]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_label.c
fix: Uber block label not always found for aux vdevs
[mirror_zfs.git] / module / zfs / vdev_label.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
9ae529ec 21
34dc7c2f 22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
108a454a 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
cc99f275 25 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * Virtual Device Labels
30 * ---------------------
31 *
32 * The vdev label serves several distinct purposes:
33 *
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
36 *
0dc2f70c 37 * 2. Verify that all the devices given in a configuration are present
34dc7c2f
BB
38 * within the pool.
39 *
0dc2f70c 40 * 3. Determine the uberblock for the pool.
34dc7c2f 41 *
0dc2f70c 42 * 4. In case of an import operation, determine the configuration of the
34dc7c2f
BB
43 * toplevel vdev of which it is a part.
44 *
0dc2f70c 45 * 5. If an import operation cannot find all the devices in the pool,
34dc7c2f
BB
46 * provide enough information to the administrator to determine which
47 * devices are missing.
48 *
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
53 *
54 *
55 * Label Organization
56 * ------------------
57 *
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
60 *
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
66 *
67 * L1 UB L2
68 * +------+ +------+ +------+
69 * | | | | | |
70 * | t10 | | t10 | | t10 |
71 * | | | | | |
72 * +------+ +------+ +------+
73 *
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
77 *
78 * In order to identify which labels are valid, the labels are written in the
79 * following manner:
80 *
0dc2f70c
MA
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
34dc7c2f
BB
84 *
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
91 *
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
96 * on another vdev.
97 *
98 *
99 * On-disk Format
100 * --------------
101 *
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
105 *
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
109 *
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
114 *
115 *
116 * Configuration Information
117 * -------------------------
118 *
119 * The nvlist describing the pool and vdev contains the following elements:
120 *
0dc2f70c
MA
121 * version ZFS on-disk version
122 * name Pool name
123 * state Pool state
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
9ae529ec
CS
127 * features_for_read
128 * An nvlist of the features necessary for reading the MOS.
34dc7c2f
BB
129 *
130 * Each leaf device label also contains the following:
131 *
0dc2f70c
MA
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
34dc7c2f
BB
134 *
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
136 */
137
138#include <sys/zfs_context.h>
139#include <sys/spa.h>
140#include <sys/spa_impl.h>
141#include <sys/dmu.h>
142#include <sys/zap.h>
143#include <sys/vdev.h>
144#include <sys/vdev_impl.h>
5caeef02 145#include <sys/vdev_raidz.h>
b2255edc 146#include <sys/vdev_draid.h>
34dc7c2f
BB
147#include <sys/uberblock_impl.h>
148#include <sys/metaslab.h>
a1d477c2 149#include <sys/metaslab_impl.h>
34dc7c2f 150#include <sys/zio.h>
428870ff 151#include <sys/dsl_scan.h>
a6255b7f 152#include <sys/abd.h>
34dc7c2f 153#include <sys/fs/zfs.h>
1db9e6e4
TS
154#include <sys/byteorder.h>
155#include <sys/zfs_bootenv.h>
34dc7c2f
BB
156
157/*
158 * Basic routines to read and write from a vdev label.
159 * Used throughout the rest of this file.
160 */
161uint64_t
162vdev_label_offset(uint64_t psize, int l, uint64_t offset)
163{
164 ASSERT(offset < sizeof (vdev_label_t));
165 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
166
167 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
168 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
169}
170
b128c09f
BB
171/*
172 * Returns back the vdev label associated with the passed in offset.
173 */
174int
175vdev_label_number(uint64_t psize, uint64_t offset)
176{
177 int l;
178
179 if (offset >= psize - VDEV_LABEL_END_SIZE) {
180 offset -= psize - VDEV_LABEL_END_SIZE;
181 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
182 }
183 l = offset / sizeof (vdev_label_t);
184 return (l < VDEV_LABELS ? l : -1);
185}
186
34dc7c2f 187static void
a6255b7f 188vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 189 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 190{
0091d66f
OF
191 ASSERT(
192 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
193 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 194 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
195
196 zio_nowait(zio_read_phys(zio, vd,
197 vdev_label_offset(vd->vdev_psize, l, offset),
198 size, buf, ZIO_CHECKSUM_LABEL, done, private,
b128c09f 199 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
34dc7c2f
BB
200}
201
379ca9cf 202void
a6255b7f 203vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
e9aa730c 204 uint64_t size, zio_done_func_t *done, void *private, int flags)
34dc7c2f 205{
0091d66f
OF
206 ASSERT(
207 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
208 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
b128c09f 209 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
34dc7c2f
BB
210
211 zio_nowait(zio_write_phys(zio, vd,
212 vdev_label_offset(vd->vdev_psize, l, offset),
213 size, buf, ZIO_CHECKSUM_LABEL, done, private,
214 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
215}
216
193a37cb
TH
217/*
218 * Generate the nvlist representing this vdev's stats
219 */
220void
221vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
222{
223 nvlist_t *nvx;
224 vdev_stat_t *vs;
225 vdev_stat_ex_t *vsx;
226
227 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
228 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
229
230 vdev_get_stats_ex(vd, vs, vsx);
231 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
232 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
233
193a37cb
TH
234 /*
235 * Add extended stats into a special extended stats nvlist. This keeps
236 * all the extended stats nicely grouped together. The extended stats
237 * nvlist is then added to the main nvlist.
238 */
239 nvx = fnvlist_alloc();
240
241 /* ZIOs in flight to disk */
242 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
243 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244
245 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
246 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247
248 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
249 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250
251 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
252 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253
254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
255 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256
1b939560
BB
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
258 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
259
00888c08
TB
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
261 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
262
193a37cb
TH
263 /* ZIOs pending */
264 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
265 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
266
267 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
268 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
269
270 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
271 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
272
273 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
274 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
275
276 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
277 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
278
1b939560
BB
279 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
280 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
281
00888c08
TB
282 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
283 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
284
193a37cb
TH
285 /* Histograms */
286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
287 vsx->vsx_total_histo[ZIO_TYPE_READ],
288 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
289
290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
291 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
292 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
293
294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
295 vsx->vsx_disk_histo[ZIO_TYPE_READ],
296 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
297
298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
299 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
300 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
301
302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
303 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
305
306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
307 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
308 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
309
310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
311 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
312 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
313
314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
315 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
316 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
317
318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
319 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
320 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
321
1b939560
BB
322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
323 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
324 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
325
00888c08
TB
326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
327 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
328 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
329
7e945072
TH
330 /* Request sizes */
331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
332 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
333 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
334
335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
336 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
337 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
338
339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
340 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
341 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
342
343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
344 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
345 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
346
347 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
348 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
349 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
350
1b939560
BB
351 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
352 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
353 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
354
00888c08
TB
355 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
356 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
357 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
358
7e945072
TH
359 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
360 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
361 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
362
363 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
364 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
365 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
366
367 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
368 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
369 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
370
371 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
372 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
373 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
374
375 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
376 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
377 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
378
1b939560
BB
379 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
380 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
381 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
382
00888c08
TB
383 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
384 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
385 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
386
ad796b8a
TH
387 /* IO delays */
388 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
389
193a37cb
TH
390 /* Add extended stats nvlist to main nvlist */
391 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
392
6a796725 393 fnvlist_free(nvx);
c8fd652c 394 kmem_free(vs, sizeof (*vs));
193a37cb
TH
395 kmem_free(vsx, sizeof (*vsx));
396}
397
d2734cce
SD
398static void
399root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
400{
401 spa_t *spa = vd->vdev_spa;
402
403 if (vd != spa->spa_root_vdev)
404 return;
405
406 /* provide either current or previous scan information */
407 pool_scan_stat_t ps;
408 if (spa_scan_get_stats(spa, &ps) == 0) {
409 fnvlist_add_uint64_array(nvl,
410 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
411 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
412 }
413
414 pool_removal_stat_t prs;
415 if (spa_removal_get_stats(spa, &prs) == 0) {
416 fnvlist_add_uint64_array(nvl,
417 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
418 sizeof (prs) / sizeof (uint64_t));
419 }
420
421 pool_checkpoint_stat_t pcs;
422 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
423 fnvlist_add_uint64_array(nvl,
424 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
425 sizeof (pcs) / sizeof (uint64_t));
426 }
5caeef02
DB
427
428 pool_raidz_expand_stat_t pres;
429 if (spa_raidz_expand_get_stats(spa, &pres) == 0) {
430 fnvlist_add_uint64_array(nvl,
431 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres,
432 sizeof (pres) / sizeof (uint64_t));
433 }
d2734cce
SD
434}
435
9a49d3f3
BB
436static void
437top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
438{
439 if (vd == vd->vdev_top) {
440 vdev_rebuild_stat_t vrs;
441 if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
442 fnvlist_add_uint64_array(nvl,
443 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
444 sizeof (vrs) / sizeof (uint64_t));
445 }
446 }
447}
448
34dc7c2f
BB
449/*
450 * Generate the nvlist representing this vdev's config.
