]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Fixed VERIFY3_IMPL() bug from 682ce104
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
c3520e7f 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
153b2285 25 * Copyright 2017 Nexenta Systems, Inc.
e550644f
BB
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/zfs_context.h>
31#include <sys/fm/fs/zfs.h>
32#include <sys/spa.h>
33#include <sys/spa_impl.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/vdev_impl.h>
37#include <sys/uberblock_impl.h>
38#include <sys/metaslab.h>
39#include <sys/metaslab_impl.h>
40#include <sys/space_map.h>
93cf2076 41#include <sys/space_reftree.h>
34dc7c2f
BB
42#include <sys/zio.h>
43#include <sys/zap.h>
44#include <sys/fs/zfs.h>
b128c09f 45#include <sys/arc.h>
9babb374 46#include <sys/zil.h>
428870ff 47#include <sys/dsl_scan.h>
a6255b7f 48#include <sys/abd.h>
6c285672 49#include <sys/zvol.h>
6078881a 50#include <sys/zfs_ratelimit.h>
34dc7c2f 51
b8bcca18
MA
52/*
53 * When a vdev is added, it will be divided into approximately (but no
54 * more than) this number of metaslabs.
55 */
56int metaslabs_per_vdev = 200;
57
34dc7c2f
BB
58/*
59 * Virtual device management.
60 */
61
62static vdev_ops_t *vdev_ops_table[] = {
63 &vdev_root_ops,
64 &vdev_raidz_ops,
65 &vdev_mirror_ops,
66 &vdev_replacing_ops,
67 &vdev_spare_ops,
68 &vdev_disk_ops,
69 &vdev_file_ops,
70 &vdev_missing_ops,
428870ff 71 &vdev_hole_ops,
34dc7c2f
BB
72 NULL
73};
74
34dc7c2f
BB
75/*
76 * Given a vdev type, return the appropriate ops vector.
77 */
78static vdev_ops_t *
79vdev_getops(const char *type)
80{
81 vdev_ops_t *ops, **opspp;
82
83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 if (strcmp(ops->vdev_op_type, type) == 0)
85 break;
86
87 return (ops);
88}
89
90/*
91 * Default asize function: return the MAX of psize with the asize of
92 * all children. This is what's used by anything other than RAID-Z.
93 */
94uint64_t
95vdev_default_asize(vdev_t *vd, uint64_t psize)
96{
97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 uint64_t csize;
d6320ddb 99 int c;
34dc7c2f 100
d6320ddb 101 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103 asize = MAX(asize, csize);
104 }
105
106 return (asize);
107}
108
109/*
9babb374
BB
110 * Get the minimum allocatable size. We define the allocatable size as
111 * the vdev's asize rounded to the nearest metaslab. This allows us to
112 * replace or attach devices which don't have the same physical size but
113 * can still satisfy the same number of allocations.
34dc7c2f
BB
114 */
115uint64_t
9babb374 116vdev_get_min_asize(vdev_t *vd)
34dc7c2f 117{
9babb374 118 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 119
9babb374 120 /*
1bd201e7 121 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
122 * just return our own asize.
123 */
124 if (pvd == NULL)
125 return (vd->vdev_asize);
34dc7c2f
BB
126
127 /*
9babb374
BB
128 * The top-level vdev just returns the allocatable size rounded
129 * to the nearest metaslab.
34dc7c2f 130 */
9babb374
BB
131 if (vd == vd->vdev_top)
132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 133
9babb374
BB
134 /*
135 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136 * so each child must provide at least 1/Nth of its asize.
137 */
138 if (pvd->vdev_ops == &vdev_raidz_ops)
2e215fec
SH
139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140 pvd->vdev_children);
34dc7c2f 141
9babb374
BB
142 return (pvd->vdev_min_asize);
143}
144
145void
146vdev_set_min_asize(vdev_t *vd)
147{
d6320ddb 148 int c;
9babb374 149 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 150
d6320ddb 151 for (c = 0; c < vd->vdev_children; c++)
9babb374 152 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
153}
154
155vdev_t *
156vdev_lookup_top(spa_t *spa, uint64_t vdev)
157{
158 vdev_t *rvd = spa->spa_root_vdev;
159
b128c09f 160 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 161
b128c09f
BB
162 if (vdev < rvd->vdev_children) {
163 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 164 return (rvd->vdev_child[vdev]);
b128c09f 165 }
34dc7c2f
BB
166
167 return (NULL);
168}
169
170vdev_t *
171vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
172{
34dc7c2f 173 vdev_t *mvd;
d6320ddb 174 int c;
34dc7c2f
BB
175
176 if (vd->vdev_guid == guid)
177 return (vd);
178
d6320ddb 179 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
180 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
181 NULL)
182 return (mvd);
183
184 return (NULL);
185}
186
9c43027b
AJ
187static int
188vdev_count_leaves_impl(vdev_t *vd)
189{
190 int n = 0;
191 int c;
192
193 if (vd->vdev_ops->vdev_op_leaf)
194 return (1);
195
196 for (c = 0; c < vd->vdev_children; c++)
197 n += vdev_count_leaves_impl(vd->vdev_child[c]);
198
199 return (n);
200}
201
202int
203vdev_count_leaves(spa_t *spa)
204{
205 return (vdev_count_leaves_impl(spa->spa_root_vdev));
206}
207
34dc7c2f
BB
208void
209vdev_add_child(vdev_t *pvd, vdev_t *cvd)
210{
211 size_t oldsize, newsize;
212 uint64_t id = cvd->vdev_id;
213 vdev_t **newchild;
214
44de2f02 215 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
216 ASSERT(cvd->vdev_parent == NULL);
217
218 cvd->vdev_parent = pvd;
219
220 if (pvd == NULL)
221 return;
222
223 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
224
225 oldsize = pvd->vdev_children * sizeof (vdev_t *);
226 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
227 newsize = pvd->vdev_children * sizeof (vdev_t *);
228
79c76d5b 229 newchild = kmem_alloc(newsize, KM_SLEEP);
34dc7c2f
BB
230 if (pvd->vdev_child != NULL) {
231 bcopy(pvd->vdev_child, newchild, oldsize);
232 kmem_free(pvd->vdev_child, oldsize);
233 }
234
235 pvd->vdev_child = newchild;
236 pvd->vdev_child[id] = cvd;
237
238 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
239 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
240
241 /*
242 * Walk up all ancestors to update guid sum.
243 */
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
246}
247
248void
249vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
250{
251 int c;
252 uint_t id = cvd->vdev_id;
253
254 ASSERT(cvd->vdev_parent == pvd);
255
256 if (pvd == NULL)
257 return;
258
259 ASSERT(id < pvd->vdev_children);
260 ASSERT(pvd->vdev_child[id] == cvd);
261
262 pvd->vdev_child[id] = NULL;
263 cvd->vdev_parent = NULL;
264
265 for (c = 0; c < pvd->vdev_children; c++)
266 if (pvd->vdev_child[c])
267 break;
268
269 if (c == pvd->vdev_children) {
270 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
271 pvd->vdev_child = NULL;
272 pvd->vdev_children = 0;
273 }
274
275 /*
276 * Walk up all ancestors to update guid sum.
277 */
278 for (; pvd != NULL; pvd = pvd->vdev_parent)
279 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
280}
281
282/*
283 * Remove any holes in the child array.
284 */
285void
286vdev_compact_children(vdev_t *pvd)
287{
288 vdev_t **newchild, *cvd;
289 int oldc = pvd->vdev_children;
9babb374 290 int newc;
d6320ddb 291 int c;
34dc7c2f 292
b128c09f 293 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 294
d6320ddb 295 for (c = newc = 0; c < oldc; c++)
34dc7c2f
BB
296 if (pvd->vdev_child[c])
297 newc++;
298
79c76d5b 299 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
34dc7c2f 300
d6320ddb 301 for (c = newc = 0; c < oldc; c++) {
34dc7c2f
BB
302 if ((cvd = pvd->vdev_child[c]) != NULL) {
303 newchild[newc] = cvd;
304 cvd->vdev_id = newc++;
305 }
306 }
307
308 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
309 pvd->vdev_child = newchild;
310 pvd->vdev_children = newc;
311}
312
313/*
314 * Allocate and minimally initialize a vdev_t.
315 */
428870ff 316vdev_t *
34dc7c2f
BB
317vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
318{
319 vdev_t *vd;
d6320ddb 320 int t;
34dc7c2f 321
79c76d5b 322 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
34dc7c2f
BB
323
324 if (spa->spa_root_vdev == NULL) {
325 ASSERT(ops == &vdev_root_ops);
326 spa->spa_root_vdev = vd;
3541dc6d 327 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
328 }
329
428870ff 330 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
331 if (spa->spa_root_vdev == vd) {
332 /*
333 * The root vdev's guid will also be the pool guid,
334 * which must be unique among all pools.
335 */
428870ff 336 guid = spa_generate_guid(NULL);
34dc7c2f
BB
337 } else {
338 /*
339 * Any other vdev's guid must be unique within the pool.
340 */
428870ff 341 guid = spa_generate_guid(spa);
34dc7c2f
BB
342 }
343 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
344 }
345
346 vd->vdev_spa = spa;
347 vd->vdev_id = id;
348 vd->vdev_guid = guid;
349 vd->vdev_guid_sum = guid;
350 vd->vdev_ops = ops;
351 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 352 vd->vdev_ishole = (ops == &vdev_hole_ops);
34dc7c2f 353
6078881a
TH
354 /*
355 * Initialize rate limit structs for events. We rate limit ZIO delay
356 * and checksum events so that we don't overwhelm ZED with thousands
357 * of events when a disk is acting up.
358 */
359 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
360 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
361
98f72a53
BB
362 list_link_init(&vd->vdev_config_dirty_node);
363 list_link_init(&vd->vdev_state_dirty_node);
448d7aaa 364 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f 365 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 366 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
3dfb57a3 367 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
6078881a 368
d6320ddb 369 for (t = 0; t < DTL_TYPES; t++) {
93cf2076 370 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
fb5f0bc8
BB
371 &vd->vdev_dtl_lock);
372 }
4747a7d3 373 txg_list_create(&vd->vdev_ms_list, spa,
34dc7c2f 374 offsetof(struct metaslab, ms_txg_node));
4747a7d3 375 txg_list_create(&vd->vdev_dtl_list, spa,
34dc7c2f
BB
376 offsetof(struct vdev, vdev_dtl_node));
377 vd->vdev_stat.vs_timestamp = gethrtime();
378 vdev_queue_init(vd);
379 vdev_cache_init(vd);
380
381 return (vd);
382}
383
384/*
385 * Allocate a new vdev. The 'alloctype' is used to control whether we are
386 * creating a new vdev or loading an existing one - the behavior is slightly
387 * different for each case.
388 */
389int
390vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
391 int alloctype)
392{
393 vdev_ops_t *ops;
394 char *type;
395 uint64_t guid = 0, islog, nparity;
396 vdev_t *vd;
4a283c7f
TH
397 char *tmp = NULL;
398 int rc;
34dc7c2f 399
b128c09f 400 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
401
402 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
2e528b49 403 return (SET_ERROR(EINVAL));
34dc7c2f
BB
404
405 if ((ops = vdev_getops(type)) == NULL)
2e528b49 406 return (SET_ERROR(EINVAL));
34dc7c2f
BB
407
408 /*
409 * If this is a load, get the vdev guid from the nvlist.
410 * Otherwise, vdev_alloc_common() will generate one for us.
411 */
412 if (alloctype == VDEV_ALLOC_LOAD) {
413 uint64_t label_id;
414
415 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
416 label_id != id)
2e528b49 417 return (SET_ERROR(EINVAL));
34dc7c2f
BB
418
419 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 420 return (SET_ERROR(EINVAL));
34dc7c2f
BB
421 } else if (alloctype == VDEV_ALLOC_SPARE) {
422 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 423 return (SET_ERROR(EINVAL));
34dc7c2f
BB
424 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
425 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 426 return (SET_ERROR(EINVAL));
9babb374
BB
427 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
428 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 429 return (SET_ERROR(EINVAL));
34dc7c2f
BB
430 }
431
432 /*
433 * The first allocated vdev must be of type 'root'.
434 */
435 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
2e528b49 436 return (SET_ERROR(EINVAL));
34dc7c2f
BB
437
438 /*
439 * Determine whether we're a log vdev.
440 */
441 islog = 0;
442 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
443 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
2e528b49 444 return (SET_ERROR(ENOTSUP));
34dc7c2f 445
428870ff 446 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
2e528b49 447 return (SET_ERROR(ENOTSUP));
428870ff 448
34dc7c2f
BB
449 /*
450 * Set the nparity property for RAID-Z vdevs.
451 */
452 nparity = -1ULL;
453 if (ops == &vdev_raidz_ops) {
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
455 &nparity) == 0) {
428870ff 456 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
2e528b49 457 return (SET_ERROR(EINVAL));
34dc7c2f 458 /*
45d1cae3
BB
459 * Previous versions could only support 1 or 2 parity
460 * device.
34dc7c2f 461 */
45d1cae3
BB
462 if (nparity > 1 &&
463 spa_version(spa) < SPA_VERSION_RAIDZ2)
2e528b49 464 return (SET_ERROR(ENOTSUP));
45d1cae3
BB
465 if (nparity > 2 &&
466 spa_version(spa) < SPA_VERSION_RAIDZ3)
2e528b49 467 return (SET_ERROR(ENOTSUP));
34dc7c2f
BB
468 } else {
469 /*
470 * We require the parity to be specified for SPAs that
471 * support multiple parity levels.
472 */
45d1cae3 473 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
2e528b49 474 return (SET_ERROR(EINVAL));
34dc7c2f
BB
475 /*
476 * Otherwise, we default to 1 parity device for RAID-Z.
477 */
478 nparity = 1;
479 }
480 } else {
481 nparity = 0;
482 }
483 ASSERT(nparity != -1ULL);
484
485 vd = vdev_alloc_common(spa, id, guid, ops);
486
487 vd->vdev_islog = islog;
488 vd->vdev_nparity = nparity;
489
490 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
491 vd->vdev_path = spa_strdup(vd->vdev_path);
4a283c7f
TH
492
493 /*
494 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
495 * fault on a vdev and want it to persist across imports (like with
496 * zpool offline -f).
497 */
498 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
499 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
500 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
501 vd->vdev_faulted = 1;
502 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
503 }
504
34dc7c2f
BB
505 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
506 vd->vdev_devid = spa_strdup(vd->vdev_devid);
507 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
508 &vd->vdev_physpath) == 0)
509 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
1bbd8770
TH
510
511 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
512 &vd->vdev_enc_sysfs_path) == 0)
513 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
514
9babb374
BB
515 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
516 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
517
518 /*
519 * Set the whole_disk property. If it's not specified, leave the value
520 * as -1.
521 */
522 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
523 &vd->vdev_wholedisk) != 0)
524 vd->vdev_wholedisk = -1ULL;
525
526 /*
527 * Look for the 'not present' flag. This will only be set if the device
528 * was not present at the time of import.
529 */
9babb374
BB
530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
531 &vd->vdev_not_present);
34dc7c2f
BB
532
533 /*
534 * Get the alignment requirement.
535 */
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
537
428870ff
BB
538 /*
539 * Retrieve the vdev creation time.
540 */
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
542 &vd->vdev_crtxg);
543
34dc7c2f
BB
544 /*
545 * If we're a top-level vdev, try to load the allocation parameters.
