]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_removal.c
Simplify spa_sync by breaking it up to smaller functions
[mirror_zfs.git] / module / zfs / vdev_removal.c
CommitLineData
a1d477c2
MA
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
cc99f275 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
a1d477c2
MA
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/zap.h>
32#include <sys/vdev_impl.h>
33#include <sys/metaslab.h>
34#include <sys/metaslab_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/txg.h>
37#include <sys/avl.h>
38#include <sys/bpobj.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_dir.h>
42#include <sys/arc.h>
43#include <sys/zfeature.h>
44#include <sys/vdev_indirect_births.h>
45#include <sys/vdev_indirect_mapping.h>
46#include <sys/abd.h>
619f0976 47#include <sys/vdev_initialize.h>
a1d477c2
MA
48#include <sys/trace_vdev.h>
49
50/*
51 * This file contains the necessary logic to remove vdevs from a
52 * storage pool. Currently, the only devices that can be removed
53 * are log, cache, and spare devices; and top level vdevs from a pool
54 * w/o raidz or mirrors. (Note that members of a mirror can be removed
55 * by the detach operation.)
56 *
57 * Log vdevs are removed by evacuating them and then turning the vdev
58 * into a hole vdev while holding spa config locks.
59 *
60 * Top level vdevs are removed and converted into an indirect vdev via
61 * a multi-step process:
62 *
63 * - Disable allocations from this device (spa_vdev_remove_top).
64 *
65 * - From a new thread (spa_vdev_remove_thread), copy data from
66 * the removing vdev to a different vdev. The copy happens in open
67 * context (spa_vdev_copy_impl) and issues a sync task
68 * (vdev_mapping_sync) so the sync thread can update the partial
69 * indirect mappings in core and on disk.
70 *
71 * - If a free happens during a removal, it is freed from the
72 * removing vdev, and if it has already been copied, from the new
73 * location as well (free_from_removing_vdev).
74 *
75 * - After the removal is completed, the copy thread converts the vdev
76 * into an indirect vdev (vdev_remove_complete) before instructing
77 * the sync thread to destroy the space maps and finish the removal
78 * (spa_finish_removal).
79 */
80
81typedef struct vdev_copy_arg {
82 metaslab_t *vca_msp;
83 uint64_t vca_outstanding_bytes;
7c9a4292
BB
84 uint64_t vca_read_error_bytes;
85 uint64_t vca_write_error_bytes;
a1d477c2
MA
86 kcondvar_t vca_cv;
87 kmutex_t vca_lock;
88} vdev_copy_arg_t;
89
a1d477c2 90/*
9e052db4
MA
91 * The maximum amount of memory we can use for outstanding i/o while
92 * doing a device removal. This determines how much i/o we can have
93 * in flight concurrently.
a1d477c2 94 */
9e052db4 95int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
a1d477c2
MA
96
97/*
98 * The largest contiguous segment that we will attempt to allocate when
99 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
100 * there is a performance problem with attempting to allocate large blocks,
101 * consider decreasing this.
102 */
103int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
104
7c9a4292
BB
105/*
106 * Ignore hard IO errors during device removal. When set if a device
107 * encounters hard IO error during the removal process the removal will
108 * not be cancelled. This can result in a normally recoverable block
109 * becoming permanently damaged and is not recommended.
110 */
111int zfs_removal_ignore_errors = 0;
112
0dc2f70c
MA
113/*
114 * Allow a remap segment to span free chunks of at most this size. The main
115 * impact of a larger span is that we will read and write larger, more
116 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
117 * for iops. The value here was chosen to align with
118 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
119 * reads (but there's no reason it has to be the same).
120 *
121 * Additionally, a higher span will have the following relatively minor
122 * effects:
123 * - the mapping will be smaller, since one entry can cover more allocated
124 * segments
125 * - more of the fragmentation in the removing device will be preserved
126 * - we'll do larger allocations, which may fail and fall back on smaller
127 * allocations
128 */
129int vdev_removal_max_span = 32 * 1024;
130
d2734cce
SD
131/*
132 * This is used by the test suite so that it can ensure that certain
133 * actions happen while in the middle of a removal.
134 */
cef48f14 135int zfs_removal_suspend_progress = 0;
d2734cce 136
a1d477c2
MA
137#define VDEV_REMOVAL_ZAP_OBJS "lzap"
138
139static void spa_vdev_remove_thread(void *arg);
7c9a4292 140static int spa_vdev_remove_cancel_impl(spa_t *spa);
a1d477c2
MA
141
142static void
143spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
144{
145 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
146 DMU_POOL_DIRECTORY_OBJECT,
147 DMU_POOL_REMOVING, sizeof (uint64_t),
148 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
149 &spa->spa_removing_phys, tx));
150}
151
152static nvlist_t *
153spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
154{
155 for (int i = 0; i < count; i++) {
156 uint64_t guid =
157 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
158
159 if (guid == target_guid)
160 return (nvpp[i]);
161 }
162
163 return (NULL);
164}
165
166static void
167spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
168 nvlist_t *dev_to_remove)
169{
170 nvlist_t **newdev = NULL;
171
172 if (count > 1)
173 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
174
175 for (int i = 0, j = 0; i < count; i++) {
176 if (dev[i] == dev_to_remove)
177 continue;
178 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
179 }
180
181 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
182 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
183
184 for (int i = 0; i < count - 1; i++)
185 nvlist_free(newdev[i]);
186
187 if (count > 1)
188 kmem_free(newdev, (count - 1) * sizeof (void *));
189}
190
191static spa_vdev_removal_t *
192spa_vdev_removal_create(vdev_t *vd)
193{
194 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
195 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
196 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
197 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
9e052db4 198 svr->svr_vdev_id = vd->vdev_id;
a1d477c2
MA
199
200 for (int i = 0; i < TXG_SIZE; i++) {
201 svr->svr_frees[i] = range_tree_create(NULL, NULL);
202 list_create(&svr->svr_new_segments[i],
203 sizeof (vdev_indirect_mapping_entry_t),
204 offsetof(vdev_indirect_mapping_entry_t, vime_node));
205 }
206
207 return (svr);
208}
209
210void
211spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
212{
213 for (int i = 0; i < TXG_SIZE; i++) {
214 ASSERT0(svr->svr_bytes_done[i]);
215 ASSERT0(svr->svr_max_offset_to_sync[i]);
216 range_tree_destroy(svr->svr_frees[i]);
217 list_destroy(&svr->svr_new_segments[i]);
218 }
219
220 range_tree_destroy(svr->svr_allocd_segs);
221 mutex_destroy(&svr->svr_lock);
222 cv_destroy(&svr->svr_cv);
223 kmem_free(svr, sizeof (*svr));
224}
225
226/*
227 * This is called as a synctask in the txg in which we will mark this vdev
228 * as removing (in the config stored in the MOS).
229 *
230 * It begins the evacuation of a toplevel vdev by:
231 * - initializing the spa_removing_phys which tracks this removal
232 * - computing the amount of space to remove for accounting purposes
233 * - dirtying all dbufs in the spa_config_object
234 * - creating the spa_vdev_removal
235 * - starting the spa_vdev_remove_thread
236 */
237static void
238vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
239{
9e052db4
MA
240 int vdev_id = (uintptr_t)arg;
241 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
242 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
a1d477c2 243 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
a1d477c2
MA
244 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
245 spa_vdev_removal_t *svr = NULL;
246 ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
247
248 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
249 svr = spa_vdev_removal_create(vd);
250
251 ASSERT(vd->vdev_removing);
252 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
253
254 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
255 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
256 /*
257 * By activating the OBSOLETE_COUNTS feature, we prevent
258 * the pool from being downgraded and ensure that the
259 * refcounts are precise.
260 */
261 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
262 uint64_t one = 1;
263 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
264 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
265 &one, tx));
27f80e85
BB
266 ASSERTV(boolean_t are_precise);
267 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
268 ASSERT3B(are_precise, ==, B_TRUE);
a1d477c2
MA
269 }
270
271 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
272 vd->vdev_indirect_mapping =
273 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
274 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
275 vd->vdev_indirect_births =
276 vdev_indirect_births_open(mos, vic->vic_births_object);
277 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
278 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
279 spa->spa_removing_phys.sr_end_time = 0;
280 spa->spa_removing_phys.sr_state = DSS_SCANNING;
281 spa->spa_removing_phys.sr_to_copy = 0;
282 spa->spa_removing_phys.sr_copied = 0;
283
284 /*
285 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
286 * there may be space in the defer tree, which is free, but still
287 * counted in vs_alloc.
288 */
289 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
290 metaslab_t *ms = vd->vdev_ms[i];
291 if (ms->ms_sm == NULL)
292 continue;
293
294 /*
295 * Sync tasks happen before metaslab_sync(), therefore
296 * smp_alloc and sm_alloc must be the same.
297 */
298 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
299 ms->ms_sm->sm_phys->smp_alloc);
300
301 spa->spa_removing_phys.sr_to_copy +=
302 space_map_allocated(ms->ms_sm);
303
304 /*
305 * Space which we are freeing this txg does not need to
306 * be copied.
307 */
308 spa->spa_removing_phys.sr_to_copy -=
d2734cce 309 range_tree_space(ms->ms_freeing);
a1d477c2 310
d2734cce 311 ASSERT0(range_tree_space(ms->ms_freed));
a1d477c2 312 for (int t = 0; t < TXG_SIZE; t++)
d2734cce 313 ASSERT0(range_tree_space(ms->ms_allocating[t]));
a1d477c2
MA
314 }
315
316 /*
317 * Sync tasks are called before metaslab_sync(), so there should
318 * be no already-synced metaslabs in the TXG_CLEAN list.