451 */
452nvlist_t *
453vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428870ff 454 vdev_config_flag_t flags)
34dc7c2f
BB
455{
456 nvlist_t *nv = NULL;
a1d477c2
MA
457 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
458
79c76d5b 459 nv = fnvlist_alloc();
34dc7c2f 460
5d1f7fb6 461 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
428870ff 462 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
5d1f7fb6
GW
463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
464 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
34dc7c2f
BB
465
466 if (vd->vdev_path != NULL)
5d1f7fb6 467 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
34dc7c2f
BB
468
469 if (vd->vdev_devid != NULL)
5d1f7fb6 470 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
34dc7c2f
BB
471
472 if (vd->vdev_physpath != NULL)
5d1f7fb6
GW
473 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
474 vd->vdev_physpath);
34dc7c2f 475
1bbd8770
TH
476 if (vd->vdev_enc_sysfs_path != NULL)
477 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
478 vd->vdev_enc_sysfs_path);
479
9babb374 480 if (vd->vdev_fru != NULL)
5d1f7fb6 481 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
9babb374 482
b2255edc
BB
483 if (vd->vdev_ops->vdev_op_config_generate != NULL)
484 vd->vdev_ops->vdev_op_config_generate(vd, nv);
34dc7c2f 485
b2255edc 486 if (vd->vdev_wholedisk != -1ULL) {
5d1f7fb6
GW
487 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 vd->vdev_wholedisk);
b2255edc 489 }
34dc7c2f 490
6cb8e530 491 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
5d1f7fb6 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
34dc7c2f
BB
493
494 if (vd->vdev_isspare)
5d1f7fb6 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
34dc7c2f 496
8af1104f
GA
497 if (flags & VDEV_CONFIG_L2CACHE)
498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
499
428870ff
BB
500 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
501 vd == vd->vdev_top) {
5d1f7fb6
GW
502 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
503 vd->vdev_ms_array);
504 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
505 vd->vdev_ms_shift);
506 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
507 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
508 vd->vdev_asize);
509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
2a673e76
AJ
510 if (vd->vdev_noalloc) {
511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
512 vd->vdev_noalloc);
513 }
460d887c
GW
514
515 /*
516 * Slog devices are removed synchronously so don't
517 * persist the vdev_removing flag to the label.
518 */
519 if (vd->vdev_removing && !vd->vdev_islog) {
5d1f7fb6
GW
520 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 vd->vdev_removing);
a1d477c2 522 }
cc99f275
DB
523
524 /* zpool command expects alloc class data */
525 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
526 const char *bias = NULL;
527
528 switch (vd->vdev_alloc_bias) {
529 case VDEV_BIAS_LOG:
530 bias = VDEV_ALLOC_BIAS_LOG;
531 break;
532 case VDEV_BIAS_SPECIAL:
533 bias = VDEV_ALLOC_BIAS_SPECIAL;
534 break;
535 case VDEV_BIAS_DEDUP:
536 bias = VDEV_ALLOC_BIAS_DEDUP;
537 break;
538 default:
539 ASSERT3U(vd->vdev_alloc_bias, ==,
540 VDEV_BIAS_NONE);
541 }
542 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
543 bias);
544 }
34dc7c2f
BB
545 }
546
93cf2076 547 if (vd->vdev_dtl_sm != NULL) {
5d1f7fb6 548 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076
GW
549 space_map_object(vd->vdev_dtl_sm));
550 }
34dc7c2f 551
a1d477c2
MA
552 if (vic->vic_mapping_object != 0) {
553 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
554 vic->vic_mapping_object);
555 }
556
557 if (vic->vic_births_object != 0) {
558 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
559 vic->vic_births_object);
560 }
561
562 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
563 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
564 vic->vic_prev_indirect_vdev);
565 }
566
428870ff 567 if (vd->vdev_crtxg)
5d1f7fb6 568 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
428870ff 569
d48091de 570 if (vd->vdev_expansion_time)
571 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
572 vd->vdev_expansion_time);
573
e0ab3ab5
JS
574 if (flags & VDEV_CONFIG_MOS) {
575 if (vd->vdev_leaf_zap != 0) {
576 ASSERT(vd->vdev_ops->vdev_op_leaf);
577 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
578 vd->vdev_leaf_zap);
579 }
580
581 if (vd->vdev_top_zap != 0) {
582 ASSERT(vd == vd->vdev_top);
583 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
584 vd->vdev_top_zap);
585 }
80a91e74 586
3e4ed421
RW
587 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 &&
588 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
589 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
590 vd->vdev_root_zap);
591 }
592
80a91e74
TC
593 if (vd->vdev_resilver_deferred) {
594 ASSERT(vd->vdev_ops->vdev_op_leaf);
595 ASSERT(spa->spa_resilver_deferred);
596 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
597 }
e0ab3ab5
JS
598 }
599
34dc7c2f 600 if (getstats) {
193a37cb 601 vdev_config_generate_stats(vd, nv);
428870ff 602
d2734cce 603 root_vdev_actions_getprogress(vd, nv);
9a49d3f3 604 top_vdev_actions_getprogress(vd, nv);
a1d477c2
MA
605
606 /*
607 * Note: this can be called from open context
608 * (spa_get_stats()), so we need the rwlock to prevent
609 * the mapping from being changed by condensing.
610 */
611 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
612 if (vd->vdev_indirect_mapping != NULL) {
613 ASSERT(vd->vdev_indirect_births != NULL);
614 vdev_indirect_mapping_t *vim =
615 vd->vdev_indirect_mapping;
616 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
617 vdev_indirect_mapping_size(vim));
618 }
619 rw_exit(&vd->vdev_indirect_rwlock);
620 if (vd->vdev_mg != NULL &&
621 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
622 /*
623 * Compute approximately how much memory would be used
624 * for the indirect mapping if this device were to
625 * be removed.
626 *
627 * Note: If the frag metric is invalid, then not
628 * enough metaslabs have been converted to have
629 * histograms.
630 */
631 uint64_t seg_count = 0;
0dc2f70c 632 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
a1d477c2
MA
633
634 /*
635 * There are the same number of allocated segments
636 * as free segments, so we will have at least one
0dc2f70c
MA
637 * entry per free segment. However, small free
638 * segments (smaller than vdev_removal_max_span)
639 * will be combined with adjacent allocated segments
640 * as a single mapping.
a1d477c2
MA
641 */
642 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
a8fc1b87
CT
643 if (i + 1 < highbit64(vdev_removal_max_span)
644 - 1) {
0dc2f70c
MA
645 to_alloc +=
646 vd->vdev_mg->mg_histogram[i] <<
647 (i + 1);
648 } else {
649 seg_count +=
650 vd->vdev_mg->mg_histogram[i];
651 }
a1d477c2
MA
652 }
653
654 /*
0dc2f70c
MA
655 * The maximum length of a mapping is
656 * zfs_remove_max_segment, so we need at least one entry
657 * per zfs_remove_max_segment of allocated data.
