]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zfs_vnops.c
BRT: Fix FICLONE/FICLONERANGE shortened copy
[mirror_zfs.git] / module / zfs / zfs_vnops.c
CommitLineData
e53d678d
MM
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
e53d678d
MM
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
67a1b037 27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
e53d678d
MM
28 */
29
30/* Portions Copyright 2007 Jeremy Teo */
31/* Portions Copyright 2010 Robert Milkowski */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/time.h>
36#include <sys/sysmacros.h>
37#include <sys/vfs.h>
c0801bf3 38#include <sys/uio_impl.h>
e53d678d
MM
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/cmn_err.h>
43#include <sys/errno.h>
44#include <sys/zfs_dir.h>
45#include <sys/zfs_acl.h>
46#include <sys/zfs_ioctl.h>
47#include <sys/fs/zfs.h>
48#include <sys/dmu.h>
49#include <sys/dmu_objset.h>
c7b61192 50#include <sys/dsl_crypt.h>
e53d678d
MM
51#include <sys/spa.h>
52#include <sys/txg.h>
53#include <sys/dbuf.h>
54#include <sys/policy.h>
67a1b037 55#include <sys/zfeature.h>
e53d678d
MM
56#include <sys/zfs_vnops.h>
57#include <sys/zfs_quota.h>
ab8c935e
CS
58#include <sys/zfs_vfsops.h>
59#include <sys/zfs_znode.h>
e53d678d 60
6dccdf50
BB
61/*
62 * Enable the experimental block cloning feature. If this setting is 0, then
63 * even if feature@block_cloning is enabled, attempts to clone blocks will act
64 * as though the feature is disabled.
65 */
66int zfs_bclone_enabled = 1;
67
68/*
69 * When set zfs_clone_range() waits for dirty data to be written to disk.
70 * This allows the clone operation to reliably succeed when a file is modified
71 * and then immediately cloned. For small files this may be slower than making
72 * a copy of the file and is therefore not the default. However, in certain
73 * scenarios this behavior may be desirable so a tunable is provided.
74 */
75static int zfs_bclone_wait_dirty = 0;
76
77/*
78 * Maximum bytes to read per chunk in zfs_read().
79 */
80static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
e53d678d 81
e53d678d
MM
82int
83zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
84{
768eaced 85 int error = 0;
e53d678d
MM
86 zfsvfs_t *zfsvfs = ZTOZSB(zp);
87
e53d678d 88 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
768eaced 89 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
c3773de1 90 return (error);
411f4a01 91 atomic_inc_32(&zp->z_sync_writes_cnt);
e53d678d 92 zil_commit(zfsvfs->z_log, zp->z_id);
411f4a01 93 atomic_dec_32(&zp->z_sync_writes_cnt);
768eaced 94 zfs_exit(zfsvfs, FTAG);
e53d678d 95 }
768eaced 96 return (error);
e53d678d
MM
97}
98
8583540c
MM
99
100#if defined(SEEK_HOLE) && defined(SEEK_DATA)
101/*
102 * Lseek support for finding holes (cmd == SEEK_HOLE) and
103 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
104 */
105static int
106zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
107{
de198f2d 108 zfs_locked_range_t *lr;
8583540c
MM
109 uint64_t noff = (uint64_t)*off; /* new offset */
110 uint64_t file_sz;
111 int error;
112 boolean_t hole;
113
114 file_sz = zp->z_size;
115 if (noff >= file_sz) {
116 return (SET_ERROR(ENXIO));
117 }
118
119 if (cmd == F_SEEK_HOLE)
120 hole = B_TRUE;
121 else
122 hole = B_FALSE;
123
de198f2d 124 /* Flush any mmap()'d data to disk */
3fc92adc 125 if (zn_has_cached_data(zp, 0, file_sz - 1))
de198f2d
BB
126 zn_flush_cached_data(zp, B_FALSE);
127
64bfa6ba 128 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
8583540c 129 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
de198f2d 130 zfs_rangelock_exit(lr);
8583540c
MM
131
132 if (error == ESRCH)
133 return (SET_ERROR(ENXIO));
134
de198f2d 135 /* File was dirty, so fall back to using generic logic */
8583540c
MM
136 if (error == EBUSY) {
137 if (hole)
138 *off = file_sz;
139
140 return (0);
141 }
142
143 /*
144 * We could find a hole that begins after the logical end-of-file,
145 * because dmu_offset_next() only works on whole blocks. If the
146 * EOF falls mid-block, then indicate that the "virtual hole"
147 * at the end of the file begins at the logical EOF, rather than
148 * at the end of the last block.
149 */
150 if (noff > file_sz) {
151 ASSERT(hole);
152 noff = file_sz;
153 }
154
155 if (noff < *off)
156 return (error);
157 *off = noff;
158 return (error);
159}
160
161int
162zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
163{
164 zfsvfs_t *zfsvfs = ZTOZSB(zp);
165 int error;
166
768eaced
CC
167 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
168 return (error);
8583540c
MM
169
170 error = zfs_holey_common(zp, cmd, off);
171
768eaced 172 zfs_exit(zfsvfs, FTAG);
8583540c
MM
173 return (error);
174}
175#endif /* SEEK_HOLE && SEEK_DATA */
176
8583540c
MM
177int
178zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
179{
180 zfsvfs_t *zfsvfs = ZTOZSB(zp);
181 int error;
182
768eaced
CC
183 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
184 return (error);
8583540c
MM
185
186 if (flag & V_ACE_MASK)
f224eddf
YY
187#if defined(__linux__)
188 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
d4dc53da 189 zfs_init_idmap);
f224eddf
YY
190#else
191 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
192 NULL);
193#endif
8583540c 194 else
f224eddf 195#if defined(__linux__)
d4dc53da 196 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
f224eddf 197#else
2a068a13 198 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
f224eddf 199#endif
8583540c 200
768eaced 201 zfs_exit(zfsvfs, FTAG);
8583540c
MM
202 return (error);
203}
204
e53d678d
MM
205/*
206 * Read bytes from specified file into supplied buffer.
207 *
208 * IN: zp - inode of file to be read from.
209 * uio - structure supplying read location, range info,
210 * and return buffer.
211 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
212 * O_DIRECT flag; used to bypass page cache.
