]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_disk.c
cstyle: Allow spaces in all comments
[mirror_zfs.git] / module / zfs / vdev_disk.c
CommitLineData
60101509
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
2e528b49 26 * Copyright (c) 2013 by Delphix. All rights reserved.
60101509
BB
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/vdev_disk.h>
32#include <sys/vdev_impl.h>
33#include <sys/fs/zfs.h>
34#include <sys/zio.h>
35#include <sys/sunldi.h>
36
6839eed2 37char *zfs_vdev_scheduler = VDEV_SCHEDULER;
8128bd89 38static void *zfs_vdev_holder = VDEV_HOLDER;
6839eed2 39
60101509
BB
40/*
41 * Virtual device vector for disks.
42 */
43typedef struct dio_request {
44 struct completion dr_comp; /* Completion for sync IO */
45 atomic_t dr_ref; /* References */
46 zio_t *dr_zio; /* Parent ZIO */
47 int dr_rw; /* Read/Write */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51} dio_request_t;
52
53
54#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55static fmode_t
56vdev_bdev_mode(int smode)
57{
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return mode;
69}
70#else
71static int
72vdev_bdev_mode(int smode)
73{
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return mode;
82}
83#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85static uint64_t
86bdev_capacity(struct block_device *bdev)
87{
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
f74fae8b 92 return (part->nr_sects << 9);
60101509
BB
93
94 /* Otherwise assume the full device capacity */
f74fae8b 95 return (get_capacity(bdev->bd_disk) << 9);
60101509
BB
96}
97
d148e951
BB
98static void
99vdev_disk_error(zio_t *zio)
100{
101#ifdef ZFS_DEBUG
a69052be
BB
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
d148e951 104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
a69052be 105 zio->io_flags, (u_longlong_t)zio->io_delay);
d148e951
BB
106#endif
107}
108
6839eed2
BB
109/*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
6839eed2
BB
116 */
117static int
fdcd952b 118vdev_elevator_switch(vdev_t *v, char *elevator)
6839eed2 119{
fdcd952b
BB
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
e2448b0e 124 int error;
fdcd952b 125
84daadde
PS
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
04516a45
BB
135 return (0);
136
fdcd952b
BB
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
6839eed2 140
fdcd952b 141 /* Leave existing scheduler when set to "none" */
6839eed2
BB
142 if (!strncmp(elevator, "none", 4) && (strlen(elevator) == 4))
143 return (0);
144
6d1d976b
BB
145#ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147#else
148 /* For pre-2.6.36 kernels elevator_change() is not available.
149 * Therefore we fall back to using a usermodehelper to echo the
150 * elevator into sysfs; This requires /bin/echo and sysfs to be
151 * mounted which may not be true early in the boot process.
152 */
153# define SET_SCHEDULER_CMD \
154 "exec 0</dev/null " \
155 " 1>/sys/block/%s/queue/scheduler " \
156 " 2>/dev/null; " \
157 "echo %s"
158
159 {
160 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
161 char *envp[] = { NULL };
162
163 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
761394b3 164 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
6d1d976b
BB
165 strfree(argv[2]);
166 }
167#endif /* HAVE_ELEVATOR_CHANGE */
6839eed2
BB
168 if (error)
169 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
fdcd952b 170 elevator, v->vdev_path, device, error);
6839eed2
BB
171
172 return (error);
173}
174
b5a28807
ED
175/*
176 * Expanding a whole disk vdev involves invoking BLKRRPART on the
177 * whole disk device. This poses a problem, because BLKRRPART will
178 * return EBUSY if one of the disk's partitions is open. That's why
179 * we have to do it here, just before opening the data partition.
180 * Unfortunately, BLKRRPART works by dropping all partitions and
181 * recreating them, which means that for a short time window, all
182 * /dev/sdxN device files disappear (until udev recreates them).
183 * This means two things:
184 * - When we open the data partition just after a BLKRRPART, we
185 * can't do it using the normal device file path because of the
186 * obvious race condition with udev. Instead, we use reliable
187 * kernel APIs to get a handle to the new partition device from
188 * the whole disk device.