a1d477c2 658 */
53dce5ac 659 seg_count += to_alloc / spa_remove_max_segment(spa);
a1d477c2
MA
660
661 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
662 seg_count *
663 sizeof (vdev_indirect_mapping_entry_phys_t));
664 }
34dc7c2f
BB
665 }
666
667 if (!vd->vdev_ops->vdev_op_leaf) {
668 nvlist_t **child;
460d887c 669 uint64_t c;
428870ff
BB
670
671 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
672
673 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
79c76d5b 674 KM_SLEEP);
34dc7c2f 675
460d887c
GW
676 for (c = 0; c < vd->vdev_children; c++) {
677 child[c] = vdev_config_generate(spa, vd->vdev_child[c],
428870ff
BB
678 getstats, flags);
679 }
680
460d887c
GW
681 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
682 (const nvlist_t * const *)child, vd->vdev_children);
428870ff 683
460d887c 684 for (c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
685 nvlist_free(child[c]);
686
687 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
688
689 } else {
428870ff
BB
690 const char *aux = NULL;
691
34dc7c2f 692 if (vd->vdev_offline && !vd->vdev_tmpoffline)
5d1f7fb6
GW
693 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
694 if (vd->vdev_resilver_txg != 0)
695 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
696 vd->vdev_resilver_txg);
9a49d3f3
BB
697 if (vd->vdev_rebuild_txg != 0)
698 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
699 vd->vdev_rebuild_txg);
34dc7c2f 700 if (vd->vdev_faulted)
5d1f7fb6 701 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
34dc7c2f 702 if (vd->vdev_degraded)
5d1f7fb6 703 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
34dc7c2f 704 if (vd->vdev_removed)
5d1f7fb6 705 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
34dc7c2f 706 if (vd->vdev_unspare)
5d1f7fb6 707 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
428870ff 708 if (vd->vdev_ishole)
5d1f7fb6 709 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
428870ff 710
4a283c7f 711 /* Set the reason why we're FAULTED/DEGRADED. */
428870ff
BB
712 switch (vd->vdev_stat.vs_aux) {
713 case VDEV_AUX_ERR_EXCEEDED:
714 aux = "err_exceeded";
715 break;
716
717 case VDEV_AUX_EXTERNAL:
718 aux = "external";
719 break;
720 }
721
4a283c7f 722 if (aux != NULL && !vd->vdev_tmpoffline) {
5d1f7fb6 723 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
4a283c7f
TH
724 } else {
725 /*
726 * We're healthy - clear any previous AUX_STATE values.
727 */
728 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
729 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
730 }
428870ff
BB
731
732 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
5d1f7fb6
GW
733 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
734 vd->vdev_orig_guid);
428870ff 735 }
34dc7c2f
BB
736 }
737
738 return (nv);
739}
740
428870ff
BB
741/*
742 * Generate a view of the top-level vdevs. If we currently have holes
743 * in the namespace, then generate an array which contains a list of holey
744 * vdevs. Additionally, add the number of top-level children that currently
745 * exist.
746 */
747void
748vdev_top_config_generate(spa_t *spa, nvlist_t *config)
749{
750 vdev_t *rvd = spa->spa_root_vdev;
751 uint64_t *array;
752 uint_t c, idx;
753
79c76d5b 754 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
428870ff
BB
755
756 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
757 vdev_t *tvd = rvd->vdev_child[c];
758
a1d477c2 759 if (tvd->vdev_ishole) {
428870ff 760 array[idx++] = c;
a1d477c2 761 }
428870ff
BB
762 }
763
764 if (idx) {
765 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
766 array, idx) == 0);
767 }
768
769 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
770 rvd->vdev_children) == 0);
771
772 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
773}
774
9ae529ec 775/*
3bc7e0fb
GW
776 * Returns the configuration from the label of the given vdev. For vdevs
777 * which don't have a txg value stored on their label (i.e. spares/cache)
778 * or have not been completely initialized (txg = 0) just return
779 * the configuration from the first valid label we find. Otherwise,
780 * find the most up-to-date label that does not exceed the specified
781 * 'txg' value.
9ae529ec 782 */
34dc7c2f 783nvlist_t *
3bc7e0fb 784vdev_label_read_config(vdev_t *vd, uint64_t txg)
34dc7c2f
BB
785{
786 spa_t *spa = vd->vdev_spa;
787 nvlist_t *config = NULL;
67874d54
AS
788 vdev_phys_t *vp[VDEV_LABELS];
789 abd_t *vp_abd[VDEV_LABELS];
790 zio_t *zio[VDEV_LABELS];
3bc7e0fb 791 uint64_t best_txg = 0;
38a19edd 792 uint64_t label_txg = 0;
3bc7e0fb 793 int error = 0;
9babb374
BB
794 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
795 ZIO_FLAG_SPECULATIVE;
34dc7c2f 796
cf0977ad
AS
797 ASSERT(vd->vdev_validate_thread == curthread ||
798 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
799
800 if (!vdev_readable(vd))
801 return (NULL);
802
b2255edc
BB
803 /*
804 * The label for a dRAID distributed spare is not stored on disk.
805 * Instead it is generated when needed which allows us to bypass
806 * the pipeline when reading the config from the label.
807 */
808 if (vd->vdev_ops == &vdev_draid_spare_ops)
809 return (vdev_draid_read_config_spare(vd));
810
67874d54
AS
811 for (int l = 0; l < VDEV_LABELS; l++) {
812 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
813 vp[l] = abd_to_buf(vp_abd[l]);
814 }
34dc7c2f 815
9babb374 816retry:
1c27024e 817 for (int l = 0; l < VDEV_LABELS; l++) {
67874d54 818 zio[l] = zio_root(spa, NULL, NULL, flags);
34dc7c2f 819
67874d54
AS
820 vdev_label_read(zio[l], vd, l, vp_abd[l],
821 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
822 NULL, NULL, flags);
823 }
824 for (int l = 0; l < VDEV_LABELS; l++) {
825 nvlist_t *label = NULL;
34dc7c2f 826
67874d54
AS
827 if (zio_wait(zio[l]) == 0 &&
828 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
3bc7e0fb 829 &label, 0) == 0) {
3bc7e0fb
GW
830 /*
831 * Auxiliary vdevs won't have txg values in their
832 * labels and newly added vdevs may not have been
833 * completely initialized so just return the
834 * configuration from the first valid label we
835 * encounter.
836 */
837 error = nvlist_lookup_uint64(label,
838 ZPOOL_CONFIG_POOL_TXG, &label_txg);
839 if ((error || label_txg == 0) && !config) {
840 config = label;
67874d54
AS
841 for (l++; l < VDEV_LABELS; l++)
842 zio_wait(zio[l]);
3bc7e0fb
GW
843 break;
844 } else if (label_txg <= txg && label_txg > best_txg) {
845 best_txg = label_txg;
846 nvlist_free(config);
847 config = fnvlist_dup(label);
848 }
849 }
34dc7c2f 850
3bc7e0fb
GW
851 if (label != NULL) {
852 nvlist_free(label);
853 label = NULL;
34dc7c2f
BB
854 }
855 }
856
9babb374
BB
857 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
858 flags |= ZIO_FLAG_TRYHARD;
859 goto retry;
860 }
861
38a19edd
PZ
862 /*
863 * We found a valid label but it didn't pass txg restrictions.
864 */
865 if (config == NULL && label_txg != 0) {
866 vdev_dbgmsg(vd, "label discarded as txg is too large "
867 "(%llu > %llu)", (u_longlong_t)label_txg,
868 (u_longlong_t)txg);
869 }
870
67874d54
AS
871 for (int l = 0; l < VDEV_LABELS; l++) {
872 abd_free(vp_abd[l]);
873 }
34dc7c2f
BB
874
875 return (config);
876}
877
878/*
879 * Determine if a device is in use. The 'spare_guid' parameter will be filled
880 * in with the device guid if this spare is active elsewhere on the system.
881 */
882static boolean_t
883vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
884 uint64_t *spare_guid, uint64_t *l2cache_guid)
885{
886 spa_t *spa = vd->vdev_spa;
887 uint64_t state, pool_guid, device_guid, txg, spare_pool;
888 uint64_t vdtxg = 0;
889 nvlist_t *label;
890
891 if (spare_guid)
892 *spare_guid = 0ULL;
893 if (l2cache_guid)
894 *l2cache_guid = 0ULL;
895
896 /*
897 * Read the label, if any, and perform some basic sanity checks.
898 */
3bc7e0fb 899 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
34dc7c2f
BB
900 return (B_FALSE);
901
902 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
903 &vdtxg);
904
905 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
906 &state) != 0 ||
907 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
908 &device_guid) != 0) {
909 nvlist_free(label);
910 return (B_FALSE);
911 }
912
913 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
914 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
915 &pool_guid) != 0 ||
916 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
917 &txg) != 0)) {
918 nvlist_free(label);
919 return (B_FALSE);
920 }
921
922 nvlist_free(label);
923
924 /*
925 * Check to see if this device indeed belongs to the pool it claims to
926 * be a part of. The only way this is allowed is if the device is a hot
927 * spare (which we check for later on).
928 */
929 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
930 !spa_guid_exists(pool_guid, device_guid) &&
b128c09f 931 !spa_spare_exists(device_guid, NULL, NULL) &&
34dc7c2f
BB
932 !spa_l2cache_exists(device_guid, NULL))
933 return (B_FALSE);
934
935 /*
936 * If the transaction group is zero, then this an initialized (but
937 * unused) label. This is only an error if the create transaction
938 * on-disk is the same as the one we're using now, in which case the
939 * user has attempted to add the same vdev multiple times in the same
940 * transaction.