546 */
428870ff
BB
547 if (parent && !parent->vdev_parent &&
548 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
550 &vd->vdev_ms_array);
551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
552 &vd->vdev_ms_shift);
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
554 &vd->vdev_asize);
428870ff
BB
555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
556 &vd->vdev_removing);
e0ab3ab5
JS
557 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
558 &vd->vdev_top_zap);
559 } else {
560 ASSERT0(vd->vdev_top_zap);
428870ff
BB
561 }
562
5ffb9d1d 563 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
564 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
565 alloctype == VDEV_ALLOC_ADD ||
566 alloctype == VDEV_ALLOC_SPLIT ||
567 alloctype == VDEV_ALLOC_ROOTPOOL);
568 vd->vdev_mg = metaslab_group_create(islog ?
569 spa_log_class(spa) : spa_normal_class(spa), vd);
34dc7c2f
BB
570 }
571
e0ab3ab5
JS
572 if (vd->vdev_ops->vdev_op_leaf &&
573 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
574 (void) nvlist_lookup_uint64(nv,
575 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
576 } else {
577 ASSERT0(vd->vdev_leaf_zap);
578 }
579
34dc7c2f
BB
580 /*
581 * If we're a leaf vdev, try to load the DTL object and other state.
582 */
e0ab3ab5 583
b128c09f 584 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
585 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
586 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
587 if (alloctype == VDEV_ALLOC_LOAD) {
588 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076 589 &vd->vdev_dtl_object);
b128c09f
BB
590 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
591 &vd->vdev_unspare);
592 }
9babb374
BB
593
594 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
595 uint64_t spare = 0;
596
597 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
598 &spare) == 0 && spare)
599 spa_spare_add(vd);
600 }
601
34dc7c2f
BB
602 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
603 &vd->vdev_offline);
b128c09f 604
5d1f7fb6
GW
605 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
606 &vd->vdev_resilver_txg);
572e2857 607
34dc7c2f 608 /*
4a283c7f
TH
609 * In general, when importing a pool we want to ignore the
610 * persistent fault state, as the diagnosis made on another
611 * system may not be valid in the current context. The only
612 * exception is if we forced a vdev to a persistently faulted
613 * state with 'zpool offline -f'. The persistent fault will
614 * remain across imports until cleared.
615 *
616 * Local vdevs will remain in the faulted state.
34dc7c2f 617 */
4a283c7f
TH
618 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
619 spa_load_state(spa) == SPA_LOAD_IMPORT) {
34dc7c2f
BB
620 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
621 &vd->vdev_faulted);
622 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
623 &vd->vdev_degraded);
624 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
625 &vd->vdev_removed);
428870ff
BB
626
627 if (vd->vdev_faulted || vd->vdev_degraded) {
628 char *aux;
629
630 vd->vdev_label_aux =
631 VDEV_AUX_ERR_EXCEEDED;
632 if (nvlist_lookup_string(nv,
633 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
634 strcmp(aux, "external") == 0)
635 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
636 }
34dc7c2f
BB
637 }
638 }
639
640 /*
641 * Add ourselves to the parent's list of children.
642 */
643 vdev_add_child(parent, vd);
644
645 *vdp = vd;
646
647 return (0);
648}
649
650void
651vdev_free(vdev_t *vd)
652{
d6320ddb 653 int c, t;
34dc7c2f
BB
654 spa_t *spa = vd->vdev_spa;
655
656 /*
657 * vdev_free() implies closing the vdev first. This is simpler than
658 * trying to ensure complicated semantics for all callers.
659 */
660 vdev_close(vd);
661
b128c09f 662 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 663 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
664
665 /*
666 * Free all children.
667 */
d6320ddb 668 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
669 vdev_free(vd->vdev_child[c]);
670
671 ASSERT(vd->vdev_child == NULL);
672 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
673
674 /*
675 * Discard allocation state.
676 */
428870ff 677 if (vd->vdev_mg != NULL) {
34dc7c2f 678 vdev_metaslab_fini(vd);
428870ff
BB
679 metaslab_group_destroy(vd->vdev_mg);
680 }
34dc7c2f 681
c99c9001
MS
682 ASSERT0(vd->vdev_stat.vs_space);
683 ASSERT0(vd->vdev_stat.vs_dspace);
684 ASSERT0(vd->vdev_stat.vs_alloc);
34dc7c2f
BB
685
686 /*
687 * Remove this vdev from its parent's child list.
688 */
689 vdev_remove_child(vd->vdev_parent, vd);
690
691 ASSERT(vd->vdev_parent == NULL);
692
693 /*
694 * Clean up vdev structure.
695 */
696 vdev_queue_fini(vd);
697 vdev_cache_fini(vd);
698
699 if (vd->vdev_path)
700 spa_strfree(vd->vdev_path);
701 if (vd->vdev_devid)
702 spa_strfree(vd->vdev_devid);
703 if (vd->vdev_physpath)
704 spa_strfree(vd->vdev_physpath);
1bbd8770
TH
705
706 if (vd->vdev_enc_sysfs_path)
707 spa_strfree(vd->vdev_enc_sysfs_path);
708
9babb374
BB
709 if (vd->vdev_fru)
710 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
711
712 if (vd->vdev_isspare)
713 spa_spare_remove(vd);
714 if (vd->vdev_isl2cache)
715 spa_l2cache_remove(vd);
716
717 txg_list_destroy(&vd->vdev_ms_list);
718 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 719
34dc7c2f 720 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 721 space_map_close(vd->vdev_dtl_sm);
d6320ddb 722 for (t = 0; t < DTL_TYPES; t++) {
93cf2076
GW
723 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
724 range_tree_destroy(vd->vdev_dtl[t]);
fb5f0bc8 725 }
34dc7c2f 726 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 727
3dfb57a3 728 mutex_destroy(&vd->vdev_queue_lock);
34dc7c2f
BB
729 mutex_destroy(&vd->vdev_dtl_lock);
730 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 731 mutex_destroy(&vd->vdev_probe_lock);
34dc7c2f 732
c17486b2
GN
733 zfs_ratelimit_fini(&vd->vdev_delay_rl);
734 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
735
34dc7c2f
BB
736 if (vd == spa->spa_root_vdev)
737 spa->spa_root_vdev = NULL;
738
739 kmem_free(vd, sizeof (vdev_t));
740}
741
742/*
743 * Transfer top-level vdev state from svd to tvd.
744 */
745static void
746vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
747{
748 spa_t *spa = svd->vdev_spa;
749 metaslab_t *msp;
750 vdev_t *vd;
751 int t;
752
753 ASSERT(tvd == tvd->vdev_top);
754
77943bc1 755 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
34dc7c2f
BB
756 tvd->vdev_ms_array = svd->vdev_ms_array;
757 tvd->vdev_ms_shift = svd->vdev_ms_shift;
758 tvd->vdev_ms_count = svd->vdev_ms_count;
e0ab3ab5 759 tvd->vdev_top_zap = svd->vdev_top_zap;
34dc7c2f
BB
760
761 svd->vdev_ms_array = 0;
762 svd->vdev_ms_shift = 0;
763 svd->vdev_ms_count = 0;
e0ab3ab5 764 svd->vdev_top_zap = 0;
34dc7c2f 765
5ffb9d1d
GW
766 if (tvd->vdev_mg)
767 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
768 tvd->vdev_mg = svd->vdev_mg;
769 tvd->vdev_ms = svd->vdev_ms;
770
771 svd->vdev_mg = NULL;
772 svd->vdev_ms = NULL;
773
774 if (tvd->vdev_mg != NULL)
775 tvd->vdev_mg->mg_vd = tvd;
776
777 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
778 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
779 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
780
781 svd->vdev_stat.vs_alloc = 0;
782 svd->vdev_stat.vs_space = 0;
783 svd->vdev_stat.vs_dspace = 0;
784
785 for (t = 0; t < TXG_SIZE; t++) {
786 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
787 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
788 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
789 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
790 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
791 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
792 }
793
b128c09f 794 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
795 vdev_config_clean(svd);
796 vdev_config_dirty(tvd);
797 }
798
b128c09f
BB
799 if (list_link_active(&svd->vdev_state_dirty_node)) {
800 vdev_state_clean(svd);
801 vdev_state_dirty(tvd);
802 }
803
34dc7c2f
BB
804 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
805 svd->vdev_deflate_ratio = 0;
806
807 tvd->vdev_islog = svd->vdev_islog;
808 svd->vdev_islog = 0;
809}
810
811static void
812vdev_top_update(vdev_t *tvd, vdev_t *vd)
813{
d6320ddb
BB
814 int c;
815
34dc7c2f
BB
816 if (vd == NULL)
817 return;
818
819 vd->vdev_top = tvd;
820
d6320ddb 821 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
822 vdev_top_update(tvd, vd->vdev_child[c]);
823}
824
825/*
826 * Add a mirror/replacing vdev above an existing vdev.
827 */
828vdev_t *
829vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
830{
831 spa_t *spa = cvd->vdev_spa;
832 vdev_t *pvd = cvd->vdev_parent;
833 vdev_t *mvd;
834
b128c09f 835 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
836
837 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
838
839 mvd->vdev_asize = cvd->vdev_asize;
9babb374 840 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 841 mvd->vdev_max_asize = cvd->vdev_max_asize;
34dc7c2f
BB
842 mvd->vdev_ashift = cvd->vdev_ashift;
843 mvd->vdev_state = cvd->vdev_state;
428870ff 844 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
845
846 vdev_remove_child(pvd, cvd);
847 vdev_add_child(pvd, mvd);
848 cvd->vdev_id = mvd->vdev_children;
849 vdev_add_child(mvd, cvd);
850 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
851
852 if (mvd == mvd->vdev_top)
853 vdev_top_transfer(cvd, mvd);
854
855 return (mvd);
856}
857
858/*
859 * Remove a 1-way mirror/replacing vdev from the tree.
860 */
861void
862vdev_remove_parent(vdev_t *cvd)
863{
864 vdev_t *mvd = cvd->vdev_parent;
865 vdev_t *pvd = mvd->vdev_parent;
866
b128c09f 867 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
868
869 ASSERT(mvd->vdev_children == 1);
870 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
871 mvd->vdev_ops == &vdev_replacing_ops ||
872 mvd->vdev_ops == &vdev_spare_ops);
873 cvd->vdev_ashift = mvd->vdev_ashift;
874
875 vdev_remove_child(mvd, cvd);
876 vdev_remove_child(pvd, mvd);
fb5f0bc8 877
34dc7c2f 878 /*
b128c09f
BB
879 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
880 * Otherwise, we could have detached an offline device, and when we
881 * go to import the pool we'll think we have two top-level vdevs,
882 * instead of a different version of the same top-level vdev.
34dc7c2f 883 */
fb5f0bc8
BB
884 if (mvd->vdev_top == mvd) {
885 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 886 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
887 cvd->vdev_guid += guid_delta;
888 cvd->vdev_guid_sum += guid_delta;
61e99a73
AB
889
890 /*
891 * If pool not set for autoexpand, we need to also preserve
892 * mvd's asize to prevent automatic expansion of cvd.
893 * Otherwise if we are adjusting the mirror by attaching and
894 * detaching children of non-uniform sizes, the mirror could
895 * autoexpand, unexpectedly requiring larger devices to
896 * re-establish the mirror.
897 */
898 if (!cvd->vdev_spa->spa_autoexpand)
899 cvd->vdev_asize = mvd->vdev_asize;
fb5f0bc8 900 }
b128c09f
BB
901 cvd->vdev_id = mvd->vdev_id;
902 vdev_add_child(pvd, cvd);
34dc7c2f
BB
903 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
904
905 if (cvd == cvd->vdev_top)
906 vdev_top_transfer(mvd, cvd);
907
908 ASSERT(mvd->vdev_children == 0);
909 vdev_free(mvd);
910}
911
912int
913vdev_metaslab_init(vdev_t *vd, uint64_t txg)
914{
915 spa_t *spa = vd->vdev_spa;
916 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
917 uint64_t m;
918 uint64_t oldc = vd->vdev_ms_count;
919 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
920 metaslab_t **mspp;
921 int error;
922
428870ff
BB
923 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
924
925 /*
926 * This vdev is not being allocated from yet or is a hole.
927 */
928 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
929 return (0);
930
428870ff
BB
931 ASSERT(!vd->vdev_ishole);
932
9babb374
BB
933 /*
934 * Compute the raidz-deflation ratio. Note, we hard-code
f1512ee6
MA
935 * in 128k (1 << 17) because it is the "typical" blocksize.
936 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
937 * otherwise it would inconsistently account for existing bp's.
9babb374
BB
938 */
939 vd->vdev_deflate_ratio = (1 << 17) /
940 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
941
34dc7c2f
BB
942 ASSERT(oldc <= newc);
943
bffb68a2 944 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
34dc7c2f
BB
945
946 if (oldc != 0) {
947 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
bffb68a2 948 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
34dc7c2f
BB
949 }
950
951 vd->vdev_ms = mspp;
952 vd->vdev_ms_count = newc;
953
954 for (m = oldc; m < newc; m++) {
93cf2076
GW
955 uint64_t object = 0;
956
34dc7c2f 957 if (txg == 0) {
34dc7c2f 958 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
959 m * sizeof (uint64_t), sizeof (uint64_t), &object,
960 DMU_READ_PREFETCH);
34dc7c2f
BB
961 if (error)
962 return (error);
34dc7c2f 963 }
fb42a493
PS
964
965 error = metaslab_init(vd->vdev_mg, m, object, txg,
966 &(vd->vdev_ms[m]));
967 if (error)
968 return (error);
34dc7c2f
BB
969 }
970
428870ff
BB
971 if (txg == 0)
972 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
973
974 /*
975 * If the vdev is being removed we don't activate
976 * the metaslabs since we want to ensure that no new
977 * allocations are performed on this device.