189 * - Because vdev_disk_open() initially needs to find the device
190 * using its path, multiple vdev_disk_open() invocations in
191 * short succession on the same disk with BLKRRPARTs in the
192 * middle have a high probability of failure (because of the
193 * race condition with udev). A typical situation where this
194 * might happen is when the zpool userspace tool does a
195 * TRYIMPORT immediately followed by an IMPORT. For this
196 * reason, we only invoke BLKRRPART in the module when strictly
197 * necessary (zpool online -e case), and rely on userspace to
198 * do it when possible.
199 */
200static struct block_device *
201vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
202{
203#if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
204 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
205 struct gendisk *disk;
206 int error, partno;
207
8128bd89 208 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
b5a28807
ED
209 if (IS_ERR(bdev))
210 return bdev;
211
212 disk = get_gendisk(bdev->bd_dev, &partno);
213 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
214
215 if (disk) {
216 bdev = bdget(disk_devt(disk));
217 if (bdev) {
218 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
219 if (error == 0)
220 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
221 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
222 }
223
224 bdev = bdget_disk(disk, partno);
225 if (bdev) {
226 error = blkdev_get(bdev,
227 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
228 if (error == 0)
229 result = bdev;
230 }
231 put_disk(disk);
232 }
233
234 return result;
235#else
236 return ERR_PTR(-EOPNOTSUPP);
237#endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
238}
239
60101509 240static int
1bd201e7
CS
241vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
242 uint64_t *ashift)
60101509 243{
b5a28807 244 struct block_device *bdev = ERR_PTR(-ENXIO);
60101509
BB
245 vdev_disk_t *vd;
246 int mode, block_size;
247
248 /* Must have a pathname and it must be absolute. */
249 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
250 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
251 return EINVAL;
252 }
253
0d8103d9
BB
254 /*
255 * Reopen the device if it's not currently open. Otherwise,
256 * just update the physical size of the device.
257 */
258 if (v->vdev_tsd != NULL) {
259 ASSERT(v->vdev_reopening);
260 vd = v->vdev_tsd;
261 goto skip_open;
262 }
263
b8d06fca 264 vd = kmem_zalloc(sizeof(vdev_disk_t), KM_PUSHPAGE);
60101509
BB
265 if (vd == NULL)
266 return ENOMEM;
267
268 /*
269 * Devices are always opened by the path provided at configuration
270 * time. This means that if the provided path is a udev by-id path
271 * then drives may be recabled without an issue. If the provided
4e95cc99 272 * path is a udev by-path path, then the physical location information
60101509
BB
273 * will be preserved. This can be critical for more complicated
274 * configurations where drives are located in specific physical
275 * locations to maximize the systems tolerence to component failure.
4e95cc99 276 * Alternatively, you can provide your own udev rule to flexibly map
60101509 277 * the drives as you see fit. It is not advised that you use the
4e95cc99 278 * /dev/[hd]d devices which may be reordered due to probing order.
60101509
BB
279 * Devices in the wrong locations will be detected by the higher
280 * level vdev validation.
