]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_indirect.c
OpenZFS 9079 - race condition in starting and ending condensing thread for indirect...
[mirror_zfs.git] / module / zfs / vdev_indirect.c
CommitLineData
a1d477c2
MA
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
18 */
19
20#include <sys/zfs_context.h>
21#include <sys/spa.h>
22#include <sys/spa_impl.h>
23#include <sys/vdev_impl.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
9e052db4 26#include <sys/zio_checksum.h>
a1d477c2
MA
27#include <sys/metaslab.h>
28#include <sys/refcount.h>
29#include <sys/dmu.h>
30#include <sys/vdev_indirect_mapping.h>
31#include <sys/dmu_tx.h>
32#include <sys/dsl_synctask.h>
33#include <sys/zap.h>
9d5b5245
SD
34#include <sys/abd.h>
35#include <sys/zthr.h>
a1d477c2
MA
36
37/*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
9e052db4
MA
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
a1d477c2 53 *
9e052db4 54 * - frees and claims to this vdev use the callback to free or claim
a1d477c2
MA
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61/*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127/*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
174boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176/*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183int zfs_indirect_condense_obsolete_pct = 25;
184
185/*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
191uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193/*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200/*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
9e052db4 208/*
4589f3ae
BB
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
9e052db4 215 */
4589f3ae 216int zfs_reconstruct_indirect_combinations_max = 100;
9e052db4
MA
217
218/*
219 * The indirect_child_t represents the vdev that we will read from, when we
220 * need to read all copies of the data (e.g. for scrub or reconstruction).
221 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
222 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
223 * ic_vdev is a child of the mirror.
224 */
225typedef struct indirect_child {
226 abd_t *ic_data;
227 vdev_t *ic_vdev;
4589f3ae
BB
228
229 /*
230 * ic_duplicate is -1 when the ic_data contents are unique, when it
231 * is determined to be a duplicate it refers to the primary child.
232 */
233 int ic_duplicate;
9e052db4
MA
234} indirect_child_t;
235
236/*
237 * The indirect_split_t represents one mapped segment of an i/o to the
238 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
239 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
240 * For split blocks, there will be several of these.
241 */
242typedef struct indirect_split {
243 list_node_t is_node; /* link on iv_splits */
244
245 /*
246 * is_split_offset is the offset into the i/o.
247 * This is the sum of the previous splits' is_size's.
248 */
249 uint64_t is_split_offset;
250
251 vdev_t *is_vdev; /* top-level vdev */
252 uint64_t is_target_offset; /* offset on is_vdev */
253 uint64_t is_size;
254 int is_children; /* number of entries in is_child[] */
255
256 /*
257 * is_good_child is the child that we are currently using to
258 * attempt reconstruction.
259 */
260 int is_good_child;
261
262 indirect_child_t is_child[1]; /* variable-length */
263} indirect_split_t;
264
265/*
266 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
267 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
268 */
269typedef struct indirect_vsd {
270 boolean_t iv_split_block;
271 boolean_t iv_reconstruct;
272
273 list_t iv_splits; /* list of indirect_split_t's */
274} indirect_vsd_t;
275
276static void
277vdev_indirect_map_free(zio_t *zio)
278{
279 indirect_vsd_t *iv = zio->io_vsd;
280
281 indirect_split_t *is;
282 while ((is = list_head(&iv->iv_splits)) != NULL) {
283 for (int c = 0; c < is->is_children; c++) {
284 indirect_child_t *ic = &is->is_child[c];
285 if (ic->ic_data != NULL)
286 abd_free(ic->ic_data);
287 }
288 list_remove(&iv->iv_splits, is);
289 kmem_free(is,
290 offsetof(indirect_split_t, is_child[is->is_children]));
291 }
292 kmem_free(iv, sizeof (*iv));
293}
294
295static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
296 vdev_indirect_map_free,
297 zio_vsd_default_cksum_report
298};
299
a1d477c2
MA
300/*
301 * Mark the given offset and size as being obsolete in the given txg.
302 */
303void
304vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size,
305 uint64_t txg)
306{
307 spa_t *spa = vd->vdev_spa;
308 ASSERT3U(spa_syncing_txg(spa), ==, txg);
309 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
310 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
311 ASSERT(size > 0);
312 VERIFY(vdev_indirect_mapping_entry_for_offset(
313 vd->vdev_indirect_mapping, offset) != NULL);
314
315 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
316 mutex_enter(&vd->vdev_obsolete_lock);
317 range_tree_add(vd->vdev_obsolete_segments, offset, size);
318 mutex_exit(&vd->vdev_obsolete_lock);
319 vdev_dirty(vd, 0, NULL, txg);
320 }
321}
322
323/*
324 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
325 * wrapper is provided because the DMU does not know about vdev_t's and
326 * cannot directly call vdev_indirect_mark_obsolete.
327 */
328void
329spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
330 uint64_t size, dmu_tx_t *tx)
331{
332 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
333 ASSERT(dmu_tx_is_syncing(tx));
334
335 /* The DMU can only remap indirect vdevs. */
336 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
337 vdev_indirect_mark_obsolete(vd, offset, size, dmu_tx_get_txg(tx));
338}
339
340static spa_condensing_indirect_t *
341spa_condensing_indirect_create(spa_t *spa)
342{
343 spa_condensing_indirect_phys_t *scip =
344 &spa->spa_condensing_indirect_phys;
345 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
346 objset_t *mos = spa->spa_meta_objset;
347
348 for (int i = 0; i < TXG_SIZE; i++) {
349 list_create(&sci->sci_new_mapping_entries[i],
350 sizeof (vdev_indirect_mapping_entry_t),
351 offsetof(vdev_indirect_mapping_entry_t, vime_node));
352 }
353
354 sci->sci_new_mapping =
355 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
356
357 return (sci);
358}
359
360static void
361spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
362{
363 for (int i = 0; i < TXG_SIZE; i++)
364 list_destroy(&sci->sci_new_mapping_entries[i]);
365
366 if (sci->sci_new_mapping != NULL)
367 vdev_indirect_mapping_close(sci->sci_new_mapping);
368
369 kmem_free(sci, sizeof (*sci));
370}
371
372boolean_t
373vdev_indirect_should_condense(vdev_t *vd)
374{
375 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
376 spa_t *spa = vd->vdev_spa;
377
378 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
379
380 if (!zfs_condense_indirect_vdevs_enable)
381 return (B_FALSE);
382
383 /*
384 * We can only condense one indirect vdev at a time.
