]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
cstyle: allow right paren on its own line
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
b02fe35d 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3541dc6d 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/zio.h>
30#include <sys/zio_checksum.h>
31#include <sys/zio_compress.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/zap.h>
35#include <sys/zil.h>
36#include <sys/vdev_impl.h>
bc25c932 37#include <sys/vdev_file.h>
34dc7c2f
BB
38#include <sys/metaslab.h>
39#include <sys/uberblock_impl.h>
40#include <sys/txg.h>
41#include <sys/avl.h>
42#include <sys/unique.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_dir.h>
45#include <sys/dsl_prop.h>
26685276 46#include <sys/fm/util.h>
428870ff 47#include <sys/dsl_scan.h>
34dc7c2f
BB
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
b128c09f 50#include <sys/arc.h>
428870ff 51#include <sys/ddt.h>
1421c891 52#include <sys/kstat.h>
34dc7c2f 53#include "zfs_prop.h"
9ae529ec 54#include "zfeature_common.h"
34dc7c2f
BB
55
56/*
57 * SPA locking
58 *
59 * There are four basic locks for managing spa_t structures:
60 *
61 * spa_namespace_lock (global mutex)
62 *
63 * This lock must be acquired to do any of the following:
64 *
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
69 * - Rename a spa_t
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
72 *
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
77 *
78 * spa_refcount (per-spa refcount_t protected by mutex)
79 *
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 83 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
84 * present the image of a zero/non-zero value to consumers.
85 *
b128c09f 86 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
87 *
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
90 *
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
93 *
34dc7c2f
BB
94 * The locking order is fairly straightforward:
95 *
96 * spa_namespace_lock -> spa_refcount
97 *
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
100 *
b128c09f 101 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
102 *
103 * There must be at least one valid reference on the spa_t to acquire
104 * the config lock.
105 *
b128c09f 106 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
107 *
108 * The namespace lock must always be taken before the config lock.
109 *
110 *
b128c09f 111 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 112 *
b128c09f
BB
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
34dc7c2f
BB
115 *
116 * spa_lookup() Lookup a spa_t by name.
117 *
118 * spa_add() Create a new spa_t in the namespace.
119 *
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
122 *
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
125 *
126 * spa_evict_all() Shutdown and remove all spa_t structures in
127 * the system.
128 *
129 * spa_guid_exists() Determine whether a pool/device guid exists.
130 *
131 * The spa_refcount is manipulated using the following functions:
132 *
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
136 *
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
140 *
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
143 * held.
144 *
b128c09f
BB
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 *
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
153 *
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 *
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
164 *
165 * The lock acquisition rules are as follows:
166 *
167 * SCL_CONFIG
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
171 *
172 * SCL_STATE
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
176 *
177 * SCL_ALLOC
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
180 *
181 * SCL_ZIO
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
185 *
186 * SCL_FREE
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192 *
193 * SCL_VDEV
194 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
198 *
199 * In addition, the following rules apply:
200 *
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 *
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
209 *
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 *
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
213 * for writing.
214 *
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
218 *
b128c09f
BB
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 *
9ae529ec 223 * spa_rename() is also implemented within this file since it requires
b128c09f 224 * manipulation of the namespace.
34dc7c2f
BB
225 */
226
227static avl_tree_t spa_namespace_avl;
228kmutex_t spa_namespace_lock;
229static kcondvar_t spa_namespace_cv;
230static int spa_active_count;
231int spa_max_replication_override = SPA_DVAS_PER_BP;
232
233static kmutex_t spa_spare_lock;
234static avl_tree_t spa_spare_avl;
235static kmutex_t spa_l2cache_lock;
236static avl_tree_t spa_l2cache_avl;
237
238kmem_cache_t *spa_buffer_pool;
fb5f0bc8 239int spa_mode_global;
34dc7c2f 240
cc92e9d0 241/*
e8b96c60
MA
242 * Expiration time in milliseconds. This value has two meanings. First it is
243 * used to determine when the spa_deadman() logic should fire. By default the
244 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
245 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
246 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
247 * in a system panic.
cc92e9d0 248 */
e8b96c60 249unsigned long zfs_deadman_synctime_ms = 1000000ULL;
cc92e9d0
GW
250
251/*
252 * By default the deadman is enabled.
253 */
254int zfs_deadman_enabled = 1;
255
e8b96c60
MA
256/*
257 * The worst case is single-sector max-parity RAID-Z blocks, in which
258 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
259 * times the size; so just assume that. Add to this the fact that
260 * we can have up to 3 DVAs per bp, and one more factor of 2 because
261 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
262 * the worst case is:
263 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
264 */
265int spa_asize_inflation = 24;
266
34dc7c2f
BB
267/*
268 * ==========================================================================
269 * SPA config locking
270 * ==========================================================================
271 */
272static void
b128c09f
BB
273spa_config_lock_init(spa_t *spa)
274{
d6320ddb
BB
275 int i;
276
277 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
278 spa_config_lock_t *scl = &spa->spa_config_lock[i];
279 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
280 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
13fe0198 281 refcount_create_untracked(&scl->scl_count);
b128c09f
BB
282 scl->scl_writer = NULL;
283 scl->scl_write_wanted = 0;
284 }
34dc7c2f
BB
285}
286
287static void
b128c09f
BB
288spa_config_lock_destroy(spa_t *spa)
289{
d6320ddb
BB
290 int i;
291
292 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
293 spa_config_lock_t *scl = &spa->spa_config_lock[i];
294 mutex_destroy(&scl->scl_lock);
295 cv_destroy(&scl->scl_cv);
296 refcount_destroy(&scl->scl_count);
297 ASSERT(scl->scl_writer == NULL);
298 ASSERT(scl->scl_write_wanted == 0);
299 }
300}
301
302int
303spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 304{
d6320ddb
BB
305 int i;
306
307 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
308 spa_config_lock_t *scl = &spa->spa_config_lock[i];
309 if (!(locks & (1 << i)))
310 continue;
311 mutex_enter(&scl->scl_lock);
312 if (rw == RW_READER) {
313 if (scl->scl_writer || scl->scl_write_wanted) {
314 mutex_exit(&scl->scl_lock);
315 spa_config_exit(spa, locks ^ (1 << i), tag);
316 return (0);
317 }
318 } else {
319 ASSERT(scl->scl_writer != curthread);
320 if (!refcount_is_zero(&scl->scl_count)) {
321 mutex_exit(&scl->scl_lock);
322 spa_config_exit(spa, locks ^ (1 << i), tag);