281 */
282 mode = spa_mode(v->vdev_spa);
b5a28807
ED
283 if (v->vdev_wholedisk && v->vdev_expanding)
284 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
285 if (IS_ERR(bdev))
8128bd89
BB
286 bdev = vdev_bdev_open(v->vdev_path,
287 vdev_bdev_mode(mode), zfs_vdev_holder);
60101509
BB
288 if (IS_ERR(bdev)) {
289 kmem_free(vd, sizeof(vdev_disk_t));
290 return -PTR_ERR(bdev);
291 }
292
293 v->vdev_tsd = vd;
294 vd->vd_bdev = bdev;
0d8103d9
BB
295
296skip_open:
297 /* Determine the physical block size */
298 block_size = vdev_bdev_block_size(vd->vd_bdev);
60101509 299
60101509
BB
300 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
301 v->vdev_nowritecache = B_FALSE;
302
303 /* Physical volume size in bytes */
0d8103d9 304 *psize = bdev_capacity(vd->vd_bdev);
60101509 305
1bd201e7
CS
306 /* TODO: report possible expansion size */
307 *max_psize = *psize;
308
60101509
BB
309 /* Based on the minimum sector size set the block size */
310 *ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
311
6839eed2 312 /* Try to set the io scheduler elevator algorithm */
fdcd952b 313 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
6839eed2 314
60101509
BB
315 return 0;
316}
317
318static void
319vdev_disk_close(vdev_t *v)
320{
321 vdev_disk_t *vd = v->vdev_tsd;
322
0d8103d9 323 if (v->vdev_reopening || vd == NULL)
60101509
BB
324 return;
325
326 if (vd->vd_bdev != NULL)
327 vdev_bdev_close(vd->vd_bdev,
328 vdev_bdev_mode(spa_mode(v->vdev_spa)));
329
330 kmem_free(vd, sizeof(vdev_disk_t));
331 v->vdev_tsd = NULL;
332}
333
334static dio_request_t *
335vdev_disk_dio_alloc(int bio_count)
336{
337 dio_request_t *dr;
338 int i;
339
340 dr = kmem_zalloc(sizeof(dio_request_t) +
b8d06fca 341 sizeof(struct bio *) * bio_count, KM_PUSHPAGE);
60101509
BB
342 if (dr) {
343 init_completion(&dr->dr_comp);
344 atomic_set(&dr->dr_ref, 0);
345 dr->dr_bio_count = bio_count;
346 dr->dr_error = 0;
347
348 for (i = 0; i < dr->dr_bio_count; i++)
349 dr->dr_bio[i] = NULL;
350 }
351
352 return dr;
353}
354
355static void
356vdev_disk_dio_free(dio_request_t *dr)
357{
358 int i;
359
360 for (i = 0; i < dr->dr_bio_count; i++)
361 if (dr->dr_bio[i])
362 bio_put(dr->dr_bio[i]);
363
364 kmem_free(dr, sizeof(dio_request_t) +
365 sizeof(struct bio *) * dr->dr_bio_count);
366}
367
675de5aa
BB
368static int
369vdev_disk_dio_is_sync(dio_request_t *dr)
370{
371#ifdef HAVE_BIO_RW_SYNC
372 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
373 return (dr->dr_rw & (1 << BIO_RW_SYNC));
374#else
375# ifdef HAVE_BIO_RW_SYNCIO
376 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
377 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
378# else
379# ifdef HAVE_REQ_SYNC
380 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
381 return (dr->dr_rw & REQ_SYNC);
382# else
383# error "Unable to determine bio sync flag"
384# endif /* HAVE_REQ_SYNC */
385# endif /* HAVE_BIO_RW_SYNC */
386#endif /* HAVE_BIO_RW_SYNCIO */
387}
388
60101509
BB
389static void
390vdev_disk_dio_get(dio_request_t *dr)
391{
392 atomic_inc(&dr->dr_ref);
393}
394
395static int
396vdev_disk_dio_put(dio_request_t *dr)
397{
398 int rc = atomic_dec_return(&dr->dr_ref);
399
400 /*
401 * Free the dio_request when the last reference is dropped and
402 * ensure zio_interpret is called only once with the correct zio
403 */
404 if (rc == 0) {
405 zio_t *zio = dr->dr_zio;
406 int error = dr->dr_error;
407
408 vdev_disk_dio_free(dr);
409
410 if (zio) {
cc92e9d0 411 zio->io_delay = jiffies_64 - zio->io_delay;
60101509 412 zio->io_error = error;
d148e951
BB