941 */
942 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
943 txg == 0 && vdtxg == crtxg)
944 return (B_TRUE);
945
946 /*
947 * Check to see if this is a spare device. We do an explicit check for
948 * spa_has_spare() here because it may be on our pending list of spares
49d42425 949 * to add.
34dc7c2f 950 */
b128c09f 951 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
34dc7c2f
BB
952 spa_has_spare(spa, device_guid)) {
953 if (spare_guid)
954 *spare_guid = device_guid;
955
956 switch (reason) {
957 case VDEV_LABEL_CREATE:
34dc7c2f
BB
958 return (B_TRUE);
959
960 case VDEV_LABEL_REPLACE:
961 return (!spa_has_spare(spa, device_guid) ||
962 spare_pool != 0ULL);
963
964 case VDEV_LABEL_SPARE:
965 return (spa_has_spare(spa, device_guid));
e75c13c3
BB
966 default:
967 break;
34dc7c2f
BB
968 }
969 }
970
971 /*
972 * Check to see if this is an l2cache device.
973 */
49d42425
FU
974 if (spa_l2cache_exists(device_guid, NULL) ||
975 spa_has_l2cache(spa, device_guid)) {
976 if (l2cache_guid)
977 *l2cache_guid = device_guid;
978
979 switch (reason) {
980 case VDEV_LABEL_CREATE:
981 return (B_TRUE);
982
983 case VDEV_LABEL_REPLACE:
984 return (!spa_has_l2cache(spa, device_guid));
985
986 case VDEV_LABEL_L2CACHE:
987 return (spa_has_l2cache(spa, device_guid));
988 default:
989 break;
990 }
991 }
34dc7c2f 992
572e2857
BB
993 /*
994 * We can't rely on a pool's state if it's been imported
995 * read-only. Instead we look to see if the pools is marked
996 * read-only in the namespace and set the state to active.
997 */
485c581c
RY
998 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
999 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
da92d5cb 1000 spa_mode(spa) == SPA_MODE_READ)
572e2857
BB
1001 state = POOL_STATE_ACTIVE;
1002
34dc7c2f
BB
1003 /*
1004 * If the device is marked ACTIVE, then this device is in use by another
1005 * pool on the system.
1006 */
1007 return (state == POOL_STATE_ACTIVE);
1008}
1009
1010/*
1011 * Initialize a vdev label. We check to make sure each leaf device is not in
1012 * use, and writable. We put down an initial label which we will later
1013 * overwrite with a complete label. Note that it's important to do this
1014 * sequentially, not in parallel, so that we catch cases of multiple use of the
1015 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1016 * itself.
1017 */
1018int
1019vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
1020{
1021 spa_t *spa = vd->vdev_spa;
1022 nvlist_t *label;
1023 vdev_phys_t *vp;
a6255b7f 1024 abd_t *vp_abd;
108a454a 1025 abd_t *bootenv;
34dc7c2f 1026 uberblock_t *ub;
a6255b7f 1027 abd_t *ub_abd;
34dc7c2f 1028 zio_t *zio;
34dc7c2f
BB
1029 char *buf;
1030 size_t buflen;
1031 int error;
d4ed6673 1032 uint64_t spare_guid = 0, l2cache_guid = 0;
b128c09f 1033 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 1034
b128c09f 1035 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 1036
1c27024e 1037 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1038 if ((error = vdev_label_init(vd->vdev_child[c],
1039 crtxg, reason)) != 0)
1040 return (error);
1041
428870ff
BB
1042 /* Track the creation time for this vdev */
1043 vd->vdev_crtxg = crtxg;
1044
dda12da9 1045 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
34dc7c2f
BB
1046 return (0);
1047
1048 /*
1049 * Dead vdevs cannot be initialized.
1050 */
1051 if (vdev_is_dead(vd))
2e528b49 1052 return (SET_ERROR(EIO));
34dc7c2f
BB
1053
1054 /*
1055 * Determine if the vdev is in use.
1056 */
428870ff 1057 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
34dc7c2f 1058 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
2e528b49 1059 return (SET_ERROR(EBUSY));
34dc7c2f 1060
34dc7c2f
BB
1061 /*
1062 * If this is a request to add or replace a spare or l2cache device
1063 * that is in use elsewhere on the system, then we must update the
1064 * guid (which was initialized to a random value) to reflect the
1065 * actual GUID (which is shared between multiple pools).
1066 */
1067 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1068 spare_guid != 0ULL) {
b128c09f 1069 uint64_t guid_delta = spare_guid - vd->vdev_guid;
34dc7c2f 1070
b128c09f 1071 vd->vdev_guid += guid_delta;
34dc7c2f 1072
1c27024e 1073 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 1074 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
1075
1076 /*
1077 * If this is a replacement, then we want to fallthrough to the
1078 * rest of the code. If we're adding a spare, then it's already
1079 * labeled appropriately and we can just return.
1080 */
1081 if (reason == VDEV_LABEL_SPARE)
1082 return (0);
428870ff
BB
1083 ASSERT(reason == VDEV_LABEL_REPLACE ||
1084 reason == VDEV_LABEL_SPLIT);
34dc7c2f
BB
1085 }
1086
1087 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1088 l2cache_guid != 0ULL) {
b128c09f 1089 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
34dc7c2f 1090
b128c09f 1091 vd->vdev_guid += guid_delta;
34dc7c2f 1092
1c27024e 1093 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
b128c09f 1094 pvd->vdev_guid_sum += guid_delta;
34dc7c2f
BB
1095
1096 /*
1097 * If this is a replacement, then we want to fallthrough to the
1098 * rest of the code. If we're adding an l2cache, then it's
1099 * already labeled appropriately and we can just return.
1100 */
1101 if (reason == VDEV_LABEL_L2CACHE)
1102 return (0);
1103 ASSERT(reason == VDEV_LABEL_REPLACE);
1104 }
1105
1106 /*
1107 * Initialize its label.
1108 */
a6255b7f
DQ
1109 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1110 abd_zero(vp_abd, sizeof (vdev_phys_t));
1111 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
1112
1113 /*
1114 * Generate a label describing the pool and our top-level vdev.
1115 * We mark it as being from txg 0 to indicate that it's not
1116 * really part of an active pool just yet. The labels will
1117 * be written again with a meaningful txg by spa_sync().
1118 */
1119 if (reason == VDEV_LABEL_SPARE ||
1120 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1121 /*
1122 * For inactive hot spares, we generate a special label that
1123 * identifies as a mutually shared hot spare. We write the
1124 * label if we are adding a hot spare, or if we are removing an
1125 * active hot spare (in which case we want to revert the
1126 * labels).
1127 */
79c76d5b 1128 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
1129
1130 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1131 spa_version(spa)) == 0);
1132 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1133 POOL_STATE_SPARE) == 0);
1134 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1135 vd->vdev_guid) == 0);
1136 } else if (reason == VDEV_LABEL_L2CACHE ||
1137 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1138 /*
1139 * For level 2 ARC devices, add a special label.
1140 */
79c76d5b 1141 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
34dc7c2f
BB
1142
1143 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1144 spa_version(spa)) == 0);
1145 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1146 POOL_STATE_L2CACHE) == 0);
1147 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1148 vd->vdev_guid) == 0);
fe4d055b
GA
1149
1150 /*
1151 * This is merely to facilitate reporting the ashift of the
1152 * cache device through zdb. The actual retrieval of the
1153 * ashift (in vdev_alloc()) uses the nvlist
1154 * spa->spa_l2cache->sav_config (populated in
1155 * spa_ld_open_aux_vdevs()).
1156 */
1157 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT,
1158 vd->vdev_ashift) == 0);
d9885b37
AH
1159
1160 /*
1161 * When spare or l2cache (aux) vdev is added during pool
1162 * creation, spa->spa_uberblock is not written until this
1163 * point. Write it on next config sync.
1164 */
1165 if (uberblock_verify(&spa->spa_uberblock))
1166 spa->spa_aux_sync_uber = B_TRUE;
34dc7c2f 1167 } else {
428870ff
BB
1168 uint64_t txg = 0ULL;
1169
1170 if (reason == VDEV_LABEL_SPLIT)
1171 txg = spa->spa_uberblock.ub_txg;
1172 label = spa_config_generate(spa, vd, txg, B_FALSE);
34dc7c2f
BB
1173
1174 /*
1175 * Add our creation time. This allows us to detect multiple
1176 * vdev uses as described above, and automatically expires if we
1177 * fail.