213 * cr - credentials of caller.
214 *
215 * OUT: uio - updated offset and range, buffer filled.
216 *
217 * RETURN: 0 on success, error code on failure.
218 *
219 * Side Effects:
220 * inode - atime updated if byte count > 0
221 */
e53d678d 222int
d0cd9a5c 223zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 224{
ef70eff1 225 (void) cr;
e53d678d
MM
226 int error = 0;
227 boolean_t frsync = B_FALSE;
228
229 zfsvfs_t *zfsvfs = ZTOZSB(zp);
768eaced
CC
230 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
231 return (error);
e53d678d
MM
232
233 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
768eaced 234 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
235 return (SET_ERROR(EACCES));
236 }
237
238 /* We don't copy out anything useful for directories. */
239 if (Z_ISDIR(ZTOTYPE(zp))) {
768eaced 240 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
241 return (SET_ERROR(EISDIR));
242 }
243
244 /*
245 * Validate file offset
246 */
d0cd9a5c 247 if (zfs_uio_offset(uio) < (offset_t)0) {
768eaced 248 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
249 return (SET_ERROR(EINVAL));
250 }
251
252 /*
253 * Fasttrack empty reads
254 */
d0cd9a5c 255 if (zfs_uio_resid(uio) == 0) {
768eaced 256 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
257 return (0);
258 }
259
260#ifdef FRSYNC
261 /*
262 * If we're in FRSYNC mode, sync out this znode before reading it.
263 * Only do this for non-snapshots.
264 *
265 * Some platforms do not support FRSYNC and instead map it
266 * to O_SYNC, which results in unnecessary calls to zil_commit. We
267 * only honor FRSYNC requests on platforms which support it.
268 */
269 frsync = !!(ioflag & FRSYNC);
270#endif
271 if (zfsvfs->z_log &&
272 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
273 zil_commit(zfsvfs->z_log, zp->z_id);
274
275 /*
276 * Lock the range against changes.
277 */
278 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
d0cd9a5c 279 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
e53d678d
MM
280
281 /*
282 * If we are reading past end-of-file we can skip
283 * to the end; but we might still need to set atime.
284 */
d0cd9a5c 285 if (zfs_uio_offset(uio) >= zp->z_size) {
e53d678d
MM
286 error = 0;
287 goto out;
288 }
289
d0cd9a5c 290 ASSERT(zfs_uio_offset(uio) < zp->z_size);
05679465 291#if defined(__linux__)
59eab109 292 ssize_t start_offset = zfs_uio_offset(uio);
05679465 293#endif
d0cd9a5c 294 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
e53d678d
MM
295 ssize_t start_resid = n;
296
297 while (n > 0) {
298 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
d0cd9a5c 299 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
e53d678d 300#ifdef UIO_NOCOPY
d0cd9a5c 301 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
e53d678d
MM
302 error = mappedread_sf(zp, nbytes, uio);
303 else
304#endif
3fc92adc
BB
305 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
306 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
e53d678d
MM
307 error = mappedread(zp, nbytes, uio);
308 } else {
309 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
310 uio, nbytes);
311 }
312
313 if (error) {
314 /* convert checksum errors into IO errors */
315 if (error == ECKSUM)
316 error = SET_ERROR(EIO);
05679465
RE
317
318#if defined(__linux__)
59eab109
RE
319 /*
320 * if we actually read some bytes, bubbling EFAULT
05679465
RE
321 * up to become EAGAIN isn't what we want here...
322 *
323 * ...on Linux, at least. On FBSD, doing this breaks.
59eab109
RE
324 */
325 if (error == EFAULT &&
326 (zfs_uio_offset(uio) - start_offset) != 0)
327 error = 0;
05679465 328#endif
e53d678d
MM
329 break;
330 }
331
332 n -= nbytes;
333 }
334
335 int64_t nread = start_resid - n;
336 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
337 task_io_account_read(nread);
338out:
339 zfs_rangelock_exit(lr);
340
341 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
768eaced 342 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
343 return (error);
344}
345
3d244b48
PJD
346static void
347zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
348 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
349{
350 zilog_t *zilog = zfsvfs->z_log;
351 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
352
353 ASSERT(clear_setid_bits_txgp != NULL);
354 ASSERT(tx != NULL);
355
356 /*
357 * Clear Set-UID/Set-GID bits on successful write if not
358 * privileged and at least one of the execute bits is set.
359 *
360 * It would be nice to do this after all writes have
361 * been done, but that would still expose the ISUID/ISGID
362 * to another app after the partial write is committed.
363 *
364 * Note: we don't call zfs_fuid_map_id() here because
365 * user 0 is not an ephemeral uid.
366 */
367 mutex_enter(&zp->z_acl_lock);
368 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
369 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
370 secpolicy_vnode_setid_retain(zp, cr,
371 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
372 uint64_t newmode;
373
374 zp->z_mode &= ~(S_ISUID | S_ISGID);
375 newmode = zp->z_mode;
376 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
377 (void *)&newmode, sizeof (uint64_t), tx);
378
379 mutex_exit(&zp->z_acl_lock);
380
381 /*
382 * Make sure SUID/SGID bits will be removed when we replay the
383 * log. If the setid bits are keep coming back, don't log more
384 * than one TX_SETATTR per transaction group.
385 */
386 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
861166b0 387 vattr_t va = {0};
3d244b48 388
4d972ab5 389 va.va_mask = ATTR_MODE;
3d244b48
PJD
390 va.va_nodeid = zp->z_id;
391 va.va_mode = newmode;
4d972ab5
JL
392 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
393 ATTR_MODE, NULL);
3d244b48
PJD
394 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
395 }
396 } else {
397 mutex_exit(&zp->z_acl_lock);
398 }
399}
400
e53d678d
MM
401/*
402 * Write the bytes to a file.
403 *
404 * IN: zp - znode of file to be written to.
405 * uio - structure supplying write location, range info,
406 * and data buffer.
407 * ioflag - O_APPEND flag set if in append mode.
408 * O_DIRECT flag; used to bypass page cache.
409 * cr - credentials of caller.
410 *
411 * OUT: uio - updated offset and range.