413 ASSERT3S(zio->io_error, >=, 0);
414 if (zio->io_error)
415 vdev_disk_error(zio);
60101509
BB
416 zio_interrupt(zio);
417 }
418 }
419
420 return rc;
421}
422
423BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
424{
425 dio_request_t *dr = bio->bi_private;
426 int rc;
427
428 /* Fatal error but print some useful debugging before asserting */
429 if (dr == NULL)
430 PANIC("dr == NULL, bio->bi_private == NULL\n"
431 "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
432 "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
433 bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
434 bio->bi_idx, bio->bi_size, bio->bi_end_io,
435 atomic_read(&bio->bi_cnt));
436
437#ifndef HAVE_2ARGS_BIO_END_IO_T
438 if (bio->bi_size)
439 return 1;
440#endif /* HAVE_2ARGS_BIO_END_IO_T */
441
442 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
d148e951 443 error = -EIO;
60101509
BB
444
445 if (dr->dr_error == 0)
d148e951 446 dr->dr_error = -error;
60101509
BB
447
448 /* Drop reference aquired by __vdev_disk_physio */
449 rc = vdev_disk_dio_put(dr);
450
451 /* Wake up synchronous waiter this is the last outstanding bio */
675de5aa 452 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
60101509
BB
453 complete(&dr->dr_comp);
454
455 BIO_END_IO_RETURN(0);
456}
457
458static inline unsigned long
459bio_nr_pages(void *bio_ptr, unsigned int bio_size)
460{
461 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
462 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
463}
464
465static unsigned int
466bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
467{
468 unsigned int offset, size, i;
469 struct page *page;
470
471 offset = offset_in_page(bio_ptr);
472 for (i = 0; i < bio->bi_max_vecs; i++) {
473 size = PAGE_SIZE - offset;
474
475 if (bio_size <= 0)
476 break;
477
478 if (size > bio_size)
479 size = bio_size;
480
481 if (kmem_virt(bio_ptr))
482 page = vmalloc_to_page(bio_ptr);
483 else
484 page = virt_to_page(bio_ptr);
485
486 if (bio_add_page(bio, page, size, offset) != size)
487 break;
488
489 bio_ptr += size;
490 bio_size -= size;
491 offset = 0;
492 }
493
494 return bio_size;
495}
496
497static int
498__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
499 size_t kbuf_size, uint64_t kbuf_offset, int flags)
500{
501 dio_request_t *dr;
502 caddr_t bio_ptr;
503 uint64_t bio_offset;
504 int bio_size, bio_count = 16;
f74fae8b 505 int i = 0, error = 0;
60101509 506
e06be586
NB
507 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
508
60101509
BB
509retry:
510 dr = vdev_disk_dio_alloc(bio_count);
511 if (dr == NULL)
512 return ENOMEM;
513
2959d94a
BB
514 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
515 bio_set_flags_failfast(bdev, &flags);
516
60101509
BB
517 dr->dr_zio = zio;
518 dr->dr_rw = flags;
60101509 519
60101509
BB
520 /*
521 * When the IO size exceeds the maximum bio size for the request
522 * queue we are forced to break the IO in multiple bio's and wait
523 * for them all to complete. Ideally, all pool users will set
524 * their volume block size to match the maximum request size and
525 * the common case will be one bio per vdev IO request.
526 */
527 bio_ptr = kbuf_ptr;
528 bio_offset = kbuf_offset;
529 bio_size = kbuf_size;
530 for (i = 0; i <= dr->dr_bio_count; i++) {
531
532 /* Finished constructing bio's for given buffer */
533 if (bio_size <= 0)
534 break;
535
536 /*
537 * By default only 'bio_count' bio's per dio are allowed.
538 * However, if we find ourselves in a situation where more
539 * are needed we allocate a larger dio and warn the user.