323 return (0);
324 }
325 scl->scl_writer = curthread;
326 }
327 (void) refcount_add(&scl->scl_count, tag);
328 mutex_exit(&scl->scl_lock);
329 }
330 return (1);
34dc7c2f
BB
331}
332
333void
b128c09f 334spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 335{
45d1cae3 336 int wlocks_held = 0;
d6320ddb 337 int i;
45d1cae3 338
13fe0198
MA
339 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
340
d6320ddb 341 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f 342 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
343 if (scl->scl_writer == curthread)
344 wlocks_held |= (1 << i);
b128c09f
BB
345 if (!(locks & (1 << i)))
346 continue;
347 mutex_enter(&scl->scl_lock);
348 if (rw == RW_READER) {
349 while (scl->scl_writer || scl->scl_write_wanted) {
350 cv_wait(&scl->scl_cv, &scl->scl_lock);
351 }
352 } else {
353 ASSERT(scl->scl_writer != curthread);
354 while (!refcount_is_zero(&scl->scl_count)) {
355 scl->scl_write_wanted++;
356 cv_wait(&scl->scl_cv, &scl->scl_lock);
357 scl->scl_write_wanted--;
358 }
359 scl->scl_writer = curthread;
360 }
361 (void) refcount_add(&scl->scl_count, tag);
362 mutex_exit(&scl->scl_lock);
34dc7c2f 363 }
45d1cae3 364 ASSERT(wlocks_held <= locks);
34dc7c2f
BB
365}
366
367void
b128c09f 368spa_config_exit(spa_t *spa, int locks, void *tag)
34dc7c2f 369{
d6320ddb
BB
370 int i;
371
372 for (i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
373 spa_config_lock_t *scl = &spa->spa_config_lock[i];
374 if (!(locks & (1 << i)))
375 continue;
376 mutex_enter(&scl->scl_lock);
377 ASSERT(!refcount_is_zero(&scl->scl_count));
378 if (refcount_remove(&scl->scl_count, tag) == 0) {
379 ASSERT(scl->scl_writer == NULL ||
380 scl->scl_writer == curthread);
381 scl->scl_writer = NULL; /* OK in either case */
382 cv_broadcast(&scl->scl_cv);
383 }
384 mutex_exit(&scl->scl_lock);
34dc7c2f 385 }
34dc7c2f
BB
386}
387
b128c09f
BB
388int
389spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 390{
d6320ddb 391 int i, locks_held = 0;
34dc7c2f 392
d6320ddb 393 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
394 spa_config_lock_t *scl = &spa->spa_config_lock[i];
395 if (!(locks & (1 << i)))
396 continue;
397 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
398 (rw == RW_WRITER && scl->scl_writer == curthread))
399 locks_held |= 1 << i;
400 }
401
402 return (locks_held);
34dc7c2f
BB
403}
404
405/*
406 * ==========================================================================
407 * SPA namespace functions
408 * ==========================================================================
409 */
410
411/*
412 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
413 * Returns NULL if no matching spa_t is found.
414 */
415spa_t *
416spa_lookup(const char *name)
417{
b128c09f
BB
418 static spa_t search; /* spa_t is large; don't allocate on stack */
419 spa_t *spa;
34dc7c2f 420 avl_index_t where;
34dc7c2f
BB
421 char *cp;
422
423 ASSERT(MUTEX_HELD(&spa_namespace_lock));
424
13fe0198
MA
425 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
426
34dc7c2f
BB
427 /*
428 * If it's a full dataset name, figure out the pool name and
429 * just use that.
430 */
da536844 431 cp = strpbrk(search.spa_name, "/@#");
13fe0198 432 if (cp != NULL)
34dc7c2f 433 *cp = '\0';
34dc7c2f 434
34dc7c2f
BB
435 spa = avl_find(&spa_namespace_avl, &search, &where);
436
34dc7c2f
BB
437 return (spa);
438}
439
cc92e9d0
GW
440/*
441 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
442 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
443 * looking for potentially hung I/Os.
444 */
445void
446spa_deadman(void *arg)
447{
448 spa_t *spa = arg;
449
450 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
451 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
452 ++spa->spa_deadman_calls);
453 if (zfs_deadman_enabled)
454 vdev_deadman(spa->spa_root_vdev);
455
456 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
cbfa294d 457 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
cc92e9d0
GW
458 NSEC_TO_TICK(spa->spa_deadman_synctime));
459}
460
34dc7c2f
BB
461/*
462 * Create an uninitialized spa_t with the given name. Requires
463 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
464 * exist by calling spa_lookup() first.
465 */
466spa_t *
428870ff 467spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
468{
469 spa_t *spa;
b128c09f 470 spa_config_dirent_t *dp;
d6320ddb 471 int t;
b0bc7a84 472 int i;
34dc7c2f
BB
473
474 ASSERT(MUTEX_HELD(&spa_namespace_lock));
475
b8d06fca 476 spa = kmem_zalloc(sizeof (spa_t), KM_PUSHPAGE | KM_NODEBUG);
34dc7c2f 477
34dc7c2f 478 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 479 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 480 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 481 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 482 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 483 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
484 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
485 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
486 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
487
488 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
428870ff 489 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 490 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 491 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 492
d6320ddb 493 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
494 bplist_create(&spa->spa_free_bplist[t]);
495
b128c09f 496 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
497 spa->spa_state = POOL_STATE_UNINITIALIZED;
498 spa->spa_freeze_txg = UINT64_MAX;
499 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
500 spa->spa_load_max_txg = UINT64_MAX;
501 spa->spa_proc = &p0;
502 spa->spa_proc_state = SPA_PROC_NONE;
34dc7c2f 503
e8b96c60 504 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
cc92e9d0 505
34dc7c2f 506 refcount_create(&spa->spa_refcount);
b128c09f 507 spa_config_lock_init(spa);
1421c891 508 spa_stats_init(spa);
34dc7c2f
BB
509
510 avl_add(&spa_namespace_avl, spa);
511
34dc7c2f
BB
512 /*
513 * Set the alternate root, if there is one.
514 */
515 if (altroot) {
516 spa->spa_root = spa_strdup(altroot);
517 spa_active_count++;
518 }
519
b128c09f
BB
520 /*
521 * Every pool starts with the default cachefile
522 */
523 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
524 offsetof(spa_config_dirent_t, scd_link));
525
b8d06fca 526 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_PUSHPAGE);
428870ff 527 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
528 list_insert_head(&spa->spa_config_list, dp);
529
572e2857 530 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
b8d06fca 531 KM_PUSHPAGE) == 0);
572e2857 532
9ae529ec
CS
533 if (config != NULL) {
534 nvlist_t *features;
535
536 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
537 &features) == 0) {
538 VERIFY(nvlist_dup(features, &spa->spa_label_features,
539 0) == 0);
540 }
541
428870ff 542 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
543 }
544
545 if (spa->spa_label_features == NULL) {
546 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
a45fc6a6 547 KM_PUSHPAGE) == 0);
9ae529ec 548 }
428870ff 549
13fe0198
MA
550 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
551
b0bc7a84
MG
552 /*
553 * As a pool is being created, treat all features as disabled by
554 * setting SPA_FEATURE_DISABLED for all entries in the feature
555 * refcount cache.
556 */
557 for (i = 0; i < SPA_FEATURES; i++) {
558 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
559 }
560
34dc7c2f
BB
561 return (spa);
562}
563
564/*
565 * Removes a spa_t from the namespace, freeing up any memory used. Requires
566 * spa_namespace_lock. This is called only after the spa_t has been closed and
567 * deactivated.