319 */
320 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
321
322 spa_sync_removing_state(spa, tx);
323
324 /*
325 * All blocks that we need to read the most recent mapping must be
326 * stored on concrete vdevs. Therefore, we must dirty anything that
327 * is read before spa_remove_init(). Specifically, the
328 * spa_config_object. (Note that although we already modified the
329 * spa_config_object in spa_sync_removing_state, that may not have
330 * modified all blocks of the object.)
331 */
332 dmu_object_info_t doi;
333 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
334 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
335 dmu_buf_t *dbuf;
336 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
337 offset, FTAG, &dbuf, 0));
338 dmu_buf_will_dirty(dbuf, tx);
339 offset += dbuf->db_size;
340 dmu_buf_rele(dbuf, FTAG);
341 }
342
343 /*
344 * Now that we've allocated the im_object, dirty the vdev to ensure
345 * that the object gets written to the config on disk.
346 */
347 vdev_config_dirty(vd);
348
349 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
350 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
351 vic->vic_mapping_object);
352
353 spa_history_log_internal(spa, "vdev remove started", tx,
354 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
355 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
356 /*
357 * Setting spa_vdev_removal causes subsequent frees to call
358 * free_from_removing_vdev(). Note that we don't need any locking
359 * because we are the sync thread, and metaslab_free_impl() is only
360 * called from syncing context (potentially from a zio taskq thread,
361 * but in any case only when there are outstanding free i/os, which
362 * there are not).
363 */
364 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
365 spa->spa_vdev_removal = svr;
366 svr->svr_thread = thread_create(NULL, 0,
9e052db4 367 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
a1d477c2
MA
368}
369
370/*
371 * When we are opening a pool, we must read the mapping for each
372 * indirect vdev in order from most recently removed to least
373 * recently removed. We do this because the blocks for the mapping
374 * of older indirect vdevs may be stored on more recently removed vdevs.
375 * In order to read each indirect mapping object, we must have
376 * initialized all more recently removed vdevs.
377 */
378int
379spa_remove_init(spa_t *spa)
380{
381 int error;
382
383 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
384 DMU_POOL_DIRECTORY_OBJECT,
385 DMU_POOL_REMOVING, sizeof (uint64_t),
386 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
387 &spa->spa_removing_phys);
388
389 if (error == ENOENT) {
390 spa->spa_removing_phys.sr_state = DSS_NONE;
391 spa->spa_removing_phys.sr_removing_vdev = -1;
392 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
20507534 393 spa->spa_indirect_vdevs_loaded = B_TRUE;
a1d477c2
MA
394 return (0);
395 } else if (error != 0) {
396 return (error);
397 }
398
399 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
400 /*
401 * We are currently removing a vdev. Create and
402 * initialize a spa_vdev_removal_t from the bonus
403 * buffer of the removing vdevs vdev_im_object, and
404 * initialize its partial mapping.
405 */
406 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
407 vdev_t *vd = vdev_lookup_top(spa,
408 spa->spa_removing_phys.sr_removing_vdev);
a1d477c2 409
9e052db4
MA
410 if (vd == NULL) {
411 spa_config_exit(spa, SCL_STATE, FTAG);
a1d477c2 412 return (EINVAL);
9e052db4 413 }
a1d477c2
MA
414
415 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
416
417 ASSERT(vdev_is_concrete(vd));
418 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
9e052db4
MA
419 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
420 ASSERT(vd->vdev_removing);
a1d477c2
MA
421
422 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
423 spa->spa_meta_objset, vic->vic_mapping_object);
424 vd->vdev_indirect_births = vdev_indirect_births_open(
425 spa->spa_meta_objset, vic->vic_births_object);
9e052db4 426 spa_config_exit(spa, SCL_STATE, FTAG);
a1d477c2
MA
427
428 spa->spa_vdev_removal = svr;
429 }
430
431 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
432 uint64_t indirect_vdev_id =
433 spa->spa_removing_phys.sr_prev_indirect_vdev;
434 while (indirect_vdev_id != UINT64_MAX) {
435 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
436 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
437
438 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
439 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
440 spa->spa_meta_objset, vic->vic_mapping_object);
441 vd->vdev_indirect_births = vdev_indirect_births_open(
442 spa->spa_meta_objset, vic->vic_births_object);
443
444 indirect_vdev_id = vic->vic_prev_indirect_vdev;
445 }
446 spa_config_exit(spa, SCL_STATE, FTAG);
447
448 /*
449 * Now that we've loaded all the indirect mappings, we can allow
450 * reads from other blocks (e.g. via predictive prefetch).
451 */
452 spa->spa_indirect_vdevs_loaded = B_TRUE;
453 return (0);
454}
455
456void
457spa_restart_removal(spa_t *spa)
458{
459 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
460
461 if (svr == NULL)
462 return;
463
464 /*
465 * In general when this function is called there is no
466 * removal thread running. The only scenario where this
467 * is not true is during spa_import() where this function
468 * is called twice [once from spa_import_impl() and
469 * spa_async_resume()]. Thus, in the scenario where we
470 * import a pool that has an ongoing removal we don't
471 * want to spawn a second thread.
472 */
473 if (svr->svr_thread != NULL)
474 return;
475
476 if (!spa_writeable(spa))
477 return;
478
9e052db4
MA
479 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
480 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
a1d477c2
MA
481 0, &p0, TS_RUN, minclsyspri);
482}
483
484/*
485 * Process freeing from a device which is in the middle of being removed.
486 * We must handle this carefully so that we attempt to copy freed data,
487 * and we correctly free already-copied data.
488 */
489void
d2734cce 490free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
a1d477c2
MA
491{
492 spa_t *spa = vd->vdev_spa;
493 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
494 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
d2734cce 495 uint64_t txg = spa_syncing_txg(spa);
a1d477c2
MA
496 uint64_t max_offset_yet = 0;
497
498 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
499 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
500 vdev_indirect_mapping_object(vim));
9e052db4 501 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
a1d477c2
MA
502
503 mutex_enter(&svr->svr_lock);
504
505 /*
506 * Remove the segment from the removing vdev's spacemap. This
507 * ensures that we will not attempt to copy this space (if the
508 * removal thread has not yet visited it), and also ensures
509 * that we know what is actually allocated on the new vdevs
510 * (needed if we cancel the removal).
511 *
512 * Note: we must do the metaslab_free_concrete() with the svr_lock
513 * held, so that the remove_thread can not load this metaslab and then
514 * visit this offset between the time that we metaslab_free_concrete()
515 * and when we check to see if it has been visited.
d2734cce
SD
516 *
517 * Note: The checkpoint flag is set to false as having/taking
518 * a checkpoint and removing a device can't happen at the same
519 * time.
a1d477c2 520 */
d2734cce
SD
521 ASSERT(!spa_has_checkpoint(spa));
522 metaslab_free_concrete(vd, offset, size, B_FALSE);
a1d477c2
MA
523
524 uint64_t synced_size = 0;
525 uint64_t synced_offset = 0;
526 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
527 if (offset < max_offset_synced) {
528 /*
529 * The mapping for this offset is already on disk.
530 * Free from the new location.
531 *
532 * Note that we use svr_max_synced_offset because it is
533 * updated atomically with respect to the in-core mapping.
534 * By contrast, vim_max_offset is not.
535 *
536 * This block may be split between a synced entry and an
537 * in-flight or unvisited entry. Only process the synced
538 * portion of it here.
539 */
540 synced_size = MIN(size, max_offset_synced - offset);
541 synced_offset = offset;
542
543 ASSERT3U(max_offset_yet, <=, max_offset_synced);
544 max_offset_yet = max_offset_synced;
545
546 DTRACE_PROBE3(remove__free__synced,
547 spa_t *, spa,
548 uint64_t, offset,
549 uint64_t, synced_size);
550
551 size -= synced_size;
552 offset += synced_size;
553 }
554
555 /*
556 * Look at all in-flight txgs starting from the currently syncing one
557 * and see if a section of this free is being copied. By starting from
558 * this txg and iterating forward, we might find that this region
559 * was copied in two different txgs and handle it appropriately.
560 */
561 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
562 int txgoff = (txg + i) & TXG_MASK;
563 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
564 /*
565 * The mapping for this offset is in flight, and
566 * will be synced in txg+i.
567 */
568 uint64_t inflight_size = MIN(size,
569 svr->svr_max_offset_to_sync[txgoff] - offset);
570
571 DTRACE_PROBE4(remove__free__inflight,
572 spa_t *, spa,
573 uint64_t, offset,
574 uint64_t, inflight_size,
575 uint64_t, txg + i);
576
577 /*
578 * We copy data in order of increasing offset.
579 * Therefore the max_offset_to_sync[] must increase
580 * (or be zero, indicating that nothing is being
581 * copied in that txg).
582 */
583 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
584 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
585 >=, max_offset_yet);
586 max_offset_yet =
587 svr->svr_max_offset_to_sync[txgoff];
588 }
589
590 /*
591 * We've already committed to copying this segment:
592 * we have allocated space elsewhere in the pool for
593 * it and have an IO outstanding to copy the data. We
594 * cannot free the space before the copy has
595 * completed, or else the copy IO might overwrite any
596 * new data. To free that space, we record the
597 * segment in the appropriate svr_frees tree and free
598 * the mapped space later, in the txg where we have
599 * completed the copy and synced the mapping (see
600 * vdev_mapping_sync).