540 */
541 if (dr->dr_bio_count == i) {
542 vdev_disk_dio_free(dr);
543 bio_count *= 2;
60101509
BB
544 goto retry;
545 }
546
547 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
548 bio_nr_pages(bio_ptr, bio_size));
549 if (dr->dr_bio[i] == NULL) {
550 vdev_disk_dio_free(dr);
551 return ENOMEM;
552 }
553
554 /* Matching put called by vdev_disk_physio_completion */
555 vdev_disk_dio_get(dr);
556
557 dr->dr_bio[i]->bi_bdev = bdev;
f74fae8b 558 dr->dr_bio[i]->bi_sector = bio_offset >> 9;
60101509
BB
559 dr->dr_bio[i]->bi_rw = dr->dr_rw;
560 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
561 dr->dr_bio[i]->bi_private = dr;
562
563 /* Remaining size is returned to become the new size */
564 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
565
566 /* Advance in buffer and construct another bio if needed */
567 bio_ptr += dr->dr_bio[i]->bi_size;
568 bio_offset += dr->dr_bio[i]->bi_size;
569 }
570
571 /* Extra reference to protect dio_request during submit_bio */
572 vdev_disk_dio_get(dr);
a69052be
BB
573 if (zio)
574 zio->io_delay = jiffies_64;
60101509
BB
575
576 /* Submit all bio's associated with this dio */
577 for (i = 0; i < dr->dr_bio_count; i++)
578 if (dr->dr_bio[i])
579 submit_bio(dr->dr_rw, dr->dr_bio[i]);
580
581 /*
582 * On synchronous blocking requests we wait for all bio the completion
583 * callbacks to run. We will be woken when the last callback runs
584 * for this dio. We are responsible for putting the last dio_request
585 * reference will in turn put back the last bio references. The
586 * only synchronous consumer is vdev_disk_read_rootlabel() all other
587 * IO originating from vdev_disk_io_start() is asynchronous.
588 */
675de5aa 589 if (vdev_disk_dio_is_sync(dr)) {
60101509
BB
590 wait_for_completion(&dr->dr_comp);
591 error = dr->dr_error;
592 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
593 }
594
595 (void)vdev_disk_dio_put(dr);
596
597 return error;
598}
599
600int
601vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
602 size_t size, uint64_t offset, int flags)
603{
2959d94a 604 bio_set_flags_failfast(bdev, &flags);
60101509
BB
605 return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
606}
607
60101509
BB
608BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
609{
610 zio_t *zio = bio->bi_private;
611
cc92e9d0 612 zio->io_delay = jiffies_64 - zio->io_delay;
60101509
BB
613 zio->io_error = -rc;
614 if (rc && (rc == -EOPNOTSUPP))
615 zio->io_vd->vdev_nowritecache = B_TRUE;
616
617 bio_put(bio);
d148e951
BB
618 ASSERT3S(zio->io_error, >=, 0);
619 if (zio->io_error)
620 vdev_disk_error(zio);
60101509
BB
621 zio_interrupt(zio);
622
623 BIO_END_IO_RETURN(0);
624}
625
626static int
627vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
628{
629 struct request_queue *q;
630 struct bio *bio;
631
632 q = bdev_get_queue(bdev);
633 if (!q)
634 return ENXIO;
635
abc41ac7 636 bio = bio_alloc(GFP_NOIO, 0);
60101509
BB
637 if (!bio)
638 return ENOMEM;
639
640 bio->bi_end_io = vdev_disk_io_flush_completion;
641 bio->bi_private = zio;
642 bio->bi_bdev = bdev;
a69052be 643 zio->io_delay = jiffies_64;
96801d29 644 submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
60101509
BB
645
646 return 0;
647}
60101509
BB
648
649static int
650vdev_disk_io_start(zio_t *zio)
651{
652 vdev_t *v = zio->io_vd;
653 vdev_disk_t *vd = v->vdev_tsd;
654 int flags, error;
655
656 switch (zio->io_type) {
657 case ZIO_TYPE_IOCTL:
658
659 if (!vdev_readable(v)) {
2e528b49 660 zio->io_error = SET_ERROR(ENXIO);
60101509
BB
661 return ZIO_PIPELINE_CONTINUE;
662 }
663
664 switch (zio->io_cmd) {
665 case DKIOCFLUSHWRITECACHE:
666
667 if (zfs_nocacheflush)
668 break;
669
670 if (v->vdev_nowritecache) {
2e528b49 671 zio->io_error = SET_ERROR(ENOTSUP);
60101509
BB
672 break;
673 }
674
675 error = vdev_disk_io_flush(vd->vd_bdev, zio);
676 if (error == 0)
677 return ZIO_PIPELINE_STOP;
678
679 zio->io_error = error;
680 if (error == ENOTSUP)
681 v->vdev_nowritecache = B_TRUE;
682
683 break;
684
685 default:
2e528b49 686 zio->io_error = SET_ERROR(ENOTSUP);
60101509
BB
687 }
688
689 return ZIO_PIPELINE_CONTINUE;
690
691 case ZIO_TYPE_WRITE:
692 flags = WRITE;
693 break;
694
695 case ZIO_TYPE_READ:
696 flags = READ;
697 break;
698
699 default:
2e528b49 700 zio->io_error = SET_ERROR(ENOTSUP);
60101509
BB
701 return ZIO_PIPELINE_CONTINUE;
702 }
703
60101509
BB
704 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
705 zio->io_size, zio->io_offset, flags);
706 if (error) {
707 zio->io_error = error;
708 return ZIO_PIPELINE_CONTINUE;
709 }
710
711 return ZIO_PIPELINE_STOP;
712}
713
714static void
715vdev_disk_io_done(zio_t *zio)
716{
717 /*
718 * If the device returned EIO, we revalidate the media. If it is
719 * determined the media has changed this triggers the asynchronous
720 * removal of the device from the configuration.