385 */
386 if (spa->spa_condensing_indirect != NULL)
387 return (B_FALSE);
388
389 if (spa_shutting_down(spa))
390 return (B_FALSE);
391
392 /*
393 * The mapping object size must not change while we are
394 * condensing, so we can only condense indirect vdevs
395 * (not vdevs that are still in the middle of being removed).
396 */
397 if (vd->vdev_ops != &vdev_indirect_ops)
398 return (B_FALSE);
399
400 /*
401 * If nothing new has been marked obsolete, there is no
402 * point in condensing.
403 */
404 if (vd->vdev_obsolete_sm == NULL) {
405 ASSERT0(vdev_obsolete_sm_object(vd));
406 return (B_FALSE);
407 }
408
409 ASSERT(vd->vdev_obsolete_sm != NULL);
410
411 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
412 space_map_object(vd->vdev_obsolete_sm));
413
414 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
415 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
416 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
417 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
418
419 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
420
421 /*
422 * If a high percentage of the bytes that are mapped have become
423 * obsolete, condense (unless the mapping is already small enough).
424 * This has a good chance of reducing the amount of memory used
425 * by the mapping.
426 */
427 if (bytes_obsolete * 100 / bytes_mapped >=
428 zfs_indirect_condense_obsolete_pct &&
429 mapping_size > zfs_condense_min_mapping_bytes) {
430 zfs_dbgmsg("should condense vdev %llu because obsolete "
431 "spacemap covers %d%% of %lluMB mapping",
432 (u_longlong_t)vd->vdev_id,
433 (int)(bytes_obsolete * 100 / bytes_mapped),
434 (u_longlong_t)bytes_mapped / 1024 / 1024);
435 return (B_TRUE);
436 }
437
438 /*
439 * If the obsolete space map takes up too much space on disk,
440 * condense in order to free up this disk space.
441 */
442 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
443 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
444 "length %lluMB >= max size %lluMB",
445 (u_longlong_t)vd->vdev_id,
446 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
447 (u_longlong_t)zfs_condense_max_obsolete_bytes /
448 1024 / 1024);
449 return (B_TRUE);
450 }
451
452 return (B_FALSE);
453}
454
455/*
456 * This sync task completes (finishes) a condense, deleting the old
457 * mapping and replacing it with the new one.
458 */
459static void
460spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
461{
462 spa_condensing_indirect_t *sci = arg;
463 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
464 spa_condensing_indirect_phys_t *scip =
465 &spa->spa_condensing_indirect_phys;
466 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
467 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
468 objset_t *mos = spa->spa_meta_objset;
469 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
470 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
471 uint64_t new_count =
472 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
473
474 ASSERT(dmu_tx_is_syncing(tx));
475 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
476 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
477 for (int i = 0; i < TXG_SIZE; i++) {
478 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
479 }
480 ASSERT(vic->vic_mapping_object != 0);
481 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
482 ASSERT(scip->scip_next_mapping_object != 0);
483 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
484
485 /*
486 * Reset vdev_indirect_mapping to refer to the new object.
487 */
488 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
489 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
490 vd->vdev_indirect_mapping = sci->sci_new_mapping;
491 rw_exit(&vd->vdev_indirect_rwlock);
492
493 sci->sci_new_mapping = NULL;
494 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
495 vic->vic_mapping_object = scip->scip_next_mapping_object;
496 scip->scip_next_mapping_object = 0;
497
498 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
499 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
500 scip->scip_prev_obsolete_sm_object = 0;
501
502 scip->scip_vdev = 0;
503
504 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
505 DMU_POOL_CONDENSING_INDIRECT, tx));
506 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
507 spa->spa_condensing_indirect = NULL;
508
509 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
510 "new mapping object %llu has %llu entries "
511 "(was %llu entries)",
512 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
513 new_count, old_count);
514
515 vdev_config_dirty(spa->spa_root_vdev);
516}
517
518/*
519 * This sync task appends entries to the new mapping object.
520 */
521static void
522spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
523{
524 spa_condensing_indirect_t *sci = arg;
525 uint64_t txg = dmu_tx_get_txg(tx);
526 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
527
528 ASSERT(dmu_tx_is_syncing(tx));
529 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
530
531 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
532 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
533 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
534}
535
536/*
537 * Open-context function to add one entry to the new mapping. The new
538 * entry will be remembered and written from syncing context.
539 */
540static void
541spa_condense_indirect_commit_entry(spa_t *spa,
542 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
543{
544 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
545
546 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
547
548 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
549 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
550 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
551 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
552
553 /*
554 * If we are the first entry committed this txg, kick off the sync
555 * task to write to the MOS on our behalf.
