]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zio.c
Rebase master to b105
[mirror_zfs.git] / module / zfs / zio.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
34dc7c2f
BB
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35
36/*
37 * ==========================================================================
38 * I/O priority table
39 * ==========================================================================
40 */
41uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
42 0, /* ZIO_PRIORITY_NOW */
43 0, /* ZIO_PRIORITY_SYNC_READ */
44 0, /* ZIO_PRIORITY_SYNC_WRITE */
45 6, /* ZIO_PRIORITY_ASYNC_READ */
46 4, /* ZIO_PRIORITY_ASYNC_WRITE */
47 4, /* ZIO_PRIORITY_FREE */
48 0, /* ZIO_PRIORITY_CACHE_FILL */
49 0, /* ZIO_PRIORITY_LOG_WRITE */
50 10, /* ZIO_PRIORITY_RESILVER */
51 20, /* ZIO_PRIORITY_SCRUB */
52};
53
54/*
55 * ==========================================================================
56 * I/O type descriptions
57 * ==========================================================================
58 */
59char *zio_type_name[ZIO_TYPES] = {
60 "null", "read", "write", "free", "claim", "ioctl" };
61
b128c09f
BB
62#define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */
63#define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */
64#define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */
34dc7c2f
BB
65
66/*
67 * ==========================================================================
68 * I/O kmem caches
69 * ==========================================================================
70 */
71kmem_cache_t *zio_cache;
72kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
74
75#ifdef _KERNEL
76extern vmem_t *zio_alloc_arena;
77#endif
78
79/*
b128c09f
BB
80 * An allocating zio is one that either currently has the DVA allocate
81 * stage set or will have it later in its lifetime.
34dc7c2f
BB
82 */
83#define IO_IS_ALLOCATING(zio) \
84 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE))
85
86void
87zio_init(void)
88{
89 size_t c;
90 vmem_t *data_alloc_arena = NULL;
91
92#ifdef _KERNEL
93 data_alloc_arena = zio_alloc_arena;
94#endif
34dc7c2f
BB
95 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
96 NULL, NULL, NULL, NULL, NULL, 0);
97
98 /*
99 * For small buffers, we want a cache for each multiple of
100 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
101 * for each quarter-power of 2. For large buffers, we want
102 * a cache for each multiple of PAGESIZE.
103 */
104 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
105 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
106 size_t p2 = size;
107 size_t align = 0;
108
109 while (p2 & (p2 - 1))
110 p2 &= p2 - 1;
111
112 if (size <= 4 * SPA_MINBLOCKSIZE) {
113 align = SPA_MINBLOCKSIZE;
114 } else if (P2PHASE(size, PAGESIZE) == 0) {
115 align = PAGESIZE;
116 } else if (P2PHASE(size, p2 >> 2) == 0) {
117 align = p2 >> 2;
118 }
119
120 if (align != 0) {
121 char name[36];
122 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
123 zio_buf_cache[c] = kmem_cache_create(name, size,
124 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
125
126 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
127 zio_data_buf_cache[c] = kmem_cache_create(name, size,
128 align, NULL, NULL, NULL, NULL, data_alloc_arena,
129 KMC_NODEBUG);
34dc7c2f
BB
130 }
131 }
132
133 while (--c != 0) {
134 ASSERT(zio_buf_cache[c] != NULL);
135 if (zio_buf_cache[c - 1] == NULL)
136 zio_buf_cache[c - 1] = zio_buf_cache[c];
137
138 ASSERT(zio_data_buf_cache[c] != NULL);
139 if (zio_data_buf_cache[c - 1] == NULL)
140 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
141 }
142
34dc7c2f
BB
143 zio_inject_init();
144}
145
146void
147zio_fini(void)
148{
149 size_t c;
150 kmem_cache_t *last_cache = NULL;
151 kmem_cache_t *last_data_cache = NULL;
152
153 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
154 if (zio_buf_cache[c] != last_cache) {
155 last_cache = zio_buf_cache[c];
156 kmem_cache_destroy(zio_buf_cache[c]);
157 }
158 zio_buf_cache[c] = NULL;
159
160 if (zio_data_buf_cache[c] != last_data_cache) {
161 last_data_cache = zio_data_buf_cache[c];
162 kmem_cache_destroy(zio_data_buf_cache[c]);
163 }
164 zio_data_buf_cache[c] = NULL;
165 }
166
34dc7c2f
BB
167 kmem_cache_destroy(zio_cache);
168
169 zio_inject_fini();
170}
171
172/*
173 * ==========================================================================
174 * Allocate and free I/O buffers
175 * ==========================================================================
176 */
177
178/*
179 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
180 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
181 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
182 * excess / transient data in-core during a crashdump.