568 */
569void
570spa_remove(spa_t *spa)
571{
b128c09f 572 spa_config_dirent_t *dp;
d6320ddb 573 int t;
b128c09f 574
34dc7c2f
BB
575 ASSERT(MUTEX_HELD(&spa_namespace_lock));
576 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
34dc7c2f 577
428870ff
BB
578 nvlist_free(spa->spa_config_splitting);
579
34dc7c2f
BB
580 avl_remove(&spa_namespace_avl, spa);
581 cv_broadcast(&spa_namespace_cv);
582
583 if (spa->spa_root) {
584 spa_strfree(spa->spa_root);
585 spa_active_count--;
586 }
587
b128c09f
BB
588 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
589 list_remove(&spa->spa_config_list, dp);
590 if (dp->scd_path != NULL)
591 spa_strfree(dp->scd_path);
592 kmem_free(dp, sizeof (spa_config_dirent_t));
593 }
34dc7c2f 594
b128c09f 595 list_destroy(&spa->spa_config_list);
34dc7c2f 596
9ae529ec 597 nvlist_free(spa->spa_label_features);
572e2857 598 nvlist_free(spa->spa_load_info);
34dc7c2f
BB
599 spa_config_set(spa, NULL);
600
601 refcount_destroy(&spa->spa_refcount);
602
1421c891 603 spa_stats_destroy(spa);
b128c09f 604 spa_config_lock_destroy(spa);
34dc7c2f 605
d6320ddb 606 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
607 bplist_destroy(&spa->spa_free_bplist[t]);
608
34dc7c2f 609 cv_destroy(&spa->spa_async_cv);
428870ff 610 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 611 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 612 cv_destroy(&spa->spa_suspend_cv);
34dc7c2f 613
34dc7c2f 614 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 615 mutex_destroy(&spa->spa_errlist_lock);
428870ff 616 mutex_destroy(&spa->spa_errlog_lock);
34dc7c2f 617 mutex_destroy(&spa->spa_history_lock);
428870ff 618 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 619 mutex_destroy(&spa->spa_props_lock);
428870ff 620 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 621 mutex_destroy(&spa->spa_suspend_lock);
428870ff 622 mutex_destroy(&spa->spa_vdev_top_lock);
34dc7c2f
BB
623
624 kmem_free(spa, sizeof (spa_t));
625}
626
627/*
628 * Given a pool, return the next pool in the namespace, or NULL if there is
629 * none. If 'prev' is NULL, return the first pool.
630 */
631spa_t *
632spa_next(spa_t *prev)
633{
634 ASSERT(MUTEX_HELD(&spa_namespace_lock));
635
636 if (prev)
637 return (AVL_NEXT(&spa_namespace_avl, prev));
638 else
639 return (avl_first(&spa_namespace_avl));
640}
641
642/*
643 * ==========================================================================
644 * SPA refcount functions
645 * ==========================================================================
646 */
647
648/*
649 * Add a reference to the given spa_t. Must have at least one reference, or
650 * have the namespace lock held.
651 */
652void
653spa_open_ref(spa_t *spa, void *tag)
654{
b128c09f 655 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 656 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
657 (void) refcount_add(&spa->spa_refcount, tag);
658}
659
660/*
661 * Remove a reference to the given spa_t. Must have at least one reference, or
662 * have the namespace lock held.
663 */
664void
665spa_close(spa_t *spa, void *tag)
666{
b128c09f 667 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 668 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
669 (void) refcount_remove(&spa->spa_refcount, tag);
670}
671
672/*
673 * Check to see if the spa refcount is zero. Must be called with
b128c09f 674 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
675 * number of references acquired when opening a pool
676 */
677boolean_t
678spa_refcount_zero(spa_t *spa)
679{
680 ASSERT(MUTEX_HELD(&spa_namespace_lock));
681
b128c09f 682 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
683}
684
685/*
686 * ==========================================================================
687 * SPA spare and l2cache tracking
688 * ==========================================================================
689 */
690
691/*
692 * Hot spares and cache devices are tracked using the same code below,
693 * for 'auxiliary' devices.
694 */
695
696typedef struct spa_aux {
697 uint64_t aux_guid;
698 uint64_t aux_pool;
699 avl_node_t aux_avl;
700 int aux_count;
701} spa_aux_t;
702
703static int
704spa_aux_compare(const void *a, const void *b)
705{
706 const spa_aux_t *sa = a;
707 const spa_aux_t *sb = b;
708
709 if (sa->aux_guid < sb->aux_guid)
710 return (-1);
711 else if (sa->aux_guid > sb->aux_guid)
712 return (1);
713 else
714 return (0);
715}
716
717void
718spa_aux_add(vdev_t *vd, avl_tree_t *avl)
719{
720 avl_index_t where;
721 spa_aux_t search;
722 spa_aux_t *aux;
723
724 search.aux_guid = vd->vdev_guid;
725 if ((aux = avl_find(avl, &search, &where)) != NULL) {
726 aux->aux_count++;
727 } else {
b8d06fca 728 aux = kmem_zalloc(sizeof (spa_aux_t), KM_PUSHPAGE);
34dc7c2f
BB
729 aux->aux_guid = vd->vdev_guid;
730 aux->aux_count = 1;
731 avl_insert(avl, aux, where);
732 }
733}
734
735void
736spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
737{
738 spa_aux_t search;
739 spa_aux_t *aux;
740 avl_index_t where;
741
742 search.aux_guid = vd->vdev_guid;
743 aux = avl_find(avl, &search, &where);
744
745 ASSERT(aux != NULL);
746
747 if (--aux->aux_count == 0) {
748 avl_remove(avl, aux);
749 kmem_free(aux, sizeof (spa_aux_t));
750 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
751 aux->aux_pool = 0ULL;
752 }
753}
754
755boolean_t
b128c09f 756spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
757{
758 spa_aux_t search, *found;
34dc7c2f
BB
759
760 search.aux_guid = guid;
b128c09f 761 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
762
763 if (pool) {
764 if (found)
765 *pool = found->aux_pool;
766 else
767 *pool = 0ULL;
768 }
769
b128c09f
BB
770 if (refcnt) {
771 if (found)
772 *refcnt = found->aux_count;
773 else
774 *refcnt = 0;
775 }
776
34dc7c2f
BB
777 return (found != NULL);
778}
779
780void
781spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
782{
783 spa_aux_t search, *found;
784 avl_index_t where;
785
786 search.aux_guid = vd->vdev_guid;
787 found = avl_find(avl, &search, &where);
788 ASSERT(found != NULL);
789 ASSERT(found->aux_pool == 0ULL);
790
791 found->aux_pool = spa_guid(vd->vdev_spa);
792}
793
794/*
795 * Spares are tracked globally due to the following constraints:
796 *
797 * - A spare may be part of multiple pools.