556 */
557 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
558 dsl_sync_task_nowait(dmu_tx_pool(tx),
559 spa_condense_indirect_commit_sync, sci,
560 0, ZFS_SPACE_CHECK_NONE, tx);
561 }
562
563 vdev_indirect_mapping_entry_t *vime =
564 kmem_alloc(sizeof (*vime), KM_SLEEP);
565 vime->vime_mapping = *vimep;
566 vime->vime_obsolete_count = count;
567 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
568
569 dmu_tx_commit(tx);
570}
571
572static void
573spa_condense_indirect_generate_new_mapping(vdev_t *vd,
9d5b5245 574 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
a1d477c2
MA
575{
576 spa_t *spa = vd->vdev_spa;
577 uint64_t mapi = start_index;
578 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
579 uint64_t old_num_entries =
580 vdev_indirect_mapping_num_entries(old_mapping);
581
582 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
583 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
584
585 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
586 (u_longlong_t)vd->vdev_id,
587 (u_longlong_t)mapi);
588
9d5b5245
SD
589 while (mapi < old_num_entries) {
590
591 if (zthr_iscancelled(zthr)) {
592 zfs_dbgmsg("pausing condense of vdev %llu "
593 "at index %llu", (u_longlong_t)vd->vdev_id,
594 (u_longlong_t)mapi);
595 break;
596 }
597
a1d477c2
MA
598 vdev_indirect_mapping_entry_phys_t *entry =
599 &old_mapping->vim_entries[mapi];
600 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
601 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
602 if (obsolete_counts[mapi] < entry_size) {
603 spa_condense_indirect_commit_entry(spa, entry,
604 obsolete_counts[mapi]);
605
606 /*
607 * This delay may be requested for testing, debugging,
608 * or performance reasons.
609 */
610 hrtime_t now = gethrtime();
611 hrtime_t sleep_until = now + MSEC2NSEC(
612 zfs_condense_indirect_commit_entry_delay_ms);
613 zfs_sleep_until(sleep_until);
614 }
615
616 mapi++;
617 }
a1d477c2
MA
618}
619
9d5b5245
SD
620/* ARGSUSED */
621static boolean_t
622spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
a1d477c2 623{
9d5b5245
SD
624 spa_t *spa = arg;
625
626 return (spa->spa_condensing_indirect != NULL);
627}
628
629/* ARGSUSED */
630static int
631spa_condense_indirect_thread(void *arg, zthr_t *zthr)
632{
633 spa_t *spa = arg;
634 vdev_t *vd;
635
636 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
637 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
638 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
639 ASSERT3P(vd, !=, NULL);
640 spa_config_exit(spa, SCL_VDEV, FTAG);
641
a1d477c2
MA
642 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
643 spa_condensing_indirect_phys_t *scip =
644 &spa->spa_condensing_indirect_phys;
645 uint32_t *counts;
646 uint64_t start_index;
647 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
648 space_map_t *prev_obsolete_sm = NULL;
649
650 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
651 ASSERT(scip->scip_next_mapping_object != 0);
652 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
653 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
654
655 for (int i = 0; i < TXG_SIZE; i++) {
656 /*
657 * The list must start out empty in order for the
658 * _commit_sync() sync task to be properly registered
659 * on the first call to _commit_entry(); so it's wise
660 * to double check and ensure we actually are starting
661 * with empty lists.
662 */
663 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
664 }
665
666 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
667 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
668 space_map_update(prev_obsolete_sm);
669 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
670 if (prev_obsolete_sm != NULL) {
671 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
672 counts, prev_obsolete_sm);
673 }
674 space_map_close(prev_obsolete_sm);
675
676 /*
677 * Generate new mapping. Determine what index to continue from
678 * based on the max offset that we've already written in the
679 * new mapping.
680 */
681 uint64_t max_offset =
682 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
683 if (max_offset == 0) {
684 /* We haven't written anything to the new mapping yet. */
685 start_index = 0;
686 } else {
687 /*
688 * Pick up from where we left off. _entry_for_offset()
689 * returns a pointer into the vim_entries array. If
690 * max_offset is greater than any of the mappings
691 * contained in the table NULL will be returned and
692 * that indicates we've exhausted our iteration of the
693 * old_mapping.
694 */
695
696 vdev_indirect_mapping_entry_phys_t *entry =
697 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
698 max_offset);
699
700 if (entry == NULL) {
701 /*
702 * We've already written the whole new mapping.
703 * This special value will cause us to skip the
704 * generate_new_mapping step and just do the sync
705 * task to complete the condense.
706 */
707 start_index = UINT64_MAX;
708 } else {
709 start_index = entry - old_mapping->vim_entries;
710 ASSERT3U(start_index, <,
711 vdev_indirect_mapping_num_entries(old_mapping));
712 }
713 }
714
9d5b5245
SD
715 spa_condense_indirect_generate_new_mapping(vd, counts,
716 start_index, zthr);
a1d477c2
MA
717
718 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
719
720 /*
9d5b5245
SD
721 * If the zthr has received a cancellation signal while running
722 * in generate_new_mapping() or at any point after that, then bail
723 * early. We don't want to complete the condense if the spa is
724 * shutting down.
a1d477c2 725 */
9d5b5245
SD
726 if (zthr_iscancelled(zthr))
727 return (0);
728
729 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
730 spa_condense_indirect_complete_sync, sci, 0, ZFS_SPACE_CHECK_NONE));
a1d477c2 731
9d5b5245 732 return (0);
a1d477c2
MA
733}
734
735/*
736 * Sync task to begin the condensing process.
737 */
738void
739spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
740{
741 spa_t *spa = vd->vdev_spa;
742 spa_condensing_indirect_phys_t *scip =
743 &spa->spa_condensing_indirect_phys;
744
745 ASSERT0(scip->scip_next_mapping_object);
746 ASSERT0(scip->scip_prev_obsolete_sm_object);
747 ASSERT0(scip->scip_vdev);
748 ASSERT(dmu_tx_is_syncing(tx));
749 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
750 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
751 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
752
753 uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
754 ASSERT(obsolete_sm_obj != 0);
755
756 scip->scip_vdev = vd->vdev_id;
757 scip->scip_next_mapping_object =
758 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
759
760 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
761
762 /*
763 * We don't need to allocate a new space map object, since
764 * vdev_indirect_sync_obsolete will allocate one when needed.