721 */
722 if (zio->io_error == EIO) {
723 vdev_t *v = zio->io_vd;
724 vdev_disk_t *vd = v->vdev_tsd;
725
726 if (check_disk_change(vd->vd_bdev)) {
727 vdev_bdev_invalidate(vd->vd_bdev);
728 v->vdev_remove_wanted = B_TRUE;
729 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
730 }
731 }
732}
733
734static void
735vdev_disk_hold(vdev_t *vd)
736{
737 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
738
739 /* We must have a pathname, and it must be absolute. */
740 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
741 return;
742
743 /*
744 * Only prefetch path and devid info if the device has
745 * never been opened.
746 */
747 if (vd->vdev_tsd != NULL)
748 return;
749
750 /* XXX: Implement me as a vnode lookup for the device */
751 vd->vdev_name_vp = NULL;
752 vd->vdev_devid_vp = NULL;
753}
754
755static void
756vdev_disk_rele(vdev_t *vd)
757{
758 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
759
760 /* XXX: Implement me as a vnode rele for the device */
761}
762
763vdev_ops_t vdev_disk_ops = {
764 vdev_disk_open,
765 vdev_disk_close,
766 vdev_default_asize,
767 vdev_disk_io_start,
768 vdev_disk_io_done,
769 NULL,
770 vdev_disk_hold,
771 vdev_disk_rele,
772 VDEV_TYPE_DISK, /* name of this vdev type */
773 B_TRUE /* leaf vdev */
774};
775
776/*
777 * Given the root disk device devid or pathname, read the label from
778 * the device, and construct a configuration nvlist.
779 */
780int
781vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
782{
783 struct block_device *bdev;
784 vdev_label_t *label;
785 uint64_t s, size;
786 int i;
787
8128bd89 788 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
60101509
BB
789 if (IS_ERR(bdev))
790 return -PTR_ERR(bdev);
791
f74fae8b 792 s = bdev_capacity(bdev);
60101509
BB
793 if (s == 0) {
794 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
795 return EIO;
796 }
797
798 size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
b8d06fca 799 label = vmem_alloc(sizeof(vdev_label_t), KM_PUSHPAGE);
60101509
BB
800
801 for (i = 0; i < VDEV_LABELS; i++) {
802 uint64_t offset, state, txg = 0;
803
804 /* read vdev label */
805 offset = vdev_label_offset(size, i, 0);
806 if (vdev_disk_physio(bdev, (caddr_t)label,
807 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
808 continue;
809
810 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
811 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
812 *config = NULL;
813 continue;
814 }
815
816 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
817 &state) != 0 || state >= POOL_STATE_DESTROYED) {
818 nvlist_free(*config);
819 *config = NULL;
820 continue;
821 }
822
823 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
824 &txg) != 0 || txg == 0) {
825 nvlist_free(*config);
826 *config = NULL;
827 continue;
828 }
829
830 break;
831 }
832
833 vmem_free(label, sizeof(vdev_label_t));
834 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
835
836 return 0;
837}
6839eed2
BB
838
839module_param(zfs_vdev_scheduler, charp, 0644);
c409e464 840MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");