412 *
413 * RETURN: 0 if success
414 * error code if failure
415 *
416 * Timestamps:
417 * ip - ctime|mtime updated if byte count > 0
418 */
e53d678d 419int
d0cd9a5c 420zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
e53d678d 421{
063daa83 422 int error = 0, error1;
d0cd9a5c 423 ssize_t start_resid = zfs_uio_resid(uio);
3d244b48 424 uint64_t clear_setid_bits_txg = 0;
e53d678d
MM
425
426 /*
427 * Fasttrack empty write
428 */
429 ssize_t n = start_resid;
430 if (n == 0)
431 return (0);
432
e53d678d 433 zfsvfs_t *zfsvfs = ZTOZSB(zp);
768eaced
CC
434 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
435 return (error);
e53d678d
MM
436
437 sa_bulk_attr_t bulk[4];
438 int count = 0;
439 uint64_t mtime[2], ctime[2];
440 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
441 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
442 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
443 &zp->z_size, 8);
444 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
445 &zp->z_pflags, 8);
446
447 /*
448 * Callers might not be able to detect properly that we are read-only,
449 * so check it explicitly here.
450 */
451 if (zfs_is_readonly(zfsvfs)) {
768eaced 452 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
453 return (SET_ERROR(EROFS));
454 }
455
456 /*
4b2e2082
RM
457 * If immutable or not appending then return EPERM.
458 * Intentionally allow ZFS_READONLY through here.
459 * See zfs_zaccess_common()
e53d678d 460 */
4b2e2082 461 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
e53d678d 462 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
d0cd9a5c 463 (zfs_uio_offset(uio) < zp->z_size))) {
768eaced 464 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
465 return (SET_ERROR(EPERM));
466 }
467
468 /*
469 * Validate file offset
470 */
d0cd9a5c 471 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
e53d678d 472 if (woff < 0) {
768eaced 473 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
474 return (SET_ERROR(EINVAL));
475 }
476
e53d678d
MM
477 /*
478 * Pre-fault the pages to ensure slow (eg NFS) pages
479 * don't hold up txg.
e53d678d 480 */
b0cbc1aa
AM
481 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
482 if (zfs_uio_prefaultpages(pfbytes, uio)) {
768eaced 483 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
484 return (SET_ERROR(EFAULT));
485 }
486
487 /*
488 * If in append mode, set the io offset pointer to eof.
489 */
490 zfs_locked_range_t *lr;
491 if (ioflag & O_APPEND) {
492 /*
493 * Obtain an appending range lock to guarantee file append
494 * semantics. We reset the write offset once we have the lock.
495 */
496 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
497 woff = lr->lr_offset;
498 if (lr->lr_length == UINT64_MAX) {
499 /*
500 * We overlocked the file because this write will cause
501 * the file block size to increase.
502 * Note that zp_size cannot change with this lock held.
503 */
504 woff = zp->z_size;
505 }
d0cd9a5c 506 zfs_uio_setoffset(uio, woff);
e53d678d
MM
507 } else {
508 /*
509 * Note that if the file block size will change as a result of
510 * this write, then this range lock will lock the entire file
511 * so that we can re-write the block safely.
512 */
513 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
514 }
515
67a1b037 516 if (zn_rlimit_fsize_uio(zp, uio)) {
e53d678d 517 zfs_rangelock_exit(lr);
768eaced 518 zfs_exit(zfsvfs, FTAG);
7e3617de 519 return (SET_ERROR(EFBIG));
e53d678d
MM
520 }
521
d1dd72a2
RM
522 const rlim64_t limit = MAXOFFSET_T;
523
e53d678d
MM
524 if (woff >= limit) {
525 zfs_rangelock_exit(lr);
768eaced 526 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
527 return (SET_ERROR(EFBIG));
528 }
529
d1dd72a2 530 if (n > limit - woff)
e53d678d
MM
531 n = limit - woff;
532
533 uint64_t end_size = MAX(zp->z_size, woff + n);
534 zilog_t *zilog = zfsvfs->z_log;
c3773de1
AM
535 boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
536 (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
e53d678d 537
eec6646e
RM
538 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
539 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
540 const uint64_t projid = zp->z_projid;
541
e53d678d
MM
542 /*
543 * Write the file in reasonable size chunks. Each chunk is written
544 * in a separate transaction; this keeps the intent log records small
545 * and allows us to do more fine-grained space accounting.
546 */
547 while (n > 0) {
d0cd9a5c 548 woff = zfs_uio_offset(uio);
e53d678d 549
eec6646e
RM
550 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
551 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
552 (projid != ZFS_DEFAULT_PROJID &&
e53d678d 553 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
eec6646e 554 projid))) {
e53d678d
MM
555 error = SET_ERROR(EDQUOT);
556 break;
557 }
558
b0cbc1aa
AM
559 uint64_t blksz;
560 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
561 if (zp->z_blksz > zfsvfs->z_max_blksz &&
562 !ISP2(zp->z_blksz)) {
563 /*
564 * File's blocksize is already larger than the
565 * "recordsize" property. Only let it grow to
566 * the next power of 2.
567 */
568 blksz = 1 << highbit64(zp->z_blksz);
569 } else {
570 blksz = zfsvfs->z_max_blksz;
571 }
572 blksz = MIN(blksz, P2ROUNDUP(end_size,
573 SPA_MINBLOCKSIZE));
574 blksz = MAX(blksz, zp->z_blksz);
575 } else {
576 blksz = zp->z_blksz;
577 }
578
e53d678d 579 arc_buf_t *abuf = NULL;
b0cbc1aa
AM
580 ssize_t nbytes = n;
581 if (n >= blksz && woff >= zp->z_size &&
582 P2PHASE(woff, blksz) == 0 &&
583 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
e53d678d
MM
584 /*
585 * This write covers a full block. "Borrow" a buffer
586 * from the dmu so that we can fill it before we enter
587 * a transaction. This avoids the possibility of
588 * holding up the transaction if the data copy hangs
589 * up on a pagefault (e.g., from an NFS server mapping).