601 */
602 range_tree_add(svr->svr_frees[txgoff],
603 offset, inflight_size);
604 size -= inflight_size;
605 offset += inflight_size;
606
607 /*
608 * This space is already accounted for as being
609 * done, because it is being copied in txg+i.
610 * However, if i!=0, then it is being copied in
611 * a future txg. If we crash after this txg
612 * syncs but before txg+i syncs, then the space
613 * will be free. Therefore we must account
614 * for the space being done in *this* txg
615 * (when it is freed) rather than the future txg
616 * (when it will be copied).
617 */
618 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
619 inflight_size);
620 svr->svr_bytes_done[txgoff] -= inflight_size;
621 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
622 }
623 }
624 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
625
626 if (size > 0) {
627 /*
628 * The copy thread has not yet visited this offset. Ensure
629 * that it doesn't.
630 */
631
632 DTRACE_PROBE3(remove__free__unvisited,
633 spa_t *, spa,
634 uint64_t, offset,
635 uint64_t, size);
636
637 if (svr->svr_allocd_segs != NULL)
638 range_tree_clear(svr->svr_allocd_segs, offset, size);
639
640 /*
641 * Since we now do not need to copy this data, for
642 * accounting purposes we have done our job and can count
643 * it as completed.
644 */
645 svr->svr_bytes_done[txg & TXG_MASK] += size;
646 }
647 mutex_exit(&svr->svr_lock);
648
649 /*
650 * Now that we have dropped svr_lock, process the synced portion
651 * of this free.
652 */
653 if (synced_size > 0) {
d2734cce
SD
654 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
655
a1d477c2
MA
656 /*
657 * Note: this can only be called from syncing context,
658 * and the vdev_indirect_mapping is only changed from the
659 * sync thread, so we don't need svr_lock while doing
660 * metaslab_free_impl_cb.
661 */
d2734cce 662 boolean_t checkpoint = B_FALSE;
a1d477c2 663 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
d2734cce 664 metaslab_free_impl_cb, &checkpoint);
a1d477c2
MA
665 }
666}
667
668/*
669 * Stop an active removal and update the spa_removing phys.
670 */
671static void
672spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
673{
674 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
675 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
676
677 /* Ensure the removal thread has completed before we free the svr. */
678 spa_vdev_remove_suspend(spa);
679
680 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
681
682 if (state == DSS_FINISHED) {
683 spa_removing_phys_t *srp = &spa->spa_removing_phys;
9e052db4 684 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
685 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
686
c40a1124 687 if (srp->sr_prev_indirect_vdev != -1) {
a1d477c2
MA
688 vdev_t *pvd;
689 pvd = vdev_lookup_top(spa,
690 srp->sr_prev_indirect_vdev);
691 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
692 }
693
694 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
695 srp->sr_prev_indirect_vdev = vd->vdev_id;
696 }
697 spa->spa_removing_phys.sr_state = state;
698 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
699
700 spa->spa_vdev_removal = NULL;
701 spa_vdev_removal_destroy(svr);
702
703 spa_sync_removing_state(spa, tx);
704
705 vdev_config_dirty(spa->spa_root_vdev);
706}
707
708static void
709free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
710{
711 vdev_t *vd = arg;
d2734cce
SD
712 vdev_indirect_mark_obsolete(vd, offset, size);
713 boolean_t checkpoint = B_FALSE;
a1d477c2 714 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
d2734cce 715 metaslab_free_impl_cb, &checkpoint);
a1d477c2
MA
716}
717
718/*
719 * On behalf of the removal thread, syncs an incremental bit more of
720 * the indirect mapping to disk and updates the in-memory mapping.
721 * Called as a sync task in every txg that the removal thread makes progress.
722 */
723static void
724vdev_mapping_sync(void *arg, dmu_tx_t *tx)
725{
726 spa_vdev_removal_t *svr = arg;
727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9e052db4 728 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
729 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
730 uint64_t txg = dmu_tx_get_txg(tx);
731 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
732
733 ASSERT(vic->vic_mapping_object != 0);
734 ASSERT3U(txg, ==, spa_syncing_txg(spa));
735
736 vdev_indirect_mapping_add_entries(vim,
737 &svr->svr_new_segments[txg & TXG_MASK], tx);
738 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
739 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
740
741 /*
742 * Free the copied data for anything that was freed while the
743 * mapping entries were in flight.
744 */
745 mutex_enter(&svr->svr_lock);
746 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
747 free_mapped_segment_cb, vd);
748 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
749 vdev_indirect_mapping_max_offset(vim));
750 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
751 mutex_exit(&svr->svr_lock);
752
753 spa_sync_removing_state(spa, tx);
754}
755
0dc2f70c
MA
756typedef struct vdev_copy_segment_arg {
757 spa_t *vcsa_spa;
758 dva_t *vcsa_dest_dva;
759 uint64_t vcsa_txg;
760 range_tree_t *vcsa_obsolete_segs;
761} vdev_copy_segment_arg_t;
762
763static void
764unalloc_seg(void *arg, uint64_t start, uint64_t size)
765{
766 vdev_copy_segment_arg_t *vcsa = arg;
767 spa_t *spa = vcsa->vcsa_spa;
768 blkptr_t bp = { { { {0} } } };
769
770 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
771 BP_SET_LSIZE(&bp, size);
772 BP_SET_PSIZE(&bp, size);
773 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
774 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
775 BP_SET_TYPE(&bp, DMU_OT_NONE);
776 BP_SET_LEVEL(&bp, 0);
777 BP_SET_DEDUP(&bp, 0);
778 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
779
780 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
781 DVA_SET_OFFSET(&bp.blk_dva[0],
782 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
783 DVA_SET_ASIZE(&bp.blk_dva[0], size);
784
785 zio_free(spa, vcsa->vcsa_txg, &bp);
786}
787
9e052db4
MA
788/*
789 * All reads and writes associated with a call to spa_vdev_copy_segment()
790 * are done.
791 */
792static void
0dc2f70c 793spa_vdev_copy_segment_done(zio_t *zio)
9e052db4 794{
0dc2f70c
MA
795 vdev_copy_segment_arg_t *vcsa = zio->io_private;
796
797 range_tree_vacate(vcsa->vcsa_obsolete_segs,
798 unalloc_seg, vcsa);
799 range_tree_destroy(vcsa->vcsa_obsolete_segs);
800 kmem_free(vcsa, sizeof (*vcsa));
801
9e052db4
MA
802 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
803}
804
805/*
806 * The write of the new location is done.
807 */
a1d477c2
MA
808static void
809spa_vdev_copy_segment_write_done(zio_t *zio)
810{
9e052db4
MA
811 vdev_copy_arg_t *vca = zio->io_private;
812
a1d477c2
MA
813 abd_free(zio->io_abd);
814
815 mutex_enter(&vca->vca_lock);
816 vca->vca_outstanding_bytes -= zio->io_size;
7c9a4292
BB
817
818 if (zio->io_error != 0)
819 vca->vca_write_error_bytes += zio->io_size;
820
a1d477c2
MA
821 cv_signal(&vca->vca_cv);
822 mutex_exit(&vca->vca_lock);
a1d477c2
MA
823}
824
9e052db4
MA
825/*
826 * The read of the old location is done. The parent zio is the write to
827 * the new location. Allow it to start.
828 */
a1d477c2
MA
829static void
830spa_vdev_copy_segment_read_done(zio_t *zio)
831{
7c9a4292
BB
832 vdev_copy_arg_t *vca = zio->io_private;
833
834 if (zio->io_error != 0) {
835 mutex_enter(&vca->vca_lock);
836 vca->vca_read_error_bytes += zio->io_size;
837 mutex_exit(&vca->vca_lock);
838 }
839
9e052db4
MA
840 zio_nowait(zio_unique_parent(zio));
841}
842
843/*
844 * If the old and new vdevs are mirrors, we will read both sides of the old
845 * mirror, and write each copy to the corresponding side of the new mirror.
846 * If the old and new vdevs have a different number of children, we will do
847 * this as best as possible. Since we aren't verifying checksums, this
848 * ensures that as long as there's a good copy of the data, we'll have a
849 * good copy after the removal, even if there's silent damage to one side
850 * of the mirror. If we're removing a mirror that has some silent damage,
851 * we'll have exactly the same damage in the new location (assuming that
852 * the new location is also a mirror).
853 *
854 * We accomplish this by creating a tree of zio_t's, with as many writes as
855 * there are "children" of the new vdev (a non-redundant vdev counts as one
856 * child, a 2-way mirror has 2 children, etc). Each write has an associated
857 * read from a child of the old vdev. Typically there will be the same
858 * number of children of the old and new vdevs. However, if there are more
859 * children of the new vdev, some child(ren) of the old vdev will be issued
860 * multiple reads. If there are more children of the old vdev, some copies
861 * will be dropped.
862 *
863 * For example, the tree of zio_t's for a 2-way mirror is:
864 *
865 * null
866 * / \
867 * write(new vdev, child 0) write(new vdev, child 1)
868 * | |
869 * read(old vdev, child 0) read(old vdev, child 1)
870 *
871 * Child zio's complete before their parents complete. However, zio's
872 * created with zio_vdev_child_io() may be issued before their children
873 * complete. In this case we need to make sure that the children (reads)
874 * complete before the parents (writes) are *issued*. We do this by not
875 * calling zio_nowait() on each write until its corresponding read has
876 * completed.
877 *
878 * The spa_config_lock must be held while zio's created by
879 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
880 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
881 * zio is needed to release the spa_config_lock after all the reads and
882 * writes complete. (Note that we can't grab the config lock for each read,
883 * because it is not reentrant - we could deadlock with a thread waiting
884 * for a write lock.)