978 */
979 if (oldc == 0 && !vd->vdev_removing)
980 metaslab_group_activate(vd->vdev_mg);
981
982 if (txg == 0)
983 spa_config_exit(spa, SCL_ALLOC, FTAG);
984
34dc7c2f
BB
985 return (0);
986}
987
988void
989vdev_metaslab_fini(vdev_t *vd)
990{
991 uint64_t m;
992 uint64_t count = vd->vdev_ms_count;
993
994 if (vd->vdev_ms != NULL) {
428870ff 995 metaslab_group_passivate(vd->vdev_mg);
93cf2076
GW
996 for (m = 0; m < count; m++) {
997 metaslab_t *msp = vd->vdev_ms[m];
998
999 if (msp != NULL)
1000 metaslab_fini(msp);
1001 }
bffb68a2 1002 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
34dc7c2f
BB
1003 vd->vdev_ms = NULL;
1004 }
920dd524
ED
1005
1006 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
34dc7c2f
BB
1007}
1008
b128c09f
BB
1009typedef struct vdev_probe_stats {
1010 boolean_t vps_readable;
1011 boolean_t vps_writeable;
1012 int vps_flags;
b128c09f
BB
1013} vdev_probe_stats_t;
1014
1015static void
1016vdev_probe_done(zio_t *zio)
34dc7c2f 1017{
fb5f0bc8 1018 spa_t *spa = zio->io_spa;
d164b209 1019 vdev_t *vd = zio->io_vd;
b128c09f 1020 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
1021
1022 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
1023
1024 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
1025 if (zio->io_error == 0)
1026 vps->vps_readable = 1;
fb5f0bc8 1027 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 1028 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
a6255b7f 1029 zio->io_offset, zio->io_size, zio->io_abd,
b128c09f
BB
1030 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1031 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1032 } else {
a6255b7f 1033 abd_free(zio->io_abd);
b128c09f
BB
1034 }
1035 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
1036 if (zio->io_error == 0)
1037 vps->vps_writeable = 1;
a6255b7f 1038 abd_free(zio->io_abd);
b128c09f 1039 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 1040 zio_t *pio;
3dfb57a3 1041 zio_link_t *zl;
b128c09f
BB
1042
1043 vd->vdev_cant_read |= !vps->vps_readable;
1044 vd->vdev_cant_write |= !vps->vps_writeable;
1045
1046 if (vdev_readable(vd) &&
fb5f0bc8 1047 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
1048 zio->io_error = 0;
1049 } else {
1050 ASSERT(zio->io_error != 0);
1051 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
fb5f0bc8 1052 spa, vd, NULL, 0, 0);
2e528b49 1053 zio->io_error = SET_ERROR(ENXIO);
b128c09f 1054 }
d164b209
BB
1055
1056 mutex_enter(&vd->vdev_probe_lock);
1057 ASSERT(vd->vdev_probe_zio == zio);
1058 vd->vdev_probe_zio = NULL;
1059 mutex_exit(&vd->vdev_probe_lock);
1060
3dfb57a3
DB
1061 zl = NULL;
1062 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
d164b209 1063 if (!vdev_accessible(vd, pio))
2e528b49 1064 pio->io_error = SET_ERROR(ENXIO);
d164b209 1065
b128c09f
BB
1066 kmem_free(vps, sizeof (*vps));
1067 }
1068}
34dc7c2f 1069
b128c09f 1070/*
d3cc8b15
WA
1071 * Determine whether this device is accessible.
1072 *
1073 * Read and write to several known locations: the pad regions of each
1074 * vdev label but the first, which we leave alone in case it contains
1075 * a VTOC.
b128c09f
BB
1076 */
1077zio_t *
d164b209 1078vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
1079{
1080 spa_t *spa = vd->vdev_spa;
d164b209
BB
1081 vdev_probe_stats_t *vps = NULL;
1082 zio_t *pio;
d6320ddb 1083 int l;
d164b209
BB
1084
1085 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 1086
d164b209
BB
1087 /*
1088 * Don't probe the probe.
1089 */
1090 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1091 return (NULL);
b128c09f 1092
d164b209
BB
1093 /*
1094 * To prevent 'probe storms' when a device fails, we create
1095 * just one probe i/o at a time. All zios that want to probe
1096 * this vdev will become parents of the probe io.
1097 */
1098 mutex_enter(&vd->vdev_probe_lock);
b128c09f 1099
d164b209 1100 if ((pio = vd->vdev_probe_zio) == NULL) {
79c76d5b 1101 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
d164b209
BB
1102
1103 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1104 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1105 ZIO_FLAG_TRYHARD;
d164b209
BB
1106
1107 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1108 /*
1109 * vdev_cant_read and vdev_cant_write can only
1110 * transition from TRUE to FALSE when we have the
1111 * SCL_ZIO lock as writer; otherwise they can only
1112 * transition from FALSE to TRUE. This ensures that
1113 * any zio looking at these values can assume that
1114 * failures persist for the life of the I/O. That's
1115 * important because when a device has intermittent
1116 * connectivity problems, we want to ensure that
1117 * they're ascribed to the device (ENXIO) and not
1118 * the zio (EIO).
1119 *
1120 * Since we hold SCL_ZIO as writer here, clear both
1121 * values so the probe can reevaluate from first
1122 * principles.
1123 */
1124 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1125 vd->vdev_cant_read = B_FALSE;
1126 vd->vdev_cant_write = B_FALSE;
1127 }
1128
1129 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1130 vdev_probe_done, vps,
1131 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1132
428870ff
BB
1133 /*
1134 * We can't change the vdev state in this context, so we
1135 * kick off an async task to do it on our behalf.
1136 */
d164b209
BB
1137 if (zio != NULL) {
1138 vd->vdev_probe_wanted = B_TRUE;
1139 spa_async_request(spa, SPA_ASYNC_PROBE);
1140 }
b128c09f
BB
1141 }
1142
d164b209
BB
1143 if (zio != NULL)
1144 zio_add_child(zio, pio);
b128c09f 1145
d164b209 1146 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1147
d164b209
BB
1148 if (vps == NULL) {
1149 ASSERT(zio != NULL);
1150 return (NULL);
1151 }
b128c09f 1152
d6320ddb 1153 for (l = 1; l < VDEV_LABELS; l++) {
d164b209 1154 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1155 vdev_label_offset(vd->vdev_psize, l,
a6255b7f
DQ
1156 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1157 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
b128c09f
BB
1158 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1159 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1160 }
1161
d164b209
BB
1162 if (zio == NULL)
1163 return (pio);
1164
1165 zio_nowait(pio);
1166 return (NULL);
34dc7c2f
BB
1167}
1168
45d1cae3
BB
1169static void
1170vdev_open_child(void *arg)
1171{
1172 vdev_t *vd = arg;
1173
1174 vd->vdev_open_thread = curthread;
1175 vd->vdev_open_error = vdev_open(vd);
1176 vd->vdev_open_thread = NULL;
1177}
1178
6c285672 1179static boolean_t
428870ff
BB
1180vdev_uses_zvols(vdev_t *vd)
1181{
d6320ddb
BB
1182 int c;
1183
6c285672
JL
1184#ifdef _KERNEL
1185 if (zvol_is_zvol(vd->vdev_path))
428870ff 1186 return (B_TRUE);
6c285672
JL
1187#endif
1188
d6320ddb 1189 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1190 if (vdev_uses_zvols(vd->vdev_child[c]))
1191 return (B_TRUE);
6c285672 1192
428870ff
BB
1193 return (B_FALSE);
1194}
1195
45d1cae3
BB
1196void
1197vdev_open_children(vdev_t *vd)
1198{
1199 taskq_t *tq;
1200 int children = vd->vdev_children;
d6320ddb 1201 int c;
45d1cae3 1202
428870ff
BB
1203 /*
1204 * in order to handle pools on top of zvols, do the opens
1205 * in a single thread so that the same thread holds the
1206 * spa_namespace_lock
1207 */
1208 if (vdev_uses_zvols(vd)) {
13d9a004 1209retry_sync:
4770aa06 1210 for (c = 0; c < children; c++)
428870ff
BB
1211 vd->vdev_child[c]->vdev_open_error =
1212 vdev_open(vd->vdev_child[c]);
4770aa06
HJ
1213 } else {
1214 tq = taskq_create("vdev_open", children, minclsyspri,
1215 children, children, TASKQ_PREPOPULATE);
13d9a004
BB
1216 if (tq == NULL)
1217 goto retry_sync;
45d1cae3 1218
4770aa06
HJ
1219 for (c = 0; c < children; c++)
1220 VERIFY(taskq_dispatch(tq, vdev_open_child,
48d3eb40 1221 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
45d1cae3 1222
4770aa06
HJ
1223 taskq_destroy(tq);
1224 }
1225
1226 vd->vdev_nonrot = B_TRUE;
fb40095f
RY
1227
1228 for (c = 0; c < children; c++)
1229 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
45d1cae3
BB
1230}
1231
34dc7c2f
BB
1232/*
1233 * Prepare a virtual device for access.
1234 */
1235int
1236vdev_open(vdev_t *vd)
1237{
fb5f0bc8 1238 spa_t *spa = vd->vdev_spa;
34dc7c2f 1239 int error;
34dc7c2f 1240 uint64_t osize = 0;
1bd201e7
CS
1241 uint64_t max_osize = 0;
1242 uint64_t asize, max_asize, psize;
34dc7c2f 1243 uint64_t ashift = 0;
d6320ddb 1244 int c;
34dc7c2f 1245
45d1cae3
BB
1246 ASSERT(vd->vdev_open_thread == curthread ||
1247 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1248 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1249 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1250 vd->vdev_state == VDEV_STATE_OFFLINE);
1251
34dc7c2f 1252 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1253 vd->vdev_cant_read = B_FALSE;
1254 vd->vdev_cant_write = B_FALSE;
1255 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1256
428870ff
BB
1257 /*
1258 * If this vdev is not removed, check its fault status. If it's
1259 * faulted, bail out of the open.
1260 */
34dc7c2f
BB
1261 if (!vd->vdev_removed && vd->vdev_faulted) {
1262 ASSERT(vd->vdev_children == 0);
428870ff
BB
1263 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1264 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1265 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1266 vd->vdev_label_aux);
2e528b49 1267 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1268 } else if (vd->vdev_offline) {
1269 ASSERT(vd->vdev_children == 0);
1270 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2e528b49 1271 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1272 }
1273
1bd201e7 1274 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1275
428870ff
BB
1276 /*
1277 * Reset the vdev_reopening flag so that we actually close
1278 * the vdev on error.
1279 */
1280 vd->vdev_reopening = B_FALSE;
34dc7c2f 1281 if (zio_injection_enabled && error == 0)
9babb374 1282 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1283
1284 if (error) {
1285 if (vd->vdev_removed &&
1286 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1287 vd->vdev_removed = B_FALSE;
1288
1289 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1290 vd->vdev_stat.vs_aux);
1291 return (error);
1292 }
1293
1294 vd->vdev_removed = B_FALSE;
1295
428870ff
BB
1296 /*
1297 * Recheck the faulted flag now that we have confirmed that
1298 * the vdev is accessible. If we're faulted, bail.
1299 */
1300 if (vd->vdev_faulted) {
1301 ASSERT(vd->vdev_children == 0);
1302 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1303 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1304 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1305 vd->vdev_label_aux);
2e528b49 1306 return (SET_ERROR(ENXIO));
428870ff
BB
1307 }
1308
34dc7c2f
BB
1309 if (vd->vdev_degraded) {
1310 ASSERT(vd->vdev_children == 0);
1311 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1312 VDEV_AUX_ERR_EXCEEDED);
1313 } else {
428870ff 1314 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1315 }
1316
428870ff
BB
1317 /*
1318 * For hole or missing vdevs we just return success.
1319 */
1320 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1321 return (0);
1322
d6320ddb 1323 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1324 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1325 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1326 VDEV_AUX_NONE);
1327 break;
1328 }
9babb374 1329 }
34dc7c2f
BB
1330
1331 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1332 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1333
1334 if (vd->vdev_children == 0) {
1335 if (osize < SPA_MINDEVSIZE) {
1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 VDEV_AUX_TOO_SMALL);
2e528b49 1338 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1339 }
1340 psize = osize;
1341 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1342 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1343 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1344 } else {
1345 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1346 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1347 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348 VDEV_AUX_TOO_SMALL);
2e528b49 1349 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1350 }
1351 psize = 0;
1352 asize = osize;
1bd201e7 1353 max_asize = max_osize;
34dc7c2f
BB
1354 }
1355
9d3f7b87
OF
1356 /*
1357 * If the vdev was expanded, record this so that we can re-create the
1358 * uberblock rings in labels {2,3}, during the next sync.
1359 */
1360 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1361 vd->vdev_copy_uberblocks = B_TRUE;
1362
34dc7c2f
BB
1363 vd->vdev_psize = psize;
1364
9babb374 1365 /*
2e215fec 1366 * Make sure the allocatable size hasn't shrunk too much.
9babb374
BB
1367 */
1368 if (asize < vd->vdev_min_asize) {
1369 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1370 VDEV_AUX_BAD_LABEL);
2e528b49 1371 return (SET_ERROR(EINVAL));
9babb374
BB
1372 }
1373
34dc7c2f
BB
1374 if (vd->vdev_asize == 0) {
1375 /*
1376 * This is the first-ever open, so use the computed values.
b28e57cb 1377 * For compatibility, a different ashift can be requested.
34dc7c2f
BB
1378 */
1379 vd->vdev_asize = asize;
1bd201e7 1380 vd->vdev_max_asize = max_asize;
ff61d1a4 1381 if (vd->vdev_ashift == 0) {
1382 vd->vdev_ashift = ashift; /* use detected value */
1383 }
1384 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1385 vd->vdev_ashift > ASHIFT_MAX)) {
1386 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1387 VDEV_AUX_BAD_ASHIFT);
1388 return (SET_ERROR(EDOM));
1389 }
34dc7c2f
BB
1390 } else {
1391 /*
32a9872b
GW
1392 * Detect if the alignment requirement has increased.
1393 * We don't want to make the pool unavailable, just
1394 * post an event instead.
34dc7c2f 1395 */
32a9872b
GW
1396 if (ashift > vd->vdev_top->vdev_ashift &&
1397 vd->vdev_ops->vdev_op_leaf) {
1398 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1399 spa, vd, NULL, 0, 0);
34dc7c2f 1400 }
32a9872b 1401
1bd201e7 1402 vd->vdev_max_asize = max_asize;
9babb374 1403 }
34dc7c2f 1404
9babb374 1405 /*
2e215fec
SH
1406 * If all children are healthy we update asize if either:
1407 * The asize has increased, due to a device expansion caused by dynamic
1408 * LUN growth or vdev replacement, and automatic expansion is enabled;
1409 * making the additional space available.
1410 *
1411 * The asize has decreased, due to a device shrink usually caused by a
1412 * vdev replace with a smaller device. This ensures that calculations
1413 * based of max_asize and asize e.g. esize are always valid. It's safe
1414 * to do this as we've already validated that asize is greater than
1415 * vdev_min_asize.
9babb374 1416 */
2e215fec
SH
1417 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1418 ((asize > vd->vdev_asize &&
1419 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1420 (asize < vd->vdev_asize)))
9babb374 1421 vd->vdev_asize = asize;
34dc7c2f 1422
9babb374 1423 vdev_set_min_asize(vd);
34dc7c2f
BB
1424
1425 /*
1426 * Ensure we can issue some IO before declaring the
1427 * vdev open for business.
1428 */
b128c09f
BB
1429 if (vd->vdev_ops->vdev_op_leaf &&
1430 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1431 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1432 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1433 return (error);
1434 }
1435
c3520e7f
MA
1436 /*
1437 * Track the min and max ashift values for normal data devices.
1438 */
1439 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1440 !vd->vdev_islog && vd->vdev_aux == NULL) {
1441 if (vd->vdev_ashift > spa->spa_max_ashift)
1442 spa->spa_max_ashift = vd->vdev_ashift;
1443 if (vd->vdev_ashift < spa->spa_min_ashift)
1444 spa->spa_min_ashift = vd->vdev_ashift;
1445 }
1446
34dc7c2f 1447 /*
b128c09f 1448 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1449 * resilver. But don't do this if we are doing a reopen for a scrub,
1450 * since this would just restart the scrub we are already doing.
34dc7c2f 1451 */
fb5f0bc8
BB
1452 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1453 vdev_resilver_needed(vd, NULL, NULL))
1454 spa_async_request(spa, SPA_ASYNC_RESILVER);
34dc7c2f
BB
1455
1456 return (0);
1457}
1458
1459/*
1460 * Called once the vdevs are all opened, this routine validates the label
1461 * contents. This needs to be done before vdev_load() so that we don't
1462 * inadvertently do repair I/Os to the wrong device.