798 * - A spare may be added to a pool even if it's actively in use within
799 * another pool.
800 * - A spare in use in any pool can only be the source of a replacement if
801 * the target is a spare in the same pool.
802 *
803 * We keep track of all spares on the system through the use of a reference
804 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
805 * spare, then we bump the reference count in the AVL tree. In addition, we set
806 * the 'vdev_isspare' member to indicate that the device is a spare (active or
807 * inactive). When a spare is made active (used to replace a device in the
808 * pool), we also keep track of which pool its been made a part of.
809 *
810 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
811 * called under the spa_namespace lock as part of vdev reconfiguration. The
812 * separate spare lock exists for the status query path, which does not need to
813 * be completely consistent with respect to other vdev configuration changes.
814 */
815
816static int
817spa_spare_compare(const void *a, const void *b)
818{
819 return (spa_aux_compare(a, b));
820}
821
822void
823spa_spare_add(vdev_t *vd)
824{
825 mutex_enter(&spa_spare_lock);
826 ASSERT(!vd->vdev_isspare);
827 spa_aux_add(vd, &spa_spare_avl);
828 vd->vdev_isspare = B_TRUE;
829 mutex_exit(&spa_spare_lock);
830}
831
832void
833spa_spare_remove(vdev_t *vd)
834{
835 mutex_enter(&spa_spare_lock);
836 ASSERT(vd->vdev_isspare);
837 spa_aux_remove(vd, &spa_spare_avl);
838 vd->vdev_isspare = B_FALSE;
839 mutex_exit(&spa_spare_lock);
840}
841
842boolean_t
b128c09f 843spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
844{
845 boolean_t found;
846
847 mutex_enter(&spa_spare_lock);
b128c09f 848 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
849 mutex_exit(&spa_spare_lock);
850
851 return (found);
852}
853
854void
855spa_spare_activate(vdev_t *vd)
856{
857 mutex_enter(&spa_spare_lock);
858 ASSERT(vd->vdev_isspare);
859 spa_aux_activate(vd, &spa_spare_avl);
860 mutex_exit(&spa_spare_lock);
861}
862
863/*
864 * Level 2 ARC devices are tracked globally for the same reasons as spares.
865 * Cache devices currently only support one pool per cache device, and so
866 * for these devices the aux reference count is currently unused beyond 1.
867 */
868
869static int
870spa_l2cache_compare(const void *a, const void *b)
871{
872 return (spa_aux_compare(a, b));
873}
874
875void
876spa_l2cache_add(vdev_t *vd)
877{
878 mutex_enter(&spa_l2cache_lock);
879 ASSERT(!vd->vdev_isl2cache);
880 spa_aux_add(vd, &spa_l2cache_avl);
881 vd->vdev_isl2cache = B_TRUE;
882 mutex_exit(&spa_l2cache_lock);
883}
884
885void
886spa_l2cache_remove(vdev_t *vd)
887{
888 mutex_enter(&spa_l2cache_lock);
889 ASSERT(vd->vdev_isl2cache);
890 spa_aux_remove(vd, &spa_l2cache_avl);
891 vd->vdev_isl2cache = B_FALSE;
892 mutex_exit(&spa_l2cache_lock);
893}
894
895boolean_t
896spa_l2cache_exists(uint64_t guid, uint64_t *pool)
897{
898 boolean_t found;
899
900 mutex_enter(&spa_l2cache_lock);
b128c09f 901 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
902 mutex_exit(&spa_l2cache_lock);
903
904 return (found);
905}
906
907void
908spa_l2cache_activate(vdev_t *vd)
909{
910 mutex_enter(&spa_l2cache_lock);
911 ASSERT(vd->vdev_isl2cache);
912 spa_aux_activate(vd, &spa_l2cache_avl);
913 mutex_exit(&spa_l2cache_lock);
914}
915
34dc7c2f
BB
916/*
917 * ==========================================================================
918 * SPA vdev locking
919 * ==========================================================================
920 */
921
922/*
923 * Lock the given spa_t for the purpose of adding or removing a vdev.
924 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
925 * It returns the next transaction group for the spa_t.
926 */
927uint64_t
928spa_vdev_enter(spa_t *spa)
929{
428870ff 930 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 931 mutex_enter(&spa_namespace_lock);
428870ff
BB
932 return (spa_vdev_config_enter(spa));
933}
934
935/*
936 * Internal implementation for spa_vdev_enter(). Used when a vdev
937 * operation requires multiple syncs (i.e. removing a device) while
938 * keeping the spa_namespace_lock held.
939 */
940uint64_t
941spa_vdev_config_enter(spa_t *spa)
942{
943 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 944
b128c09f 945 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
946
947 return (spa_last_synced_txg(spa) + 1);
948}
949
950/*
428870ff
BB
951 * Used in combination with spa_vdev_config_enter() to allow the syncing
952 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 953 */
428870ff
BB
954void
955spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f
BB
956{
957 int config_changed = B_FALSE;
958
d6320ddb 959 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
960 ASSERT(txg > spa_last_synced_txg(spa));
961
b128c09f
BB
962 spa->spa_pending_vdev = NULL;
963
34dc7c2f
BB
964 /*
965 * Reassess the DTLs.
966 */
967 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
968
b128c09f 969 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 970 config_changed = B_TRUE;
428870ff 971 spa->spa_config_generation++;
34dc7c2f
BB
972 }
973
428870ff
BB
974 /*
975 * Verify the metaslab classes.
976 */
977 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
978 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
979
b128c09f 980 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 981
428870ff
BB
982 /*
983 * Panic the system if the specified tag requires it. This
984 * is useful for ensuring that configurations are updated
985 * transactionally.
986 */
987 if (zio_injection_enabled)
988 zio_handle_panic_injection(spa, tag, 0);
989
34dc7c2f
BB
990 /*
991 * Note: this txg_wait_synced() is important because it ensures
992 * that there won't be more than one config change per txg.
993 * This allows us to use the txg as the generation number.
994 */
995 if (error == 0)
996 txg_wait_synced(spa->spa_dsl_pool, txg);
997
998 if (vd != NULL) {
93cf2076 999 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
fb5f0bc8 1000 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1001 vdev_free(vd);
fb5f0bc8 1002 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1003 }
1004
1005 /*
1006 * If the config changed, update the config cache.
1007 */
1008 if (config_changed)
b128c09f 1009 spa_config_sync(spa, B_FALSE, B_TRUE);
428870ff 1010}
34dc7c2f 1011
428870ff
BB
1012/*
1013 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1014 * locking of spa_vdev_enter(), we also want make sure the transactions have
1015 * synced to disk, and then update the global configuration cache with the new
1016 * information.
1017 */
1018int
1019spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1020{
1021 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1022 mutex_exit(&spa_namespace_lock);
428870ff 1023 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1024
1025 return (error);
1026}
1027
b128c09f
BB
1028/*
1029 * Lock the given spa_t for the purpose of changing vdev state.