1178 */
1179 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1180 crtxg) == 0);
1181 }
1182
1183 buf = vp->vp_nvlist;
1184 buflen = sizeof (vp->vp_nvlist);
1185
79c76d5b 1186 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
34dc7c2f
BB
1187 if (error != 0) {
1188 nvlist_free(label);
a6255b7f 1189 abd_free(vp_abd);
34dc7c2f 1190 /* EFAULT means nvlist_pack ran out of room */
ecb2b7dc 1191 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
34dc7c2f
BB
1192 }
1193
34dc7c2f
BB
1194 /*
1195 * Initialize uberblock template.
1196 */
a6255b7f 1197 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
a6255b7f 1198 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
22c8c33a
AM
1199 abd_zero_off(ub_abd, sizeof (uberblock_t),
1200 VDEV_UBERBLOCK_RING - sizeof (uberblock_t));
a6255b7f 1201 ub = abd_to_buf(ub_abd);
34dc7c2f
BB
1202 ub->ub_txg = 0;
1203
9babb374 1204 /* Initialize the 2nd padding area. */
108a454a
PD
1205 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1206 abd_zero(bootenv, VDEV_PAD_SIZE);
9babb374 1207
34dc7c2f
BB
1208 /*
1209 * Write everything in parallel.
1210 */
9babb374 1211retry:
34dc7c2f
BB
1212 zio = zio_root(spa, NULL, NULL, flags);
1213
1c27024e 1214 for (int l = 0; l < VDEV_LABELS; l++) {
34dc7c2f 1215
a6255b7f 1216 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
1217 offsetof(vdev_label_t, vl_vdev_phys),
1218 sizeof (vdev_phys_t), NULL, NULL, flags);
1219
9babb374
BB
1220 /*
1221 * Skip the 1st padding area.
1222 * Zero out the 2nd padding area where it might have
1223 * left over data from previous filesystem format.
1224 */
108a454a
PD
1225 vdev_label_write(zio, vd, l, bootenv,
1226 offsetof(vdev_label_t, vl_be),
9babb374 1227 VDEV_PAD_SIZE, NULL, NULL, flags);
34dc7c2f 1228
a6255b7f 1229 vdev_label_write(zio, vd, l, ub_abd,
45d1cae3
BB
1230 offsetof(vdev_label_t, vl_uberblock),
1231 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
34dc7c2f
BB
1232 }
1233
1234 error = zio_wait(zio);
1235
9babb374
BB
1236 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1237 flags |= ZIO_FLAG_TRYHARD;
1238 goto retry;
1239 }
1240
34dc7c2f 1241 nvlist_free(label);
108a454a 1242 abd_free(bootenv);
a6255b7f
DQ
1243 abd_free(ub_abd);
1244 abd_free(vp_abd);
34dc7c2f
BB
1245
1246 /*
1247 * If this vdev hasn't been previously identified as a spare, then we
1248 * mark it as such only if a) we are labeling it as a spare, or b) it
1249 * exists as a spare elsewhere in the system. Do the same for
1250 * level 2 ARC devices.
1251 */
1252 if (error == 0 && !vd->vdev_isspare &&
1253 (reason == VDEV_LABEL_SPARE ||
b128c09f 1254 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
34dc7c2f
BB
1255 spa_spare_add(vd);
1256
1257 if (error == 0 && !vd->vdev_isl2cache &&
1258 (reason == VDEV_LABEL_L2CACHE ||
1259 spa_l2cache_exists(vd->vdev_guid, NULL)))
1260 spa_l2cache_add(vd);
1261
1262 return (error);
1263}
1264
108a454a
PD
1265/*
1266 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1267 * callback to finish, store our abd in the callback pointer. Otherwise, we
1268 * just free our abd and return.
1269 */
1270static void
1271vdev_label_read_bootenv_done(zio_t *zio)
1272{
1273 zio_t *rio = zio->io_private;
1274 abd_t **cbp = rio->io_private;
1275
1276 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1277
1278 if (zio->io_error == 0) {
1279 mutex_enter(&rio->io_lock);
1280 if (*cbp == NULL) {
1281 /* Will free this buffer in vdev_label_read_bootenv. */
1282 *cbp = zio->io_abd;
1283 } else {
1284 abd_free(zio->io_abd);
1285 }
1286 mutex_exit(&rio->io_lock);
1287 } else {
1288 abd_free(zio->io_abd);
1289 }
1290}
1291
1292static void
1293vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1294{
1295 for (int c = 0; c < vd->vdev_children; c++)
1296 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1297
1298 /*
1299 * We just use the first label that has a correct checksum; the
1300 * bootloader should have rewritten them all to be the same on boot,
1301 * and any changes we made since boot have been the same across all
1302 * labels.
108a454a
PD
1303 */
1304 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1db9e6e4 1305 for (int l = 0; l < VDEV_LABELS; l++) {
108a454a
PD
1306 vdev_label_read(zio, vd, l,
1307 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1308 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1309 vdev_label_read_bootenv_done, zio, flags);
1310 }
1311 }
1312}
1313
1314int
1db9e6e4 1315vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
108a454a 1316{
1db9e6e4 1317 nvlist_t *config;
108a454a
PD
1318 spa_t *spa = rvd->vdev_spa;
1319 abd_t *abd = NULL;
1320 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1321 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1322
1db9e6e4 1323 ASSERT(bootenv);
108a454a
PD
1324 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1325
1326 zio_t *zio = zio_root(spa, NULL, &abd, flags);
1327 vdev_label_read_bootenv_impl(zio, rvd, flags);
1328 int err = zio_wait(zio);
1329
1330 if (abd != NULL) {
1db9e6e4 1331 char *buf;
108a454a 1332 vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1db9e6e4
TS
1333
1334 vbe->vbe_version = ntohll(vbe->vbe_version);
1335 switch (vbe->vbe_version) {
1336 case VB_RAW:
1337 /*
1338 * if we have textual data in vbe_bootenv, create nvlist
1339 * with key "envmap".
1340 */
1341 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1342 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1343 fnvlist_add_string(bootenv, GRUB_ENVMAP,
1344 vbe->vbe_bootenv);
1345 break;
1346
1347 case VB_NVLIST:
1348 err = nvlist_unpack(vbe->vbe_bootenv,
1349 sizeof (vbe->vbe_bootenv), &config, 0);
1350 if (err == 0) {
1351 fnvlist_merge(bootenv, config);
1352 nvlist_free(config);
1353 break;
1354 }
9a70e97f 1355 zfs_fallthrough;
1db9e6e4
TS
1356 default:
1357 /* Check for FreeBSD zfs bootonce command string */
1358 buf = abd_to_buf(abd);
1359 if (*buf == '\0') {
1360 fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1361 VB_NVLIST);
1362 break;
1363 }
1364 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
108a454a 1365 }
1db9e6e4
TS
1366
1367 /*
1368 * abd was allocated in vdev_label_read_bootenv_impl()
1369 */
108a454a 1370 abd_free(abd);
1db9e6e4
TS
1371 /*
1372 * If we managed to read any successfully,
1373 * return success.
1374 */
108a454a
PD
1375 return (0);
1376 }
1377 return (err);
1378}
1379
1380int
1db9e6e4 1381vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
108a454a
PD
1382{
1383 zio_t *zio;
1384 spa_t *spa = vd->vdev_spa;
1385 vdev_boot_envblock_t *bootenv;
1386 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1db9e6e4
TS
1387 int error;
1388 size_t nvsize;
1389 char *nvbuf;
d1807f16 1390 const char *tmp;
108a454a 1391
1db9e6e4
TS
1392 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1393 if (error != 0)
1394 return (SET_ERROR(error));
1395
1396 if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
108a454a
PD
1397 return (SET_ERROR(E2BIG));
1398 }
1399
1400 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1401
1db9e6e4 1402 error = ENXIO;
108a454a 1403 for (int c = 0; c < vd->vdev_children; c++) {
1db9e6e4
TS
1404 int child_err;
1405
1406 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
108a454a
PD
1407 /*
1408 * As long as any of the disks managed to write all of their
1409 * labels successfully, return success.