1463 *
c7f2d69d
GW
1464 * If 'strict' is false ignore the spa guid check. This is necessary because
1465 * if the machine crashed during a re-guid the new guid might have been written
1466 * to all of the vdev labels, but not the cached config. The strict check
1467 * will be performed when the pool is opened again using the mos config.
1468 *
34dc7c2f
BB
1469 * This function will only return failure if one of the vdevs indicates that it
1470 * has since been destroyed or exported. This is only possible if
1471 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1472 * will be updated but the function will return 0.
1473 */
1474int
c7f2d69d 1475vdev_validate(vdev_t *vd, boolean_t strict)
34dc7c2f
BB
1476{
1477 spa_t *spa = vd->vdev_spa;
34dc7c2f 1478 nvlist_t *label;
428870ff 1479 uint64_t guid = 0, top_guid;
34dc7c2f 1480 uint64_t state;
d6320ddb 1481 int c;
34dc7c2f 1482
d6320ddb 1483 for (c = 0; c < vd->vdev_children; c++)
c7f2d69d 1484 if (vdev_validate(vd->vdev_child[c], strict) != 0)
2e528b49 1485 return (SET_ERROR(EBADF));
34dc7c2f
BB
1486
1487 /*
1488 * If the device has already failed, or was marked offline, don't do
1489 * any further validation. Otherwise, label I/O will fail and we will
1490 * overwrite the previous state.
1491 */
b128c09f 1492 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
428870ff
BB
1493 uint64_t aux_guid = 0;
1494 nvlist_t *nvl;
295304be
GW
1495 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1496 spa_last_synced_txg(spa) : -1ULL;
34dc7c2f 1497
3bc7e0fb 1498 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
e35c5a82 1499 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
34dc7c2f
BB
1500 VDEV_AUX_BAD_LABEL);
1501 return (0);
1502 }
1503
428870ff
BB
1504 /*
1505 * Determine if this vdev has been split off into another
1506 * pool. If so, then refuse to open it.
1507 */
1508 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1509 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1510 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1511 VDEV_AUX_SPLIT_POOL);
1512 nvlist_free(label);
1513 return (0);
1514 }
1515
c7f2d69d
GW
1516 if (strict && (nvlist_lookup_uint64(label,
1517 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1518 guid != spa_guid(spa))) {
34dc7c2f
BB
1519 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1520 VDEV_AUX_CORRUPT_DATA);
1521 nvlist_free(label);
1522 return (0);
1523 }
1524
428870ff
BB
1525 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1526 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1527 &aux_guid) != 0)
1528 aux_guid = 0;
1529
b128c09f
BB
1530 /*
1531 * If this vdev just became a top-level vdev because its
1532 * sibling was detached, it will have adopted the parent's
1533 * vdev guid -- but the label may or may not be on disk yet.
1534 * Fortunately, either version of the label will have the
1535 * same top guid, so if we're a top-level vdev, we can
1536 * safely compare to that instead.
428870ff
BB
1537 *
1538 * If we split this vdev off instead, then we also check the
1539 * original pool's guid. We don't want to consider the vdev
1540 * corrupt if it is partway through a split operation.
b128c09f 1541 */
34dc7c2f 1542 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
b128c09f
BB
1543 &guid) != 0 ||
1544 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1545 &top_guid) != 0 ||
428870ff 1546 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
b128c09f 1547 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
34dc7c2f
BB
1548 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1549 VDEV_AUX_CORRUPT_DATA);
1550 nvlist_free(label);
1551 return (0);
1552 }
1553
1554 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1555 &state) != 0) {
1556 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1557 VDEV_AUX_CORRUPT_DATA);
1558 nvlist_free(label);
1559 return (0);
1560 }
1561
1562 nvlist_free(label);
1563
45d1cae3 1564 /*
572e2857 1565 * If this is a verbatim import, no need to check the
45d1cae3
BB
1566 * state of the pool.
1567 */
572e2857 1568 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
428870ff 1569 spa_load_state(spa) == SPA_LOAD_OPEN &&
34dc7c2f 1570 state != POOL_STATE_ACTIVE)
2e528b49 1571 return (SET_ERROR(EBADF));
34dc7c2f 1572
b128c09f
BB
1573 /*
1574 * If we were able to open and validate a vdev that was
1575 * previously marked permanently unavailable, clear that state
1576 * now.
1577 */
1578 if (vd->vdev_not_present)
1579 vd->vdev_not_present = 0;
1580 }
34dc7c2f
BB
1581
1582 return (0);
1583}
1584
1585/*
1586 * Close a virtual device.
1587 */
1588void
1589vdev_close(vdev_t *vd)
1590{
428870ff 1591 vdev_t *pvd = vd->vdev_parent;
1fde1e37 1592 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
1593
1594 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1595
428870ff
BB
1596 /*
1597 * If our parent is reopening, then we are as well, unless we are
1598 * going offline.
1599 */
1600 if (pvd != NULL && pvd->vdev_reopening)
1601 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1602
34dc7c2f
BB
1603 vd->vdev_ops->vdev_op_close(vd);
1604
1605 vdev_cache_purge(vd);
1606
1607 /*
9babb374 1608 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
1609 * doing a reopen(), we don't generate FMA ereports if we notice that
1610 * it's still faulted.
1611 */
1612 vd->vdev_prevstate = vd->vdev_state;
1613
1614 if (vd->vdev_offline)
1615 vd->vdev_state = VDEV_STATE_OFFLINE;
1616 else
1617 vd->vdev_state = VDEV_STATE_CLOSED;
1618 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1619}
1620
428870ff
BB
1621void
1622vdev_hold(vdev_t *vd)
1623{
1624 spa_t *spa = vd->vdev_spa;
d6320ddb 1625 int c;
428870ff
BB
1626
1627 ASSERT(spa_is_root(spa));
1628 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1629 return;
1630
d6320ddb 1631 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1632 vdev_hold(vd->vdev_child[c]);
1633
1634 if (vd->vdev_ops->vdev_op_leaf)
1635 vd->vdev_ops->vdev_op_hold(vd);
1636}
1637
1638void
1639vdev_rele(vdev_t *vd)
1640{
d6320ddb 1641 int c;
428870ff 1642
d6320ddb
BB
1643 ASSERT(spa_is_root(vd->vdev_spa));
1644 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
1645 vdev_rele(vd->vdev_child[c]);
1646
1647 if (vd->vdev_ops->vdev_op_leaf)
1648 vd->vdev_ops->vdev_op_rele(vd);
1649}
1650
1651/*
1652 * Reopen all interior vdevs and any unopened leaves. We don't actually
1653 * reopen leaf vdevs which had previously been opened as they might deadlock
1654 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1655 * If the leaf has never been opened then open it, as usual.
1656 */
34dc7c2f
BB
1657void
1658vdev_reopen(vdev_t *vd)
1659{
1660 spa_t *spa = vd->vdev_spa;
1661
b128c09f 1662 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 1663
428870ff
BB
1664 /* set the reopening flag unless we're taking the vdev offline */
1665 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
1666 vdev_close(vd);
1667 (void) vdev_open(vd);
1668
1669 /*
1670 * Call vdev_validate() here to make sure we have the same device.
1671 * Otherwise, a device with an invalid label could be successfully
1672 * opened in response to vdev_reopen().
1673 */
b128c09f
BB
1674 if (vd->vdev_aux) {
1675 (void) vdev_validate_aux(vd);
1676 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
1677 vd->vdev_aux == &spa->spa_l2cache &&
1678 !l2arc_vdev_present(vd))
1679 l2arc_add_vdev(spa, vd);
b128c09f 1680 } else {
295304be 1681 (void) vdev_validate(vd, B_TRUE);
b128c09f 1682 }
34dc7c2f
BB
1683
1684 /*
1685 * Reassess parent vdev's health.
1686 */
1687 vdev_propagate_state(vd);
1688}
1689
1690int
1691vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1692{
1693 int error;
1694
1695 /*
1696 * Normally, partial opens (e.g. of a mirror) are allowed.
1697 * For a create, however, we want to fail the request if
1698 * there are any components we can't open.
1699 */
1700 error = vdev_open(vd);
1701
1702 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1703 vdev_close(vd);
1704 return (error ? error : ENXIO);
1705 }
1706
1707 /*
93cf2076 1708 * Recursively load DTLs and initialize all labels.
34dc7c2f 1709 */
93cf2076
GW
1710 if ((error = vdev_dtl_load(vd)) != 0 ||
1711 (error = vdev_label_init(vd, txg, isreplacing ?
34dc7c2f
BB
1712 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1713 vdev_close(vd);
1714 return (error);
1715 }
1716
1717 return (0);
1718}
1719
34dc7c2f 1720void
9babb374 1721vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f
BB
1722{
1723 /*
b8bcca18 1724 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
34dc7c2f 1725 */
b8bcca18 1726 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
34dc7c2f 1727 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
1728}
1729
1730void
1731vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1732{
1733 ASSERT(vd == vd->vdev_top);
428870ff 1734 ASSERT(!vd->vdev_ishole);
34dc7c2f 1735 ASSERT(ISP2(flags));
572e2857 1736 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
1737
1738 if (flags & VDD_METASLAB)
1739 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1740
1741 if (flags & VDD_DTL)
1742 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1743
1744 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1745}
1746
93cf2076
GW
1747void
1748vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1749{
1750 int c;
1751
1752 for (c = 0; c < vd->vdev_children; c++)
1753 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1754
1755 if (vd->vdev_ops->vdev_op_leaf)
1756 vdev_dirty(vd->vdev_top, flags, vd, txg);
1757}
1758
fb5f0bc8
BB
1759/*
1760 * DTLs.
1761 *
1762 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 1763 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
1764 *
1765 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1766 *
1767 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1768 *
1769 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1770 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1771 * txgs that was scrubbed.
1772 *
1773 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1774 * persistent errors or just some device being offline.
1775 * Unlike the other three, the DTL_OUTAGE map is not generally
1776 * maintained; it's only computed when needed, typically to
1777 * determine whether a device can be detached.
1778 *
1779 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1780 * either has the data or it doesn't.
1781 *
1782 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1783 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1784 * if any child is less than fully replicated, then so is its parent.
1785 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1786 * comprising only those txgs which appear in 'maxfaults' or more children;
1787 * those are the txgs we don't have enough replication to read. For example,
1788 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1789 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1790 * two child DTL_MISSING maps.
1791 *
1792 * It should be clear from the above that to compute the DTLs and outage maps
1793 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1794 * Therefore, that is all we keep on disk. When loading the pool, or after
1795 * a configuration change, we generate all other DTLs from first principles.
1796 */
34dc7c2f 1797void
fb5f0bc8 1798vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1799{
93cf2076 1800 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
1801
1802 ASSERT(t < DTL_TYPES);
1803 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 1804 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 1805
93cf2076
GW
1806 mutex_enter(rt->rt_lock);
1807 if (!range_tree_contains(rt, txg, size))
1808 range_tree_add(rt, txg, size);
1809 mutex_exit(rt->rt_lock);
34dc7c2f
BB
1810}
1811
fb5f0bc8
BB
1812boolean_t
1813vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 1814{
93cf2076 1815 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8 1816 boolean_t dirty = B_FALSE;
34dc7c2f 1817
fb5f0bc8
BB
1818 ASSERT(t < DTL_TYPES);
1819 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f 1820
93cf2076
GW
1821 mutex_enter(rt->rt_lock);
1822 if (range_tree_space(rt) != 0)
1823 dirty = range_tree_contains(rt, txg, size);
1824 mutex_exit(rt->rt_lock);
34dc7c2f
BB
1825
1826 return (dirty);
1827}
1828
fb5f0bc8
BB
1829boolean_t
1830vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1831{
93cf2076 1832 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
1833 boolean_t empty;
1834
93cf2076
GW
1835 mutex_enter(rt->rt_lock);
1836 empty = (range_tree_space(rt) == 0);
1837 mutex_exit(rt->rt_lock);
fb5f0bc8
BB
1838
1839 return (empty);
1840}
1841
3d6da72d
IH
1842/*
1843 * Returns B_TRUE if vdev determines offset needs to be resilvered.
1844 */
1845boolean_t
1846vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
1847{
1848 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1849
1850 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
1851 vd->vdev_ops->vdev_op_leaf)
1852 return (B_TRUE);
1853
1854 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
1855}
1856
5d1f7fb6
GW
1857/*
1858 * Returns the lowest txg in the DTL range.
1859 */
1860static uint64_t
1861vdev_dtl_min(vdev_t *vd)
1862{
93cf2076 1863 range_seg_t *rs;
5d1f7fb6
GW
1864
1865 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 1866 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
1867 ASSERT0(vd->vdev_children);
1868
93cf2076
GW
1869 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1870 return (rs->rs_start - 1);
5d1f7fb6
GW
1871}
1872
1873/*
1874 * Returns the highest txg in the DTL.
1875 */
1876static uint64_t
1877vdev_dtl_max(vdev_t *vd)
1878{
93cf2076 1879 range_seg_t *rs;
5d1f7fb6
GW
1880
1881 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 1882 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
1883 ASSERT0(vd->vdev_children);
1884
93cf2076
GW
1885 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1886 return (rs->rs_end);
5d1f7fb6
GW
1887}
1888
1889/*
1890 * Determine if a resilvering vdev should remove any DTL entries from
1891 * its range. If the vdev was resilvering for the entire duration of the
1892 * scan then it should excise that range from its DTLs. Otherwise, this
1893 * vdev is considered partially resilvered and should leave its DTL
1894 * entries intact. The comment in vdev_dtl_reassess() describes how we
1895 * excise the DTLs.
1896 */
1897static boolean_t
1898vdev_dtl_should_excise(vdev_t *vd)
1899{
1900 spa_t *spa = vd->vdev_spa;
1901 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1902
1903 ASSERT0(scn->scn_phys.scn_errors);
1904 ASSERT0(vd->vdev_children);
1905
335b251a
MA
1906 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1907 return (B_FALSE);
1908
5d1f7fb6 1909 if (vd->vdev_resilver_txg == 0 ||
93cf2076 1910 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
5d1f7fb6
GW
1911 return (B_TRUE);
1912
1913 /*
1914 * When a resilver is initiated the scan will assign the scn_max_txg
1915 * value to the highest txg value that exists in all DTLs. If this
1916 * device's max DTL is not part of this scan (i.e. it is not in
1917 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1918 * for excision.
1919 */
1920 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1921 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1922 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1923 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1924 return (B_TRUE);
1925 }
1926 return (B_FALSE);
1927}
1928
34dc7c2f
BB
1929/*
1930 * Reassess DTLs after a config change or scrub completion.
1931 */
1932void
1933vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1934{
1935 spa_t *spa = vd->vdev_spa;
fb5f0bc8 1936 avl_tree_t reftree;
d6320ddb 1937 int c, t, minref;
34dc7c2f 1938
fb5f0bc8 1939 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1940
d6320ddb 1941 for (c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
1942 vdev_dtl_reassess(vd->vdev_child[c], txg,
1943 scrub_txg, scrub_done);
1944
428870ff 1945 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
fb5f0bc8
BB
1946 return;
1947
1948 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
1949 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1950
34dc7c2f 1951 mutex_enter(&vd->vdev_dtl_lock);
5d1f7fb6
GW
1952
1953 /*
1954 * If we've completed a scan cleanly then determine
1955 * if this vdev should remove any DTLs. We only want to
1956 * excise regions on vdevs that were available during
1957 * the entire duration of this scan.