765 */
766 space_map_close(vd->vdev_obsolete_sm);
767 vd->vdev_obsolete_sm = NULL;
768 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
769 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
770
771 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
772 DMU_POOL_DIRECTORY_OBJECT,
773 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
774 sizeof (*scip) / sizeof (uint64_t), scip, tx));
775
776 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
777 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
778
779 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
780 "posm=%llu nm=%llu",
781 vd->vdev_id, dmu_tx_get_txg(tx),
782 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
783 (u_longlong_t)scip->scip_next_mapping_object);
784
9d5b5245 785 zthr_wakeup(spa->spa_condense_zthr);
a1d477c2
MA
786}
787
788/*
789 * Sync to the given vdev's obsolete space map any segments that are no longer
790 * referenced as of the given txg.
791 *
792 * If the obsolete space map doesn't exist yet, create and open it.
793 */
794void
795vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
796{
797 spa_t *spa = vd->vdev_spa;
798 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
799
800 ASSERT3U(vic->vic_mapping_object, !=, 0);
801 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
802 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
803 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
804
805 if (vdev_obsolete_sm_object(vd) == 0) {
806 uint64_t obsolete_sm_object =
807 space_map_alloc(spa->spa_meta_objset, tx);
808
809 ASSERT(vd->vdev_top_zap != 0);
810 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
811 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
812 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
813 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
814
815 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
816 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
817 spa->spa_meta_objset, obsolete_sm_object,
818 0, vd->vdev_asize, 0));
819 space_map_update(vd->vdev_obsolete_sm);
820 }
821
822 ASSERT(vd->vdev_obsolete_sm != NULL);
823 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
824 space_map_object(vd->vdev_obsolete_sm));
825
826 space_map_write(vd->vdev_obsolete_sm,
827 vd->vdev_obsolete_segments, SM_ALLOC, tx);
828 space_map_update(vd->vdev_obsolete_sm);
829 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
830}
831
832int
833spa_condense_init(spa_t *spa)
834{
835 int error = zap_lookup(spa->spa_meta_objset,
836 DMU_POOL_DIRECTORY_OBJECT,
837 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
838 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
839 &spa->spa_condensing_indirect_phys);
840 if (error == 0) {
841 if (spa_writeable(spa)) {
842 spa->spa_condensing_indirect =
843 spa_condensing_indirect_create(spa);
844 }
845 return (0);
846 } else if (error == ENOENT) {
847 return (0);
848 } else {
849 return (error);
850 }
851}
852
853void
854spa_condense_fini(spa_t *spa)
855{
856 if (spa->spa_condensing_indirect != NULL) {
857 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
858 spa->spa_condensing_indirect = NULL;
859 }
860}
861
a1d477c2 862void
9d5b5245 863spa_start_indirect_condensing_thread(spa_t *spa)
a1d477c2 864{
9d5b5245
SD
865 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
866 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
867 spa_condense_indirect_thread, spa);
a1d477c2
MA
868}
869
870/*
871 * Gets the obsolete spacemap object from the vdev's ZAP.
872 * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
873 * exist yet.
874 */
875int
876vdev_obsolete_sm_object(vdev_t *vd)
877{
878 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
879 if (vd->vdev_top_zap == 0) {
880 return (0);
881 }
882
883 uint64_t sm_obj = 0;
884 int err;
885 err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
886 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
887
888 ASSERT(err == 0 || err == ENOENT);
889
890 return (sm_obj);
891}
892
893boolean_t
894vdev_obsolete_counts_are_precise(vdev_t *vd)
895{
896 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
897 if (vd->vdev_top_zap == 0) {
898 return (B_FALSE);
899 }
900
901 uint64_t val = 0;
902 int err;
903 err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
904 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
905
906 ASSERT(err == 0 || err == ENOENT);
907
908 return (val != 0);
909}
910
911/* ARGSUSED */
912static void
913vdev_indirect_close(vdev_t *vd)
914{
915}
916
a1d477c2
MA
917/* ARGSUSED */
918static int
919vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
920 uint64_t *ashift)
921{
922 *psize = *max_psize = vd->vdev_asize +
923 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
924 *ashift = vd->vdev_ashift;
925 return (0);
926}
927
928typedef struct remap_segment {
929 vdev_t *rs_vd;
930 uint64_t rs_offset;
931 uint64_t rs_asize;
932 uint64_t rs_split_offset;
933 list_node_t rs_node;
934} remap_segment_t;
935
936remap_segment_t *
937rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
938{
939 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
940 rs->rs_vd = vd;
941 rs->rs_offset = offset;
942 rs->rs_asize = asize;
943 rs->rs_split_offset = split_offset;
944 return (rs);
945}
946
947/*
948 * Goes through the relevant indirect mappings until it hits a concrete vdev
949 * and issues the callback. On the way to the concrete vdev, if any other
950 * indirect vdevs are encountered, then the callback will also be called on
951 * each of those indirect vdevs. For example, if the segment is mapped to
952 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
953 * mapped to segment B on concrete vdev 2, then the callback will be called on
954 * both vdev 1 and vdev 2.
955 *
956 * While the callback passed to vdev_indirect_remap() is called on every vdev
957 * the function encounters, certain callbacks only care about concrete vdevs.
958 * These types of callbacks should return immediately and explicitly when they
959 * are called on an indirect vdev.
960 *
961 * Because there is a possibility that a DVA section in the indirect device
962 * has been split into multiple sections in our mapping, we keep track
963 * of the relevant contiguous segments of the new location (remap_segment_t)
964 * in a stack. This way we can call the callback for each of the new sections
965 * created by a single section of the indirect device. Note though, that in
966 * this scenario the callbacks in each split block won't occur in-order in
967 * terms of offset, so callers should not make any assumptions about that.
968 *
969 * For callbacks that don't handle split blocks and immediately return when
970 * they encounter them (as is the case for remap_blkptr_cb), the caller can
971 * assume that its callback will be applied from the first indirect vdev
972 * encountered to the last one and then the concrete vdev, in that order.