183 */
184void *
185zio_buf_alloc(size_t size)
186{
187 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
188
189 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
190
191 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
192}
193
194/*
195 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
196 * crashdump if the kernel panics. This exists so that we will limit the amount
197 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
198 * of kernel heap dumped to disk when the kernel panics)
199 */
200void *
201zio_data_buf_alloc(size_t size)
202{
203 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
204
205 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
206
207 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
208}
209
210void
211zio_buf_free(void *buf, size_t size)
212{
213 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
214
215 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
216
217 kmem_cache_free(zio_buf_cache[c], buf);
218}
219
220void
221zio_data_buf_free(void *buf, size_t size)
222{
223 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
224
225 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
226
227 kmem_cache_free(zio_data_buf_cache[c], buf);
228}
229
230/*
231 * ==========================================================================
232 * Push and pop I/O transform buffers
233 * ==========================================================================
234 */
235static void
b128c09f
BB
236zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
237 zio_transform_func_t *transform)
34dc7c2f
BB
238{
239 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
240
b128c09f
BB
241 zt->zt_orig_data = zio->io_data;
242 zt->zt_orig_size = zio->io_size;
34dc7c2f 243 zt->zt_bufsize = bufsize;
b128c09f 244 zt->zt_transform = transform;
34dc7c2f
BB
245
246 zt->zt_next = zio->io_transform_stack;
247 zio->io_transform_stack = zt;
248
249 zio->io_data = data;
250 zio->io_size = size;
251}
252
253static void
b128c09f 254zio_pop_transforms(zio_t *zio)
34dc7c2f 255{
b128c09f
BB
256 zio_transform_t *zt;
257
258 while ((zt = zio->io_transform_stack) != NULL) {
259 if (zt->zt_transform != NULL)
260 zt->zt_transform(zio,
261 zt->zt_orig_data, zt->zt_orig_size);
34dc7c2f 262
b128c09f 263 zio_buf_free(zio->io_data, zt->zt_bufsize);
34dc7c2f 264
b128c09f
BB
265 zio->io_data = zt->zt_orig_data;
266 zio->io_size = zt->zt_orig_size;
267 zio->io_transform_stack = zt->zt_next;
34dc7c2f 268
b128c09f 269 kmem_free(zt, sizeof (zio_transform_t));
34dc7c2f
BB
270 }
271}
272
b128c09f
BB
273/*
274 * ==========================================================================
275 * I/O transform callbacks for subblocks and decompression
276 * ==========================================================================
277 */
278static void
279zio_subblock(zio_t *zio, void *data, uint64_t size)
280{
281 ASSERT(zio->io_size > size);
282
283 if (zio->io_type == ZIO_TYPE_READ)
284 bcopy(zio->io_data, data, size);
285}
286
287static void
288zio_decompress(zio_t *zio, void *data, uint64_t size)
289{
290 if (zio->io_error == 0 &&
291 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
292 zio->io_data, zio->io_size, data, size) != 0)
293 zio->io_error = EIO;
294}
295
296/*
297 * ==========================================================================
298 * I/O parent/child relationships and pipeline interlocks
299 * ==========================================================================
300 */
301
302static void
303zio_add_child(zio_t *pio, zio_t *zio)
304{
305 mutex_enter(&pio->io_lock);
306 if (zio->io_stage < ZIO_STAGE_READY)
307 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++;
308 if (zio->io_stage < ZIO_STAGE_DONE)
309 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++;
310 zio->io_sibling_prev = NULL;
311 zio->io_sibling_next = pio->io_child;
312 if (pio->io_child != NULL)
313 pio->io_child->io_sibling_prev = zio;
314 pio->io_child = zio;
315 zio->io_parent = pio;
316 mutex_exit(&pio->io_lock);
317}
318
34dc7c2f 319static void
b128c09f
BB
320zio_remove_child(zio_t *pio, zio_t *zio)