1958 */
b128c09f 1959 if (scrub_txg != 0 &&
428870ff 1960 (spa->spa_scrub_started ||
5d1f7fb6
GW
1961 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1962 vdev_dtl_should_excise(vd)) {
b128c09f
BB
1963 /*
1964 * We completed a scrub up to scrub_txg. If we
1965 * did it without rebooting, then the scrub dtl
1966 * will be valid, so excise the old region and
1967 * fold in the scrub dtl. Otherwise, leave the
1968 * dtl as-is if there was an error.
fb5f0bc8
BB
1969 *
1970 * There's little trick here: to excise the beginning
1971 * of the DTL_MISSING map, we put it into a reference
1972 * tree and then add a segment with refcnt -1 that
1973 * covers the range [0, scrub_txg). This means
1974 * that each txg in that range has refcnt -1 or 0.
1975 * We then add DTL_SCRUB with a refcnt of 2, so that
1976 * entries in the range [0, scrub_txg) will have a
1977 * positive refcnt -- either 1 or 2. We then convert
1978 * the reference tree into the new DTL_MISSING map.
b128c09f 1979 */
93cf2076
GW
1980 space_reftree_create(&reftree);
1981 space_reftree_add_map(&reftree,
1982 vd->vdev_dtl[DTL_MISSING], 1);
1983 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1984 space_reftree_add_map(&reftree,
1985 vd->vdev_dtl[DTL_SCRUB], 2);
1986 space_reftree_generate_map(&reftree,
1987 vd->vdev_dtl[DTL_MISSING], 1);
1988 space_reftree_destroy(&reftree);
34dc7c2f 1989 }
93cf2076
GW
1990 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1991 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1992 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 1993 if (scrub_done)
93cf2076
GW
1994 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1995 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
fb5f0bc8 1996 if (!vdev_readable(vd))
93cf2076 1997 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
fb5f0bc8 1998 else
93cf2076
GW
1999 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2000 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
5d1f7fb6
GW
2001
2002 /*
2003 * If the vdev was resilvering and no longer has any
d14fa5db 2004 * DTLs then reset its resilvering flag and dirty
2005 * the top level so that we persist the change.
5d1f7fb6
GW
2006 */
2007 if (vd->vdev_resilver_txg != 0 &&
93cf2076 2008 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
d14fa5db 2009 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
5d1f7fb6 2010 vd->vdev_resilver_txg = 0;
d14fa5db 2011 vdev_config_dirty(vd->vdev_top);
2012 }
5d1f7fb6 2013
34dc7c2f 2014 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 2015
34dc7c2f
BB
2016 if (txg != 0)
2017 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2018 return;
2019 }
2020
34dc7c2f 2021 mutex_enter(&vd->vdev_dtl_lock);
d6320ddb 2022 for (t = 0; t < DTL_TYPES; t++) {
93cf2076
GW
2023 int c;
2024
428870ff
BB
2025 /* account for child's outage in parent's missing map */
2026 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
2027 if (t == DTL_SCRUB)
2028 continue; /* leaf vdevs only */
2029 if (t == DTL_PARTIAL)
2030 minref = 1; /* i.e. non-zero */
2031 else if (vd->vdev_nparity != 0)
2032 minref = vd->vdev_nparity + 1; /* RAID-Z */
2033 else
2034 minref = vd->vdev_children; /* any kind of mirror */
93cf2076 2035 space_reftree_create(&reftree);
d6320ddb 2036 for (c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
2037 vdev_t *cvd = vd->vdev_child[c];
2038 mutex_enter(&cvd->vdev_dtl_lock);
93cf2076 2039 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
2040 mutex_exit(&cvd->vdev_dtl_lock);
2041 }
93cf2076
GW
2042 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2043 space_reftree_destroy(&reftree);
34dc7c2f 2044 }
fb5f0bc8 2045 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2046}
2047
93cf2076 2048int
34dc7c2f
BB
2049vdev_dtl_load(vdev_t *vd)
2050{
2051 spa_t *spa = vd->vdev_spa;
34dc7c2f 2052 objset_t *mos = spa->spa_meta_objset;
93cf2076
GW
2053 int error = 0;
2054 int c;
34dc7c2f 2055
93cf2076
GW
2056 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2057 ASSERT(!vd->vdev_ishole);
34dc7c2f 2058
93cf2076
GW
2059 error = space_map_open(&vd->vdev_dtl_sm, mos,
2060 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2061 if (error)
2062 return (error);
2063 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f 2064
93cf2076 2065 mutex_enter(&vd->vdev_dtl_lock);
428870ff 2066
93cf2076
GW
2067 /*
2068 * Now that we've opened the space_map we need to update
2069 * the in-core DTL.
2070 */
2071 space_map_update(vd->vdev_dtl_sm);
34dc7c2f 2072
93cf2076
GW
2073 error = space_map_load(vd->vdev_dtl_sm,
2074 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2075 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f 2076
93cf2076
GW
2077 return (error);
2078 }
2079
2080 for (c = 0; c < vd->vdev_children; c++) {
2081 error = vdev_dtl_load(vd->vdev_child[c]);
2082 if (error != 0)
2083 break;
2084 }
34dc7c2f
BB
2085
2086 return (error);
2087}
2088
e0ab3ab5
JS
2089void
2090vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2091{
2092 spa_t *spa = vd->vdev_spa;
2093
2094 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2095 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2096 zapobj, tx));
2097}
2098
2099uint64_t
2100vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2101{
2102 spa_t *spa = vd->vdev_spa;
2103 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2104 DMU_OT_NONE, 0, tx);
2105
2106 ASSERT(zap != 0);
2107 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2108 zap, tx));
2109
2110 return (zap);
2111}
2112
2113void
2114vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2115{
2116 uint64_t i;
2117
2118 if (vd->vdev_ops != &vdev_hole_ops &&
2119 vd->vdev_ops != &vdev_missing_ops &&
2120 vd->vdev_ops != &vdev_root_ops &&
2121 !vd->vdev_top->vdev_removing) {
2122 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2123 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2124 }
2125 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2126 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2127 }
2128 }
2129 for (i = 0; i < vd->vdev_children; i++) {
2130 vdev_construct_zaps(vd->vdev_child[i], tx);
2131 }
2132}
2133
34dc7c2f
BB
2134void
2135vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2136{
2137 spa_t *spa = vd->vdev_spa;
93cf2076 2138 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
34dc7c2f 2139 objset_t *mos = spa->spa_meta_objset;
93cf2076
GW
2140 range_tree_t *rtsync;
2141 kmutex_t rtlock;
34dc7c2f 2142 dmu_tx_t *tx;
93cf2076 2143 uint64_t object = space_map_object(vd->vdev_dtl_sm);
34dc7c2f 2144
428870ff 2145 ASSERT(!vd->vdev_ishole);
93cf2076 2146 ASSERT(vd->vdev_ops->vdev_op_leaf);
428870ff 2147
34dc7c2f
BB
2148 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2149
93cf2076
GW
2150 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2151 mutex_enter(&vd->vdev_dtl_lock);
2152 space_map_free(vd->vdev_dtl_sm, tx);
2153 space_map_close(vd->vdev_dtl_sm);
2154 vd->vdev_dtl_sm = NULL;
2155 mutex_exit(&vd->vdev_dtl_lock);
e0ab3ab5
JS
2156
2157 /*
2158 * We only destroy the leaf ZAP for detached leaves or for
2159 * removed log devices. Removed data devices handle leaf ZAP
2160 * cleanup later, once cancellation is no longer possible.
2161 */
2162 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2163 vd->vdev_top->vdev_islog)) {
2164 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2165 vd->vdev_leaf_zap = 0;
2166 }
2167
34dc7c2f 2168 dmu_tx_commit(tx);
34dc7c2f
BB
2169 return;
2170 }
2171
93cf2076
GW
2172 if (vd->vdev_dtl_sm == NULL) {
2173 uint64_t new_object;
2174
2175 new_object = space_map_alloc(mos, tx);
2176 VERIFY3U(new_object, !=, 0);
2177
2178 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2179 0, -1ULL, 0, &vd->vdev_dtl_lock));
2180 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f
BB
2181 }
2182
93cf2076 2183 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 2184
93cf2076 2185 rtsync = range_tree_create(NULL, NULL, &rtlock);
34dc7c2f 2186
93cf2076 2187 mutex_enter(&rtlock);
34dc7c2f
BB
2188
2189 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 2190 range_tree_walk(rt, range_tree_add, rtsync);
34dc7c2f
BB
2191 mutex_exit(&vd->vdev_dtl_lock);
2192
93cf2076
GW
2193 space_map_truncate(vd->vdev_dtl_sm, tx);
2194 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2195 range_tree_vacate(rtsync, NULL, NULL);
34dc7c2f 2196
93cf2076 2197 range_tree_destroy(rtsync);
34dc7c2f 2198
93cf2076
GW
2199 mutex_exit(&rtlock);
2200 mutex_destroy(&rtlock);
34dc7c2f 2201
93cf2076
GW
2202 /*
2203 * If the object for the space map has changed then dirty
2204 * the top level so that we update the config.
2205 */
2206 if (object != space_map_object(vd->vdev_dtl_sm)) {
2207 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2208 "new object %llu", txg, spa_name(spa), object,
2209 space_map_object(vd->vdev_dtl_sm));
2210 vdev_config_dirty(vd->vdev_top);
2211 }
34dc7c2f
BB
2212
2213 dmu_tx_commit(tx);
93cf2076
GW
2214
2215 mutex_enter(&vd->vdev_dtl_lock);
2216 space_map_update(vd->vdev_dtl_sm);
2217 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2218}
2219
fb5f0bc8
BB
2220/*
2221 * Determine whether the specified vdev can be offlined/detached/removed
2222 * without losing data.
2223 */
2224boolean_t
2225vdev_dtl_required(vdev_t *vd)
2226{
2227 spa_t *spa = vd->vdev_spa;
2228 vdev_t *tvd = vd->vdev_top;
2229 uint8_t cant_read = vd->vdev_cant_read;
2230 boolean_t required;
2231
2232 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2233
2234 if (vd == spa->spa_root_vdev || vd == tvd)
2235 return (B_TRUE);
2236
2237 /*
2238 * Temporarily mark the device as unreadable, and then determine
2239 * whether this results in any DTL outages in the top-level vdev.
2240 * If not, we can safely offline/detach/remove the device.
2241 */
2242 vd->vdev_cant_read = B_TRUE;
2243 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2244 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2245 vd->vdev_cant_read = cant_read;
2246 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2247
572e2857
BB
2248 if (!required && zio_injection_enabled)
2249 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2250
fb5f0bc8
BB
2251 return (required);
2252}
2253
b128c09f
BB
2254/*
2255 * Determine if resilver is needed, and if so the txg range.
2256 */
2257boolean_t
2258vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2259{
2260 boolean_t needed = B_FALSE;
2261 uint64_t thismin = UINT64_MAX;
2262 uint64_t thismax = 0;
d6320ddb 2263 int c;
b128c09f
BB
2264
2265 if (vd->vdev_children == 0) {
2266 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 2267 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
fb5f0bc8 2268 vdev_writeable(vd)) {
b128c09f 2269
5d1f7fb6
GW
2270 thismin = vdev_dtl_min(vd);
2271 thismax = vdev_dtl_max(vd);
b128c09f
BB
2272 needed = B_TRUE;
2273 }
2274 mutex_exit(&vd->vdev_dtl_lock);
2275 } else {
d6320ddb 2276 for (c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
2277 vdev_t *cvd = vd->vdev_child[c];
2278 uint64_t cmin, cmax;
2279
2280 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2281 thismin = MIN(thismin, cmin);
2282 thismax = MAX(thismax, cmax);
2283 needed = B_TRUE;
2284 }
2285 }
2286 }
2287
2288 if (needed && minp) {
2289 *minp = thismin;
2290 *maxp = thismax;
2291 }
2292 return (needed);
2293}
2294
34dc7c2f
BB
2295void
2296vdev_load(vdev_t *vd)
2297{
d6320ddb
BB
2298 int c;
2299
34dc7c2f
BB
2300 /*
2301 * Recursively load all children.
2302 */
d6320ddb 2303 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
2304 vdev_load(vd->vdev_child[c]);
2305
2306 /*
2307 * If this is a top-level vdev, initialize its metaslabs.
2308 */
428870ff 2309 if (vd == vd->vdev_top && !vd->vdev_ishole &&
34dc7c2f
BB
2310 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2311 vdev_metaslab_init(vd, 0) != 0))
2312 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2313 VDEV_AUX_CORRUPT_DATA);
34dc7c2f
BB
2314 /*
2315 * If this is a leaf vdev, load its DTL.
2316 */
2317 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2318 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2319 VDEV_AUX_CORRUPT_DATA);
2320}
2321
2322/*
2323 * The special vdev case is used for hot spares and l2cache devices. Its
2324 * sole purpose it to set the vdev state for the associated vdev. To do this,
2325 * we make sure that we can open the underlying device, then try to read the
2326 * label, and make sure that the label is sane and that it hasn't been
2327 * repurposed to another pool.
2328 */
2329int
2330vdev_validate_aux(vdev_t *vd)
2331{
2332 nvlist_t *label;
2333 uint64_t guid, version;
2334 uint64_t state;
2335
b128c09f
BB
2336 if (!vdev_readable(vd))
2337 return (0);
2338
3bc7e0fb 2339 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
34dc7c2f
BB
2340 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2341 VDEV_AUX_CORRUPT_DATA);
2342 return (-1);
2343 }
2344
2345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
9ae529ec 2346 !SPA_VERSION_IS_SUPPORTED(version) ||
34dc7c2f
BB
2347 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2348 guid != vd->vdev_guid ||
2349 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2350 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2351 VDEV_AUX_CORRUPT_DATA);
2352 nvlist_free(label);
2353 return (-1);
2354 }
2355
2356 /*
2357 * We don't actually check the pool state here. If it's in fact in
2358 * use by another pool, we update this fact on the fly when requested.
2359 */
2360 nvlist_free(label);
2361 return (0);
2362}
2363
428870ff
BB
2364void
2365vdev_remove(vdev_t *vd, uint64_t txg)
2366{
2367 spa_t *spa = vd->vdev_spa;
2368 objset_t *mos = spa->spa_meta_objset;
2369 dmu_tx_t *tx;
f3a7f661 2370 int m, i;
428870ff
BB
2371
2372 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
e0ab3ab5
JS
2373 ASSERT(vd == vd->vdev_top);
2374 ASSERT3U(txg, ==, spa_syncing_txg(spa));
428870ff 2375
428870ff 2376 if (vd->vdev_ms != NULL) {
f3a7f661
GW
2377 metaslab_group_t *mg = vd->vdev_mg;
2378
2379 metaslab_group_histogram_verify(mg);
2380 metaslab_class_histogram_verify(mg->mg_class);
2381
d6320ddb 2382 for (m = 0; m < vd->vdev_ms_count; m++) {
428870ff
BB
2383 metaslab_t *msp = vd->vdev_ms[m];
2384
93cf2076 2385 if (msp == NULL || msp->ms_sm == NULL)
428870ff
BB
2386 continue;
2387
93cf2076 2388 mutex_enter(&msp->ms_lock);
f3a7f661
GW
2389 /*
2390 * If the metaslab was not loaded when the vdev
2391 * was removed then the histogram accounting may
2392 * not be accurate. Update the histogram information
2393 * here so that we ensure that the metaslab group
2394 * and metaslab class are up-to-date.