973 */
974static void
975vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
976 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
977{
978 list_t stack;
979 spa_t *spa = vd->vdev_spa;
980
981 list_create(&stack, sizeof (remap_segment_t),
982 offsetof(remap_segment_t, rs_node));
983
984 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
985 rs != NULL; rs = list_remove_head(&stack)) {
986 vdev_t *v = rs->rs_vd;
987
988 /*
989 * Note: this can be called from open context
990 * (eg. zio_read()), so we need the rwlock to prevent
991 * the mapping from being changed by condensing.
992 */
993 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
994 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
995 ASSERT3P(vim, !=, NULL);
996
997 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
998 ASSERT(rs->rs_asize > 0);
999
1000 vdev_indirect_mapping_entry_phys_t *mapping =
1001 vdev_indirect_mapping_entry_for_offset(vim, rs->rs_offset);
1002 ASSERT3P(mapping, !=, NULL);
1003
1004 while (rs->rs_asize > 0) {
1005 /*
1006 * Note: the vdev_indirect_mapping can not change
1007 * while we are running. It only changes while the
1008 * removal is in progress, and then only from syncing
1009 * context. While a removal is in progress, this
1010 * function is only called for frees, which also only
1011 * happen from syncing context.
1012 */
1013
1014 uint64_t size = DVA_GET_ASIZE(&mapping->vimep_dst);
1015 uint64_t dst_offset =
1016 DVA_GET_OFFSET(&mapping->vimep_dst);
1017 uint64_t dst_vdev = DVA_GET_VDEV(&mapping->vimep_dst);
1018
1019 ASSERT3U(rs->rs_offset, >=,
1020 DVA_MAPPING_GET_SRC_OFFSET(mapping));
1021 ASSERT3U(rs->rs_offset, <,
1022 DVA_MAPPING_GET_SRC_OFFSET(mapping) + size);
1023 ASSERT3U(dst_vdev, !=, v->vdev_id);
1024
1025 uint64_t inner_offset = rs->rs_offset -
1026 DVA_MAPPING_GET_SRC_OFFSET(mapping);
1027 uint64_t inner_size =
1028 MIN(rs->rs_asize, size - inner_offset);
1029
1030 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1031 ASSERT3P(dst_v, !=, NULL);
1032
1033 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1034 list_insert_head(&stack,
1035 rs_alloc(dst_v, dst_offset + inner_offset,
1036 inner_size, rs->rs_split_offset));
1037
1038 }
1039
1040 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1041 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1042 /*
1043 * Note: This clause exists only solely for
1044 * testing purposes. We use it to ensure that
1045 * split blocks work and that the callbacks
1046 * using them yield the same result if issued
1047 * in reverse order.
1048 */
1049 uint64_t inner_half = inner_size / 2;
1050
1051 func(rs->rs_split_offset + inner_half, dst_v,
1052 dst_offset + inner_offset + inner_half,
1053 inner_half, arg);
1054
1055 func(rs->rs_split_offset, dst_v,
1056 dst_offset + inner_offset,
1057 inner_half, arg);
1058 } else {
1059 func(rs->rs_split_offset, dst_v,
1060 dst_offset + inner_offset,
1061 inner_size, arg);
1062 }
1063
1064 rs->rs_offset += inner_size;
1065 rs->rs_asize -= inner_size;
1066 rs->rs_split_offset += inner_size;
1067 mapping++;
1068 }
1069
1070 rw_exit(&v->vdev_indirect_rwlock);
1071 kmem_free(rs, sizeof (remap_segment_t));
1072 }
1073 list_destroy(&stack);
1074}
1075
1076static void
1077vdev_indirect_child_io_done(zio_t *zio)
1078{
1079 zio_t *pio = zio->io_private;
1080
1081 mutex_enter(&pio->io_lock);
1082 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1083 mutex_exit(&pio->io_lock);
1084
1085 abd_put(zio->io_abd);
1086}
1087
9e052db4
MA
1088/*
1089 * This is a callback for vdev_indirect_remap() which allocates an
1090 * indirect_split_t for each split segment and adds it to iv_splits.
1091 */
a1d477c2 1092static void
9e052db4 1093vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
a1d477c2
MA
1094 uint64_t size, void *arg)
1095{
1096 zio_t *zio = arg;
9e052db4 1097 indirect_vsd_t *iv = zio->io_vsd;
a1d477c2
MA
1098
1099 ASSERT3P(vd, !=, NULL);
1100
1101 if (vd->vdev_ops == &vdev_indirect_ops)
1102 return;
1103
9e052db4
MA
1104 int n = 1;
1105 if (vd->vdev_ops == &vdev_mirror_ops)
1106 n = vd->vdev_children;
1107
1108 indirect_split_t *is =
1109 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1110
1111 is->is_children = n;
1112 is->is_size = size;
1113 is->is_split_offset = split_offset;
1114 is->is_target_offset = offset;
1115 is->is_vdev = vd;
1116
1117 /*
1118 * Note that we only consider multiple copies of the data for
1119 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1120 * though they use the same ops as mirror, because there's only one
1121 * "good" copy under the replacing/spare.
1122 */
1123 if (vd->vdev_ops == &vdev_mirror_ops) {
1124 for (int i = 0; i < n; i++) {
1125 is->is_child[i].ic_vdev = vd->vdev_child[i];
1126 }
1127 } else {
1128 is->is_child[0].ic_vdev = vd;
1129 }
1130
1131 list_insert_tail(&iv->iv_splits, is);
1132}
1133
1134static void
1135vdev_indirect_read_split_done(zio_t *zio)
1136{
1137 indirect_child_t *ic = zio->io_private;
1138
1139 if (zio->io_error != 0) {
1140 /*
1141 * Clear ic_data to indicate that we do not have data for this
1142 * child.
1143 */
1144 abd_free(ic->ic_data);
1145 ic->ic_data = NULL;
1146 }
1147}
1148
1149/*
1150 * Issue reads for all copies (mirror children) of all splits.