590 */
e53d678d 591 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
b0cbc1aa 592 blksz);
e53d678d 593 ASSERT(abuf != NULL);
b0cbc1aa
AM
594 ASSERT(arc_buf_size(abuf) == blksz);
595 if ((error = zfs_uiocopy(abuf->b_data, blksz,
596 UIO_WRITE, uio, &nbytes))) {
e53d678d
MM
597 dmu_return_arcbuf(abuf);
598 break;
599 }
b0cbc1aa
AM
600 ASSERT3S(nbytes, ==, blksz);
601 } else {
602 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
603 P2PHASE(woff, blksz));
604 if (pfbytes < nbytes) {
605 if (zfs_uio_prefaultpages(nbytes, uio)) {
606 error = SET_ERROR(EFAULT);
607 break;
608 }
609 pfbytes = nbytes;
610 }
e53d678d
MM
611 }
612
613 /*
614 * Start a transaction.
615 */
616 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
617 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
618 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
619 DB_DNODE_ENTER(db);
b0cbc1aa 620 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
e53d678d
MM
621 DB_DNODE_EXIT(db);
622 zfs_sa_upgrade_txholds(tx, zp);
623 error = dmu_tx_assign(tx, TXG_WAIT);
624 if (error) {
625 dmu_tx_abort(tx);
626 if (abuf != NULL)
627 dmu_return_arcbuf(abuf);
628 break;
629 }
630
3d244b48
PJD
631 /*
632 * NB: We must call zfs_clear_setid_bits_if_necessary before
633 * committing the transaction!
634 */
635
e53d678d
MM
636 /*
637 * If rangelock_enter() over-locked we grow the blocksize
638 * and then reduce the lock range. This will only happen
639 * on the first iteration since rangelock_reduce() will
640 * shrink down lr_length to the appropriate size.
641 */
642 if (lr->lr_length == UINT64_MAX) {
b0cbc1aa 643 zfs_grow_blocksize(zp, blksz, tx);
e53d678d
MM
644 zfs_rangelock_reduce(lr, woff, n);
645 }
646
e53d678d
MM
647 ssize_t tx_bytes;
648 if (abuf == NULL) {
d0cd9a5c
BA
649 tx_bytes = zfs_uio_resid(uio);
650 zfs_uio_fault_disable(uio, B_TRUE);
e53d678d
MM
651 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
652 uio, nbytes, tx);
d0cd9a5c 653 zfs_uio_fault_disable(uio, B_FALSE);
e53d678d
MM
654#ifdef __linux__
655 if (error == EFAULT) {
3d244b48
PJD
656 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
657 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
658 dmu_tx_commit(tx);
659 /*
660 * Account for partial writes before
661 * continuing the loop.
662 * Update needs to occur before the next
d0cd9a5c 663 * zfs_uio_prefaultpages, or prefaultpages may
e53d678d
MM
664 * error, and we may break the loop early.
665 */
b0cbc1aa
AM
666 n -= tx_bytes - zfs_uio_resid(uio);
667 pfbytes -= tx_bytes - zfs_uio_resid(uio);
e53d678d
MM
668 continue;
669 }
670#endif
063daa83
MJ
671 /*
672 * On FreeBSD, EFAULT should be propagated back to the
673 * VFS, which will handle faulting and will retry.
674 */
675 if (error != 0 && error != EFAULT) {
3d244b48
PJD
676 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
677 cr, &clear_setid_bits_txg, tx);
e53d678d
MM
678 dmu_tx_commit(tx);
679 break;
680 }
d0cd9a5c 681 tx_bytes -= zfs_uio_resid(uio);
e53d678d 682 } else {
e53d678d 683 /*
85703f61
RM
684 * Thus, we're writing a full block at a block-aligned
685 * offset and extending the file past EOF.
686 *
687 * dmu_assign_arcbuf_by_dbuf() will directly assign the
688 * arc buffer to a dbuf.
e53d678d 689 */
85703f61
RM
690 error = dmu_assign_arcbuf_by_dbuf(
691 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
692 if (error != 0) {
3d244b48
PJD
693 /*
694 * XXX This might not be necessary if
695 * dmu_assign_arcbuf_by_dbuf is guaranteed
696 * to be atomic.
697 */
698 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
699 cr, &clear_setid_bits_txg, tx);
85703f61
RM
700 dmu_return_arcbuf(abuf);
701 dmu_tx_commit(tx);
702 break;
e53d678d 703 }
d0cd9a5c
BA
704 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
705 zfs_uioskip(uio, nbytes);
85703f61 706 tx_bytes = nbytes;
e53d678d 707 }
3fc92adc
BB
708 if (tx_bytes &&
709 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
e53d678d 710 !(ioflag & O_DIRECT)) {
8a9634e2 711 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
e53d678d
MM
712 }
713
714 /*
715 * If we made no progress, we're done. If we made even
716 * partial progress, update the znode and ZIL accordingly.
717 */
718 if (tx_bytes == 0) {
719 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
720 (void *)&zp->z_size, sizeof (uint64_t), tx);
721 dmu_tx_commit(tx);
722 ASSERT(error != 0);
723 break;
724 }
725
3d244b48
PJD
726 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
727 &clear_setid_bits_txg, tx);
e53d678d
MM
728
729 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
730
731 /*
732 * Update the file size (zp_size) if it has changed;
733 * account for possible concurrent updates.
734 */
d0cd9a5c 735 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
e53d678d 736 (void) atomic_cas_64(&zp->z_size, end_size,
d0cd9a5c 737 zfs_uio_offset(uio));
063daa83 738 ASSERT(error == 0 || error == EFAULT);
e53d678d
MM
739 }
740 /*
741 * If we are replaying and eof is non zero then force
742 * the file size to the specified eof. Note, there's no
743 * concurrency during replay.
744 */
745 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
746 zp->z_size = zfsvfs->z_replay_eof;
747
063daa83
MJ
748 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
749 if (error1 != 0)
750 /* Avoid clobbering EFAULT. */
751 error = error1;
e53d678d 752
3d244b48
PJD
753 /*
754 * NB: During replay, the TX_SETATTR record logged by
755 * zfs_clear_setid_bits_if_necessary must precede any of
756 * the TX_WRITE records logged here.