1410 */
1411 if (child_err == 0)
1412 error = child_err;
1413 }
1414
1415 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1416 !vdev_writeable(vd)) {
1417 return (error);
1418 }
1419 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1420 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1421 abd_zero(abd, VDEV_PAD_SIZE);
1db9e6e4 1422
108a454a 1423 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1db9e6e4
TS
1424 nvbuf = bootenv->vbe_bootenv;
1425 nvsize = sizeof (bootenv->vbe_bootenv);
1426
1427 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1428 switch (bootenv->vbe_version) {
1429 case VB_RAW:
d1807f16
RY
1430 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) {
1431 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize);
1db9e6e4
TS
1432 }
1433 error = 0;
1434 break;
1435
1436 case VB_NVLIST:
1437 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1438 KM_SLEEP);
1439 break;
108a454a 1440
1db9e6e4
TS
1441 default:
1442 error = EINVAL;
1443 break;
1444 }
1445
1446 if (error == 0) {
1447 bootenv->vbe_version = htonll(bootenv->vbe_version);
1448 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1449 } else {
1450 abd_free(abd);
1451 return (SET_ERROR(error));
1452 }
108a454a
PD
1453
1454retry:
1455 zio = zio_root(spa, NULL, NULL, flags);
1db9e6e4 1456 for (int l = 0; l < VDEV_LABELS; l++) {
108a454a
PD
1457 vdev_label_write(zio, vd, l, abd,
1458 offsetof(vdev_label_t, vl_be),
1459 VDEV_PAD_SIZE, NULL, NULL, flags);
1460 }
1461
1462 error = zio_wait(zio);
1463 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1464 flags |= ZIO_FLAG_TRYHARD;
1465 goto retry;
1466 }
1467
1468 abd_free(abd);
1469 return (error);
1470}
1471
34dc7c2f
BB
1472/*
1473 * ==========================================================================
1474 * uberblock load/sync
1475 * ==========================================================================
1476 */
1477
1478/*
1479 * Consider the following situation: txg is safely synced to disk. We've
1480 * written the first uberblock for txg + 1, and then we lose power. When we
1481 * come back up, we fail to see the uberblock for txg + 1 because, say,
1482 * it was on a mirrored device and the replica to which we wrote txg + 1
1483 * is now offline. If we then make some changes and sync txg + 1, and then
9ae529ec 1484 * the missing replica comes back, then for a few seconds we'll have two
34dc7c2f
BB
1485 * conflicting uberblocks on disk with the same txg. The solution is simple:
1486 * among uberblocks with equal txg, choose the one with the latest timestamp.
1487 */
1488static int
ee36c709 1489vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
34dc7c2f 1490{
ca577779 1491 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
060f0226 1492
ee36c709
GN
1493 if (likely(cmp))
1494 return (cmp);
34dc7c2f 1495
ca577779 1496 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
060f0226
OF
1497 if (likely(cmp))
1498 return (cmp);
1499
1500 /*
1501 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
d0249a4b 1502 * ZFS, e.g. OpenZFS >= 0.7.
060f0226
OF
1503 *
1504 * If one ub has MMP and the other does not, they were written by
1505 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1506 * a 0 value.
1507 *
1508 * Since timestamp and txg are the same if we get this far, either is
1509 * acceptable for importing the pool.
1510 */
1511 unsigned int seq1 = 0;
1512 unsigned int seq2 = 0;
1513
1514 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1515 seq1 = MMP_SEQ(ub1);
1516
1517 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1518 seq2 = MMP_SEQ(ub2);
1519
ca577779 1520 return (TREE_CMP(seq1, seq2));
34dc7c2f
BB
1521}
1522
9ae529ec 1523struct ubl_cbdata {
5caeef02
DB
1524 uberblock_t ubl_latest; /* Most recent uberblock */
1525 uberblock_t *ubl_ubbest; /* Best uberblock (w/r/t max_txg) */
9ae529ec 1526 vdev_t *ubl_vd; /* vdev associated with the above */
9ae529ec
CS
1527};
1528
34dc7c2f
BB
1529static void
1530vdev_uberblock_load_done(zio_t *zio)
1531{
9ae529ec 1532 vdev_t *vd = zio->io_vd;
428870ff 1533 spa_t *spa = zio->io_spa;
b128c09f 1534 zio_t *rio = zio->io_private;
a6255b7f 1535 uberblock_t *ub = abd_to_buf(zio->io_abd);
9ae529ec 1536 struct ubl_cbdata *cbp = rio->io_private;
34dc7c2f 1537
9ae529ec 1538 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
34dc7c2f
BB
1539
1540 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
b128c09f 1541 mutex_enter(&rio->io_lock);
5caeef02
DB
1542 if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) {
1543 cbp->ubl_latest = *ub;
1544 }
428870ff 1545 if (ub->ub_txg <= spa->spa_load_max_txg &&
9ae529ec
CS
1546 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1547 /*
3bc7e0fb
GW
1548 * Keep track of the vdev in which this uberblock
1549 * was found. We will use this information later
1550 * to obtain the config nvlist associated with
9ae529ec
CS
1551 * this uberblock.
1552 */
1553 *cbp->ubl_ubbest = *ub;
1554 cbp->ubl_vd = vd;
9ae529ec 1555 }
b128c09f 1556 mutex_exit(&rio->io_lock);
34dc7c2f
BB
1557 }
1558
a6255b7f 1559 abd_free(zio->io_abd);
34dc7c2f
BB
1560}
1561
9ae529ec
CS
1562static void
1563vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1564 struct ubl_cbdata *cbp)
34dc7c2f 1565{
379ca9cf 1566 for (int c = 0; c < vd->vdev_children; c++)
9ae529ec 1567 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
34dc7c2f 1568
b2255edc
BB
1569 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1570 vd->vdev_ops != &vdev_draid_spare_ops) {
379ca9cf
OF
1571 for (int l = 0; l < VDEV_LABELS; l++) {
1572 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
b128c09f 1573 vdev_label_read(zio, vd, l,
a6255b7f
DQ
1574 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1575 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
b128c09f
BB
1576 VDEV_UBERBLOCK_SIZE(vd),
1577 vdev_uberblock_load_done, zio, flags);
1578 }
34dc7c2f
BB
1579 }
1580 }
9ae529ec
CS
1581}
1582
1583/*
1584 * Reads the 'best' uberblock from disk along with its associated
1585 * configuration. First, we read the uberblock array of each label of each
1586 * vdev, keeping track of the uberblock with the highest txg in each array.
3bc7e0fb 1587 * Then, we read the configuration from the same vdev as the best uberblock.
9ae529ec
CS
1588 */
1589void
1590vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1591{
9ae529ec
CS
1592 zio_t *zio;
1593 spa_t *spa = rvd->vdev_spa;
1594 struct ubl_cbdata cb;
1595 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1596 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1597
1598 ASSERT(ub);
1599 ASSERT(config);
b128c09f 1600
861166b0 1601 memset(ub, 0, sizeof (uberblock_t));
5caeef02 1602 memset(&cb, 0, sizeof (cb));
9ae529ec
CS
1603 *config = NULL;
1604
1605 cb.ubl_ubbest = ub;
9ae529ec
CS
1606
1607 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1608 zio = zio_root(spa, NULL, &cb, flags);
1609 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1610 (void) zio_wait(zio);
3bc7e0fb
GW
1611
1612 /*
1613 * It's possible that the best uberblock was discovered on a label
1614 * that has a configuration which was written in a future txg.
1615 * Search all labels on this vdev to find the configuration that
1616 * matches the txg for our uberblock.
1617 */
4a0ee12a
PZ
1618 if (cb.ubl_vd != NULL) {
1619 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1620 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1621
5caeef02
DB
1622 if (ub->ub_raidz_reflow_info !=
1623 cb.ubl_latest.ub_raidz_reflow_info) {
1624 vdev_dbgmsg(cb.ubl_vd,
1625 "spa=%s best uberblock (txg=%llu info=0x%llx) "
1626 "has different raidz_reflow_info than latest "
1627 "uberblock (txg=%llu info=0x%llx)",
1628 spa->spa_name,
1629 (u_longlong_t)ub->ub_txg,
1630 (u_longlong_t)ub->ub_raidz_reflow_info,
1631 (u_longlong_t)cb.ubl_latest.ub_txg,
1632 (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info);
1633 memset(ub, 0, sizeof (uberblock_t));
1634 spa_config_exit(spa, SCL_ALL, FTAG);
1635 return;
1636 }
1637
3bc7e0fb 1638 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
6cb8e530
PZ
1639 if (*config == NULL && spa->spa_extreme_rewind) {
1640 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1641 "Trying again without txg restrictions.");
1642 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1643 }
4a0ee12a
PZ
1644 if (*config == NULL) {
1645 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1646 }
1647 }
9ae529ec 1648 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1649}
1650
9d3f7b87
OF
1651/*
1652 * For use when a leaf vdev is expanded.