1151 */
1152static void
1153vdev_indirect_read_all(zio_t *zio)
1154{
1155 indirect_vsd_t *iv = zio->io_vsd;
1156
1157 for (indirect_split_t *is = list_head(&iv->iv_splits);
1158 is != NULL; is = list_next(&iv->iv_splits, is)) {
1159 for (int i = 0; i < is->is_children; i++) {
1160 indirect_child_t *ic = &is->is_child[i];
1161
1162 if (!vdev_readable(ic->ic_vdev))
1163 continue;
1164
1165 /*
1166 * Note, we may read from a child whose DTL
1167 * indicates that the data may not be present here.
1168 * While this might result in a few i/os that will
1169 * likely return incorrect data, it simplifies the
1170 * code since we can treat scrub and resilver
1171 * identically. (The incorrect data will be
1172 * detected and ignored when we verify the
1173 * checksum.)
1174 */
1175
1176 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1177 is->is_size);
4589f3ae 1178 ic->ic_duplicate = -1;
9e052db4
MA
1179
1180 zio_nowait(zio_vdev_child_io(zio, NULL,
1181 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1182 is->is_size, zio->io_type, zio->io_priority, 0,
1183 vdev_indirect_read_split_done, ic));
1184 }
1185 }
1186 iv->iv_reconstruct = B_TRUE;
a1d477c2
MA
1187}
1188
1189static void
1190vdev_indirect_io_start(zio_t *zio)
1191{
1192 ASSERTV(spa_t *spa = zio->io_spa);
9e052db4
MA
1193 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1194 list_create(&iv->iv_splits,
1195 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1196
1197 zio->io_vsd = iv;
1198 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
a1d477c2
MA
1199
1200 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1201 if (zio->io_type != ZIO_TYPE_READ) {
1202 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
9e052db4
MA
1203 /*
1204 * Note: this code can handle other kinds of writes,
1205 * but we don't expect them.
1206 */
1207 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1208 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
a1d477c2
MA
1209 }
1210
1211 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
9e052db4
MA
1212 vdev_indirect_gather_splits, zio);
1213
1214 indirect_split_t *first = list_head(&iv->iv_splits);
1215 if (first->is_size == zio->io_size) {
1216 /*
1217 * This is not a split block; we are pointing to the entire
1218 * data, which will checksum the same as the original data.
1219 * Pass the BP down so that the child i/o can verify the
1220 * checksum, and try a different location if available
1221 * (e.g. on a mirror).
1222 *
1223 * While this special case could be handled the same as the
1224 * general (split block) case, doing it this way ensures
1225 * that the vast majority of blocks on indirect vdevs
1226 * (which are not split) are handled identically to blocks
1227 * on non-indirect vdevs. This allows us to be less strict
1228 * about performance in the general (but rare) case.
1229 */
1230 ASSERT0(first->is_split_offset);
1231 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1232 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1233 first->is_vdev, first->is_target_offset,
1234 abd_get_offset(zio->io_abd, 0),
1235 zio->io_size, zio->io_type, zio->io_priority, 0,
1236 vdev_indirect_child_io_done, zio));
1237 } else {
1238 iv->iv_split_block = B_TRUE;
1239 if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1240 /*
1241 * Read all copies. Note that for simplicity,
1242 * we don't bother consulting the DTL in the
1243 * resilver case.
1244 */
1245 vdev_indirect_read_all(zio);
1246 } else {
1247 /*
1248 * Read one copy of each split segment, from the
1249 * top-level vdev. Since we don't know the
1250 * checksum of each split individually, the child
1251 * zio can't ensure that we get the right data.
1252 * E.g. if it's a mirror, it will just read from a
1253 * random (healthy) leaf vdev. We have to verify
1254 * the checksum in vdev_indirect_io_done().
1255 */
1256 for (indirect_split_t *is = list_head(&iv->iv_splits);
1257 is != NULL; is = list_next(&iv->iv_splits, is)) {
1258 zio_nowait(zio_vdev_child_io(zio, NULL,
1259 is->is_vdev, is->is_target_offset,
1260 abd_get_offset(zio->io_abd,
1261 is->is_split_offset), is->is_size,
1262 zio->io_type, zio->io_priority, 0,
1263 vdev_indirect_child_io_done, zio));
1264 }
1265
1266 }
1267 }
a1d477c2
MA
1268
1269 zio_execute(zio);
1270}
1271
9e052db4
MA
1272/*
1273 * Report a checksum error for a child.
1274 */
1275static void
1276vdev_indirect_checksum_error(zio_t *zio,
1277 indirect_split_t *is, indirect_child_t *ic)
1278{
1279 vdev_t *vd = ic->ic_vdev;
1280
1281 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1282 return;
1283
1284 mutex_enter(&vd->vdev_stat_lock);
1285 vd->vdev_stat.vs_checksum_errors++;
1286 mutex_exit(&vd->vdev_stat_lock);
1287
1288 zio_bad_cksum_t zbc = {{{ 0 }}};
1289 abd_t *bad_abd = ic->ic_data;
1290 abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
1291 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1292 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1293}
1294
1295/*
1296 * Issue repair i/os for any incorrect copies. We do this by comparing
1297 * each split segment's correct data (is_good_child's ic_data) with each
1298 * other copy of the data. If they differ, then we overwrite the bad data
1299 * with the good copy. Note that we do this without regard for the DTL's,
1300 * which simplifies this code and also issues the optimal number of writes
1301 * (based on which copies actually read bad data, as opposed to which we
1302 * think might be wrong). For the same reason, we always use
1303 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1304 */
1305static void
1306vdev_indirect_repair(zio_t *zio)
1307{
1308 indirect_vsd_t *iv = zio->io_vsd;
1309
1310 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1311
1312 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1313 flags |= ZIO_FLAG_SELF_HEAL;
1314
1315 if (!spa_writeable(zio->io_spa))
1316 return;
1317
1318 for (indirect_split_t *is = list_head(&iv->iv_splits);
1319 is != NULL; is = list_next(&iv->iv_splits, is)) {
1320 indirect_child_t *good_child = &is->is_child[is->is_good_child];
1321
1322 for (int c = 0; c < is->is_children; c++) {
1323 indirect_child_t *ic = &is->is_child[c];
1324 if (ic == good_child)
1325 continue;
1326 if (ic->ic_data == NULL)
1327 continue;
4589f3ae 1328 if (ic->ic_duplicate == is->is_good_child)
9e052db4
MA
1329 continue;
1330
1331 zio_nowait(zio_vdev_child_io(zio, NULL,
1332 ic->ic_vdev, is->is_target_offset,
1333 good_child->ic_data, is->is_size,
1334 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1335 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1336 NULL, NULL));
1337
1338 vdev_indirect_checksum_error(zio, is, ic);
1339 }
1340 }
1341}
1342
1343/*
1344 * Report checksum errors on all children that we read from.