2395 */
2396 metaslab_group_histogram_remove(mg, msp);
2397
93cf2076
GW
2398 VERIFY0(space_map_allocated(msp->ms_sm));
2399 space_map_free(msp->ms_sm, tx);
2400 space_map_close(msp->ms_sm);
2401 msp->ms_sm = NULL;
2402 mutex_exit(&msp->ms_lock);
428870ff 2403 }
f3a7f661
GW
2404
2405 metaslab_group_histogram_verify(mg);
2406 metaslab_class_histogram_verify(mg->mg_class);
2407 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2408 ASSERT0(mg->mg_histogram[i]);
2409
428870ff
BB
2410 }
2411
2412 if (vd->vdev_ms_array) {
2413 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2414 vd->vdev_ms_array = 0;
428870ff 2415 }
e0ab3ab5
JS
2416
2417 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2418 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2419 vd->vdev_top_zap = 0;
2420 }
428870ff
BB
2421 dmu_tx_commit(tx);
2422}
2423
34dc7c2f
BB
2424void
2425vdev_sync_done(vdev_t *vd, uint64_t txg)
2426{
2427 metaslab_t *msp;
428870ff
BB
2428 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2429
2430 ASSERT(!vd->vdev_ishole);
34dc7c2f 2431
c65aa5b2 2432 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
34dc7c2f 2433 metaslab_sync_done(msp, txg);
428870ff
BB
2434
2435 if (reassess)
2436 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
2437}
2438
2439void
2440vdev_sync(vdev_t *vd, uint64_t txg)
2441{
2442 spa_t *spa = vd->vdev_spa;
2443 vdev_t *lvd;
2444 metaslab_t *msp;
2445 dmu_tx_t *tx;
2446
428870ff
BB
2447 ASSERT(!vd->vdev_ishole);
2448
34dc7c2f
BB
2449 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2450 ASSERT(vd == vd->vdev_top);
2451 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2452 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2453 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2454 ASSERT(vd->vdev_ms_array != 0);
2455 vdev_config_dirty(vd);
2456 dmu_tx_commit(tx);
2457 }
2458
428870ff
BB
2459 /*
2460 * Remove the metadata associated with this vdev once it's empty.
2461 */
2462 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2463 vdev_remove(vd, txg);
2464
34dc7c2f
BB
2465 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2466 metaslab_sync(msp, txg);
2467 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2468 }
2469
2470 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2471 vdev_dtl_sync(lvd, txg);
2472
2473 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2474}
2475
2476uint64_t
2477vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2478{
2479 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2480}
2481
34dc7c2f
BB
2482/*
2483 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2484 * not be opened, and no I/O is attempted.
2485 */
2486int
428870ff 2487vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2488{
572e2857 2489 vdev_t *vd, *tvd;
34dc7c2f 2490
428870ff 2491 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2492
b128c09f
BB
2493 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2494 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2495
34dc7c2f 2496 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2497 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2498
572e2857
BB
2499 tvd = vd->vdev_top;
2500
4a283c7f
TH
2501 /*
2502 * If user did a 'zpool offline -f' then make the fault persist across
2503 * reboots.
2504 */
2505 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
2506 /*
2507 * There are two kinds of forced faults: temporary and
2508 * persistent. Temporary faults go away at pool import, while
2509 * persistent faults stay set. Both types of faults can be
2510 * cleared with a zpool clear.
2511 *
2512 * We tell if a vdev is persistently faulted by looking at the
2513 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
2514 * import then it's a persistent fault. Otherwise, it's
2515 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
2516 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
2517 * tells vdev_config_generate() (which gets run later) to set
2518 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
2519 */
2520 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
2521 vd->vdev_tmpoffline = B_FALSE;
2522 aux = VDEV_AUX_EXTERNAL;
2523 } else {
2524 vd->vdev_tmpoffline = B_TRUE;
2525 }
2526
428870ff
BB
2527 /*
2528 * We don't directly use the aux state here, but if we do a
2529 * vdev_reopen(), we need this value to be present to remember why we
2530 * were faulted.
2531 */
2532 vd->vdev_label_aux = aux;
2533
34dc7c2f
BB
2534 /*
2535 * Faulted state takes precedence over degraded.
2536 */
428870ff 2537 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
2538 vd->vdev_faulted = 1ULL;
2539 vd->vdev_degraded = 0ULL;
428870ff 2540 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
2541
2542 /*
428870ff
BB
2543 * If this device has the only valid copy of the data, then
2544 * back off and simply mark the vdev as degraded instead.
34dc7c2f 2545 */
572e2857 2546 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
2547 vd->vdev_degraded = 1ULL;
2548 vd->vdev_faulted = 0ULL;
2549
2550 /*
2551 * If we reopen the device and it's not dead, only then do we
2552 * mark it degraded.
2553 */
572e2857 2554 vdev_reopen(tvd);
34dc7c2f 2555
428870ff
BB
2556 if (vdev_readable(vd))
2557 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
2558 }
2559
b128c09f 2560 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2561}
2562
2563/*
2564 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2565 * user that something is wrong. The vdev continues to operate as normal as far
2566 * as I/O is concerned.
2567 */
2568int
428870ff 2569vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 2570{
b128c09f 2571 vdev_t *vd;
34dc7c2f 2572
428870ff 2573 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2574
b128c09f
BB
2575 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2576 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 2577
34dc7c2f 2578 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2579 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
2580
2581 /*
2582 * If the vdev is already faulted, then don't do anything.
2583 */
b128c09f
BB
2584 if (vd->vdev_faulted || vd->vdev_degraded)
2585 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
2586
2587 vd->vdev_degraded = 1ULL;
2588 if (!vdev_is_dead(vd))
2589 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 2590 aux);
34dc7c2f 2591
b128c09f 2592 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2593}
2594
2595/*
d3cc8b15
WA
2596 * Online the given vdev.
2597 *
2598 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2599 * spare device should be detached when the device finishes resilvering.
2600 * Second, the online should be treated like a 'test' online case, so no FMA
2601 * events are generated if the device fails to open.
34dc7c2f
BB
2602 */
2603int
b128c09f 2604vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 2605{
9babb374 2606 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
153b2285
YP
2607 boolean_t wasoffline;
2608 vdev_state_t oldstate;
34dc7c2f 2609
428870ff 2610 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 2611
b128c09f
BB
2612 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2613 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2614
2615 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2616 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2617
153b2285
YP
2618 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2619 oldstate = vd->vdev_state;
fb390aaf 2620
9babb374 2621 tvd = vd->vdev_top;
34dc7c2f
BB
2622 vd->vdev_offline = B_FALSE;
2623 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
2624 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2625 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
2626
2627 /* XXX - L2ARC 1.0 does not support expansion */
2628 if (!vd->vdev_aux) {
2629 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2630 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2631 }
2632
2633 vdev_reopen(tvd);
34dc7c2f
BB
2634 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2635
9babb374
BB
2636 if (!vd->vdev_aux) {
2637 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2638 pvd->vdev_expanding = B_FALSE;
2639 }
2640
34dc7c2f
BB
2641 if (newstate)
2642 *newstate = vd->vdev_state;
2643 if ((flags & ZFS_ONLINE_UNSPARE) &&
2644 !vdev_is_dead(vd) && vd->vdev_parent &&
2645 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2646 vd->vdev_parent->vdev_child[0] == vd)
2647 vd->vdev_unspare = B_TRUE;
2648
9babb374
BB
2649 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2650
2651 /* XXX - L2ARC 1.0 does not support expansion */
2652 if (vd->vdev_aux)
2653 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2654 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2655 }
fb390aaf 2656
153b2285
YP
2657 if (wasoffline ||
2658 (oldstate < VDEV_STATE_DEGRADED &&
2659 vd->vdev_state >= VDEV_STATE_DEGRADED))
fb390aaf
HR
2660 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2661
fb5f0bc8 2662 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
2663}
2664
428870ff
BB
2665static int
2666vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 2667{
9babb374 2668 vdev_t *vd, *tvd;
428870ff
BB
2669 int error = 0;
2670 uint64_t generation;
2671 metaslab_group_t *mg;
34dc7c2f 2672
428870ff
BB
2673top:
2674 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 2675
b128c09f
BB
2676 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2677 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
2678
2679 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 2680 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 2681
9babb374 2682 tvd = vd->vdev_top;
428870ff
BB
2683 mg = tvd->vdev_mg;
2684 generation = spa->spa_config_generation + 1;
9babb374 2685
34dc7c2f
BB
2686 /*
2687 * If the device isn't already offline, try to offline it.
2688 */
2689 if (!vd->vdev_offline) {
2690 /*
fb5f0bc8 2691 * If this device has the only valid copy of some data,
9babb374
BB
2692 * don't allow it to be offlined. Log devices are always
2693 * expendable.
34dc7c2f 2694 */
9babb374
BB
2695 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2696 vdev_dtl_required(vd))
b128c09f 2697 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2698
428870ff
BB
2699 /*
2700 * If the top-level is a slog and it has had allocations
2701 * then proceed. We check that the vdev's metaslab group
2702 * is not NULL since it's possible that we may have just
2703 * added this vdev but not yet initialized its metaslabs.
2704 */
2705 if (tvd->vdev_islog && mg != NULL) {
2706 /*
2707 * Prevent any future allocations.
2708 */
2709 metaslab_group_passivate(mg);
2710 (void) spa_vdev_state_exit(spa, vd, 0);
2711
2712 error = spa_offline_log(spa);
2713
2714 spa_vdev_state_enter(spa, SCL_ALLOC);
2715
2716 /*
2717 * Check to see if the config has changed.
2718 */
2719 if (error || generation != spa->spa_config_generation) {
2720 metaslab_group_activate(mg);
2721 if (error)
2722 return (spa_vdev_state_exit(spa,
2723 vd, error));
2724 (void) spa_vdev_state_exit(spa, vd, 0);
2725 goto top;
2726 }
c99c9001 2727 ASSERT0(tvd->vdev_stat.vs_alloc);
428870ff
BB
2728 }
2729
34dc7c2f
BB
2730 /*
2731 * Offline this device and reopen its top-level vdev.
9babb374
BB
2732 * If the top-level vdev is a log device then just offline
2733 * it. Otherwise, if this action results in the top-level
2734 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
2735 */
2736 vd->vdev_offline = B_TRUE;
9babb374
BB
2737 vdev_reopen(tvd);
2738
2739 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2740 vdev_is_dead(tvd)) {
34dc7c2f 2741 vd->vdev_offline = B_FALSE;
9babb374 2742 vdev_reopen(tvd);
b128c09f 2743 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 2744 }
428870ff
BB
2745
2746 /*
2747 * Add the device back into the metaslab rotor so that
2748 * once we online the device it's open for business.
2749 */
2750 if (tvd->vdev_islog && mg != NULL)
2751 metaslab_group_activate(mg);
34dc7c2f
BB
2752 }
2753
b128c09f 2754 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 2755
428870ff
BB
2756 return (spa_vdev_state_exit(spa, vd, 0));
2757}
9babb374 2758
428870ff
BB
2759int
2760vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2761{
2762 int error;
9babb374 2763
428870ff
BB
2764 mutex_enter(&spa->spa_vdev_top_lock);
2765 error = vdev_offline_locked(spa, guid, flags);
2766 mutex_exit(&spa->spa_vdev_top_lock);
2767
2768 return (error);
34dc7c2f
BB
2769}
2770
2771/*
2772 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2773 * vdev_offline(), we assume the spa config is locked. We also clear all
2774 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
2775 */
2776void
b128c09f 2777vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 2778{
b128c09f 2779 vdev_t *rvd = spa->spa_root_vdev;
d6320ddb 2780 int c;
b128c09f
BB
2781
2782 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
2783
2784 if (vd == NULL)
b128c09f 2785 vd = rvd;
34dc7c2f
BB
2786
2787 vd->vdev_stat.vs_read_errors = 0;
2788 vd->vdev_stat.vs_write_errors = 0;
2789 vd->vdev_stat.vs_checksum_errors = 0;
34dc7c2f 2790
d6320ddb 2791 for (c = 0; c < vd->vdev_children; c++)
b128c09f 2792 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f
BB
2793
2794 /*
b128c09f
BB
2795 * If we're in the FAULTED state or have experienced failed I/O, then
2796 * clear the persistent state and attempt to reopen the device. We
2797 * also mark the vdev config dirty, so that the new faulted state is
2798 * written out to disk.
34dc7c2f 2799 */
b128c09f
BB
2800 if (vd->vdev_faulted || vd->vdev_degraded ||
2801 !vdev_readable(vd) || !vdev_writeable(vd)) {
428870ff 2802 /*
4e33ba4c 2803 * When reopening in response to a clear event, it may be due to
428870ff
BB
2804 * a fmadm repair request. In this case, if the device is
2805 * still broken, we want to still post the ereport again.
2806 */
2807 vd->vdev_forcefault = B_TRUE;
2808
572e2857 2809 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
2810 vd->vdev_cant_read = B_FALSE;
2811 vd->vdev_cant_write = B_FALSE;
4a283c7f 2812 vd->vdev_stat.vs_aux = 0;
b128c09f 2813
572e2857 2814 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 2815
428870ff
BB
2816 vd->vdev_forcefault = B_FALSE;
2817
572e2857 2818 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
2819 vdev_state_dirty(vd->vdev_top);
2820
2821 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
34dc7c2f
BB
2822 spa_async_request(spa, SPA_ASYNC_RESILVER);
2823
fb390aaf 2824 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
34dc7c2f 2825 }
428870ff
BB
2826
2827 /*
2828 * When clearing a FMA-diagnosed fault, we always want to
2829 * unspare the device, as we assume that the original spare was
2830 * done in response to the FMA fault.
2831 */
2832 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2833 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2834 vd->vdev_parent->vdev_child[0] == vd)
2835 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
2836}
2837
b128c09f
BB
2838boolean_t
2839vdev_is_dead(vdev_t *vd)
2840{
428870ff
BB
2841 /*
2842 * Holes and missing devices are always considered "dead".
2843 * This simplifies the code since we don't have to check for
2844 * these types of devices in the various code paths.
2845 * Instead we rely on the fact that we skip over dead devices
2846 * before issuing I/O to them.