1030 */
1031void
428870ff 1032spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1033{
428870ff
BB
1034 int locks = SCL_STATE_ALL | oplocks;
1035
1036 /*
1037 * Root pools may need to read of the underlying devfs filesystem
1038 * when opening up a vdev. Unfortunately if we're holding the
1039 * SCL_ZIO lock it will result in a deadlock when we try to issue
1040 * the read from the root filesystem. Instead we "prefetch"
1041 * the associated vnodes that we need prior to opening the
1042 * underlying devices and cache them so that we can prevent
1043 * any I/O when we are doing the actual open.
1044 */
1045 if (spa_is_root(spa)) {
1046 int low = locks & ~(SCL_ZIO - 1);
1047 int high = locks & ~low;
1048
1049 spa_config_enter(spa, high, spa, RW_WRITER);
1050 vdev_hold(spa->spa_root_vdev);
1051 spa_config_enter(spa, low, spa, RW_WRITER);
1052 } else {
1053 spa_config_enter(spa, locks, spa, RW_WRITER);
1054 }
1055 spa->spa_vdev_locks = locks;
b128c09f
BB
1056}
1057
1058int
1059spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1060{
428870ff
BB
1061 boolean_t config_changed = B_FALSE;
1062
1063 if (vd != NULL || error == 0)
1064 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1065 0, 0, B_FALSE);
1066
1067 if (vd != NULL) {
b128c09f 1068 vdev_state_dirty(vd->vdev_top);
428870ff
BB
1069 config_changed = B_TRUE;
1070 spa->spa_config_generation++;
1071 }
b128c09f 1072
428870ff
BB
1073 if (spa_is_root(spa))
1074 vdev_rele(spa->spa_root_vdev);
1075
1076 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1077 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1078
fb5f0bc8
BB
1079 /*
1080 * If anything changed, wait for it to sync. This ensures that,
1081 * from the system administrator's perspective, zpool(1M) commands
1082 * are synchronous. This is important for things like zpool offline:
1083 * when the command completes, you expect no further I/O from ZFS.
1084 */
1085 if (vd != NULL)
1086 txg_wait_synced(spa->spa_dsl_pool, 0);
1087
428870ff
BB
1088 /*
1089 * If the config changed, update the config cache.
1090 */
1091 if (config_changed) {
1092 mutex_enter(&spa_namespace_lock);
1093 spa_config_sync(spa, B_FALSE, B_TRUE);
1094 mutex_exit(&spa_namespace_lock);
1095 }
1096
b128c09f
BB
1097 return (error);
1098}
1099
34dc7c2f
BB
1100/*
1101 * ==========================================================================
1102 * Miscellaneous functions
1103 * ==========================================================================
1104 */
1105
9ae529ec 1106void
b0bc7a84 1107spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1108{
fa86b5db
MA
1109 if (!nvlist_exists(spa->spa_label_features, feature)) {
1110 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1111 /*
1112 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1113 * dirty the vdev config because lock SCL_CONFIG is not held.
1114 * Thankfully, in this case we don't need to dirty the config
1115 * because it will be written out anyway when we finish
1116 * creating the pool.
1117 */
1118 if (tx->tx_txg != TXG_INITIAL)
1119 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1120 }
9ae529ec
CS
1121}
1122
1123void
1124spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1125{
fa86b5db
MA
1126 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1127 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1128}
1129
34dc7c2f
BB
1130/*
1131 * Rename a spa_t.
1132 */
1133int
1134spa_rename(const char *name, const char *newname)
1135{
1136 spa_t *spa;
1137 int err;
1138
1139 /*
1140 * Lookup the spa_t and grab the config lock for writing. We need to
1141 * actually open the pool so that we can sync out the necessary labels.
1142 * It's OK to call spa_open() with the namespace lock held because we
1143 * allow recursive calls for other reasons.
1144 */
1145 mutex_enter(&spa_namespace_lock);
1146 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1147 mutex_exit(&spa_namespace_lock);
1148 return (err);
1149 }
1150
b128c09f 1151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1152
1153 avl_remove(&spa_namespace_avl, spa);
b128c09f 1154 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
34dc7c2f
BB
1155 avl_add(&spa_namespace_avl, spa);
1156
1157 /*
1158 * Sync all labels to disk with the new names by marking the root vdev
1159 * dirty and waiting for it to sync. It will pick up the new pool name
1160 * during the sync.
1161 */
1162 vdev_config_dirty(spa->spa_root_vdev);
1163
b128c09f 1164 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1165
1166 txg_wait_synced(spa->spa_dsl_pool, 0);
1167
1168 /*
1169 * Sync the updated config cache.
1170 */
b128c09f 1171 spa_config_sync(spa, B_FALSE, B_TRUE);
34dc7c2f
BB
1172
1173 spa_close(spa, FTAG);
1174
1175 mutex_exit(&spa_namespace_lock);
1176
1177 return (0);
1178}
1179
34dc7c2f 1180/*
572e2857
BB
1181 * Return the spa_t associated with given pool_guid, if it exists. If
1182 * device_guid is non-zero, determine whether the pool exists *and* contains
1183 * a device with the specified device_guid.
34dc7c2f 1184 */
572e2857
BB
1185spa_t *
1186spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1187{
1188 spa_t *spa;
1189 avl_tree_t *t = &spa_namespace_avl;
1190
1191 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1192
1193 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1194 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1195 continue;
1196 if (spa->spa_root_vdev == NULL)
1197 continue;
1198 if (spa_guid(spa) == pool_guid) {
1199 if (device_guid == 0)
1200 break;
1201
1202 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1203 device_guid) != NULL)
1204 break;
1205
1206 /*
1207 * Check any devices we may be in the process of adding.
1208 */
1209 if (spa->spa_pending_vdev) {
1210 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1211 device_guid) != NULL)
1212 break;
1213 }
1214 }
1215 }
1216
572e2857
BB
1217 return (spa);
1218}
1219
1220/*
1221 * Determine whether a pool with the given pool_guid exists.