1345 */
1346static void
1347vdev_indirect_all_checksum_errors(zio_t *zio)
1348{
1349 indirect_vsd_t *iv = zio->io_vsd;
1350
1351 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1352 return;
1353
1354 for (indirect_split_t *is = list_head(&iv->iv_splits);
1355 is != NULL; is = list_next(&iv->iv_splits, is)) {
1356 for (int c = 0; c < is->is_children; c++) {
1357 indirect_child_t *ic = &is->is_child[c];
1358
1359 if (ic->ic_data == NULL)
1360 continue;
1361
1362 vdev_t *vd = ic->ic_vdev;
1363
1364 mutex_enter(&vd->vdev_stat_lock);
1365 vd->vdev_stat.vs_checksum_errors++;
1366 mutex_exit(&vd->vdev_stat_lock);
1367
1368 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1369 is->is_target_offset, is->is_size,
1370 NULL, NULL, NULL);
1371 }
1372 }
1373}
1374
1375/*
1376 * This function is called when we have read all copies of the data and need
1377 * to try to find a combination of copies that gives us the right checksum.
1378 *
1379 * If we pointed to any mirror vdevs, this effectively does the job of the
1380 * mirror. The mirror vdev code can't do its own job because we don't know
4589f3ae 1381 * the checksum of each split segment individually.
9e052db4 1382 *
4589f3ae
BB
1383 * We have to try every unique combination of copies of split segments, until
1384 * we find one that checksums correctly. Duplicate segment copies are first
1385 * discarded as an optimization to reduce the search space. After pruning
1386 * there will exist at most one valid combination.
1387 *
1388 * When the total number of combinations is small they can all be checked.
1389 * For example, if we have 3 segments in the split, and each points to a
1390 * 2-way mirror with unique copies, we will have the following pieces of data:
9e052db4
MA
1391 *
1392 * | mirror child
1393 * split | [0] [1]
1394 * ======|=====================
1395 * A | data_A_0 data_A_1
1396 * B | data_B_0 data_B_1
1397 * C | data_C_0 data_C_1
1398 *
1399 * We will try the following (mirror children)^(number of splits) (2^3=8)
1400 * combinations, which is similar to bitwise-little-endian counting in
1401 * binary. In general each "digit" corresponds to a split segment, and the
1402 * base of each digit is is_children, which can be different for each
1403 * digit.
1404 *
1405 * "low bit" "high bit"
1406 * v v
1407 * data_A_0 data_B_0 data_C_0
1408 * data_A_1 data_B_0 data_C_0
1409 * data_A_0 data_B_1 data_C_0
1410 * data_A_1 data_B_1 data_C_0
1411 * data_A_0 data_B_0 data_C_1
1412 * data_A_1 data_B_0 data_C_1
1413 * data_A_0 data_B_1 data_C_1
1414 * data_A_1 data_B_1 data_C_1
1415 *
1416 * Note that the split segments may be on the same or different top-level
1417 * vdevs. In either case, we try lots of combinations (see
1418 * zfs_reconstruct_indirect_segments_max). This ensures that if a mirror has
1419 * small silent errors on all of its children, we can still reconstruct the
1420 * correct data, as long as those errors are at sufficiently-separated
1421 * offsets (specifically, separated by the largest block size - default of
1422 * 128KB, but up to 16MB).
1423 */
1424static void
1425vdev_indirect_reconstruct_io_done(zio_t *zio)
1426{
1427 indirect_vsd_t *iv = zio->io_vsd;
1428 uint64_t attempts = 0;
4589f3ae
BB
1429 uint64_t attempts_max = UINT64_MAX;
1430 uint64_t combinations = 1;
1431
1432 if (zfs_reconstruct_indirect_combinations_max > 0)
1433 attempts_max = zfs_reconstruct_indirect_combinations_max;
9e052db4 1434
4589f3ae
BB
1435 /*
1436 * Discard duplicate copies of split segments to minimize the
1437 * number of unique combinations when attempting reconstruction.
1438 */
9e052db4 1439 for (indirect_split_t *is = list_head(&iv->iv_splits);
4589f3ae
BB
1440 is != NULL; is = list_next(&iv->iv_splits, is)) {
1441 uint64_t is_copies = 0;
1442
1443 for (int i = 0; i < is->is_children; i++) {
1444 if (is->is_child[i].ic_data == NULL)
1445 continue;
1446
1447 for (int j = i + 1; j < is->is_children; j++) {
1448 if (is->is_child[j].ic_data == NULL)
1449 continue;
1450
1451 if (is->is_child[j].ic_duplicate == -1 &&
1452 abd_cmp(is->is_child[i].ic_data,
1453 is->is_child[j].ic_data) == 0) {
1454 is->is_child[j].ic_duplicate = i;
1455 }
1456 }
1457
1458 is_copies++;
1459 }
1460
1461 /* Reconstruction is impossible, no valid is->is_child[] */
1462 if (is_copies == 0) {
1463 zio->io_error = EIO;
1464 vdev_indirect_all_checksum_errors(zio);
1465 zio_checksum_verified(zio);
1466 return;
1467 }
1468
1469 combinations *= is_copies;
1470 }
9e052db4
MA
1471
1472 for (;;) {
1473 /* copy data from splits to main zio */
1474 int ret;
1475 for (indirect_split_t *is = list_head(&iv->iv_splits);
1476 is != NULL; is = list_next(&iv->iv_splits, is)) {
1477
1478 /*
1479 * If this child failed, its ic_data will be NULL.