2847 */
2848 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2849 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
2850}
2851
2852boolean_t
34dc7c2f
BB
2853vdev_readable(vdev_t *vd)
2854{
b128c09f 2855 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
2856}
2857
b128c09f 2858boolean_t
34dc7c2f
BB
2859vdev_writeable(vdev_t *vd)
2860{
b128c09f 2861 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
34dc7c2f
BB
2862}
2863
b128c09f
BB
2864boolean_t
2865vdev_allocatable(vdev_t *vd)
34dc7c2f 2866{
fb5f0bc8
BB
2867 uint64_t state = vd->vdev_state;
2868
b128c09f 2869 /*
fb5f0bc8 2870 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
2871 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2872 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
2873 * the proper locks. Note that we have to get the vdev state
2874 * in a local variable because although it changes atomically,
2875 * we're asking two separate questions about it.
b128c09f 2876 */
fb5f0bc8 2877 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3dfb57a3
DB
2878 !vd->vdev_cant_write && !vd->vdev_ishole &&
2879 vd->vdev_mg->mg_initialized);
34dc7c2f
BB
2880}
2881
b128c09f
BB
2882boolean_t
2883vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 2884{
b128c09f 2885 ASSERT(zio->io_vd == vd);
34dc7c2f 2886
b128c09f
BB
2887 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2888 return (B_FALSE);
34dc7c2f 2889
b128c09f
BB
2890 if (zio->io_type == ZIO_TYPE_READ)
2891 return (!vd->vdev_cant_read);
34dc7c2f 2892
b128c09f
BB
2893 if (zio->io_type == ZIO_TYPE_WRITE)
2894 return (!vd->vdev_cant_write);
34dc7c2f 2895
b128c09f 2896 return (B_TRUE);
34dc7c2f
BB
2897}
2898
193a37cb
TH
2899static void
2900vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
34dc7c2f 2901{
193a37cb
TH
2902 int t;
2903 for (t = 0; t < ZIO_TYPES; t++) {
2904 vs->vs_ops[t] += cvs->vs_ops[t];
2905 vs->vs_bytes[t] += cvs->vs_bytes[t];
2906 }
34dc7c2f 2907
193a37cb
TH
2908 cvs->vs_scan_removing = cvd->vdev_removing;
2909}
f3a7f661 2910
193a37cb
TH
2911/*
2912 * Get extended stats
2913 */
2914static void
2915vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2916{
2917 int t, b;
2918 for (t = 0; t < ZIO_TYPES; t++) {
7e945072 2919 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
193a37cb 2920 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
7e945072
TH
2921
2922 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
193a37cb
TH
2923 vsx->vsx_total_histo[t][b] +=
2924 cvsx->vsx_total_histo[t][b];
2925 }
f38dfec3 2926 }
34dc7c2f 2927
193a37cb 2928 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
7e945072 2929 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
193a37cb
TH
2930 vsx->vsx_queue_histo[t][b] +=
2931 cvsx->vsx_queue_histo[t][b];
2932 }
2933 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2934 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
7e945072
TH
2935
2936 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2937 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2938
2939 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2940 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
193a37cb 2941 }
7e945072 2942
193a37cb
TH
2943}
2944
2945/*
2946 * Get statistics for the given vdev.
2947 */
2948static void
2949vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2950{
2951 int c, t;
34dc7c2f
BB
2952 /*
2953 * If we're getting stats on the root vdev, aggregate the I/O counts
2954 * over all top-level vdevs (i.e. the direct children of the root).
2955 */
193a37cb
TH
2956 if (!vd->vdev_ops->vdev_op_leaf) {
2957 if (vs) {
2958 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2959 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2960 }
2961 if (vsx)
2962 memset(vsx, 0, sizeof (*vsx));
2963
2964 for (c = 0; c < vd->vdev_children; c++) {
2965 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 2966 vdev_stat_t *cvs = &cvd->vdev_stat;
193a37cb
TH
2967 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2968
2969 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2970 if (vs)
2971 vdev_get_child_stat(cvd, vs, cvs);
2972 if (vsx)
2973 vdev_get_child_stat_ex(cvd, vsx, cvsx);
34dc7c2f 2974
193a37cb
TH
2975 }
2976 } else {
2977 /*
2978 * We're a leaf. Just copy our ZIO active queue stats in. The
2979 * other leaf stats are updated in vdev_stat_update().
2980 */
2981 if (!vsx)
2982 return;
2983
2984 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2985
2986 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2987 vsx->vsx_active_queue[t] =
2988 vd->vdev_queue.vq_class[t].vqc_active;
2989 vsx->vsx_pend_queue[t] = avl_numnodes(
2990 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
34dc7c2f
BB
2991 }
2992 }
193a37cb
TH
2993}
2994
2995void
2996vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2997{
0f676dc2 2998 vdev_t *tvd = vd->vdev_top;
193a37cb
TH
2999 mutex_enter(&vd->vdev_stat_lock);
3000 if (vs) {
3001 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3002 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3003 vs->vs_state = vd->vdev_state;
3004 vs->vs_rsize = vdev_get_min_asize(vd);
3005 if (vd->vdev_ops->vdev_op_leaf)
3006 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3007 VDEV_LABEL_END_SIZE;
0f676dc2
GM
3008 /*
3009 * Report expandable space on top-level, non-auxillary devices
3010 * only. The expandable space is reported in terms of metaslab
3011 * sized units since that determines how much space the pool
3012 * can expand.
3013 */
3014 if (vd->vdev_aux == NULL && tvd != NULL) {
3015 vs->vs_esize = P2ALIGN(
3016 vd->vdev_max_asize - vd->vdev_asize,
3017 1ULL << tvd->vdev_ms_shift);
3018 }
193a37cb
TH
3019 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
3020 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3021 !vd->vdev_ishole) {
3022 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3023 }
3024 }
3025
3026 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3027 vdev_get_stats_ex_impl(vd, vs, vsx);
f3a7f661 3028 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
3029}
3030
193a37cb
TH
3031void
3032vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3033{
3034 return (vdev_get_stats_ex(vd, vs, NULL));
3035}
3036
34dc7c2f
BB
3037void
3038vdev_clear_stats(vdev_t *vd)
3039{
3040 mutex_enter(&vd->vdev_stat_lock);
3041 vd->vdev_stat.vs_space = 0;
3042 vd->vdev_stat.vs_dspace = 0;
3043 vd->vdev_stat.vs_alloc = 0;
3044 mutex_exit(&vd->vdev_stat_lock);
3045}
3046
428870ff
BB
3047void
3048vdev_scan_stat_init(vdev_t *vd)
3049{
3050 vdev_stat_t *vs = &vd->vdev_stat;
d6320ddb 3051 int c;
428870ff 3052
d6320ddb 3053 for (c = 0; c < vd->vdev_children; c++)
428870ff
BB
3054 vdev_scan_stat_init(vd->vdev_child[c]);
3055
3056 mutex_enter(&vd->vdev_stat_lock);
3057 vs->vs_scan_processed = 0;
3058 mutex_exit(&vd->vdev_stat_lock);
3059}
3060
34dc7c2f 3061void
b128c09f 3062vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 3063{
fb5f0bc8
BB
3064 spa_t *spa = zio->io_spa;
3065 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 3066 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
3067 vdev_t *pvd;
3068 uint64_t txg = zio->io_txg;
3069 vdev_stat_t *vs = &vd->vdev_stat;
193a37cb 3070 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
34dc7c2f
BB
3071 zio_type_t type = zio->io_type;
3072 int flags = zio->io_flags;
3073
b128c09f
BB
3074 /*
3075 * If this i/o is a gang leader, it didn't do any actual work.
3076 */
3077 if (zio->io_gang_tree)
3078 return;
3079
34dc7c2f 3080 if (zio->io_error == 0) {
b128c09f
BB
3081 /*
3082 * If this is a root i/o, don't count it -- we've already
3083 * counted the top-level vdevs, and vdev_get_stats() will
3084 * aggregate them when asked. This reduces contention on
3085 * the root vdev_stat_lock and implicitly handles blocks
3086 * that compress away to holes, for which there is no i/o.
3087 * (Holes never create vdev children, so all the counters
3088 * remain zero, which is what we want.)
3089 *
3090 * Note: this only applies to successful i/o (io_error == 0)
3091 * because unlike i/o counts, errors are not additive.
3092 * When reading a ditto block, for example, failure of
3093 * one top-level vdev does not imply a root-level error.
3094 */
3095 if (vd == rvd)
3096 return;
3097
3098 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
3099
3100 if (flags & ZIO_FLAG_IO_BYPASS)
3101 return;
3102
3103 mutex_enter(&vd->vdev_stat_lock);
3104
b128c09f 3105 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 3106 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
3107 dsl_scan_phys_t *scn_phys =
3108 &spa->spa_dsl_pool->dp_scan->scn_phys;
3109 uint64_t *processed = &scn_phys->scn_processed;
3110
3111 /* XXX cleanup? */
3112 if (vd->vdev_ops->vdev_op_leaf)
3113 atomic_add_64(processed, psize);
3114 vs->vs_scan_processed += psize;
3115 }
3116
fb5f0bc8 3117 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 3118 vs->vs_self_healed += psize;
34dc7c2f 3119 }
fb5f0bc8 3120
193a37cb
TH
3121 /*
3122 * The bytes/ops/histograms are recorded at the leaf level and
3123 * aggregated into the higher level vdevs in vdev_get_stats().
3124 */
4eb0db42
TH
3125 if (vd->vdev_ops->vdev_op_leaf &&
3126 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
193a37cb
TH
3127
3128 vs->vs_ops[type]++;
3129 vs->vs_bytes[type] += psize;
3130
7e945072
TH
3131 if (flags & ZIO_FLAG_DELEGATED) {
3132 vsx->vsx_agg_histo[zio->io_priority]
3133 [RQ_HISTO(zio->io_size)]++;
3134 } else {
3135 vsx->vsx_ind_histo[zio->io_priority]
3136 [RQ_HISTO(zio->io_size)]++;
3137 }
3138
193a37cb
TH
3139 if (zio->io_delta && zio->io_delay) {
3140 vsx->vsx_queue_histo[zio->io_priority]
7e945072 3141 [L_HISTO(zio->io_delta - zio->io_delay)]++;
193a37cb 3142 vsx->vsx_disk_histo[type]
7e945072 3143 [L_HISTO(zio->io_delay)]++;
193a37cb 3144 vsx->vsx_total_histo[type]
7e945072 3145 [L_HISTO(zio->io_delta)]++;
193a37cb
TH
3146 }
3147 }
fb5f0bc8
BB
3148
3149 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
3150 return;
3151 }
3152
3153 if (flags & ZIO_FLAG_SPECULATIVE)
3154 return;
3155
9babb374
BB
3156 /*
3157 * If this is an I/O error that is going to be retried, then ignore the
3158 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3159 * hard errors, when in reality they can happen for any number of
3160 * innocuous reasons (bus resets, MPxIO link failure, etc).
3161 */
3162 if (zio->io_error == EIO &&
3163 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3164 return;
3165
428870ff
BB
3166 /*
3167 * Intent logs writes won't propagate their error to the root
3168 * I/O so don't mark these types of failures as pool-level
3169 * errors.
3170 */
3171 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3172 return;
3173
b128c09f 3174 mutex_enter(&vd->vdev_stat_lock);
9babb374 3175 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
3176 if (zio->io_error == ECKSUM)
3177 vs->vs_checksum_errors++;
3178 else
3179 vs->vs_read_errors++;
34dc7c2f 3180 }
9babb374 3181 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
3182 vs->vs_write_errors++;
3183 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 3184
fb5f0bc8
BB
3185 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3186 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 3187 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 3188 spa->spa_claiming)) {
fb5f0bc8 3189 /*
428870ff
BB
3190 * This is either a normal write (not a repair), or it's
3191 * a repair induced by the scrub thread, or it's a repair
3192 * made by zil_claim() during spa_load() in the first txg.
3193 * In the normal case, we commit the DTL change in the same
3194 * txg as the block was born. In the scrub-induced repair
3195 * case, we know that scrubs run in first-pass syncing context,
3196 * so we commit the DTL change in spa_syncing_txg(spa).
3197 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
3198 *
3199 * We currently do not make DTL entries for failed spontaneous
3200 * self-healing writes triggered by normal (non-scrubbing)
3201 * reads, because we have no transactional context in which to
3202 * do so -- and it's not clear that it'd be desirable anyway.
3203 */
3204 if (vd->vdev_ops->vdev_op_leaf) {
3205 uint64_t commit_txg = txg;
572e2857 3206 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
3207 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3208 ASSERT(spa_sync_pass(spa) == 1);
3209 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
3210 commit_txg = spa_syncing_txg(spa);
3211 } else if (spa->spa_claiming) {
3212 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3213 commit_txg = spa_first_txg(spa);
fb5f0bc8 3214 }
428870ff 3215 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 3216 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 3217 return;
fb5f0bc8
BB
3218 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3219 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3220 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 3221 }
fb5f0bc8
BB
3222 if (vd != rvd)
3223 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
3224 }
3225}
3226
34dc7c2f 3227/*
428870ff
BB
3228 * Update the in-core space usage stats for this vdev, its metaslab class,
3229 * and the root vdev.
34dc7c2f
BB
3230 */
3231void
428870ff
BB
3232vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3233 int64_t space_delta)
34dc7c2f
BB
3234{
3235 int64_t dspace_delta = space_delta;
3236 spa_t *spa = vd->vdev_spa;
3237 vdev_t *rvd = spa->spa_root_vdev;
428870ff
BB
3238 metaslab_group_t *mg = vd->vdev_mg;
3239 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
34dc7c2f
BB
3240
3241 ASSERT(vd == vd->vdev_top);
3242
3243 /*
3244 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3245 * factor. We must calculate this here and not at the root vdev
3246 * because the root vdev's psize-to-asize is simply the max of its
3247 * childrens', thus not accurate enough for us.
3248 */
3249 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
9babb374 3250 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
34dc7c2f
BB
3251 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3252 vd->vdev_deflate_ratio;
3253
3254 mutex_enter(&vd->vdev_stat_lock);
34dc7c2f 3255 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 3256 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
3257 vd->vdev_stat.vs_dspace += dspace_delta;
3258 mutex_exit(&vd->vdev_stat_lock);
3259
428870ff 3260 if (mc == spa_normal_class(spa)) {
34dc7c2f 3261 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 3262 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 3263 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
3264 rvd->vdev_stat.vs_dspace += dspace_delta;
3265 mutex_exit(&rvd->vdev_stat_lock);
3266 }
428870ff
BB
3267
3268 if (mc != NULL) {
3269 ASSERT(rvd == vd->vdev_parent);
3270 ASSERT(vd->vdev_ms_count != 0);
3271
3272 metaslab_class_space_update(mc,
3273 alloc_delta, defer_delta, space_delta, dspace_delta);
3274 }
34dc7c2f
BB
3275}
3276
3277/*
3278 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3279 * so that it will be written out next time the vdev configuration is synced.
3280 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3281 */
3282void
3283vdev_config_dirty(vdev_t *vd)
3284{
3285 spa_t *spa = vd->vdev_spa;
3286 vdev_t *rvd = spa->spa_root_vdev;
3287 int c;
3288
572e2857
BB
3289 ASSERT(spa_writeable(spa));
3290
34dc7c2f 3291 /*
9babb374
BB
3292 * If this is an aux vdev (as with l2cache and spare devices), then we
3293 * update the vdev config manually and set the sync flag.
b128c09f
BB
3294 */
3295 if (vd->vdev_aux != NULL) {
3296 spa_aux_vdev_t *sav = vd->vdev_aux;
3297 nvlist_t **aux;
3298 uint_t naux;
3299
3300 for (c = 0; c < sav->sav_count; c++) {
3301 if (sav->sav_vdevs[c] == vd)
3302 break;
3303 }
3304
3305 if (c == sav->sav_count) {
3306 /*
3307 * We're being removed. There's nothing more to do.
3308 */
3309 ASSERT(sav->sav_sync == B_TRUE);
3310 return;
3311 }
3312
3313 sav->sav_sync = B_TRUE;
3314
9babb374
BB
3315 if (nvlist_lookup_nvlist_array(sav->sav_config,
3316 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3317 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3318 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3319 }
b128c09f
BB
3320
3321 ASSERT(c < naux);
3322
3323 /*
3324 * Setting the nvlist in the middle if the array is a little
3325 * sketchy, but it will work.