1653 * The location of labels 2 and 3 changed, and at the new location the
1654 * uberblock rings are either empty or contain garbage. The sync will write
1655 * new configs there because the vdev is dirty, but expansion also needs the
1656 * uberblock rings copied. Read them from label 0 which did not move.
1657 *
1658 * Since the point is to populate labels {2,3} with valid uberblocks,
1659 * we zero uberblocks we fail to read or which are not valid.
1660 */
1661
1662static void
1663vdev_copy_uberblocks(vdev_t *vd)
1664{
1665 abd_t *ub_abd;
1666 zio_t *write_zio;
1667 int locks = (SCL_L2ARC | SCL_ZIO);
1668 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1669 ZIO_FLAG_SPECULATIVE;
1670
1671 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1672 SCL_STATE);
1673 ASSERT(vd->vdev_ops->vdev_op_leaf);
1674
b2255edc
BB
1675 /*
1676 * No uberblocks are stored on distributed spares, they may be
1677 * safely skipped when expanding a leaf vdev.
1678 */
1679 if (vd->vdev_ops == &vdev_draid_spare_ops)
1680 return;
1681
9d3f7b87
OF
1682 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1683
eea2e241 1684 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
9d3f7b87
OF
1685
1686 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1687 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1688 const int src_label = 0;
1689 zio_t *zio;
1690
1691 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1692 vdev_label_read(zio, vd, src_label, ub_abd,
1693 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1694 NULL, NULL, flags);
1695
1696 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1697 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1698
1699 for (int l = 2; l < VDEV_LABELS; l++)
1700 vdev_label_write(write_zio, vd, l, ub_abd,
1701 VDEV_UBERBLOCK_OFFSET(vd, n),
1702 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1703 flags | ZIO_FLAG_DONT_PROPAGATE);
1704 }
1705 (void) zio_wait(write_zio);
1706
1707 spa_config_exit(vd->vdev_spa, locks, FTAG);
1708
1709 abd_free(ub_abd);
1710}
1711
34dc7c2f
BB
1712/*
1713 * On success, increment root zio's count of good writes.
1714 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1715 */
1716static void
1717vdev_uberblock_sync_done(zio_t *zio)
1718{
1719 uint64_t *good_writes = zio->io_private;
1720
1721 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
bc89ac84 1722 atomic_inc_64(good_writes);
34dc7c2f
BB
1723}
1724
1725/*
1726 * Write the uberblock to all labels of all leaves of the specified vdev.
1727 */
1728static void
7f96cc23
MA
1729vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1730 uberblock_t *ub, vdev_t *vd, int flags)
34dc7c2f 1731{
7f96cc23
MA
1732 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1733 vdev_uberblock_sync(zio, good_writes,
1734 ub, vd->vdev_child[c], flags);
1735 }
34dc7c2f
BB
1736
1737 if (!vd->vdev_ops->vdev_op_leaf)
1738 return;
1739
b128c09f 1740 if (!vdev_writeable(vd))
34dc7c2f
BB
1741 return;
1742
b2255edc
BB
1743 /*
1744 * There's no need to write uberblocks to a distributed spare, they
1745 * are already stored on all the leaves of the parent dRAID. For
1746 * this same reason vdev_uberblock_load_impl() skips distributed
1747 * spares when reading uberblocks.
1748 */
1749 if (vd->vdev_ops == &vdev_draid_spare_ops)
1750 return;
1751
9d3f7b87
OF
1752 /* If the vdev was expanded, need to copy uberblock rings. */
1753 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1754 vd->vdev_copy_uberblocks == B_TRUE) {
1755 vdev_copy_uberblocks(vd);
1756 vd->vdev_copy_uberblocks = B_FALSE;
1757 }
1758
5caeef02
DB
1759 /*
1760 * We chose a slot based on the txg. If this uberblock has a special
1761 * RAIDZ expansion state, then it is essentially an update of the
1762 * current uberblock (it has the same txg). However, the current
1763 * state is committed, so we want to write it to a different slot. If
1764 * we overwrote the same slot, and we lose power during the uberblock
1765 * write, and the disk does not do single-sector overwrites
1766 * atomically (even though it is required to - i.e. we should see
1767 * either the old or the new uberblock), then we could lose this
1768 * txg's uberblock. Rewinding to the previous txg's uberblock may not
1769 * be possible because RAIDZ expansion may have already overwritten
1770 * some of the data, so we need the progress indicator in the
1771 * uberblock.
1772 */
379ca9cf 1773 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
5caeef02
DB
1774 int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) %
1775 (VDEV_UBERBLOCK_COUNT(vd) - m);
34dc7c2f 1776
a6255b7f 1777 /* Copy the uberblock_t into the ABD */
379ca9cf 1778 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
a6255b7f 1779 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
22c8c33a
AM
1780 abd_zero_off(ub_abd, sizeof (uberblock_t),
1781 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t));
34dc7c2f 1782
379ca9cf 1783 for (int l = 0; l < VDEV_LABELS; l++)
a6255b7f 1784 vdev_label_write(zio, vd, l, ub_abd,
b128c09f 1785 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
7f96cc23 1786 vdev_uberblock_sync_done, good_writes,
b128c09f 1787 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f 1788
a6255b7f 1789 abd_free(ub_abd);
34dc7c2f
BB
1790}
1791
e49f1e20 1792/* Sync the uberblocks to all vdevs in svd[] */
5caeef02 1793int
34dc7c2f
BB
1794vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1795{
1796 spa_t *spa = svd[0]->vdev_spa;
34dc7c2f
BB
1797 zio_t *zio;
1798 uint64_t good_writes = 0;
1799
7f96cc23 1800 zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 1801
1c27024e 1802 for (int v = 0; v < svdcount; v++)
7f96cc23 1803 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
34dc7c2f 1804
d9885b37
AH
1805 if (spa->spa_aux_sync_uber) {
1806 for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1807 vdev_uberblock_sync(zio, &good_writes, ub,
1808 spa->spa_spares.sav_vdevs[v], flags);
1809 }
1810 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1811 vdev_uberblock_sync(zio, &good_writes, ub,
1812 spa->spa_l2cache.sav_vdevs[v], flags);
1813 }
1814 }
34dc7c2f
BB
1815 (void) zio_wait(zio);
1816
1817 /*
1818 * Flush the uberblocks to disk. This ensures that the odd labels
1819 * are no longer needed (because the new uberblocks and the even
1820 * labels are safely on disk), so it is safe to overwrite them.
1821 */
1822 zio = zio_root(spa, NULL, NULL, flags);
1823
a1d477c2
MA
1824 for (int v = 0; v < svdcount; v++) {
1825 if (vdev_writeable(svd[v])) {
1826 zio_flush(zio, svd[v]);
1827 }
1828 }
d9885b37
AH
1829 if (spa->spa_aux_sync_uber) {
1830 spa->spa_aux_sync_uber = B_FALSE;
1831 for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1832 if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) {
1833 zio_flush(zio, spa->spa_spares.sav_vdevs[v]);
1834 }
1835 }
1836 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1837 if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) {
1838 zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]);
1839 }
1840 }
1841 }
34dc7c2f
BB
1842
1843 (void) zio_wait(zio);
1844
1845 return (good_writes >= 1 ? 0 : EIO);
1846}
1847
1848/*
1849 * On success, increment the count of good writes for our top-level vdev.
1850 */
1851static void
1852vdev_label_sync_done(zio_t *zio)
1853{
1854 uint64_t *good_writes = zio->io_private;
1855
1856 if (zio->io_error == 0)
bc89ac84 1857 atomic_inc_64(good_writes);
34dc7c2f
BB
1858}
1859
1860/*
1861 * If there weren't enough good writes, indicate failure to the parent.
1862 */
1863static void
1864vdev_label_sync_top_done(zio_t *zio)
1865{
1866 uint64_t *good_writes = zio->io_private;
1867
1868 if (*good_writes == 0)
2e528b49 1869 zio->io_error = SET_ERROR(EIO);
34dc7c2f
BB
1870
1871 kmem_free(good_writes, sizeof (uint64_t));
1872}
1873
b128c09f
BB
1874/*
1875 * We ignore errors for log and cache devices, simply free the private data.
1876 */
1877static void
1878vdev_label_sync_ignore_done(zio_t *zio)
1879{
1880 kmem_free(zio->io_private, sizeof (uint64_t));
1881}
1882
34dc7c2f
BB
1883/*
1884 * Write all even or odd labels to all leaves of the specified vdev.