1480 * Skip this combination.
1481 */
1482 if (is->is_child[is->is_good_child].ic_data == NULL) {
1483 ret = EIO;
1484 goto next;
1485 }
1486
4589f3ae
BB
1487 /*
1488 * If this child is a duplicate, its is_duplicate will
1489 * refer to the primary copy. Skip this combination.
1490 */
1491 if (is->is_child[is->is_good_child].ic_duplicate >= 0) {
1492 ret = ECKSUM;
1493 goto next;
1494 }
1495
9e052db4
MA
1496 abd_copy_off(zio->io_abd,
1497 is->is_child[is->is_good_child].ic_data,
1498 is->is_split_offset, 0, is->is_size);
1499 }
1500
1501 /* See if this checksum matches. */
1502 zio_bad_cksum_t zbc;
1503 ret = zio_checksum_error(zio, &zbc);
1504 if (ret == 0) {
1505 /* Found a matching checksum. Issue repair i/os. */
1506 vdev_indirect_repair(zio);
1507 zio_checksum_verified(zio);
1508 return;
1509 }
1510
1511 /*
1512 * Checksum failed; try a different combination of split
1513 * children.
1514 */
1515 boolean_t more;
1516next:
1517 more = B_FALSE;
4589f3ae 1518 if (combinations <= attempts_max) {
9e052db4 1519 /*
4589f3ae
BB
1520 * There are relatively few possible combinations, so
1521 * deterministically check them all. We do this by
1522 * adding one to the first split's good_child. If it
1523 * overflows, then "carry over" to the next split
1524 * (like counting in base is_children, but each
1525 * digit can have a different base).
9e052db4
MA
1526 */
1527 for (indirect_split_t *is = list_head(&iv->iv_splits);
1528 is != NULL; is = list_next(&iv->iv_splits, is)) {
1529 is->is_good_child++;
1530 if (is->is_good_child < is->is_children) {
1531 more = B_TRUE;
1532 break;
1533 }
1534 is->is_good_child = 0;
1535 }
1536 } else if (++attempts < attempts_max) {
1537 /*
1538 * There are too many combinations to try all of them
1539 * in a reasonable amount of time, so try a fixed
1540 * number of random combinations, after which we'll
1541 * consider the block unrecoverable.
1542 */
1543 for (indirect_split_t *is = list_head(&iv->iv_splits);
1544 is != NULL; is = list_next(&iv->iv_splits, is)) {
4589f3ae
BB
1545 int c = spa_get_random(is->is_children);
1546
1547 while (is->is_child[c].ic_duplicate >= 0)
1548 c = (c + 1) % is->is_children;
1549
1550 is->is_good_child = c;
9e052db4
MA
1551 }
1552 more = B_TRUE;
1553 }
1554 if (!more) {
1555 /* All combinations failed. */
1556 zio->io_error = ret;
1557 vdev_indirect_all_checksum_errors(zio);
1558 zio_checksum_verified(zio);
1559 return;
1560 }
1561 }
1562}
1563
1564static void
1565vdev_indirect_io_done(zio_t *zio)
1566{
1567 indirect_vsd_t *iv = zio->io_vsd;
1568
1569 if (iv->iv_reconstruct) {
1570 /*
1571 * We have read all copies of the data (e.g. from mirrors),
1572 * either because this was a scrub/resilver, or because the
1573 * one-copy read didn't checksum correctly.
1574 */
1575 vdev_indirect_reconstruct_io_done(zio);
1576 return;
1577 }
1578
1579 if (!iv->iv_split_block) {
1580 /*
1581 * This was not a split block, so we passed the BP down,
1582 * and the checksum was handled by the (one) child zio.
1583 */
1584 return;
1585 }
1586
1587 zio_bad_cksum_t zbc;
1588 int ret = zio_checksum_error(zio, &zbc);
1589 if (ret == 0) {
1590 zio_checksum_verified(zio);
1591 return;
1592 }
1593
1594 /*
1595 * The checksum didn't match. Read all copies of all splits, and
1596 * then we will try to reconstruct. The next time
1597 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1598 */
1599 vdev_indirect_read_all(zio);
1600
1601 zio_vdev_io_redone(zio);
1602}
1603
a1d477c2
MA
1604vdev_ops_t vdev_indirect_ops = {
1605 vdev_indirect_open,
1606 vdev_indirect_close,
1607 vdev_default_asize,
1608 vdev_indirect_io_start,
1609 vdev_indirect_io_done,
1610 NULL,
1611 NULL,
1612 NULL,
1613 NULL,
1614 vdev_indirect_remap,
1615 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1616 B_FALSE /* leaf vdev */
1617};
1618
1619#if defined(_KERNEL) && defined(HAVE_SPL)
1620EXPORT_SYMBOL(rs_alloc);
1621EXPORT_SYMBOL(spa_condense_fini);
9d5b5245 1622EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
a1d477c2
MA
1623EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1624EXPORT_SYMBOL(spa_condense_init);
1625EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1626EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1627EXPORT_SYMBOL(vdev_indirect_should_condense);
1628EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1629EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1630EXPORT_SYMBOL(vdev_obsolete_sm_object);
1631
1632/* CSTYLED */
1633module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1634MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1635 "Minimum size of vdev mapping to condense");
1636
1637module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1638MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1639 "Delay while condensing vdev mapping");
9e052db4 1640
4589f3ae
BB
1641module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1642MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1643 "Maximum number of combinations when reconstructing split segments");
a1d477c2 1644#endif