3326 */
3327 nvlist_free(aux[c]);
428870ff 3328 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
3329
3330 return;
3331 }
3332
3333 /*
3334 * The dirty list is protected by the SCL_CONFIG lock. The caller
3335 * must either hold SCL_CONFIG as writer, or must be the sync thread
3336 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
3337 * so this is sufficient to ensure mutual exclusion.
3338 */
b128c09f
BB
3339 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3340 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3341 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
3342
3343 if (vd == rvd) {
3344 for (c = 0; c < rvd->vdev_children; c++)
3345 vdev_config_dirty(rvd->vdev_child[c]);
3346 } else {
3347 ASSERT(vd == vd->vdev_top);
3348
428870ff
BB
3349 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3350 !vd->vdev_ishole)
b128c09f 3351 list_insert_head(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
3352 }
3353}
3354
3355void
3356vdev_config_clean(vdev_t *vd)
3357{
3358 spa_t *spa = vd->vdev_spa;
3359
b128c09f
BB
3360 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3361 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3362 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 3363
b128c09f
BB
3364 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3365 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
3366}
3367
b128c09f
BB
3368/*
3369 * Mark a top-level vdev's state as dirty, so that the next pass of
3370 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3371 * the state changes from larger config changes because they require
3372 * much less locking, and are often needed for administrative actions.
3373 */
3374void
3375vdev_state_dirty(vdev_t *vd)
3376{
3377 spa_t *spa = vd->vdev_spa;
3378
572e2857 3379 ASSERT(spa_writeable(spa));
b128c09f
BB
3380 ASSERT(vd == vd->vdev_top);
3381
3382 /*
3383 * The state list is protected by the SCL_STATE lock. The caller
3384 * must either hold SCL_STATE as writer, or must be the sync thread
3385 * (which holds SCL_STATE as reader). There's only one sync thread,
3386 * so this is sufficient to ensure mutual exclusion.
3387 */
3388 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3389 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3390 spa_config_held(spa, SCL_STATE, RW_READER)));
3391
428870ff 3392 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
b128c09f
BB
3393 list_insert_head(&spa->spa_state_dirty_list, vd);
3394}
3395
3396void
3397vdev_state_clean(vdev_t *vd)
3398{
3399 spa_t *spa = vd->vdev_spa;
3400
3401 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3402 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3403 spa_config_held(spa, SCL_STATE, RW_READER)));
3404
3405 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3406 list_remove(&spa->spa_state_dirty_list, vd);
3407}
3408
3409/*
3410 * Propagate vdev state up from children to parent.
3411 */
34dc7c2f
BB
3412void
3413vdev_propagate_state(vdev_t *vd)
3414{
fb5f0bc8
BB
3415 spa_t *spa = vd->vdev_spa;
3416 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
3417 int degraded = 0, faulted = 0;
3418 int corrupted = 0;
34dc7c2f 3419 vdev_t *child;
d6320ddb 3420 int c;
34dc7c2f
BB
3421
3422 if (vd->vdev_children > 0) {
d6320ddb 3423 for (c = 0; c < vd->vdev_children; c++) {
34dc7c2f 3424 child = vd->vdev_child[c];
b128c09f 3425
428870ff
BB
3426 /*
3427 * Don't factor holes into the decision.
3428 */
3429 if (child->vdev_ishole)
3430 continue;
3431
b128c09f 3432 if (!vdev_readable(child) ||
fb5f0bc8 3433 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
3434 /*
3435 * Root special: if there is a top-level log
3436 * device, treat the root vdev as if it were
3437 * degraded.
3438 */
3439 if (child->vdev_islog && vd == rvd)
3440 degraded++;
3441 else
3442 faulted++;
3443 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 3444 degraded++;
b128c09f 3445 }
34dc7c2f
BB
3446
3447 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3448 corrupted++;
3449 }
3450
3451 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3452
3453 /*
b128c09f 3454 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
3455 * opened due to corrupted metadata, then propagate the root
3456 * vdev's aux state as 'corrupt' rather than 'insufficient
3457 * replicas'.
3458 */
3459 if (corrupted && vd == rvd &&
3460 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3461 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3462 VDEV_AUX_CORRUPT_DATA);
3463 }
3464
b128c09f 3465 if (vd->vdev_parent)
34dc7c2f
BB
3466 vdev_propagate_state(vd->vdev_parent);
3467}
3468
3469/*
3470 * Set a vdev's state. If this is during an open, we don't update the parent
3471 * state, because we're in the process of opening children depth-first.
3472 * Otherwise, we propagate the change to the parent.
3473 *
3474 * If this routine places a device in a faulted state, an appropriate ereport is
3475 * generated.
3476 */
3477void
3478vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3479{
3480 uint64_t save_state;
b128c09f 3481 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
3482
3483 if (state == vd->vdev_state) {
976246fa
DB
3484 /*
3485 * Since vdev_offline() code path is already in an offline
3486 * state we can miss a statechange event to OFFLINE. Check
3487 * the previous state to catch this condition.
3488 */
3489 if (vd->vdev_ops->vdev_op_leaf &&
3490 (state == VDEV_STATE_OFFLINE) &&
3491 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3492 /* post an offline state change */
3493 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3494 }
34dc7c2f
BB
3495 vd->vdev_stat.vs_aux = aux;
3496 return;
3497 }
3498
3499 save_state = vd->vdev_state;
3500
3501 vd->vdev_state = state;
3502 vd->vdev_stat.vs_aux = aux;
3503
3504 /*
3505 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
3506 * always close the underlying device unless the device has requested
3507 * a delayed close (i.e. we're about to remove or fault the device).
3508 * Otherwise, we keep accessible but invalid devices open forever.
3509 * We don't call vdev_close() itself, because that implies some extra
3510 * checks (offline, etc) that we don't want here. This is limited to
3511 * leaf devices, because otherwise closing the device will affect other
3512 * children.
34dc7c2f 3513 */
428870ff
BB
3514 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3515 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
3516 vd->vdev_ops->vdev_op_close(vd);
3517
3518 if (vd->vdev_removed &&
3519 state == VDEV_STATE_CANT_OPEN &&
3520 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3521 /*
3522 * If the previous state is set to VDEV_STATE_REMOVED, then this
3523 * device was previously marked removed and someone attempted to
3524 * reopen it. If this failed due to a nonexistent device, then
3525 * keep the device in the REMOVED state. We also let this be if
3526 * it is one of our special test online cases, which is only
3527 * attempting to online the device and shouldn't generate an FMA
3528 * fault.
3529 */
3530 vd->vdev_state = VDEV_STATE_REMOVED;
3531 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3532 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
3533 vd->vdev_removed = B_TRUE;
3534 } else if (state == VDEV_STATE_CANT_OPEN) {
3535 /*
572e2857
BB
3536 * If we fail to open a vdev during an import or recovery, we
3537 * mark it as "not available", which signifies that it was
3538 * never there to begin with. Failure to open such a device
3539 * is not considered an error.
34dc7c2f 3540 */
572e2857
BB
3541 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3542 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
3543 vd->vdev_ops->vdev_op_leaf)
3544 vd->vdev_not_present = 1;
3545
3546 /*
3547 * Post the appropriate ereport. If the 'prevstate' field is
3548 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3549 * that this is part of a vdev_reopen(). In this case, we don't
3550 * want to post the ereport if the device was already in the
3551 * CANT_OPEN state beforehand.
3552 *
3553 * If the 'checkremove' flag is set, then this is an attempt to
3554 * online the device in response to an insertion event. If we
3555 * hit this case, then we have detected an insertion event for a
3556 * faulted or offline device that wasn't in the removed state.
3557 * In this scenario, we don't post an ereport because we are
3558 * about to replace the device, or attempt an online with
3559 * vdev_forcefault, which will generate the fault for us.
3560 */
3561 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3562 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 3563 vd != spa->spa_root_vdev) {
34dc7c2f
BB
3564 const char *class;
3565
3566 switch (aux) {
3567 case VDEV_AUX_OPEN_FAILED:
3568 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3569 break;
3570 case VDEV_AUX_CORRUPT_DATA:
3571 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3572 break;
3573 case VDEV_AUX_NO_REPLICAS:
3574 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3575 break;
3576 case VDEV_AUX_BAD_GUID_SUM:
3577 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3578 break;
3579 case VDEV_AUX_TOO_SMALL:
3580 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3581 break;
3582 case VDEV_AUX_BAD_LABEL:
3583 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3584 break;
ff61d1a4 3585 case VDEV_AUX_BAD_ASHIFT:
3586 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3587 break;
34dc7c2f
BB
3588 default:
3589 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3590 }
3591
b128c09f 3592 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
34dc7c2f
BB
3593 }
3594
3595 /* Erase any notion of persistent removed state */
3596 vd->vdev_removed = B_FALSE;
3597 } else {
3598 vd->vdev_removed = B_FALSE;
3599 }
3600
d02ca379
DB
3601 /*
3602 * Notify ZED of any significant state-change on a leaf vdev.
3603 *
d02ca379 3604 */
6078881a
TH
3605 if (vd->vdev_ops->vdev_op_leaf) {
3606 /* preserve original state from a vdev_reopen() */
3607 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3608 (vd->vdev_prevstate != vd->vdev_state) &&
3609 (save_state <= VDEV_STATE_CLOSED))
3610 save_state = vd->vdev_prevstate;
3611
3612 /* filter out state change due to initial vdev_open */
3613 if (save_state > VDEV_STATE_CLOSED)
3614 zfs_post_state_change(spa, vd, save_state);
d02ca379
DB
3615 }
3616
9babb374
BB
3617 if (!isopen && vd->vdev_parent)
3618 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 3619}
b128c09f
BB
3620
3621/*
3622 * Check the vdev configuration to ensure that it's capable of supporting
e550644f 3623 * a root pool. We do not support partial configuration.
b128c09f
BB
3624 */
3625boolean_t
3626vdev_is_bootable(vdev_t *vd)
3627{
b128c09f 3628 if (!vd->vdev_ops->vdev_op_leaf) {
e550644f 3629 const char *vdev_type = vd->vdev_ops->vdev_op_type;
b128c09f 3630
e550644f 3631 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
b128c09f 3632 return (B_FALSE);
b128c09f
BB
3633 }
3634
e550644f 3635 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
3636 if (!vdev_is_bootable(vd->vdev_child[c]))
3637 return (B_FALSE);
3638 }
3639 return (B_TRUE);
3640}
9babb374 3641
428870ff
BB
3642/*
3643 * Load the state from the original vdev tree (ovd) which
3644 * we've retrieved from the MOS config object. If the original
572e2857
BB
3645 * vdev was offline or faulted then we transfer that state to the
3646 * device in the current vdev tree (nvd).
428870ff 3647 */
9babb374 3648void
428870ff 3649vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
9babb374 3650{
d6320ddb 3651 int c;
9babb374 3652
572e2857 3653 ASSERT(nvd->vdev_top->vdev_islog);
1fde1e37
BB
3654 ASSERT(spa_config_held(nvd->vdev_spa,
3655 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
428870ff 3656 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
9babb374 3657
d6320ddb 3658 for (c = 0; c < nvd->vdev_children; c++)
428870ff 3659 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
9babb374 3660
572e2857 3661 if (nvd->vdev_ops->vdev_op_leaf) {
9babb374 3662 /*
572e2857 3663 * Restore the persistent vdev state
9babb374 3664 */
428870ff 3665 nvd->vdev_offline = ovd->vdev_offline;
572e2857
BB
3666 nvd->vdev_faulted = ovd->vdev_faulted;
3667 nvd->vdev_degraded = ovd->vdev_degraded;
3668 nvd->vdev_removed = ovd->vdev_removed;
9babb374
BB
3669 }
3670}
3671
572e2857
BB
3672/*
3673 * Determine if a log device has valid content. If the vdev was
3674 * removed or faulted in the MOS config then we know that
3675 * the content on the log device has already been written to the pool.
3676 */
3677boolean_t
3678vdev_log_state_valid(vdev_t *vd)
3679{
d6320ddb
BB
3680 int c;
3681
572e2857
BB
3682 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3683 !vd->vdev_removed)
3684 return (B_TRUE);
3685
d6320ddb 3686 for (c = 0; c < vd->vdev_children; c++)
572e2857
BB
3687 if (vdev_log_state_valid(vd->vdev_child[c]))
3688 return (B_TRUE);
3689
3690 return (B_FALSE);
3691}
3692
9babb374
BB
3693/*
3694 * Expand a vdev if possible.
3695 */
3696void
3697vdev_expand(vdev_t *vd, uint64_t txg)
3698{
3699 ASSERT(vd->vdev_top == vd);
3700 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3701
3702 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3703 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3704 vdev_config_dirty(vd);
3705 }
3706}
428870ff
BB
3707
3708/*
3709 * Split a vdev.
3710 */
3711void
3712vdev_split(vdev_t *vd)
3713{
3714 vdev_t *cvd, *pvd = vd->vdev_parent;
3715
3716 vdev_remove_child(pvd, vd);
3717 vdev_compact_children(pvd);
3718
3719 cvd = pvd->vdev_child[0];
3720 if (pvd->vdev_children == 1) {
3721 vdev_remove_parent(cvd);
3722 cvd->vdev_splitting = B_TRUE;
3723 }
3724 vdev_propagate_state(cvd);
3725}
c28b2279 3726
cc92e9d0
GW
3727void
3728vdev_deadman(vdev_t *vd)
3729{
3730 int c;
3731
3732 for (c = 0; c < vd->vdev_children; c++) {
3733 vdev_t *cvd = vd->vdev_child[c];
3734
3735 vdev_deadman(cvd);
3736 }
3737
3738 if (vd->vdev_ops->vdev_op_leaf) {
3739 vdev_queue_t *vq = &vd->vdev_queue;
3740
3741 mutex_enter(&vq->vq_lock);
e8b96c60 3742 if (avl_numnodes(&vq->vq_active_tree) > 0) {
cc92e9d0
GW
3743 spa_t *spa = vd->vdev_spa;
3744 zio_t *fio;
3745 uint64_t delta;
3746
3747 /*
3748 * Look at the head of all the pending queues,
3749 * if any I/O has been outstanding for longer than
3750 * the spa_deadman_synctime we log a zevent.
3751 */
e8b96c60 3752 fio = avl_first(&vq->vq_active_tree);
cb682a17
MA
3753 delta = gethrtime() - fio->io_timestamp;
3754 if (delta > spa_deadman_synctime(spa)) {
3755 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3756 "delta %lluns, last io %lluns",
cc92e9d0
GW
3757 fio->io_timestamp, delta,
3758 vq->vq_io_complete_ts);
3759 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3760 spa, vd, fio, 0, 0);
3761 }
3762 }
3763 mutex_exit(&vq->vq_lock);
3764 }
3765}
3766
c28b2279
BB
3767#if defined(_KERNEL) && defined(HAVE_SPL)
3768EXPORT_SYMBOL(vdev_fault);
3769EXPORT_SYMBOL(vdev_degrade);
3770EXPORT_SYMBOL(vdev_online);
3771EXPORT_SYMBOL(vdev_offline);
3772EXPORT_SYMBOL(vdev_clear);
4ea3f864 3773/* BEGIN CSTYLED */
b8bcca18
MA
3774module_param(metaslabs_per_vdev, int, 0644);
3775MODULE_PARM_DESC(metaslabs_per_vdev,
3776 "Divide added vdev into approximately (but no more than) this number "
3777 "of metaslabs");
4ea3f864 3778/* END CSTYLED */
c28b2279 3779#endif