321{
322 zio_t *next, *prev;
323
324 ASSERT(zio->io_parent == pio);
325
326 mutex_enter(&pio->io_lock);
327 next = zio->io_sibling_next;
328 prev = zio->io_sibling_prev;
329 if (next != NULL)
330 next->io_sibling_prev = prev;
331 if (prev != NULL)
332 prev->io_sibling_next = next;
333 if (pio->io_child == zio)
334 pio->io_child = next;
335 mutex_exit(&pio->io_lock);
336}
337
338static boolean_t
339zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
34dc7c2f 340{
b128c09f
BB
341 uint64_t *countp = &zio->io_children[child][wait];
342 boolean_t waiting = B_FALSE;
343
344 mutex_enter(&zio->io_lock);
345 ASSERT(zio->io_stall == NULL);
346 if (*countp != 0) {
347 zio->io_stage--;
348 zio->io_stall = countp;
349 waiting = B_TRUE;
350 }
351 mutex_exit(&zio->io_lock);
352
353 return (waiting);
354}
34dc7c2f 355
b128c09f
BB
356static void
357zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
358{
359 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
360 int *errorp = &pio->io_child_error[zio->io_child_type];
34dc7c2f 361
b128c09f
BB
362 mutex_enter(&pio->io_lock);
363 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
364 *errorp = zio_worst_error(*errorp, zio->io_error);
365 pio->io_reexecute |= zio->io_reexecute;
366 ASSERT3U(*countp, >, 0);
367 if (--*countp == 0 && pio->io_stall == countp) {
368 pio->io_stall = NULL;
369 mutex_exit(&pio->io_lock);
370 zio_execute(pio);
371 } else {
372 mutex_exit(&pio->io_lock);
34dc7c2f
BB
373 }
374}
375
b128c09f
BB
376static void
377zio_inherit_child_errors(zio_t *zio, enum zio_child c)
378{
379 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
380 zio->io_error = zio->io_child_error[c];
381}
382
34dc7c2f
BB
383/*
384 * ==========================================================================
b128c09f 385 * Create the various types of I/O (read, write, free, etc)
34dc7c2f
BB
386 * ==========================================================================
387 */
388static zio_t *
389zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
390 void *data, uint64_t size, zio_done_func_t *done, void *private,
b128c09f
BB
391 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset,
392 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline)
34dc7c2f
BB
393{
394 zio_t *zio;
395
396 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
397 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
b128c09f
BB
398 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
399
400 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
401 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
402 ASSERT(vd || stage == ZIO_STAGE_OPEN);
34dc7c2f
BB
403
404 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
405 bzero(zio, sizeof (zio_t));
b128c09f
BB
406
407 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
408 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
409
410 if (vd != NULL)
411 zio->io_child_type = ZIO_CHILD_VDEV;
412 else if (flags & ZIO_FLAG_GANG_CHILD)
413 zio->io_child_type = ZIO_CHILD_GANG;
414 else
415 zio->io_child_type = ZIO_CHILD_LOGICAL;
416
34dc7c2f
BB
417 if (bp != NULL) {
418 zio->io_bp = bp;
419 zio->io_bp_copy = *bp;
420 zio->io_bp_orig = *bp;
b128c09f
BB
421 if (type != ZIO_TYPE_WRITE)
422 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
423 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
424 if (BP_IS_GANG(bp))
425 pipeline |= ZIO_GANG_STAGES;
426 zio->io_logical = zio;
427 }
34dc7c2f 428 }
b128c09f
BB
429
430 zio->io_spa = spa;
431 zio->io_txg = txg;
432 zio->io_data = data;
433 zio->io_size = size;
34dc7c2f
BB
434 zio->io_done = done;
435 zio->io_private = private;
436 zio->io_type = type;
437 zio->io_priority = priority;
b128c09f
BB
438 zio->io_vd = vd;
439 zio->io_offset = offset;
440 zio->io_orig_flags = zio->io_flags = flags;
441 zio->io_orig_stage = zio->io_stage = stage;
442 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
34dc7c2f 443
b128c09f
BB
444 if (zb != NULL)
445 zio->io_bookmark = *zb;
446
447 if (pio != NULL) {
448 /*
449 * Logical I/Os can have logical, gang, or vdev children.