885 */
886static void
887spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
888 vdev_t *source_vd, uint64_t source_offset,
889 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
890{
891 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
892
7c9a4292
BB
893 /*
894 * If the destination child in unwritable then there is no point
895 * in issuing the source reads which cannot be written.
896 */
897 if (!vdev_writeable(dest_child_vd))
898 return;
899
9e052db4
MA
900 mutex_enter(&vca->vca_lock);
901 vca->vca_outstanding_bytes += size;
902 mutex_exit(&vca->vca_lock);
903
904 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
905
7c9a4292 906 vdev_t *source_child_vd = NULL;
9e052db4
MA
907 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
908 /*
909 * Source and dest are both mirrors. Copy from the same
910 * child id as we are copying to (wrapping around if there
7c9a4292
BB
911 * are more dest children than source children). If the
912 * preferred source child is unreadable select another.
9e052db4 913 */
7c9a4292
BB
914 for (int i = 0; i < source_vd->vdev_children; i++) {
915 source_child_vd = source_vd->vdev_child[
916 (dest_id + i) % source_vd->vdev_children];
917 if (vdev_readable(source_child_vd))
918 break;
919 }
9e052db4
MA
920 } else {
921 source_child_vd = source_vd;
922 }
923
7c9a4292
BB
924 /*
925 * There should always be at least one readable source child or
926 * the pool would be in a suspended state. Somehow selecting an
927 * unreadable child would result in IO errors, the removal process
928 * being cancelled, and the pool reverting to its pre-removal state.
929 */
930 ASSERT3P(source_child_vd, !=, NULL);
931
9e052db4
MA
932 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
933 dest_child_vd, dest_offset, abd, size,
934 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
935 ZIO_FLAG_CANFAIL,
936 spa_vdev_copy_segment_write_done, vca);
937
938 zio_nowait(zio_vdev_child_io(write_zio, NULL,
939 source_child_vd, source_offset, abd, size,
940 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
941 ZIO_FLAG_CANFAIL,
942 spa_vdev_copy_segment_read_done, vca));
a1d477c2
MA
943}
944
9e052db4
MA
945/*
946 * Allocate a new location for this segment, and create the zio_t's to
947 * read from the old location and write to the new location.
948 */
a1d477c2 949static int
0dc2f70c
MA
950spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
951 uint64_t maxalloc, uint64_t txg,
a1d477c2
MA
952 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
953{
954 metaslab_group_t *mg = vd->vdev_mg;
955 spa_t *spa = vd->vdev_spa;
956 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
957 vdev_indirect_mapping_entry_t *entry;
a1d477c2 958 dva_t dst = {{ 0 }};
0dc2f70c
MA
959 uint64_t start = range_tree_min(segs);
960
961 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
a1d477c2 962
0dc2f70c
MA
963 uint64_t size = range_tree_span(segs);
964 if (range_tree_span(segs) > maxalloc) {
965 /*
966 * We can't allocate all the segments. Prefer to end
967 * the allocation at the end of a segment, thus avoiding
968 * additional split blocks.
969 */
970 range_seg_t search;
971 avl_index_t where;
972 search.rs_start = start + maxalloc;
973 search.rs_end = search.rs_start;
974 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
975 if (rs == NULL) {
976 rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
977 } else {
978 rs = AVL_PREV(&segs->rt_root, rs);
979 }
980 if (rs != NULL) {
981 size = rs->rs_end - start;
982 } else {
983 /*
984 * There are no segments that end before maxalloc.
985 * I.e. the first segment is larger than maxalloc,
986 * so we must split it.
987 */
988 size = maxalloc;
989 }
990 }
991 ASSERT3U(size, <=, maxalloc);
a1d477c2 992
cc99f275
DB
993 /*
994 * An allocation class might not have any remaining vdevs or space
995 */
996 metaslab_class_t *mc = mg->mg_class;
997 if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
998 mc = spa_normal_class(spa);
999 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1000 zal, 0);
1001 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1002 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1003 &dst, 0, NULL, txg, 0, zal, 0);
1004 }
a1d477c2
MA
1005 if (error != 0)
1006 return (error);
1007
0dc2f70c
MA
1008 /*
1009 * Determine the ranges that are not actually needed. Offsets are
1010 * relative to the start of the range to be copied (i.e. relative to the
1011 * local variable "start").
1012 */
1013 range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
1014
1015 range_seg_t *rs = avl_first(&segs->rt_root);
1016 ASSERT3U(rs->rs_start, ==, start);
1017 uint64_t prev_seg_end = rs->rs_end;
1018 while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
1019 if (rs->rs_start >= start + size) {
1020 break;
1021 } else {
1022 range_tree_add(obsolete_segs,
1023 prev_seg_end - start,
1024 rs->rs_start - prev_seg_end);
1025 }
1026 prev_seg_end = rs->rs_end;
1027 }
1028 /* We don't end in the middle of an obsolete range */
1029 ASSERT3U(start + size, <=, prev_seg_end);
1030
1031 range_tree_clear(segs, start, size);
1032
a1d477c2
MA
1033 /*
1034 * We can't have any padding of the allocated size, otherwise we will
1035 * misunderstand what's allocated, and the size of the mapping.
1036 * The caller ensures this will be true by passing in a size that is
1037 * aligned to the worst (highest) ashift in the pool.
1038 */
1039 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
1040
a1d477c2
MA
1041 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1042 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1043 entry->vime_mapping.vimep_dst = dst;
0dc2f70c
MA
1044 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1045 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1046 }
1047
1048 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1049 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1050 vcsa->vcsa_obsolete_segs = obsolete_segs;
1051 vcsa->vcsa_spa = spa;
1052 vcsa->vcsa_txg = txg;
a1d477c2 1053
a1d477c2 1054 /*
9e052db4 1055 * See comment before spa_vdev_copy_one_child().
a1d477c2 1056 */
9e052db4
MA
1057 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1058 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
0dc2f70c 1059 spa_vdev_copy_segment_done, vcsa, 0);
9e052db4
MA
1060 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1061 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1062 for (int i = 0; i < dest_vd->vdev_children; i++) {
1063 vdev_t *child = dest_vd->vdev_child[i];
1064 spa_vdev_copy_one_child(vca, nzio, vd, start,
1065 child, DVA_GET_OFFSET(&dst), i, size);
1066 }
1067 } else {
1068 spa_vdev_copy_one_child(vca, nzio, vd, start,
1069 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1070 }
1071 zio_nowait(nzio);
a1d477c2
MA
1072
1073 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1074 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1075 vdev_dirty(vd, 0, NULL, txg);
1076
1077 return (0);
1078}
1079
1080/*
1081 * Complete the removal of a toplevel vdev. This is called as a
1082 * synctask in the same txg that we will sync out the new config (to the
1083 * MOS object) which indicates that this vdev is indirect.
1084 */
1085static void
1086vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1087{
1088 spa_vdev_removal_t *svr = arg;
9e052db4
MA
1089 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1090 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1091
1092 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1093
1094 for (int i = 0; i < TXG_SIZE; i++) {
1095 ASSERT0(svr->svr_bytes_done[i]);
1096 }
1097
1098 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1099 spa->spa_removing_phys.sr_to_copy);
1100
1101 vdev_destroy_spacemaps(vd, tx);
1102
1103 /* destroy leaf zaps, if any */
1104 ASSERT3P(svr->svr_zaplist, !=, NULL);
1105 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1106 pair != NULL;
1107 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1108 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1109 }
1110 fnvlist_free(svr->svr_zaplist);
1111
1112 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1113 /* vd->vdev_path is not available here */
1114 spa_history_log_internal(spa, "vdev remove completed", tx,
1115 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1116}
1117
a1d477c2
MA
1118static void
1119vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1120{
1121 ASSERT3P(zlist, !=, NULL);
1122 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1123
1124 if (vd->vdev_leaf_zap != 0) {
1125 char zkey[32];
1126 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1127 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1128 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1129 }
1130
1131 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1132 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1133 }
1134}
1135
1136static void
1137vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1138{
1139 vdev_t *ivd;
1140 dmu_tx_t *tx;
1141 spa_t *spa = vd->vdev_spa;
1142 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1143
1144 /*
1145 * First, build a list of leaf zaps to be destroyed.
1146 * This is passed to the sync context thread,
1147 * which does the actual unlinking.
1148 */
1149 svr->svr_zaplist = fnvlist_alloc();
1150 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1151
1152 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
9e052db4 1153 ivd->vdev_removing = 0;
a1d477c2
MA
1154
1155 vd->vdev_leaf_zap = 0;
1156
1157 vdev_remove_child(ivd, vd);
1158 vdev_compact_children(ivd);
1159
a1d477c2
MA
1160 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1161
a1d477c2
MA
1162 mutex_enter(&svr->svr_lock);
1163 svr->svr_thread = NULL;
1164 cv_broadcast(&svr->svr_cv);
1165 mutex_exit(&svr->svr_lock);
ac53e50f
TC
1166
1167 /* After this, we can not use svr. */
1168 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1169 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1170 0, ZFS_SPACE_CHECK_NONE, tx);
1171 dmu_tx_commit(tx);
a1d477c2
MA
1172}
1173
1174/*
1175 * Complete the removal of a toplevel vdev. This is called in open
1176 * context by the removal thread after we have copied all vdev's data.