1222 */
1223boolean_t
1224spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1225{
1226 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1227}
1228
1229char *
1230spa_strdup(const char *s)
1231{
1232 size_t len;
1233 char *new;
1234
1235 len = strlen(s);
b8d06fca 1236 new = kmem_alloc(len + 1, KM_PUSHPAGE);
34dc7c2f
BB
1237 bcopy(s, new, len);
1238 new[len] = '\0';
1239
1240 return (new);
1241}
1242
1243void
1244spa_strfree(char *s)
1245{
1246 kmem_free(s, strlen(s) + 1);
1247}
1248
1249uint64_t
1250spa_get_random(uint64_t range)
1251{
1252 uint64_t r;
1253
1254 ASSERT(range != 0);
1255
1256 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1257
1258 return (r % range);
1259}
1260
428870ff
BB
1261uint64_t
1262spa_generate_guid(spa_t *spa)
34dc7c2f 1263{
428870ff 1264 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1265
428870ff
BB
1266 if (spa != NULL) {
1267 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1268 guid = spa_get_random(-1ULL);
1269 } else {
1270 while (guid == 0 || spa_guid_exists(guid, 0))
1271 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1272 }
1273
428870ff
BB
1274 return (guid);
1275}
1276
1277void
b0bc7a84 1278snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1279{
9ae529ec 1280 char type[256];
428870ff
BB
1281 char *checksum = NULL;
1282 char *compress = NULL;
34dc7c2f 1283
428870ff 1284 if (bp != NULL) {
9ae529ec
CS
1285 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1286 dmu_object_byteswap_t bswap =
1287 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1288 (void) snprintf(type, sizeof (type), "bswap %s %s",
1289 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1290 "metadata" : "data",
1291 dmu_ot_byteswap[bswap].ob_name);
1292 } else {
1293 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1294 sizeof (type));
1295 }
9b67f605
MA
1296 if (!BP_IS_EMBEDDED(bp)) {
1297 checksum =
1298 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1299 }
428870ff 1300 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1301 }
1302
b0bc7a84
MG
1303 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1304 compress);
34dc7c2f
BB
1305}
1306
1307void
1308spa_freeze(spa_t *spa)
1309{
1310 uint64_t freeze_txg = 0;
1311
b128c09f 1312 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1313 if (spa->spa_freeze_txg == UINT64_MAX) {
1314 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1315 spa->spa_freeze_txg = freeze_txg;
1316 }
b128c09f 1317 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1318 if (freeze_txg != 0)
1319 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1320}
1321
428870ff
BB
1322/*
1323 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1324 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1325 */
1326uint64_t
1327strtonum(const char *str, char **nptr)
1328{
1329 uint64_t val = 0;
1330 char c;
1331 int digit;
1332
1333 while ((c = *str) != '\0') {
1334 if (c >= '0' && c <= '9')
1335 digit = c - '0';
1336 else if (c >= 'a' && c <= 'f')
1337 digit = 10 + c - 'a';
1338 else
1339 break;
1340
1341 val *= 16;
1342 val += digit;
1343
1344 str++;
1345 }
1346
1347 if (nptr)
1348 *nptr = (char *)str;
1349
1350 return (val);
1351}
1352
34dc7c2f
BB
1353/*
1354 * ==========================================================================
1355 * Accessor functions
1356 * ==========================================================================
1357 */
1358
b128c09f
BB
1359boolean_t
1360spa_shutting_down(spa_t *spa)
34dc7c2f 1361{
b128c09f 1362 return (spa->spa_async_suspended);
34dc7c2f
BB
1363}
1364
1365dsl_pool_t *
1366spa_get_dsl(spa_t *spa)
1367{
1368 return (spa->spa_dsl_pool);
1369}
1370
9ae529ec
CS
1371boolean_t
1372spa_is_initializing(spa_t *spa)
1373{
1374 return (spa->spa_is_initializing);
1375}
1376
34dc7c2f
BB
1377blkptr_t *
1378spa_get_rootblkptr(spa_t *spa)
1379{
1380 return (&spa->spa_ubsync.ub_rootbp);
1381}
1382
1383void
1384spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1385{
1386 spa->spa_uberblock.ub_rootbp = *bp;
1387}
1388
1389void
1390spa_altroot(spa_t *spa, char *buf, size_t buflen)
1391{
1392 if (spa->spa_root == NULL)
1393 buf[0] = '\0';
1394 else
1395 (void) strncpy(buf, spa->spa_root, buflen);
1396}
1397
1398int
1399spa_sync_pass(spa_t *spa)
1400{
1401 return (spa->spa_sync_pass);
1402}
1403
1404char *
1405spa_name(spa_t *spa)
1406{
34dc7c2f
BB
1407 return (spa->spa_name);
1408}
1409
1410uint64_t
1411spa_guid(spa_t *spa)
1412{
3bc7e0fb
GW
1413 dsl_pool_t *dp = spa_get_dsl(spa);
1414 uint64_t guid;
1415
34dc7c2f
BB
1416 /*
1417 * If we fail to parse the config during spa_load(), we can go through
1418 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1419 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1420 * this case.
1421 */
3bc7e0fb
GW
1422 if (spa->spa_root_vdev == NULL)
1423 return (spa->spa_config_guid);
1424
1425 guid = spa->spa_last_synced_guid != 0 ?
1426 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1427
1428 /*
1429 * Return the most recently synced out guid unless we're
1430 * in syncing context.
1431 */
1432 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1433 return (spa->spa_root_vdev->vdev_guid);
1434 else
3bc7e0fb 1435 return (guid);
3541dc6d
GA
1436}
1437
1438uint64_t
1439spa_load_guid(spa_t *spa)
1440{
1441 /*
1442 * This is a GUID that exists solely as a reference for the
1443 * purposes of the arc. It is generated at load time, and
1444 * is never written to persistent storage.
1445 */
1446 return (spa->spa_load_guid);
34dc7c2f
BB
1447}
1448
1449uint64_t
1450spa_last_synced_txg(spa_t *spa)
1451{
1452 return (spa->spa_ubsync.ub_txg);
1453}
1454
1455uint64_t
1456spa_first_txg(spa_t *spa)
1457{
1458 return (spa->spa_first_txg);
1459}
1460
428870ff
BB
1461uint64_t
1462spa_syncing_txg(spa_t *spa)
1463{
1464 return (spa->spa_syncing_txg);
1465}
1466
b128c09f 1467pool_state_t
34dc7c2f
BB
1468spa_state(spa_t *spa)
1469{
1470 return (spa->spa_state);
1471}
1472
428870ff
BB
1473spa_load_state_t
1474spa_load_state(spa_t *spa)
34dc7c2f 1475{
428870ff 1476 return (spa->spa_load_state);
34dc7c2f
BB
1477}
1478
34dc7c2f 1479uint64_t
428870ff 1480spa_freeze_txg(spa_t *spa)
34dc7c2f 1481{
428870ff 1482 return (spa->spa_freeze_txg);
34dc7c2f
BB
1483}
1484
428870ff 1485/* ARGSUSED */
34dc7c2f 1486uint64_t
428870ff 1487spa_get_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1488{
e8b96c60 1489 return (lsize * spa_asize_inflation);
34dc7c2f
BB
1490}
1491
34dc7c2f
BB
1492uint64_t
1493spa_get_dspace(spa_t *spa)
1494{
428870ff 1495 return (spa->spa_dspace);
34dc7c2f
BB
1496}
1497
428870ff
BB
1498void
1499spa_update_dspace(spa_t *spa)
34dc7c2f 1500{
428870ff
BB
1501 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1502 ddt_get_dedup_dspace(spa);
34dc7c2f
BB
1503}
1504
1505/*
1506 * Return the failure mode that has been set to this pool. The default
1507 * behavior will be to block all I/Os when a complete failure occurs.