450 * Gang I/Os can have gang or vdev children.
451 * Vdev I/Os can only have vdev children.
452 * The following ASSERT captures all of these constraints.
453 */
454 ASSERT(zio->io_child_type <= pio->io_child_type);
455 if (zio->io_logical == NULL)
34dc7c2f 456 zio->io_logical = pio->io_logical;
b128c09f 457 zio_add_child(pio, zio);
34dc7c2f
BB
458 }
459
34dc7c2f
BB
460 return (zio);
461}
462
463static void
b128c09f 464zio_destroy(zio_t *zio)
34dc7c2f 465{
b128c09f
BB
466 spa_t *spa = zio->io_spa;
467 uint8_t async_root = zio->io_async_root;
468
469 mutex_destroy(&zio->io_lock);
470 cv_destroy(&zio->io_cv);
471 kmem_cache_free(zio_cache, zio);
34dc7c2f 472
b128c09f
BB
473 if (async_root) {
474 mutex_enter(&spa->spa_async_root_lock);
475 if (--spa->spa_async_root_count == 0)
476 cv_broadcast(&spa->spa_async_root_cv);
477 mutex_exit(&spa->spa_async_root_lock);
478 }
34dc7c2f
BB
479}
480
481zio_t *
482zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private,
483 int flags)
484{
485 zio_t *zio;
486
487 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
b128c09f
BB
488 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
489 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
34dc7c2f
BB
490
491 return (zio);
492}
493
494zio_t *
495zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags)
496{
497 return (zio_null(NULL, spa, done, private, flags));
498}
499
500zio_t *
b128c09f
BB
501zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
502 void *data, uint64_t size, zio_done_func_t *done, void *private,
503 int priority, int flags, const zbookmark_t *zb)
34dc7c2f
BB
504{
505 zio_t *zio;
506
b128c09f
BB
507 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp,
508 data, size, done, private,
509 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
34dc7c2f 510 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE);
34dc7c2f 511
b128c09f
BB
512 return (zio);
513}
34dc7c2f 514
b128c09f
BB
515void
516zio_skip_write(zio_t *zio)
517{
518 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
519 ASSERT(zio->io_stage == ZIO_STAGE_READY);
520 ASSERT(!BP_IS_GANG(zio->io_bp));
34dc7c2f 521
b128c09f 522 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
34dc7c2f
BB
523}
524
525zio_t *
b128c09f
BB
526zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
527 void *data, uint64_t size, zio_prop_t *zp,
528 zio_done_func_t *ready, zio_done_func_t *done, void *private,
529 int priority, int flags, const zbookmark_t *zb)
34dc7c2f
BB
530{
531 zio_t *zio;
532
b128c09f
BB
533 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
534 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
535 zp->zp_compress >= ZIO_COMPRESS_OFF &&
536 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
537 zp->zp_type < DMU_OT_NUMTYPES &&
538 zp->zp_level < 32 &&
539 zp->zp_ndvas > 0 &&
540 zp->zp_ndvas <= spa_max_replication(spa));
541 ASSERT(ready != NULL);
34dc7c2f
BB
542
543 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
b128c09f 544 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
34dc7c2f
BB
545 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE);
546
547 zio->io_ready = ready;
b128c09f 548 zio->io_prop = *zp;
34dc7c2f
BB
549
550 return (zio);
551}
552
553zio_t *
b128c09f
BB
554zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
555 uint64_t size, zio_done_func_t *done, void *private, int priority,
556 int flags, zbookmark_t *zb)
34dc7c2f
BB
557{
558 zio_t *zio;
559
34dc7c2f 560 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
b128c09f
BB
561 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
562 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
34dc7c2f
BB
563
564 return (zio);
565}
566
567zio_t *
568zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
b128c09f 569 zio_done_func_t *done, void *private, int flags)
34dc7c2f
BB
570{
571 zio_t *zio;
572
573 ASSERT(!BP_IS_HOLE(bp));
574
b128c09f
BB
575 if (bp->blk_fill == BLK_FILL_ALREADY_FREED)
576 return (zio_null(pio, spa, NULL, NULL, flags));
577
34dc7c2f 578 if (txg == spa->spa_syncing_txg &&
b128c09f 579 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) {
34dc7c2f 580 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