1177 */
1178static void
9e052db4 1179vdev_remove_complete(spa_t *spa)
a1d477c2 1180{
a1d477c2
MA
1181 uint64_t txg;
1182
1183 /*
1184 * Wait for any deferred frees to be synced before we call
1185 * vdev_metaslab_fini()
1186 */
1187 txg_wait_synced(spa->spa_dsl_pool, 0);
a1d477c2 1188 txg = spa_vdev_enter(spa);
9e052db4 1189 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
619f0976 1190 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
9e052db4
MA
1191
1192 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1193 ESC_ZFS_VDEV_REMOVE_DEV);
1194
a1d477c2
MA
1195 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1196 vd->vdev_id, txg);
1197
1198 /*
1199 * Discard allocation state.
1200 */
1201 if (vd->vdev_mg != NULL) {
1202 vdev_metaslab_fini(vd);
1203 metaslab_group_destroy(vd->vdev_mg);
1204 vd->vdev_mg = NULL;
1205 }
1206 ASSERT0(vd->vdev_stat.vs_space);
1207 ASSERT0(vd->vdev_stat.vs_dspace);
1208
1209 vdev_remove_replace_with_indirect(vd, txg);
1210
1211 /*
1212 * We now release the locks, allowing spa_sync to run and finish the
1213 * removal via vdev_remove_complete_sync in syncing context.
9e052db4
MA
1214 *
1215 * Note that we hold on to the vdev_t that has been replaced. Since
1216 * it isn't part of the vdev tree any longer, it can't be concurrently
1217 * manipulated, even while we don't have the config lock.
a1d477c2
MA
1218 */
1219 (void) spa_vdev_exit(spa, NULL, txg, 0);
1220
1221 /*
1222 * Top ZAP should have been transferred to the indirect vdev in
1223 * vdev_remove_replace_with_indirect.
1224 */
1225 ASSERT0(vd->vdev_top_zap);
1226
1227 /*
1228 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1229 */
1230 ASSERT0(vd->vdev_leaf_zap);
1231
1232 txg = spa_vdev_enter(spa);
1233 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1234 /*
1235 * Request to update the config and the config cachefile.
1236 */
1237 vdev_config_dirty(spa->spa_root_vdev);
1238 (void) spa_vdev_exit(spa, vd, txg, 0);
9e052db4
MA
1239
1240 if (ev != NULL)
1241 spa_event_post(ev);
a1d477c2
MA
1242}
1243
1244/*
1245 * Evacuates a segment of size at most max_alloc from the vdev
1246 * via repeated calls to spa_vdev_copy_segment. If an allocation
1247 * fails, the pool is probably too fragmented to handle such a
1248 * large size, so decrease max_alloc so that the caller will not try
1249 * this size again this txg.
1250 */
1251static void
9e052db4 1252spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
a1d477c2
MA
1253 uint64_t *max_alloc, dmu_tx_t *tx)
1254{
1255 uint64_t txg = dmu_tx_get_txg(tx);
1256 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1257
1258 mutex_enter(&svr->svr_lock);
1259
0dc2f70c
MA
1260 /*
1261 * Determine how big of a chunk to copy. We can allocate up
1262 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1263 * bytes of unallocated space at a time. "segs" will track the
1264 * allocated segments that we are copying. We may also be copying
1265 * free segments (of up to vdev_removal_max_span bytes).
1266 */
1267 range_tree_t *segs = range_tree_create(NULL, NULL);
1268 for (;;) {
1269 range_seg_t *rs = range_tree_first(svr->svr_allocd_segs);
1270
1271 if (rs == NULL)
1272 break;
1273
1274 uint64_t seg_length;
1275
1276 if (range_tree_is_empty(segs)) {
1277 /* need to truncate the first seg based on max_alloc */
1278 seg_length =
1279 MIN(rs->rs_end - rs->rs_start, *max_alloc);
1280 } else {
1281 if (rs->rs_start - range_tree_max(segs) >
1282 vdev_removal_max_span) {
1283 /*
1284 * Including this segment would cause us to
1285 * copy a larger unneeded chunk than is allowed.
1286 */
1287 break;
1288 } else if (rs->rs_end - range_tree_min(segs) >
1289 *max_alloc) {
1290 /*
1291 * This additional segment would extend past
1292 * max_alloc. Rather than splitting this
1293 * segment, leave it for the next mapping.
1294 */
1295 break;
1296 } else {
1297 seg_length = rs->rs_end - rs->rs_start;
1298 }
1299 }
1300
1301 range_tree_add(segs, rs->rs_start, seg_length);
1302 range_tree_remove(svr->svr_allocd_segs,
1303 rs->rs_start, seg_length);
1304 }
1305
1306 if (range_tree_is_empty(segs)) {
a1d477c2 1307 mutex_exit(&svr->svr_lock);
0dc2f70c 1308 range_tree_destroy(segs);
a1d477c2
MA
1309 return;
1310 }
a1d477c2
MA
1311
1312 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1313 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1314 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1315 }
1316
0dc2f70c 1317 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
a1d477c2
MA
1318
1319 /*
1320 * Note: this is the amount of *allocated* space
1321 * that we are taking care of each txg.
1322 */
0dc2f70c 1323 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
a1d477c2
MA
1324
1325 mutex_exit(&svr->svr_lock);
1326
1327 zio_alloc_list_t zal;
1328 metaslab_trace_init(&zal);
0dc2f70c
MA
1329 uint64_t thismax = SPA_MAXBLOCKSIZE;
1330 while (!range_tree_is_empty(segs)) {
9e052db4 1331 int error = spa_vdev_copy_segment(vd,
0dc2f70c 1332 segs, thismax, txg, vca, &zal);
a1d477c2
MA
1333
1334 if (error == ENOSPC) {
1335 /*
1336 * Cut our segment in half, and don't try this
1337 * segment size again this txg. Note that the
1338 * allocation size must be aligned to the highest
1339 * ashift in the pool, so that the allocation will
1340 * not be padded out to a multiple of the ashift,
1341 * which could cause us to think that this mapping
1342 * is larger than we intended.
1343 */
1344 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1345 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
0dc2f70c
MA
1346 uint64_t attempted =
1347 MIN(range_tree_span(segs), thismax);
1348 thismax = P2ROUNDUP(attempted / 2,
a1d477c2 1349 1 << spa->spa_max_ashift);
a1d477c2
MA
1350 /*
1351 * The minimum-size allocation can not fail.
1352 */
0dc2f70c
MA
1353 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1354 *max_alloc = attempted - (1 << spa->spa_max_ashift);
a1d477c2
MA
1355 } else {
1356 ASSERT0(error);
a1d477c2
MA
1357
1358 /*
1359 * We've performed an allocation, so reset the
1360 * alloc trace list.
1361 */
1362 metaslab_trace_fini(&zal);
1363 metaslab_trace_init(&zal);
1364 }
1365 }
1366 metaslab_trace_fini(&zal);
0dc2f70c 1367 range_tree_destroy(segs);
a1d477c2
MA
1368}
1369
1370/*
1371 * The removal thread operates in open context. It iterates over all
1372 * allocated space in the vdev, by loading each metaslab's spacemap.
1373 * For each contiguous segment of allocated space (capping the segment
1374 * size at SPA_MAXBLOCKSIZE), we:
1375 * - Allocate space for it on another vdev.
1376 * - Create a new mapping from the old location to the new location
1377 * (as a record in svr_new_segments).
1378 * - Initiate a physical read zio to get the data off the removing disk.
1379 * - In the read zio's done callback, initiate a physical write zio to
1380 * write it to the new vdev.
1381 * Note that all of this will take effect when a particular TXG syncs.
1382 * The sync thread ensures that all the phys reads and writes for the syncing
1383 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1384 * (see vdev_mapping_sync()).
1385 */
1386static void
1387spa_vdev_remove_thread(void *arg)
1388{
9e052db4 1389 spa_t *spa = arg;
a1d477c2
MA
1390 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1391 vdev_copy_arg_t vca;
1392 uint64_t max_alloc = zfs_remove_max_segment;
1393 uint64_t last_txg = 0;
9e052db4
MA
1394
1395 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1396 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1397 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1398 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1399
1400 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1401 ASSERT(vdev_is_concrete(vd));
1402 ASSERT(vd->vdev_removing);
1403 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
a1d477c2
MA
1404 ASSERT(vim != NULL);
1405
1406 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1407 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1408 vca.vca_outstanding_bytes = 0;
7c9a4292
BB
1409 vca.vca_read_error_bytes = 0;
1410 vca.vca_write_error_bytes = 0;
a1d477c2
MA
1411
1412 mutex_enter(&svr->svr_lock);
1413
1414 /*
1415 * Start from vim_max_offset so we pick up where we left off
1416 * if we are restarting the removal after opening the pool.
1417 */
1418 uint64_t msi;
1419 for (msi = start_offset >> vd->vdev_ms_shift;
1420 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1421 metaslab_t *msp = vd->vdev_ms[msi];
1422 ASSERT3U(msi, <=, vd->vdev_ms_count);
1423
1424 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1425
1426 mutex_enter(&msp->ms_sync_lock);
1427 mutex_enter(&msp->ms_lock);
1428
1429 /*
1430 * Assert nothing in flight -- ms_*tree is empty.
1431 */
1432 for (int i = 0; i < TXG_SIZE; i++) {
d2734cce 1433 ASSERT0(range_tree_space(msp->ms_allocating[i]));
a1d477c2
MA
1434 }
1435
1436 /*
1437 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1438 * read the allocated segments from the space map object
1439 * into svr_allocd_segs. Since we do this while holding
1440 * svr_lock and ms_sync_lock, concurrent frees (which
1441 * would have modified the space map) will wait for us
1442 * to finish loading the spacemap, and then take the
1443 * appropriate action (see free_from_removing_vdev()).