1508 */
1509uint8_t
1510spa_get_failmode(spa_t *spa)
1511{
1512 return (spa->spa_failmode);
1513}
1514
b128c09f
BB
1515boolean_t
1516spa_suspended(spa_t *spa)
1517{
1518 return (spa->spa_suspended);
1519}
1520
34dc7c2f
BB
1521uint64_t
1522spa_version(spa_t *spa)
1523{
1524 return (spa->spa_ubsync.ub_version);
1525}
1526
428870ff
BB
1527boolean_t
1528spa_deflate(spa_t *spa)
1529{
1530 return (spa->spa_deflate);
1531}
1532
1533metaslab_class_t *
1534spa_normal_class(spa_t *spa)
1535{
1536 return (spa->spa_normal_class);
1537}
1538
1539metaslab_class_t *
1540spa_log_class(spa_t *spa)
1541{
1542 return (spa->spa_log_class);
1543}
1544
34dc7c2f
BB
1545int
1546spa_max_replication(spa_t *spa)
1547{
1548 /*
1549 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1550 * handle BPs with more than one DVA allocated. Set our max
1551 * replication level accordingly.
1552 */
1553 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1554 return (1);
1555 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1556}
1557
428870ff
BB
1558int
1559spa_prev_software_version(spa_t *spa)
1560{
1561 return (spa->spa_prev_software_version);
1562}
1563
cc92e9d0
GW
1564uint64_t
1565spa_deadman_synctime(spa_t *spa)
1566{
1567 return (spa->spa_deadman_synctime);
1568}
1569
34dc7c2f 1570uint64_t
428870ff 1571dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 1572{
428870ff
BB
1573 uint64_t asize = DVA_GET_ASIZE(dva);
1574 uint64_t dsize = asize;
34dc7c2f 1575
428870ff 1576 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1577
428870ff
BB
1578 if (asize != 0 && spa->spa_deflate) {
1579 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
1580 if (vd != NULL)
1581 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1582 vd->vdev_deflate_ratio;
34dc7c2f 1583 }
428870ff
BB
1584
1585 return (dsize);
1586}
1587
1588uint64_t
1589bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1590{
1591 uint64_t dsize = 0;
d6320ddb 1592 int d;
428870ff 1593
9b67f605 1594 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1595 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1596
1597 return (dsize);
1598}
1599
1600uint64_t
1601bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1602{
1603 uint64_t dsize = 0;
d6320ddb 1604 int d;
428870ff
BB
1605
1606 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1607
9b67f605 1608 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1609 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1610
b128c09f 1611 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
1612
1613 return (dsize);
34dc7c2f
BB
1614}
1615
1616/*
1617 * ==========================================================================
1618 * Initialization and Termination
1619 * ==========================================================================
1620 */
1621
1622static int
1623spa_name_compare(const void *a1, const void *a2)
1624{
1625 const spa_t *s1 = a1;
1626 const spa_t *s2 = a2;
1627 int s;
1628
1629 s = strcmp(s1->spa_name, s2->spa_name);
1630 if (s > 0)
1631 return (1);
1632 if (s < 0)
1633 return (-1);
1634 return (0);
1635}
1636
34dc7c2f 1637void
0bc8fd78 1638spa_boot_init(void)
34dc7c2f
BB
1639{
1640 spa_config_load();
1641}
1642
1643void
1644spa_init(int mode)
1645{
1646 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1647 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1648 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1649 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1650
1651 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1652 offsetof(spa_t, spa_avl));
1653
1654 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1655 offsetof(spa_aux_t, aux_avl));
1656
1657 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1658 offsetof(spa_aux_t, aux_avl));
1659
fb5f0bc8 1660 spa_mode_global = mode;
34dc7c2f 1661
498877ba
MA
1662#ifndef _KERNEL
1663 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1664 struct sigaction sa;
1665
1666 sa.sa_flags = SA_SIGINFO;
1667 sigemptyset(&sa.sa_mask);
1668 sa.sa_sigaction = arc_buf_sigsegv;
1669
1670 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1671 perror("could not enable watchpoints: "
1672 "sigaction(SIGSEGV, ...) = ");
1673 } else {
1674 arc_watch = B_TRUE;
1675 }
1676 }
1677#endif
1678
26685276 1679 fm_init();
34dc7c2f
BB
1680 refcount_init();
1681 unique_init();
93cf2076 1682 range_tree_init();
ecf3d9b8 1683 ddt_init();
34dc7c2f
BB
1684 zio_init();
1685 dmu_init();
1686 zil_init();
1687 vdev_cache_stat_init();
bc25c932 1688 vdev_file_init();
34dc7c2f
BB
1689 zfs_prop_init();
1690 zpool_prop_init();
9ae529ec 1691 zpool_feature_init();
34dc7c2f 1692 spa_config_load();
b128c09f 1693 l2arc_start();
34dc7c2f
BB
1694}
1695
1696void
1697spa_fini(void)
1698{
b128c09f
BB
1699 l2arc_stop();
1700
34dc7c2f
BB
1701 spa_evict_all();
1702
bc25c932 1703 vdev_file_fini();
34dc7c2f
BB
1704 vdev_cache_stat_fini();
1705 zil_fini();
1706 dmu_fini();
1707 zio_fini();
ecf3d9b8 1708 ddt_fini();
93cf2076 1709 range_tree_fini();
34dc7c2f
BB
1710 unique_fini();
1711 refcount_fini();
26685276 1712 fm_fini();
34dc7c2f
BB
1713
1714 avl_destroy(&spa_namespace_avl);
1715 avl_destroy(&spa_spare_avl);
1716 avl_destroy(&spa_l2cache_avl);
1717
1718 cv_destroy(&spa_namespace_cv);
1719 mutex_destroy(&spa_namespace_lock);
1720 mutex_destroy(&spa_spare_lock);
1721 mutex_destroy(&spa_l2cache_lock);
1722}
1723
1724/*
1725 * Return whether this pool has slogs. No locking needed.
1726 * It's not a problem if the wrong answer is returned as it's only for
1727 * performance and not correctness
1728 */
1729boolean_t
1730spa_has_slogs(spa_t *spa)
1731{
1732 return (spa->spa_log_class->mc_rotor != NULL);
1733}
b128c09f 1734
428870ff
BB
1735spa_log_state_t
1736spa_get_log_state(spa_t *spa)
1737{
1738 return (spa->spa_log_state);
1739}
1740
1741void
1742spa_set_log_state(spa_t *spa, spa_log_state_t state)
1743{
1744 spa->spa_log_state = state;
1745}
1746
b128c09f
BB
1747boolean_t
1748spa_is_root(spa_t *spa)
1749{
1750 return (spa->spa_is_root);
1751}
fb5f0bc8
BB
1752
1753boolean_t
1754spa_writeable(spa_t *spa)
1755{
1756 return (!!(spa->spa_mode & FWRITE));
1757}
1758
acbad6ff
AR
1759/*
1760 * Returns true if there is a pending sync task in any of the current
1761 * syncing txg, the current quiescing txg, or the current open txg.