b128c09f 581 return (zio_null(pio, spa, NULL, NULL, flags));
34dc7c2f
BB
582 }
583
b128c09f
BB
584 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
585 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
586 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
34dc7c2f
BB
587
588 return (zio);
589}
590
591zio_t *
592zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
b128c09f 593 zio_done_func_t *done, void *private, int flags)
34dc7c2f
BB
594{
595 zio_t *zio;
596
597 /*
598 * A claim is an allocation of a specific block. Claims are needed
599 * to support immediate writes in the intent log. The issue is that
600 * immediate writes contain committed data, but in a txg that was
601 * *not* committed. Upon opening the pool after an unclean shutdown,
602 * the intent log claims all blocks that contain immediate write data
603 * so that the SPA knows they're in use.
604 *
605 * All claims *must* be resolved in the first txg -- before the SPA
606 * starts allocating blocks -- so that nothing is allocated twice.
607 */
608 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
609 ASSERT3U(spa_first_txg(spa), <=, txg);
610
b128c09f
BB
611 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
612 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
613 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
34dc7c2f
BB
614
615 return (zio);
616}
617
618zio_t *
619zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
620 zio_done_func_t *done, void *private, int priority, int flags)
621{
622 zio_t *zio;
623 int c;
624
625 if (vd->vdev_children == 0) {
626 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
b128c09f 627 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
34dc7c2f
BB
628 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
629
34dc7c2f
BB
630 zio->io_cmd = cmd;
631 } else {
632 zio = zio_null(pio, spa, NULL, NULL, flags);
633
634 for (c = 0; c < vd->vdev_children; c++)
635 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
636 done, private, priority, flags));
637 }
638
639 return (zio);
640}
641
34dc7c2f
BB
642zio_t *
643zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
644 void *data, int checksum, zio_done_func_t *done, void *private,
645 int priority, int flags, boolean_t labels)
646{
647 zio_t *zio;
34dc7c2f 648
b128c09f
BB
649 ASSERT(vd->vdev_children == 0);
650 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
651 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
652 ASSERT3U(offset + size, <=, vd->vdev_psize);
34dc7c2f 653
b128c09f
BB
654 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
655 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
34dc7c2f
BB
656 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
657
b128c09f 658 zio->io_prop.zp_checksum = checksum;
34dc7c2f
BB
659
660 return (zio);
661}
662
663zio_t *
664zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
665 void *data, int checksum, zio_done_func_t *done, void *private,
666 int priority, int flags, boolean_t labels)
667{
34dc7c2f 668 zio_t *zio;
34dc7c2f 669
b128c09f
BB
670 ASSERT(vd->vdev_children == 0);
671 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
672 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
673 ASSERT3U(offset + size, <=, vd->vdev_psize);
34dc7c2f 674
b128c09f
BB
675 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
676 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
34dc7c2f
BB
677 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
678
b128c09f 679 zio->io_prop.zp_checksum = checksum;
34dc7c2f
BB
680
681 if (zio_checksum_table[checksum].ci_zbt) {
682 /*
683 * zbt checksums are necessarily destructive -- they modify
b128c09f 684 * the end of the write buffer to hold the verifier/checksum.
34dc7c2f 685 * Therefore, we must make a local copy in case the data is
b128c09f 686 * being written to multiple places in parallel.
34dc7c2f 687 */
b128c09f 688 void *wbuf = zio_buf_alloc(size);
34dc7c2f 689 bcopy(data, wbuf, size);
b128c09f 690 zio_push_transform(zio, wbuf, size, size, NULL);
34dc7c2f
BB
691 }
692
693 return (zio);
694}
695
696/*
b128c09f 697 * Create a child I/O to do some work for us.