1444 */
1445 if (msp->ms_sm != NULL) {
1446 space_map_t *sm = NULL;
1447
1448 /*
1449 * We have to open a new space map here, because
1450 * ms_sm's sm_length and sm_alloc may not reflect
1451 * what's in the object contents, if we are in between
1452 * metaslab_sync() and metaslab_sync_done().
1453 */
1454 VERIFY0(space_map_open(&sm,
1455 spa->spa_dsl_pool->dp_meta_objset,
1456 msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1457 msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1458 space_map_update(sm);
1459 VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1460 SM_ALLOC));
1461 space_map_close(sm);
1462
d2734cce 1463 range_tree_walk(msp->ms_freeing,
a1d477c2
MA
1464 range_tree_remove, svr->svr_allocd_segs);
1465
1466 /*
1467 * When we are resuming from a paused removal (i.e.
1468 * when importing a pool with a removal in progress),
1469 * discard any state that we have already processed.
1470 */
1471 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1472 }
1473 mutex_exit(&msp->ms_lock);
1474 mutex_exit(&msp->ms_sync_lock);
1475
1476 vca.vca_msp = msp;
1477 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1478 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1479 msp->ms_id);
1480
1481 while (!svr->svr_thread_exit &&
d2734cce 1482 !range_tree_is_empty(svr->svr_allocd_segs)) {
a1d477c2
MA
1483
1484 mutex_exit(&svr->svr_lock);
1485
9e052db4
MA
1486 /*
1487 * We need to periodically drop the config lock so that
1488 * writers can get in. Additionally, we can't wait
1489 * for a txg to sync while holding a config lock
1490 * (since a waiting writer could cause a 3-way deadlock
1491 * with the sync thread, which also gets a config
1492 * lock for reader). So we can't hold the config lock
1493 * while calling dmu_tx_assign().
1494 */
1495 spa_config_exit(spa, SCL_CONFIG, FTAG);
1496
d2734cce
SD
1497 /*
1498 * This delay will pause the removal around the point
cef48f14 1499 * specified by zfs_removal_suspend_progress. We do this
d2734cce
SD
1500 * solely from the test suite or during debugging.
1501 */
1502 uint64_t bytes_copied =
1503 spa->spa_removing_phys.sr_copied;
1504 for (int i = 0; i < TXG_SIZE; i++)
1505 bytes_copied += svr->svr_bytes_done[i];
cef48f14 1506 while (zfs_removal_suspend_progress &&
d2734cce
SD
1507 !svr->svr_thread_exit)
1508 delay(hz);
1509
a1d477c2
MA
1510 mutex_enter(&vca.vca_lock);
1511 while (vca.vca_outstanding_bytes >
1512 zfs_remove_max_copy_bytes) {
1513 cv_wait(&vca.vca_cv, &vca.vca_lock);
1514 }
1515 mutex_exit(&vca.vca_lock);
1516
1517 dmu_tx_t *tx =
1518 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1519 dmu_tx_hold_space(tx, SPA_MAXBLOCKSIZE);
1520 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1521 uint64_t txg = dmu_tx_get_txg(tx);
1522
9e052db4
MA
1523 /*
1524 * Reacquire the vdev_config lock. The vdev_t
1525 * that we're removing may have changed, e.g. due
1526 * to a vdev_attach or vdev_detach.
1527 */
1528 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1529 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1530
a1d477c2
MA
1531 if (txg != last_txg)
1532 max_alloc = zfs_remove_max_segment;
1533 last_txg = txg;
1534
9e052db4 1535 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
a1d477c2
MA
1536
1537 dmu_tx_commit(tx);
1538 mutex_enter(&svr->svr_lock);
1539 }
7c9a4292
BB
1540
1541 mutex_enter(&vca.vca_lock);
1542 if (zfs_removal_ignore_errors == 0 &&
1543 (vca.vca_read_error_bytes > 0 ||
1544 vca.vca_write_error_bytes > 0)) {
1545 svr->svr_thread_exit = B_TRUE;
1546 }
1547 mutex_exit(&vca.vca_lock);
a1d477c2
MA
1548 }
1549
1550 mutex_exit(&svr->svr_lock);
9e052db4
MA
1551
1552 spa_config_exit(spa, SCL_CONFIG, FTAG);
1553
a1d477c2
MA
1554 /*
1555 * Wait for all copies to finish before cleaning up the vca.
1556 */
1557 txg_wait_synced(spa->spa_dsl_pool, 0);
1558 ASSERT0(vca.vca_outstanding_bytes);
1559
1560 mutex_destroy(&vca.vca_lock);
1561 cv_destroy(&vca.vca_cv);
1562
1563 if (svr->svr_thread_exit) {
1564 mutex_enter(&svr->svr_lock);
1565 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1566 svr->svr_thread = NULL;
1567 cv_broadcast(&svr->svr_cv);
1568 mutex_exit(&svr->svr_lock);
7c9a4292
BB
1569
1570 /*
1571 * During the removal process an unrecoverable read or write
1572 * error was encountered. The removal process must be
1573 * cancelled or this damage may become permanent.
1574 */
1575 if (zfs_removal_ignore_errors == 0 &&
1576 (vca.vca_read_error_bytes > 0 ||
1577 vca.vca_write_error_bytes > 0)) {
1578 zfs_dbgmsg("canceling removal due to IO errors: "
1579 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1580 vca.vca_read_error_bytes,
1581 vca.vca_write_error_bytes);
1582 spa_vdev_remove_cancel_impl(spa);
1583 }
a1d477c2
MA
1584 } else {
1585 ASSERT0(range_tree_space(svr->svr_allocd_segs));
9e052db4 1586 vdev_remove_complete(spa);
a1d477c2
MA
1587 }
1588}
1589
1590void
1591spa_vdev_remove_suspend(spa_t *spa)
1592{
1593 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1594
1595 if (svr == NULL)
1596 return;
1597
1598 mutex_enter(&svr->svr_lock);
1599 svr->svr_thread_exit = B_TRUE;
1600 while (svr->svr_thread != NULL)
1601 cv_wait(&svr->svr_cv, &svr->svr_lock);
1602 svr->svr_thread_exit = B_FALSE;
1603 mutex_exit(&svr->svr_lock);
1604}
1605
1606/* ARGSUSED */
1607static int
1608spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1609{
1610 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1611
1612 if (spa->spa_vdev_removal == NULL)
1613 return (ENOTACTIVE);
1614 return (0);
1615}
1616
1617/*
1618 * Cancel a removal by freeing all entries from the partial mapping
1619 * and marking the vdev as no longer being removing.
1620 */
1621/* ARGSUSED */
1622static void
1623spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1624{
1625 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1626 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
9e052db4 1627 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
a1d477c2
MA
1628 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1629 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1630 objset_t *mos = spa->spa_meta_objset;
1631
1632 ASSERT3P(svr->svr_thread, ==, NULL);
1633
1634 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
27f80e85
BB
1635
1636 boolean_t are_precise;
1637 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1638 if (are_precise) {
a1d477c2
MA
1639 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1640 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1641 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1642 }
1643
27f80e85
BB
1644 uint64_t obsolete_sm_object;
1645 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1646 if (obsolete_sm_object != 0) {
a1d477c2 1647 ASSERT(vd->vdev_obsolete_sm != NULL);
27f80e85 1648 ASSERT3U(obsolete_sm_object, ==,
a1d477c2
MA
1649 space_map_object(vd->vdev_obsolete_sm));
1650
1651 space_map_free(vd->vdev_obsolete_sm, tx);
1652 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1653 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1654 space_map_close(vd->vdev_obsolete_sm);
1655 vd->vdev_obsolete_sm = NULL;
1656 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1657 }
1658 for (int i = 0; i < TXG_SIZE; i++) {
1659 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1660 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1661 vdev_indirect_mapping_max_offset(vim));
1662 }
1663
1664 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1665 metaslab_t *msp = vd->vdev_ms[msi];
1666
1667 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1668 break;
1669
1670 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1671
1672 mutex_enter(&msp->ms_lock);
1673
1674 /*
1675 * Assert nothing in flight -- ms_*tree is empty.
1676 */
1677 for (int i = 0; i < TXG_SIZE; i++)
d2734cce 1678 ASSERT0(range_tree_space(msp->ms_allocating[i]));
a1d477c2 1679 for (int i = 0; i < TXG_DEFER_SIZE; i++)
d2734cce
SD
1680 ASSERT0(range_tree_space(msp->ms_defer[i]));
1681 ASSERT0(range_tree_space(msp->ms_freed));
a1d477c2
MA
1682
1683 if (msp->ms_sm != NULL) {
1684 /*
1685 * Assert that the in-core spacemap has the same
1686 * length as the on-disk one, so we can use the
1687 * existing in-core spacemap to load it from disk.
1688 */
1689 ASSERT3U(msp->ms_sm->sm_alloc, ==,
1690 msp->ms_sm->sm_phys->smp_alloc);
1691 ASSERT3U(msp->ms_sm->sm_length, ==,
1692 msp->ms_sm->sm_phys->smp_objsize);
1693
1694 mutex_enter(&svr->svr_lock);
1695 VERIFY0(space_map_load(msp->ms_sm,
1696 svr->svr_allocd_segs, SM_ALLOC));
d2734cce 1697 range_tree_walk(msp->ms_freeing,
a1d477c2
MA
1698 range_tree_remove, svr->svr_allocd_segs);
1699
1700 /*
1701 * Clear everything past what has been synced,
1702 * because we have not allocated mappings for it yet.