1762 */
1763boolean_t
1764spa_has_pending_synctask(spa_t *spa)
1765{
1766 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1767}
1768
fb5f0bc8
BB
1769int
1770spa_mode(spa_t *spa)
1771{
1772 return (spa->spa_mode);
1773}
428870ff
BB
1774
1775uint64_t
1776spa_bootfs(spa_t *spa)
1777{
1778 return (spa->spa_bootfs);
1779}
1780
1781uint64_t
1782spa_delegation(spa_t *spa)
1783{
1784 return (spa->spa_delegation);
1785}
1786
1787objset_t *
1788spa_meta_objset(spa_t *spa)
1789{
1790 return (spa->spa_meta_objset);
1791}
1792
1793enum zio_checksum
1794spa_dedup_checksum(spa_t *spa)
1795{
1796 return (spa->spa_dedup_checksum);
1797}
1798
1799/*
1800 * Reset pool scan stat per scan pass (or reboot).
1801 */
1802void
1803spa_scan_stat_init(spa_t *spa)
1804{
1805 /* data not stored on disk */
1806 spa->spa_scan_pass_start = gethrestime_sec();
1807 spa->spa_scan_pass_exam = 0;
1808 vdev_scan_stat_init(spa->spa_root_vdev);
1809}
1810
1811/*
1812 * Get scan stats for zpool status reports
1813 */
1814int
1815spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1816{
1817 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1818
1819 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 1820 return (SET_ERROR(ENOENT));
428870ff
BB
1821 bzero(ps, sizeof (pool_scan_stat_t));
1822
1823 /* data stored on disk */
1824 ps->pss_func = scn->scn_phys.scn_func;
1825 ps->pss_start_time = scn->scn_phys.scn_start_time;
1826 ps->pss_end_time = scn->scn_phys.scn_end_time;
1827 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1828 ps->pss_examined = scn->scn_phys.scn_examined;
1829 ps->pss_to_process = scn->scn_phys.scn_to_process;
1830 ps->pss_processed = scn->scn_phys.scn_processed;
1831 ps->pss_errors = scn->scn_phys.scn_errors;
1832 ps->pss_state = scn->scn_phys.scn_state;
1833
1834 /* data not stored on disk */
1835 ps->pss_pass_start = spa->spa_scan_pass_start;
1836 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1837
1838 return (0);
1839}
c28b2279 1840
6d974228
GW
1841boolean_t
1842spa_debug_enabled(spa_t *spa)
1843{
1844 return (spa->spa_debug);
1845}
1846
c28b2279
BB
1847#if defined(_KERNEL) && defined(HAVE_SPL)
1848/* Namespace manipulation */
1849EXPORT_SYMBOL(spa_lookup);
1850EXPORT_SYMBOL(spa_add);
1851EXPORT_SYMBOL(spa_remove);
1852EXPORT_SYMBOL(spa_next);
1853
1854/* Refcount functions */
1855EXPORT_SYMBOL(spa_open_ref);
1856EXPORT_SYMBOL(spa_close);
1857EXPORT_SYMBOL(spa_refcount_zero);
1858
1859/* Pool configuration lock */
1860EXPORT_SYMBOL(spa_config_tryenter);
1861EXPORT_SYMBOL(spa_config_enter);
1862EXPORT_SYMBOL(spa_config_exit);
1863EXPORT_SYMBOL(spa_config_held);
1864
1865/* Pool vdev add/remove lock */
1866EXPORT_SYMBOL(spa_vdev_enter);
1867EXPORT_SYMBOL(spa_vdev_exit);
1868
1869/* Pool vdev state change lock */
1870EXPORT_SYMBOL(spa_vdev_state_enter);
1871EXPORT_SYMBOL(spa_vdev_state_exit);
1872
1873/* Accessor functions */
1874EXPORT_SYMBOL(spa_shutting_down);
1875EXPORT_SYMBOL(spa_get_dsl);
1876EXPORT_SYMBOL(spa_get_rootblkptr);
1877EXPORT_SYMBOL(spa_set_rootblkptr);
1878EXPORT_SYMBOL(spa_altroot);
1879EXPORT_SYMBOL(spa_sync_pass);
1880EXPORT_SYMBOL(spa_name);
1881EXPORT_SYMBOL(spa_guid);
1882EXPORT_SYMBOL(spa_last_synced_txg);
1883EXPORT_SYMBOL(spa_first_txg);
1884EXPORT_SYMBOL(spa_syncing_txg);
1885EXPORT_SYMBOL(spa_version);
1886EXPORT_SYMBOL(spa_state);
1887EXPORT_SYMBOL(spa_load_state);
1888EXPORT_SYMBOL(spa_freeze_txg);
1889EXPORT_SYMBOL(spa_get_asize);
1890EXPORT_SYMBOL(spa_get_dspace);
1891EXPORT_SYMBOL(spa_update_dspace);
1892EXPORT_SYMBOL(spa_deflate);
1893EXPORT_SYMBOL(spa_normal_class);
1894EXPORT_SYMBOL(spa_log_class);
1895EXPORT_SYMBOL(spa_max_replication);
1896EXPORT_SYMBOL(spa_prev_software_version);
1897EXPORT_SYMBOL(spa_get_failmode);
1898EXPORT_SYMBOL(spa_suspended);
1899EXPORT_SYMBOL(spa_bootfs);
1900EXPORT_SYMBOL(spa_delegation);
1901EXPORT_SYMBOL(spa_meta_objset);
1902
1903/* Miscellaneous support routines */
1904EXPORT_SYMBOL(spa_rename);
1905EXPORT_SYMBOL(spa_guid_exists);
1906EXPORT_SYMBOL(spa_strdup);
1907EXPORT_SYMBOL(spa_strfree);
1908EXPORT_SYMBOL(spa_get_random);
1909EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 1910EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
1911EXPORT_SYMBOL(spa_freeze);
1912EXPORT_SYMBOL(spa_upgrade);
1913EXPORT_SYMBOL(spa_evict_all);
1914EXPORT_SYMBOL(spa_lookup_by_guid);
1915EXPORT_SYMBOL(spa_has_spare);
1916EXPORT_SYMBOL(dva_get_dsize_sync);
1917EXPORT_SYMBOL(bp_get_dsize_sync);
1918EXPORT_SYMBOL(bp_get_dsize);
1919EXPORT_SYMBOL(spa_has_slogs);
1920EXPORT_SYMBOL(spa_is_root);
1921EXPORT_SYMBOL(spa_writeable);
1922EXPORT_SYMBOL(spa_mode);
1923
1924EXPORT_SYMBOL(spa_namespace_lock);
cc92e9d0 1925
e8b96c60 1926module_param(zfs_deadman_synctime_ms, ulong, 0644);
d1d7e268 1927MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
cc92e9d0
GW
1928
1929module_param(zfs_deadman_enabled, int, 0644);
1930MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
e8b96c60
MA
1931
1932module_param(spa_asize_inflation, int, 0644);
1933MODULE_PARM_DESC(spa_asize_inflation,
d1d7e268 1934 "SPA size estimate multiplication factor");
c28b2279 1935#endif