757 */
c3773de1 758 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
e53d678d 759 NULL, NULL);
3d244b48 760
e53d678d
MM
761 dmu_tx_commit(tx);
762
763 if (error != 0)
764 break;
1c2358c1 765 ASSERT3S(tx_bytes, ==, nbytes);
e53d678d 766 n -= nbytes;
b0cbc1aa 767 pfbytes -= nbytes;
e53d678d
MM
768 }
769
fc273894 770 zfs_znode_update_vfs(zp);
e53d678d
MM
771 zfs_rangelock_exit(lr);
772
773 /*
7e3617de
RM
774 * If we're in replay mode, or we made no progress, or the
775 * uio data is inaccessible return an error. Otherwise, it's
776 * at least a partial write, so it's successful.
e53d678d 777 */
d0cd9a5c 778 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
7e3617de 779 error == EFAULT) {
768eaced 780 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
781 return (error);
782 }
783
c3773de1 784 if (commit)
e53d678d
MM
785 zil_commit(zilog, zp->z_id);
786
d0cd9a5c 787 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
e53d678d
MM
788 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
789 task_io_account_write(nwritten);
790
768eaced 791 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
792 return (0);
793}
794
e53d678d
MM
795int
796zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
797{
798 zfsvfs_t *zfsvfs = ZTOZSB(zp);
799 int error;
800 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
801
768eaced
CC
802 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
803 return (error);
e53d678d 804 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
768eaced 805 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
806
807 return (error);
808}
809
e53d678d
MM
810int
811zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
812{
813 zfsvfs_t *zfsvfs = ZTOZSB(zp);
814 int error;
815 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1a11ad9d 816 zilog_t *zilog;
e53d678d 817
768eaced
CC
818 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
819 return (error);
1a11ad9d 820 zilog = zfsvfs->z_log;
e53d678d
MM
821 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
822
823 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
824 zil_commit(zilog, 0);
825
768eaced 826 zfs_exit(zfsvfs, FTAG);
e53d678d
MM
827 return (error);
828}
829
ab8c935e
CS
830#ifdef ZFS_DEBUG
831static int zil_fault_io = 0;
832#endif
833
834static void zfs_get_done(zgd_t *zgd, int error);
835
836/*
837 * Get data to generate a TX_WRITE intent log record.
838 */
839int
296a4a36
CC
840zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
841 struct lwb *lwb, zio_t *zio)
ab8c935e
CS
842{
843 zfsvfs_t *zfsvfs = arg;
844 objset_t *os = zfsvfs->z_os;
845 znode_t *zp;
846 uint64_t object = lr->lr_foid;
847 uint64_t offset = lr->lr_offset;
848 uint64_t size = lr->lr_length;
849 dmu_buf_t *db;
850 zgd_t *zgd;
851 int error = 0;
296a4a36 852 uint64_t zp_gen;
ab8c935e
CS
853
854 ASSERT3P(lwb, !=, NULL);
ab8c935e
CS
855 ASSERT3U(size, !=, 0);
856
857 /*
858 * Nothing to do if the file has been removed
859 */
860 if (zfs_zget(zfsvfs, object, &zp) != 0)
861 return (SET_ERROR(ENOENT));
862 if (zp->z_unlinked) {
863 /*
864 * Release the vnode asynchronously as we currently have the
865 * txg stopped from syncing.
866 */
867 zfs_zrele_async(zp);
868 return (SET_ERROR(ENOENT));
869 }
296a4a36
CC
870 /* check if generation number matches */
871 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
872 sizeof (zp_gen)) != 0) {
873 zfs_zrele_async(zp);
874 return (SET_ERROR(EIO));
875 }
876 if (zp_gen != gen) {
877 zfs_zrele_async(zp);
878 return (SET_ERROR(ENOENT));
879 }
ab8c935e 880
7384ec65 881 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
ab8c935e
CS
882 zgd->zgd_lwb = lwb;
883 zgd->zgd_private = zp;
884
885 /*
886 * Write records come in two flavors: immediate and indirect.
887 * For small writes it's cheaper to store the data with the
888 * log record (immediate); for large writes it's cheaper to
889 * sync the data and get a pointer to it (indirect) so that
890 * we don't have to write the data twice.
891 */
892 if (buf != NULL) { /* immediate write */
893 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
894 offset, size, RL_READER);
895 /* test for truncation needs to be done while range locked */
896 if (offset >= zp->z_size) {
897 error = SET_ERROR(ENOENT);
898 } else {
899 error = dmu_read(os, object, offset, size, buf,
900 DMU_READ_NO_PREFETCH);
901 }
902 ASSERT(error == 0 || error == ENOENT);
903 } else { /* indirect write */
eda3fcd5 904 ASSERT3P(zio, !=, NULL);
ab8c935e
CS
905 /*
906 * Have to lock the whole block to ensure when it's
907 * written out and its checksum is being calculated
908 * that no one can change the data. We need to re-check
909 * blocksize after we get the lock in case it's changed!
910 */
911 for (;;) {
912 uint64_t blkoff;
913 size = zp->z_blksz;
914 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
915 offset -= blkoff;
916 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
917 offset, size, RL_READER);
918 if (zp->z_blksz == size)
919 break;
920 offset += blkoff;
921 zfs_rangelock_exit(zgd->zgd_lr);
922 }
923 /* test for truncation needs to be done while range locked */
924 if (lr->lr_offset >= zp->z_size)
925 error = SET_ERROR(ENOENT);
926#ifdef ZFS_DEBUG
927 if (zil_fault_io) {
928 error = SET_ERROR(EIO);
929 zil_fault_io = 0;
930 }
931#endif
932 if (error == 0)
bdb7df42
AM
933 error = dmu_buf_hold_noread(os, object, offset, zgd,
934 &db);
ab8c935e
CS
935
936 if (error == 0) {
937 blkptr_t *bp = &lr->lr_blkptr;
938
939 zgd->zgd_db = db;
940 zgd->zgd_bp = bp;
941
942 ASSERT(db->db_offset == offset);
943 ASSERT(db->db_size == size);
944
945 error = dmu_sync(zio, lr->lr_common.lrc_txg,
946 zfs_get_done, zgd);
947 ASSERT(error || lr->lr_length <= size);
948
949 /*
950 * On success, we need to wait for the write I/O
951 * initiated by dmu_sync() to complete before we can
952 * release this dbuf. We will finish everything up
953 * in the zfs_get_done() callback.