1703 */
1704 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
9e052db4
MA
1705 uint64_t sm_end = msp->ms_sm->sm_start +
1706 msp->ms_sm->sm_size;
1707 if (sm_end > syncd)
1708 range_tree_clear(svr->svr_allocd_segs,
1709 syncd, sm_end - syncd);
a1d477c2
MA
1710
1711 mutex_exit(&svr->svr_lock);
1712 }
1713 mutex_exit(&msp->ms_lock);
1714
1715 mutex_enter(&svr->svr_lock);
1716 range_tree_vacate(svr->svr_allocd_segs,
1717 free_mapped_segment_cb, vd);
1718 mutex_exit(&svr->svr_lock);
1719 }
1720
1721 /*
1722 * Note: this must happen after we invoke free_mapped_segment_cb,
1723 * because it adds to the obsolete_segments.
1724 */
1725 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1726
1727 ASSERT3U(vic->vic_mapping_object, ==,
1728 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1729 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1730 vd->vdev_indirect_mapping = NULL;
1731 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1732 vic->vic_mapping_object = 0;
1733
1734 ASSERT3U(vic->vic_births_object, ==,
1735 vdev_indirect_births_object(vd->vdev_indirect_births));
1736 vdev_indirect_births_close(vd->vdev_indirect_births);
1737 vd->vdev_indirect_births = NULL;
1738 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1739 vic->vic_births_object = 0;
1740
1741 /*
1742 * We may have processed some frees from the removing vdev in this
1743 * txg, thus increasing svr_bytes_done; discard that here to
1744 * satisfy the assertions in spa_vdev_removal_destroy().
1745 * Note that future txg's can not have any bytes_done, because
1746 * future TXG's are only modified from open context, and we have
1747 * already shut down the copying thread.
1748 */
1749 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1750 spa_finish_removal(spa, DSS_CANCELED, tx);
1751
1752 vd->vdev_removing = B_FALSE;
1753 vdev_config_dirty(vd);
1754
1755 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1756 vd->vdev_id, dmu_tx_get_txg(tx));
1757 spa_history_log_internal(spa, "vdev remove canceled", tx,
1758 "%s vdev %llu %s", spa_name(spa),
1759 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1760}
1761
7c9a4292
BB
1762static int
1763spa_vdev_remove_cancel_impl(spa_t *spa)
a1d477c2 1764{
9e052db4 1765 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
a1d477c2
MA
1766
1767 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
d2734cce
SD
1768 spa_vdev_remove_cancel_sync, NULL, 0,
1769 ZFS_SPACE_CHECK_EXTRA_RESERVED);
a1d477c2
MA
1770
1771 if (error == 0) {
1772 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1773 vdev_t *vd = vdev_lookup_top(spa, vdid);
1774 metaslab_group_activate(vd->vdev_mg);
1775 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1776 }
1777
1778 return (error);
1779}
1780
7c9a4292
BB
1781int
1782spa_vdev_remove_cancel(spa_t *spa)
1783{
1784 spa_vdev_remove_suspend(spa);
1785
1786 if (spa->spa_vdev_removal == NULL)
1787 return (ENOTACTIVE);
1788
1789 return (spa_vdev_remove_cancel_impl(spa));
1790}
1791
a1d477c2
MA
1792/*
1793 * Called every sync pass of every txg if there's a svr.
1794 */
1795void
1796svr_sync(spa_t *spa, dmu_tx_t *tx)
1797{
1798 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1799 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1800
8dc2197b
SD
1801 if (svr == NULL)
1802 return;
1803
a1d477c2
MA
1804 /*
1805 * This check is necessary so that we do not dirty the
1806 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1807 * is nothing to do. Dirtying it every time would prevent us
1808 * from syncing-to-convergence.
1809 */
1810 if (svr->svr_bytes_done[txgoff] == 0)
1811 return;
1812
1813 /*
1814 * Update progress accounting.
1815 */
1816 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1817 svr->svr_bytes_done[txgoff] = 0;
1818
1819 spa_sync_removing_state(spa, tx);
1820}
1821
1822static void
1823vdev_remove_make_hole_and_free(vdev_t *vd)
1824{
1825 uint64_t id = vd->vdev_id;
1826 spa_t *spa = vd->vdev_spa;
1827 vdev_t *rvd = spa->spa_root_vdev;
1828 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1829
1830 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1831 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1832
1833 vdev_free(vd);
1834
1835 if (last_vdev) {
1836 vdev_compact_children(rvd);
1837 } else {
1838 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1839 vdev_add_child(rvd, vd);
1840 }
1841 vdev_config_dirty(rvd);
1842
1843 /*
1844 * Reassess the health of our root vdev.
1845 */
1846 vdev_reopen(rvd);
1847}
1848
1849/*
1850 * Remove a log device. The config lock is held for the specified TXG.
1851 */
1852static int
1853spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1854{
1855 metaslab_group_t *mg = vd->vdev_mg;
1856 spa_t *spa = vd->vdev_spa;
1857 int error = 0;
1858
1859 ASSERT(vd->vdev_islog);
1860 ASSERT(vd == vd->vdev_top);
1861
1862 /*
1863 * Stop allocating from this vdev.
1864 */
1865 metaslab_group_passivate(mg);
1866
1867 /*
1868 * Wait for the youngest allocations and frees to sync,
1869 * and then wait for the deferral of those frees to finish.
1870 */
1871 spa_vdev_config_exit(spa, NULL,
1872 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1873
1874 /*
1875 * Evacuate the device. We don't hold the config lock as writer
1876 * since we need to do I/O but we do keep the
1877 * spa_namespace_lock held. Once this completes the device
1878 * should no longer have any blocks allocated on it.
1879 */
1880 if (vd->vdev_islog) {
1881 if (vd->vdev_stat.vs_alloc != 0)
1882 error = spa_reset_logs(spa);
1883 }
1884
1885 *txg = spa_vdev_config_enter(spa);
1886
1887 if (error != 0) {
1888 metaslab_group_activate(mg);
1889 return (error);
1890 }
1891 ASSERT0(vd->vdev_stat.vs_alloc);
1892
1893 /*
1894 * The evacuation succeeded. Remove any remaining MOS metadata
1895 * associated with this vdev, and wait for these changes to sync.
1896 */
1897 vd->vdev_removing = B_TRUE;
1898
1899 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1900 vdev_config_dirty(vd);
1901
a1d477c2
MA
1902 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1903
619f0976 1904 /* Stop initializing */
c10d37dd 1905 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
619f0976 1906
a1d477c2
MA
1907 *txg = spa_vdev_config_enter(spa);
1908
1909 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1910 ESC_ZFS_VDEV_REMOVE_DEV);
1911 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1912 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1913
1914 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1915 ASSERT0(vd->vdev_top_zap);
1916 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1917 ASSERT0(vd->vdev_leaf_zap);
1918
1919 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1920
1921 if (list_link_active(&vd->vdev_state_dirty_node))
1922 vdev_state_clean(vd);
1923 if (list_link_active(&vd->vdev_config_dirty_node))
1924 vdev_config_clean(vd);
1925
1926 /*
1927 * Clean up the vdev namespace.
1928 */
1929 vdev_remove_make_hole_and_free(vd);
1930
1931 if (ev != NULL)
1932 spa_event_post(ev);
1933
1934 return (0);
1935}
1936
1937static int
1938spa_vdev_remove_top_check(vdev_t *vd)
1939{
1940 spa_t *spa = vd->vdev_spa;
1941
1942 if (vd != vd->vdev_top)
1943 return (SET_ERROR(ENOTSUP));
1944
1945 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1946 return (SET_ERROR(ENOTSUP));
1947
cc99f275
DB
1948 /* available space in the pool's normal class */
1949 uint64_t available = dsl_dir_space_available(
1950 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1951
1952 metaslab_class_t *mc = vd->vdev_mg->mg_class;
1953
1954 /*
1955 * When removing a vdev from an allocation class that has
1956 * remaining vdevs, include available space from the class.
1957 */
1958 if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1959 uint64_t class_avail = metaslab_class_get_space(mc) -
1960 metaslab_class_get_alloc(mc);
1961
1962 /* add class space, adjusted for overhead */
1963 available += (class_avail * 94) / 100;
1964 }
1965
a1d477c2
MA
1966 /*
1967 * There has to be enough free space to remove the
1968 * device and leave double the "slop" space (i.e. we
1969 * must leave at least 3% of the pool free, in addition to
1970 * the normal slop space).
1971 */
cc99f275 1972 if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
a1d477c2
MA
1973 return (SET_ERROR(ENOSPC));
1974 }
1975
1976 /*
1977 * There can not be a removal in progress.
1978 */
1979 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1980 return (SET_ERROR(EBUSY));
1981
1982 /*
1983 * The device must have all its data.
1984 */
1985 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1986 !vdev_dtl_empty(vd, DTL_OUTAGE))
1987 return (SET_ERROR(EBUSY));
1988
1989 /*
1990 * The device must be healthy.
1991 */
1992 if (!vdev_readable(vd))
1993 return (SET_ERROR(EIO));
1994
1995 /*
1996 * All vdevs in normal class must have the same ashift.
1997 */
1998 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1999 return (SET_ERROR(EINVAL));
2000 }
2001
2002 /*
2003 * All vdevs in normal class must have the same ashift
2004 * and not be raidz.
