTV(spa_t *spa = vd->vdev_spa);
4230
4231 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4232 return;
4233
4234 if (vd->vdev_ops->vdev_op_remap != NULL) {
4235 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4236 metaslab_check_free_impl_cb, NULL);
4237 return;
4238 }
4239
4240 ASSERT(vdev_is_concrete(vd));
4241 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4242 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4243
4244 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4245
4246 mutex_enter(&msp->ms_lock);
4247 if (msp->ms_loaded)
d2734cce 4248 range_tree_verify(msp->ms_allocatable, offset, size);
a1d477c2 4249
d2734cce
SD
4250 range_tree_verify(msp->ms_freeing, offset, size);
4251 range_tree_verify(msp->ms_checkpointing, offset, size);
4252 range_tree_verify(msp->ms_freed, offset, size);
a1d477c2 4253 for (int j = 0; j < TXG_DEFER_SIZE; j++)
d2734cce 4254 range_tree_verify(msp->ms_defer[j], offset, size);
a1d477c2
MA
4255 mutex_exit(&msp->ms_lock);
4256}
4257
13fe0198
MA
4258void
4259metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4260{
13fe0198
MA
4261 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4262 return;
4263
4264 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 4265 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
4266 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4267 vdev_t *vd = vdev_lookup_top(spa, vdev);
4268 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 4269 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
13fe0198 4270
a1d477c2
MA
4271 if (DVA_GET_GANG(&bp->blk_dva[i]))
4272 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4273
4274 ASSERT3P(vd, !=, NULL);
13fe0198 4275
a1d477c2 4276 metaslab_check_free_impl(vd, offset, size);
13fe0198
MA
4277 }
4278 spa_config_exit(spa, SCL_VDEV, FTAG);
4279}
4280
93ce2b4c 4281#if defined(_KERNEL)
cc99f275 4282/* BEGIN CSTYLED */
99b14de4 4283module_param(metaslab_aliquot, ulong, 0644);
99b14de4
ED
4284MODULE_PARM_DESC(metaslab_aliquot,
4285 "allocation granularity (a.k.a. stripe size)");
02730c33
BB
4286
4287module_param(metaslab_debug_load, int, 0644);
93cf2076
GW
4288MODULE_PARM_DESC(metaslab_debug_load,
4289 "load all metaslabs when pool is first opened");
02730c33
BB
4290
4291module_param(metaslab_debug_unload, int, 0644);
1ce04573
BB
4292MODULE_PARM_DESC(metaslab_debug_unload,
4293 "prevent metaslabs from being unloaded");
02730c33
BB
4294
4295module_param(metaslab_preload_enabled, int, 0644);
f3a7f661
GW
4296MODULE_PARM_DESC(metaslab_preload_enabled,
4297 "preload potential metaslabs during reassessment");
f4a4046b 4298
02730c33 4299module_param(zfs_mg_noalloc_threshold, int, 0644);
f4a4046b
TC
4300MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4301 "percentage of free space for metaslab group to allow allocation");
02730c33
BB
4302
4303module_param(zfs_mg_fragmentation_threshold, int, 0644);
f3a7f661
GW
4304MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4305 "fragmentation for metaslab group to allow allocation");
4306
02730c33 4307module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
f3a7f661
GW
4308MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4309 "fragmentation for metaslab to allow allocation");
02730c33
BB
4310
4311module_param(metaslab_fragmentation_factor_enabled, int, 0644);
f3a7f661
GW
4312MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4313 "use the fragmentation metric to prefer less fragmented metaslabs");
02730c33
BB
4314
4315module_param(metaslab_lba_weighting_enabled, int, 0644);
f3a7f661
GW
4316MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4317 "prefer metaslabs with lower LBAs");
02730c33
BB
4318
4319module_param(metaslab_bias_enabled, int, 0644);
f3a7f661
GW
4320MODULE_PARM_DESC(metaslab_bias_enabled,
4321 "enable metaslab group biasing");
4e21fd06
DB
4322
4323module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4324MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4325 "enable segment-based metaslab selection");
4326
4327module_param(zfs_metaslab_switch_threshold, int, 0644);
4328MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4329 "segment-based metaslab selection maximum buckets before switching");
a1d477c2 4330
d830d479
MA
4331module_param(metaslab_force_ganging, ulong, 0644);
4332MODULE_PARM_DESC(metaslab_force_ganging,
a1d477c2 4333 "blocks larger than this size are forced to be gang blocks");
cc99f275
DB
4334/* END CSTYLED */
4335
93ce2b4c 4336#endif