954 */
955 if (error == 0)
956 return (0);
957
958 if (error == EALREADY) {
959 lr->lr_common.lrc_txtype = TX_WRITE2;
960 /*
961 * TX_WRITE2 relies on the data previously
962 * written by the TX_WRITE that caused
963 * EALREADY. We zero out the BP because
964 * it is the old, currently-on-disk BP.
965 */
966 zgd->zgd_bp = NULL;
967 BP_ZERO(bp);
968 error = 0;
969 }
970 }
971 }
972
973 zfs_get_done(zgd, error);
974
975 return (error);
976}
977
978
ab8c935e
CS
979static void
980zfs_get_done(zgd_t *zgd, int error)
981{
ef70eff1 982 (void) error;
ab8c935e
CS
983 znode_t *zp = zgd->zgd_private;
984
985 if (zgd->zgd_db)
986 dmu_buf_rele(zgd->zgd_db, zgd);
987
988 zfs_rangelock_exit(zgd->zgd_lr);
989
990 /*
991 * Release the vnode asynchronously as we currently have the
992 * txg stopped from syncing.
993 */
994 zfs_zrele_async(zp);
995
996 kmem_free(zgd, sizeof (zgd_t));
997}
998
67a1b037
PJD
999static int
1000zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1001{
1002 int error;
1003
1004 /* Swap. Not sure if the order of zfs_enter()s is important. */
1005 if (zfsvfs1 > zfsvfs2) {
1006 zfsvfs_t *tmpzfsvfs;
1007
1008 tmpzfsvfs = zfsvfs2;
1009 zfsvfs2 = zfsvfs1;
1010 zfsvfs1 = tmpzfsvfs;
1011 }
1012
1013 error = zfs_enter(zfsvfs1, tag);
1014 if (error != 0)
1015 return (error);
1016 if (zfsvfs1 != zfsvfs2) {
1017 error = zfs_enter(zfsvfs2, tag);
1018 if (error != 0) {
1019 zfs_exit(zfsvfs1, tag);
1020 return (error);
1021 }
1022 }
1023
1024 return (0);
1025}
1026
1027static void
1028zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1029{
1030
1031 zfs_exit(zfsvfs1, tag);
1032 if (zfsvfs1 != zfsvfs2)
1033 zfs_exit(zfsvfs2, tag);
1034}
1035
1036/*
1037 * We split each clone request in chunks that can fit into a single ZIL
1038 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1039 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1040 * us room for storing 1022 block pointers.
1041 *
1042 * On success, the function return the number of bytes copied in *lenp.
1043 * Note, it doesn't return how much bytes are left to be copied.
019dea0a
KP
1044 * On errors which are caused by any file system limitations or
1045 * brt limitations `EINVAL` is returned. In the most cases a user
1046 * requested bad parameters, it could be possible to clone the file but
1047 * some parameters don't match the requirements.
67a1b037
PJD
1048 */
1049int
1050zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1051 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1052{
1053 zfsvfs_t *inzfsvfs, *outzfsvfs;
1054 objset_t *inos, *outos;
1055 zfs_locked_range_t *inlr, *outlr;
1056 dmu_buf_impl_t *db;
1057 dmu_tx_t *tx;
1058 zilog_t *zilog;
1059 uint64_t inoff, outoff, len, done;
1060 uint64_t outsize, size;
1061 int error;
1062 int count = 0;
1063 sa_bulk_attr_t bulk[3];
1064 uint64_t mtime[2], ctime[2];
1065 uint64_t uid, gid, projid;
1066 blkptr_t *bps;
1067 size_t maxblocks, nbps;
1068 uint_t inblksz;
1069 uint64_t clear_setid_bits_txg = 0;
6dccdf50 1070 uint64_t last_synced_txg = 0;
67a1b037
PJD
1071
1072 inoff = *inoffp;
1073 outoff = *outoffp;
1074 len = *lenp;
1075 done = 0;
1076
1077 inzfsvfs = ZTOZSB(inzp);
1078 outzfsvfs = ZTOZSB(outzp);
b6d7370b
PJD
1079
1080 /*
1081 * We need to call zfs_enter() potentially on two different datasets,
1082 * so we need a dedicated function for that.
1083 */
1084 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1085 if (error != 0)
1086 return (error);
1087
67a1b037
PJD
1088 inos = inzfsvfs->z_os;
1089 outos = outzfsvfs->z_os;
1090
1091 /*
1092 * Both source and destination have to belong to the same storage pool.
1093 */
1094 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1095 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1096 return (SET_ERROR(EXDEV));
1097 }
1098
5bdfff5c
KP
1099 /*
1100 * outos and inos belongs to the same storage pool.
1101 * see a few lines above, only one check.
1102 */
1103 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1104 SPA_FEATURE_BLOCK_CLONING)) {
1105 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1106 return (SET_ERROR(EOPNOTSUPP));
1107 }
1108
67a1b037
PJD
1109 ASSERT(!outzfsvfs->z_replay);
1110
763ca47f
MM
1111 /*
1112 * Block cloning from an unencrypted dataset into an encrypted
1113 * dataset and vice versa is not supported.
1114 */
1115 if (inos->os_encrypted != outos->os_encrypted) {
1116 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1117 return (SET_ERROR(EXDEV));
1118 }
1119
c7b61192
KP
1120 /*
1121 * Cloning across encrypted datasets is possible only if they
1122 * share the same master key.
1123 */
1124 if (inos != outos && inos->os_encrypted &&
1125 !dmu_objset_crypto_key_equal(inos, outos)) {
1126 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1127 return (SET_ERROR(EXDEV));
1128 }
1129
67a1b037
PJD
1130 error = zfs_verify_zp(inzp);
1131 if (error == 0)
1132 error = zfs_verify_zp(outzp);
1133 if (error != 0) {
1134 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1135 return (error);
1136 }
1137
67a1b037
PJD
1138 /*
1139 * We don't copy source file's flags that's why we don't allow to clone
1140 * files that are in quarantine.
1141 */
1142 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1143 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1144 return (SET_ERROR(EACCES));
1145 }
1146
1147 if (inoff >= inzp->z_size) {
1148 *lenp = 0;
1149 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1150 return (0);
1151 }
1152 if (len > inzp->z_size - inoff) {
1153 len = inzp->z_size - inoff;
1154 }
1155 if (len == 0) {
1156 *lenp = 0;
1157 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1158 return (0);
1159 }
1160
1161 /*
1162 * Callers might not be able to detect properly that we are read-only,
1163 * so check it explicitly here.