2005 */
2006 vdev_t *rvd = spa->spa_root_vdev;
2007 int num_indirect = 0;
2008 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2009 vdev_t *cvd = rvd->vdev_child[id];
2010 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
2011 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2012 if (cvd->vdev_ops == &vdev_indirect_ops)
2013 num_indirect++;
2014 if (!vdev_is_concrete(cvd))
2015 continue;
2016 if (cvd->vdev_ops == &vdev_raidz_ops)
2017 return (SET_ERROR(EINVAL));
2018 /*
2019 * Need the mirror to be mirror of leaf vdevs only
2020 */
2021 if (cvd->vdev_ops == &vdev_mirror_ops) {
2022 for (uint64_t cid = 0;
2023 cid < cvd->vdev_children; cid++) {
2024 if (!cvd->vdev_child[cid]->vdev_ops->
2025 vdev_op_leaf)
2026 return (SET_ERROR(EINVAL));
2027 }
2028 }
2029 }
2030
2031 return (0);
2032}
2033
2034/*
2035 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2036 * The config lock is held for the specified TXG. Once initiated,
2037 * evacuation of all allocated space (copying it to other vdevs) happens
2038 * in the background (see spa_vdev_remove_thread()), and can be canceled
2039 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2040 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2041 */
2042static int
2043spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2044{
2045 spa_t *spa = vd->vdev_spa;
2046 int error;
2047
2048 /*
2049 * Check for errors up-front, so that we don't waste time
2050 * passivating the metaslab group and clearing the ZIL if there
2051 * are errors.
2052 */
2053 error = spa_vdev_remove_top_check(vd);
2054 if (error != 0)
2055 return (error);
2056
2057 /*
2058 * Stop allocating from this vdev. Note that we must check
2059 * that this is not the only device in the pool before
2060 * passivating, otherwise we will not be able to make
2061 * progress because we can't allocate from any vdevs.
2062 * The above check for sufficient free space serves this
2063 * purpose.
2064 */
2065 metaslab_group_t *mg = vd->vdev_mg;
2066 metaslab_group_passivate(mg);
2067
2068 /*
2069 * Wait for the youngest allocations and frees to sync,
2070 * and then wait for the deferral of those frees to finish.
2071 */
2072 spa_vdev_config_exit(spa, NULL,
2073 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2074
2075 /*
2076 * We must ensure that no "stubby" log blocks are allocated
2077 * on the device to be removed. These blocks could be
2078 * written at any time, including while we are in the middle
2079 * of copying them.
2080 */
2081 error = spa_reset_logs(spa);
2082
619f0976
GW
2083 /*
2084 * We stop any initializing that is currently in progress but leave
2085 * the state as "active". This will allow the initializing to resume
2086 * if the removal is canceled sometime later.
2087 */
2088 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2089
a1d477c2
MA
2090 *txg = spa_vdev_config_enter(spa);
2091
2092 /*
2093 * Things might have changed while the config lock was dropped
2094 * (e.g. space usage). Check for errors again.
2095 */
2096 if (error == 0)
2097 error = spa_vdev_remove_top_check(vd);
2098
2099 if (error != 0) {
2100 metaslab_group_activate(mg);
619f0976 2101 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
a1d477c2
MA
2102 return (error);
2103 }
2104
2105 vd->vdev_removing = B_TRUE;
2106
2107 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2108 vdev_config_dirty(vd);
2109 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2110 dsl_sync_task_nowait(spa->spa_dsl_pool,
2111 vdev_remove_initiate_sync,
9e052db4 2112 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
a1d477c2
MA
2113 dmu_tx_commit(tx);
2114
2115 return (0);
2116}
2117
2118/*
2119 * Remove a device from the pool.
2120 *
2121 * Removing a device from the vdev namespace requires several steps
2122 * and can take a significant amount of time. As a result we use
2123 * the spa_vdev_config_[enter/exit] functions which allow us to
2124 * grab and release the spa_config_lock while still holding the namespace
2125 * lock. During each step the configuration is synced out.
2126 */
2127int
2128spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2129{
2130 vdev_t *vd;
2131 nvlist_t **spares, **l2cache, *nv;
2132 uint64_t txg = 0;
2133 uint_t nspares, nl2cache;
2134 int error = 0;
2135 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2136 sysevent_t *ev = NULL;
fedef6dd 2137 char *vd_type = NULL, *vd_path = NULL;
a1d477c2
MA
2138
2139 ASSERT(spa_writeable(spa));
2140
2141 if (!locked)
2142 txg = spa_vdev_enter(spa);
2143
d2734cce
SD
2144 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2145 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2146 error = (spa_has_checkpoint(spa)) ?
2147 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2148
2149 if (!locked)
2150 return (spa_vdev_exit(spa, NULL, txg, error));
2151
2152 return (error);
2153 }
2154
a1d477c2
MA
2155 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2156
2157 if (spa->spa_spares.sav_vdevs != NULL &&
2158 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2159 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2160 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2161 /*
2162 * Only remove the hot spare if it's not currently in use
2163 * in this pool.
2164 */
2165 if (vd == NULL || unspare) {
2166 if (vd == NULL)
2167 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2168 ev = spa_event_create(spa, vd, NULL,
2169 ESC_ZFS_VDEV_REMOVE_AUX);
2170
fedef6dd
TC
2171 vd_type = VDEV_TYPE_SPARE;
2172 vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
a1d477c2
MA
2173 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2174 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2175 spa_load_spares(spa);
2176 spa->spa_spares.sav_sync = B_TRUE;
2177 } else {
2178 error = SET_ERROR(EBUSY);
2179 }
2180 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2181 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2182 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2183 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
fedef6dd
TC
2184 vd_type = VDEV_TYPE_L2CACHE;
2185 vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
a1d477c2
MA
2186 /*
2187 * Cache devices can always be removed.
2188 */
2189 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2190 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2191 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2192 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2193 spa_load_l2cache(spa);
2194 spa->spa_l2cache.sav_sync = B_TRUE;
2195 } else if (vd != NULL && vd->vdev_islog) {
2196 ASSERT(!locked);
fedef6dd
TC
2197 vd_type = "log";
2198 vd_path = (vd->vdev_path != NULL) ? vd->vdev_path : "-";
a1d477c2
MA
2199 error = spa_vdev_remove_log(vd, &txg);
2200 } else if (vd != NULL) {
2201 ASSERT(!locked);
2202 error = spa_vdev_remove_top(vd, &txg);
2203 } else {
2204 /*
2205 * There is no vdev of any kind with the specified guid.
2206 */
2207 error = SET_ERROR(ENOENT);
2208 }
2209
2210 if (!locked)
2211 error = spa_vdev_exit(spa, NULL, txg, error);
2212
fedef6dd
TC
2213 /*
2214 * Logging must be done outside the spa config lock. Otherwise,
2215 * this code path could end up holding the spa config lock while
2216 * waiting for a txg_sync so it can write to the internal log.
2217 * Doing that would prevent the txg sync from actually happening,
2218 * causing a deadlock.
2219 */
2220 if (error == 0 && vd_type != NULL && vd_path != NULL) {
2221 spa_history_log_internal(spa, "vdev remove", NULL,
2222 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2223 }
2224
a1d477c2
MA
2225 if (ev != NULL)
2226 spa_event_post(ev);
2227
2228 return (error);
2229}
2230
2231int
2232spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2233{
2234 prs->prs_state = spa->spa_removing_phys.sr_state;
2235
2236 if (prs->prs_state == DSS_NONE)
2237 return (SET_ERROR(ENOENT));
2238
2239 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2240 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2241 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2242 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2243 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2244
a1d477c2
MA
2245 prs->prs_mapping_memory = 0;
2246 uint64_t indirect_vdev_id =
2247 spa->spa_removing_phys.sr_prev_indirect_vdev;
2248 while (indirect_vdev_id != -1) {
2249 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2250 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2251 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2252
2253 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2254 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2255 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2256 }
2257
2258 return (0);
2259}
2260
93ce2b4c 2261#if defined(_KERNEL)
7c9a4292
BB
2262module_param(zfs_removal_ignore_errors, int, 0644);
2263MODULE_PARM_DESC(zfs_removal_ignore_errors,
2264 "Ignore hard IO errors when removing device");
2265
a1d477c2
MA
2266module_param(zfs_remove_max_segment, int, 0644);
2267MODULE_PARM_DESC(zfs_remove_max_segment,
2268 "Largest contiguous segment to allocate when removing device");
2269
0dc2f70c
MA
2270module_param(vdev_removal_max_span, int, 0644);
2271MODULE_PARM_DESC(vdev_removal_max_span,
2272 "Largest span of free chunks a remap segment can span");
2273
d2734cce 2274/* BEGIN CSTYLED */
cef48f14
TC
2275module_param(zfs_removal_suspend_progress, int, 0644);
2276MODULE_PARM_DESC(zfs_removal_suspend_progress,
d2734cce
SD
2277 "Pause device removal after this many bytes are copied "
2278 "(debug use only - causes removal to hang)");
2279/* END CSTYLED */
2280
a1d477c2
MA
2281EXPORT_SYMBOL(free_from_removing_vdev);
2282EXPORT_SYMBOL(spa_removal_get_stats);
2283EXPORT_SYMBOL(spa_remove_init);
2284EXPORT_SYMBOL(spa_restart_removal);
2285EXPORT_SYMBOL(spa_vdev_removal_destroy);
2286EXPORT_SYMBOL(spa_vdev_remove);
2287EXPORT_SYMBOL(spa_vdev_remove_cancel);
2288EXPORT_SYMBOL(spa_vdev_remove_suspend);
2289EXPORT_SYMBOL(svr_sync);
2290#endif