1885 */
1886static void
7f96cc23
MA
1887vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1888 vdev_t *vd, int l, uint64_t txg, int flags)
34dc7c2f
BB
1889{
1890 nvlist_t *label;
1891 vdev_phys_t *vp;
a6255b7f 1892 abd_t *vp_abd;
34dc7c2f
BB
1893 char *buf;
1894 size_t buflen;
34dc7c2f 1895
7f96cc23
MA
1896 for (int c = 0; c < vd->vdev_children; c++) {
1897 vdev_label_sync(zio, good_writes,
1898 vd->vdev_child[c], l, txg, flags);
1899 }
34dc7c2f
BB
1900
1901 if (!vd->vdev_ops->vdev_op_leaf)
1902 return;
1903
b128c09f 1904 if (!vdev_writeable(vd))
34dc7c2f
BB
1905 return;
1906
b2255edc
BB
1907 /*
1908 * The top-level config never needs to be written to a distributed
1909 * spare. When read vdev_dspare_label_read_config() will generate
1910 * the config for the vdev_label_read_config().
1911 */
1912 if (vd->vdev_ops == &vdev_draid_spare_ops)
1913 return;
1914
34dc7c2f
BB
1915 /*
1916 * Generate a label describing the top-level config to which we belong.
1917 */
1918 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1919
a6255b7f
DQ
1920 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1921 abd_zero(vp_abd, sizeof (vdev_phys_t));
1922 vp = abd_to_buf(vp_abd);
34dc7c2f
BB
1923
1924 buf = vp->vp_nvlist;
1925 buflen = sizeof (vp->vp_nvlist);
1926
79c76d5b 1927 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
34dc7c2f 1928 for (; l < VDEV_LABELS; l += 2) {
a6255b7f 1929 vdev_label_write(zio, vd, l, vp_abd,
34dc7c2f
BB
1930 offsetof(vdev_label_t, vl_vdev_phys),
1931 sizeof (vdev_phys_t),
7f96cc23 1932 vdev_label_sync_done, good_writes,
b128c09f 1933 flags | ZIO_FLAG_DONT_PROPAGATE);
34dc7c2f
BB
1934 }
1935 }
1936
a6255b7f 1937 abd_free(vp_abd);
34dc7c2f
BB
1938 nvlist_free(label);
1939}
1940
65c7cc49 1941static int
b128c09f 1942vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
34dc7c2f 1943{
b128c09f 1944 list_t *dl = &spa->spa_config_dirty_list;
34dc7c2f
BB
1945 vdev_t *vd;
1946 zio_t *zio;
1947 int error;
1948
1949 /*
1950 * Write the new labels to disk.
1951 */
1952 zio = zio_root(spa, NULL, NULL, flags);
1953
1954 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
d6320ddb 1955 uint64_t *good_writes;
428870ff
BB
1956
1957 ASSERT(!vd->vdev_ishole);
1958
79c76d5b 1959 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1c27024e 1960 zio_t *vio = zio_null(zio, spa, NULL,
b128c09f
BB
1961 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1962 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
34dc7c2f 1963 good_writes, flags);
7f96cc23 1964 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
34dc7c2f
BB
1965 zio_nowait(vio);
1966 }
1967
1968 error = zio_wait(zio);
1969
1970 /*
1971 * Flush the new labels to disk.
1972 */
1973 zio = zio_root(spa, NULL, NULL, flags);
1974
1975 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1976 zio_flush(zio, vd);
1977
1978 (void) zio_wait(zio);
1979
1980 return (error);
1981}
1982
1983/*
1984 * Sync the uberblock and any changes to the vdev configuration.
1985 *
1986 * The order of operations is carefully crafted to ensure that
1987 * if the system panics or loses power at any time, the state on disk
1988 * is still transactionally consistent. The in-line comments below
1989 * describe the failure semantics at each stage.
1990 *
1991 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1992 * at any time, you can just call it again, and it will resume its work.
1993 */
1994int
b6fcb792 1995vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
34dc7c2f
BB
1996{
1997 spa_t *spa = svd[0]->vdev_spa;
1998 uberblock_t *ub = &spa->spa_uberblock;
b6fcb792 1999 int error = 0;
b128c09f 2000 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
34dc7c2f 2001
d2734cce 2002 ASSERT(svdcount != 0);
b6fcb792 2003retry:
9babb374
BB
2004 /*
2005 * Normally, we don't want to try too hard to write every label and
2006 * uberblock. If there is a flaky disk, we don't want the rest of the
2007 * sync process to block while we retry. But if we can't write a
2008 * single label out, we should retry with ZIO_FLAG_TRYHARD before
2009 * bailing out and declaring the pool faulted.
2010 */
b6fcb792
BB
2011 if (error != 0) {
2012 if ((flags & ZIO_FLAG_TRYHARD) != 0)
2013 return (error);
9babb374 2014 flags |= ZIO_FLAG_TRYHARD;
b6fcb792 2015 }
9babb374 2016
34dc7c2f
BB
2017 ASSERT(ub->ub_txg <= txg);
2018
2019 /*
2020 * If this isn't a resync due to I/O errors,
2021 * and nothing changed in this transaction group,
2022 * and the vdev configuration hasn't changed,
2023 * then there's nothing to do.
2024 */
379ca9cf
OF
2025 if (ub->ub_txg < txg) {
2026 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
2027 txg, spa->spa_mmp.mmp_delay);
2028
2029 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
2030 return (0);
2031 }
34dc7c2f
BB
2032
2033 if (txg > spa_freeze_txg(spa))
2034 return (0);
2035
2036 ASSERT(txg <= spa->spa_final_txg);
2037
2038 /*
2039 * Flush the write cache of every disk that's been written to
2040 * in this transaction group. This ensures that all blocks
2041 * written in this txg will be committed to stable storage
2042 * before any uberblock that references them.
2043 */
d2734cce 2044 zio_t *zio = zio_root(spa, NULL, NULL, flags);
34dc7c2f 2045
d2734cce
SD
2046 for (vdev_t *vd =
2047 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
34dc7c2f
BB
2048 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
2049 zio_flush(zio, vd);
2050
2051 (void) zio_wait(zio);
2052
2053 /*
2054 * Sync out the even labels (L0, L2) for every dirty vdev. If the
2055 * system dies in the middle of this process, that's OK: all of the
2056 * even labels that made it to disk will be newer than any uberblock,
2057 * and will therefore be considered invalid. The odd labels (L1, L3),
2058 * which have not yet been touched, will still be valid. We flush
2059 * the new labels to disk to ensure that all even-label updates
2060 * are committed to stable storage before the uberblock update.
2061 */
d2734cce
SD
2062 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
2063 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2064 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2065 "for pool '%s' when syncing out the even labels "
2066 "of dirty vdevs", error, spa_name(spa));
2067 }
b6fcb792 2068 goto retry;
d2734cce 2069 }
34dc7c2f
BB
2070
2071 /*
2072 * Sync the uberblocks to all vdevs in svd[].
2073 * If the system dies in the middle of this step, there are two cases
2074 * to consider, and the on-disk state is consistent either way:
2075 *
2076 * (1) If none of the new uberblocks made it to disk, then the
2077 * previous uberblock will be the newest, and the odd labels
2078 * (which had not yet been touched) will be valid with respect
2079 * to that uberblock.
2080 *
2081 * (2) If one or more new uberblocks made it to disk, then they
2082 * will be the newest, and the even labels (which had all
2083 * been successfully committed) will be valid with respect
2084 * to the new uberblocks.
2085 */
d2734cce
SD
2086 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
2087 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2088 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2089 "%d for pool '%s'", error, spa_name(spa));
2090 }
b6fcb792 2091 goto retry;
d2734cce 2092 }
34dc7c2f 2093
379ca9cf
OF
2094 if (spa_multihost(spa))
2095 mmp_update_uberblock(spa, ub);
2096
34dc7c2f
BB
2097 /*
2098 * Sync out odd labels for every dirty vdev. If the system dies
2099 * in the middle of this process, the even labels and the new
2100 * uberblocks will suffice to open the pool. The next time
2101 * the pool is opened, the first thing we'll do -- before any
2102 * user data is modified -- is mark every vdev dirty so that
2103 * all labels will be brought up to date. We flush the new labels
2104 * to disk to ensure that all odd-label updates are committed to
2105 * stable storage before the next transaction group begins.
2106 */
d2734cce
SD
2107 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
2108 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2109 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2110 "for pool '%s' when syncing out the odd labels of "
2111 "dirty vdevs", error, spa_name(spa));
2112 }
b6fcb792 2113 goto retry;
d2734cce 2114 }
b6fcb792
BB
2115
2116 return (0);
34dc7c2f 2117}