1164 */
1165 if (zfs_is_readonly(outzfsvfs)) {
1166 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1167 return (SET_ERROR(EROFS));
1168 }
1169
1170 /*
1171 * If immutable or not appending then return EPERM.
1172 * Intentionally allow ZFS_READONLY through here.
1173 * See zfs_zaccess_common()
1174 */
1175 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1176 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1177 return (SET_ERROR(EPERM));
1178 }
1179
1180 /*
1181 * No overlapping if we are cloning within the same file.
1182 */
1183 if (inzp == outzp) {
1184 if (inoff < outoff + len && outoff < inoff + len) {
1185 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1186 return (SET_ERROR(EINVAL));
1187 }
1188 }
1189
1190 /*
1191 * Maintain predictable lock order.
1192 */
1193 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1194 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1195 RL_READER);
1196 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1197 RL_WRITER);
1198 } else {
1199 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1200 RL_WRITER);
1201 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1202 RL_READER);
1203 }
1204
1205 inblksz = inzp->z_blksz;
1206
1207 /*
255741fc
AM
1208 * We cannot clone into a file with different block size if we can't
1209 * grow it (block size is already bigger, has more than one block, or
1210 * not locked for growth). There are other possible reasons for the
1211 * grow to fail, but we cover what we can before opening transaction
1212 * and the rest detect after we try to do it.
67a1b037 1213 */
255741fc
AM
1214 if (inblksz < outzp->z_blksz) {
1215 error = SET_ERROR(EINVAL);
1216 goto unlock;
1217 }
5cc1876f 1218 if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
255741fc 1219 outlr->lr_length != UINT64_MAX)) {
5cc1876f
AM
1220 error = SET_ERROR(EINVAL);
1221 goto unlock;
1222 }
1223
1224 /*
1225 * Block size must be power-of-2 if destination offset != 0.
1226 * There can be no multiple blocks of non-power-of-2 size.
1227 */
1228 if (outoff != 0 && !ISP2(inblksz)) {
019dea0a 1229 error = SET_ERROR(EINVAL);
67a1b037
PJD
1230 goto unlock;
1231 }
1232
1233 /*
1234 * Offsets and len must be at block boundries.
1235 */
1236 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
019dea0a 1237 error = SET_ERROR(EINVAL);
67a1b037
PJD
1238 goto unlock;
1239 }
1240 /*
1241 * Length must be multipe of blksz, except for the end of the file.
1242 */
1243 if ((len % inblksz) != 0 &&
1244 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
019dea0a 1245 error = SET_ERROR(EINVAL);
67a1b037
PJD
1246 goto unlock;
1247 }
1248
e1353885
AM
1249 /*
1250 * If we are copying only one block and it is smaller than recordsize
1251 * property, do not allow destination to grow beyond one block if it
1252 * is not there yet. Otherwise the destination will get stuck with
1253 * that block size forever, that can be as small as 512 bytes, no
1254 * matter how big the destination grow later.
1255 */
1256 if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1257 outzp->z_size <= inblksz && outoff + len > inblksz) {
1258 error = SET_ERROR(EINVAL);
1259 goto unlock;
1260 }
1261
67a1b037
PJD
1262 error = zn_rlimit_fsize(outoff + len);
1263 if (error != 0) {
1264 goto unlock;
1265 }
1266
1267 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1268 error = SET_ERROR(EFBIG);
1269 goto unlock;
1270 }
1271
1272 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1273 &mtime, 16);
1274 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1275 &ctime, 16);
1276 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1277 &outzp->z_size, 8);
1278
1279 zilog = outzfsvfs->z_log;
1280 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1281 sizeof (bps[0]);
1282
1283 uid = KUID_TO_SUID(ZTOUID(outzp));
1284 gid = KGID_TO_SGID(ZTOGID(outzp));
1285 projid = outzp->z_projid;
1286
8d21c002 1287 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
67a1b037
PJD
1288
1289 /*
1290 * Clone the file in reasonable size chunks. Each chunk is cloned
1291 * in a separate transaction; this keeps the intent log records small
1292 * and allows us to do more fine-grained space accounting.
1293 */
1294 while (len > 0) {
1295 size = MIN(inblksz * maxblocks, len);
1296
1297 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1298 uid) ||
1299 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1300 gid) ||
1301 (projid != ZFS_DEFAULT_PROJID &&
1302 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1303 projid))) {
1304 error = SET_ERROR(EDQUOT);
1305 break;
1306 }
1307
67a1b037 1308 nbps = maxblocks;
6dccdf50 1309 last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
d0d91f18 1310 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
67a1b037
PJD
1311 &nbps);
1312 if (error != 0) {
67a1b037 1313 /*
cae502c1 1314 * If we are trying to clone a block that was created
6dccdf50
BB
1315 * in the current transaction group, the error will be
1316 * EAGAIN here. Based on zfs_bclone_wait_dirty either
1317 * return a shortened range to the caller so it can
1318 * fallback, or wait for the next TXG and check again.
67a1b037 1319 */
6dccdf50
BB
1320 if (error == EAGAIN && zfs_bclone_wait_dirty) {
1321 txg_wait_synced(dmu_objset_pool(inos),
1322 last_synced_txg + 1);
1323 continue;
1324 }
1325
67a1b037
PJD
1326 break;
1327 }
67a1b037 1328
d0d91f18
PJD
1329 /*
1330 * Start a transaction.
1331 */
1332 tx = dmu_tx_create(outos);
67a1b037
PJD
1333 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1334 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1335 DB_DNODE_ENTER(db);
1336 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1337 DB_DNODE_EXIT(db);
1338 zfs_sa_upgrade_txholds(tx, outzp);
1339 error = dmu_tx_assign(tx, TXG_WAIT);
1340 if (error != 0) {
1341 dmu_tx_abort(tx);
1342 break;
1343 }
1344
1345 /*
255741fc
AM
1346 * Copy source znode's block size. This is done only if the
1347 * whole znode is locked (see zfs_rangelock_cb()) and only
1348 * on the first iteration since zfs_rangelock_reduce() will
1349 * shrink down lr_length to the appropriate size.
67a1b037
PJD
1350 */
1351 if (outlr->lr_length == UINT64_MAX) {
1352 zfs_grow_blocksize(outzp, inblksz, tx);
255741fc
AM
1353
1354 /*
1355 * Block growth may fail for many reasons we can not
1356 * predict here. If it happen the cloning is doomed.
1357 */
1358 if (inblksz != outzp->z_blksz) {
1359 error = SET_ERROR(EINVAL);
1360 dmu_tx_abort(tx);
1361 break;
1362 }
1363
67a1b037
PJD
1364 /*
1365 * Round range lock up to the block boundary, so we
1366 * prevent appends until we are done.
1367 */
1368 zfs_rangelock_reduce(outlr, outoff,
1369 ((len - 1) / inblksz + 1) * inblksz);
1370 }
1371
bd8c6bd6 1372 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
a03ebd9b 1373 bps, nbps);
bd8c6bd6
PJD
1374 if (error != 0) {
1375 dmu_tx_commit(tx);
1376 break;
1377 }
67a1b037 1378
f45dd90f
PJD
1379 if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
1380 update_pages(outzp, outoff, size, outos);
1381 }
1382
67a1b037
PJD
1383 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1384 &clear_setid_bits_txg, tx);
1385
1386 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1387
1388 /*
1389 * Update the file size (zp_size) if it has changed;
1390 * account for possible concurrent updates.
1391 */
1392 while ((outsize = outzp->z_size) < outoff + size) {
1393 (void) atomic_cas_64(&outzp->z_size, outsize,
1394 outoff + size);
1395 }
1396
1397 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1398
1399 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1400 size, inblksz, bps, nbps);
1401
1402 dmu_tx_commit(tx);
1403
1404 if (error != 0)
1405 break;
1406
1407 inoff += size;
1408 outoff += size;
1409 len -= size;
1410 done += size;
1411 }
1412
8d21c002 1413 vmem_free(bps, sizeof (bps[0]) * maxblocks);
67a1b037
PJD
1414 zfs_znode_update_vfs(outzp);
1415
1416unlock:
1417 zfs_rangelock_exit(outlr);
1418 zfs_rangelock_exit(inlr);
1419
1420 if (done > 0) {
1421 /*
1422 * If we have made at least partial progress, reset the error.
1423 */
1424 error = 0;
1425
1426 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1427
1428 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1429 zil_commit(zilog, outzp->z_id);
1430 }
1431
1432 *inoffp += done;
1433 *outoffp += done;
1434 *lenp = done;
5cc1876f
AM
1435 } else {
1436 /*
1437 * If we made no progress, there must be a good reason.
1438 * EOF is handled explicitly above, before the loop.
1439 */
1440 ASSERT3S(error, !=, 0);
67a1b037
PJD
1441 }
1442
1443 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1444
1445 return (error);
1446}
1447
1448/*
1449 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1450 * but we cannot do that, because when replaying we don't have source znode
1451 * available. This is why we need a dedicated replay function.
1452 */
1453int
1454zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1455 const blkptr_t *bps, size_t nbps)
1456{
1457 zfsvfs_t *zfsvfs;
1458 dmu_buf_impl_t *db;
1459 dmu_tx_t *tx;
1460 int error;
1461 int count = 0;
1462 sa_bulk_attr_t bulk[3];
1463 uint64_t mtime[2], ctime[2];
1464
1465 ASSERT3U(off, <, MAXOFFSET_T);
1466 ASSERT3U(len, >, 0);
1467 ASSERT3U(nbps, >, 0);
1468
1469 zfsvfs = ZTOZSB(zp);
1470
1471 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1472 SPA_FEATURE_BLOCK_CLONING));
1473
1474 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1475 return (error);
1476
1477 ASSERT(zfsvfs->z_replay);
1478 ASSERT(!zfs_is_readonly(zfsvfs));
1479
1480 if ((off % blksz) != 0) {
1481 zfs_exit(zfsvfs, FTAG);
1482 return (SET_ERROR(EINVAL));
1483 }
1484
1485 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1486 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1487 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1488 &zp->z_size, 8);
1489
1490 /*
1491 * Start a transaction.
1492 */
1493 tx = dmu_tx_create(zfsvfs->z_os);
1494
1495 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1496 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1497 DB_DNODE_ENTER(db);
1498 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1499 DB_DNODE_EXIT(db);
1500 zfs_sa_upgrade_txholds(tx, zp);
1501 error = dmu_tx_assign(tx, TXG_WAIT);
1502 if (error != 0) {
1503 dmu_tx_abort(tx);
1504 zfs_exit(zfsvfs, FTAG);
1505 return (error);
1506 }
1507
1508 if (zp->z_blksz < blksz)
1509 zfs_grow_blocksize(zp, blksz, tx);
1510
a03ebd9b 1511 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
67a1b037
PJD
1512
1513 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1514
1515 if (zp->z_size < off + len)
1516 zp->z_size = off + len;
1517
1518 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1519
1520 /*
1521 * zil_replaying() not only check if we are replaying ZIL, but also
1522 * updates the ZIL header to record replay progress.
1523 */
1524 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1525
1526 dmu_tx_commit(tx);
1527
1528 zfs_znode_update_vfs(zp);
1529
1530 zfs_exit(zfsvfs, FTAG);
1531
1532 return (error);
1533}
1534
8583540c 1535EXPORT_SYMBOL(zfs_access);
e53d678d 1536EXPORT_SYMBOL(zfs_fsync);
8583540c 1537EXPORT_SYMBOL(zfs_holey);
e53d678d
MM
1538EXPORT_SYMBOL(zfs_read);
1539EXPORT_SYMBOL(zfs_write);
1540EXPORT_SYMBOL(zfs_getsecattr);
1541EXPORT_SYMBOL(zfs_setsecattr);
67a1b037
PJD
1542EXPORT_SYMBOL(zfs_clone_range);
1543EXPORT_SYMBOL(zfs_clone_range_replay);
e53d678d 1544
ab8d9c17 1545ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
e53d678d 1546 "Bytes to read per chunk");
6dccdf50
BB
1547
1548ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
1549 "Enable block cloning");
1550
1551ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
1552 "Wait for dirty blocks when cloning");