34dc7c2f
BB
698 */
699zio_t *
b128c09f 700zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
34dc7c2f
BB
701 void *data, uint64_t size, int type, int priority, int flags,
702 zio_done_func_t *done, void *private)
703{
704 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE;
b128c09f
BB
705 zio_t *zio;
706
707 ASSERT(vd->vdev_parent ==
708 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
34dc7c2f
BB
709
710 if (type == ZIO_TYPE_READ && bp != NULL) {
711 /*
712 * If we have the bp, then the child should perform the
713 * checksum and the parent need not. This pushes error
714 * detection as close to the leaves as possible and
715 * eliminates redundant checksums in the interior nodes.
716 */
717 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY;
b128c09f 718 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
34dc7c2f
BB
719 }
720
b128c09f
BB
721 if (vd->vdev_children == 0)
722 offset += VDEV_LABEL_START_SIZE;
723
724 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
34dc7c2f 725 done, private, type, priority,
b128c09f
BB
726 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) |
727 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags,
728 vd, offset, &pio->io_bookmark,
34dc7c2f
BB
729 ZIO_STAGE_VDEV_IO_START - 1, pipeline);
730
b128c09f 731 return (zio);
34dc7c2f
BB
732}
733
b128c09f
BB
734zio_t *
735zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
736 int type, int priority, int flags, zio_done_func_t *done, void *private)
34dc7c2f 737{
b128c09f 738 zio_t *zio;
34dc7c2f 739
b128c09f 740 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 741
b128c09f
BB
742 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
743 data, size, done, private, type, priority,
744 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
745 vd, offset, NULL,
746 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE);
34dc7c2f 747
b128c09f 748 return (zio);
34dc7c2f
BB
749}
750
751void
b128c09f 752zio_flush(zio_t *zio, vdev_t *vd)
34dc7c2f 753{
b128c09f
BB
754 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
755 NULL, NULL, ZIO_PRIORITY_NOW,
756 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
34dc7c2f
BB
757}
758
759/*
760 * ==========================================================================
b128c09f 761 * Prepare to read and write logical blocks
34dc7c2f
BB
762 * ==========================================================================
763 */
b128c09f 764
34dc7c2f 765static int
b128c09f 766zio_read_bp_init(zio_t *zio)
34dc7c2f 767{
b128c09f 768 blkptr_t *bp = zio->io_bp;
34dc7c2f 769
fb5f0bc8
BB
770 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
771 zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) {
b128c09f
BB
772 uint64_t csize = BP_GET_PSIZE(bp);
773 void *cbuf = zio_buf_alloc(csize);
774
775 zio_push_transform(zio, cbuf, csize, csize, zio_decompress);
34dc7c2f 776 }
34dc7c2f 777
b128c09f
BB
778 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
779 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
780
781 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f
BB
782}
783
b128c09f
BB
784static int
785zio_write_bp_init(zio_t *zio)
34dc7c2f 786{
b128c09f
BB
787 zio_prop_t *zp = &zio->io_prop;
788 int compress = zp->zp_compress;
34dc7c2f 789 blkptr_t *bp = zio->io_bp;
b128c09f
BB
790 void *cbuf;
791 uint64_t lsize = zio->io_size;
792 uint64_t csize = lsize;
793 uint64_t cbufsize = 0;
794 int pass = 1;
34dc7c2f 795
b128c09f
BB
796 /*
797 * If our children haven't all reached the ready stage,
798 * wait for them and then repeat this pipeline stage.
799 */
800 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
801 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
802 return (ZIO_PIPELINE_STOP);
34dc7c2f 803
b128c09f
BB
804 if (!IO_IS_ALLOCATING(zio))
805 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f 806
b128c09f 807 ASSERT(compress != ZIO_COMPRESS_INHERIT);
34dc7c2f 808
b128c09f
BB
809 if (bp->blk_birth == zio->io_txg) {
810 /*
811 * We're rewriting an existing block, which means we're
812 * working on behalf of spa_sync(). For spa_sync() to
813 * converge, it must eventually be the case that we don't
814 * have to allocate new blocks. But compression changes
815 * the blocksize, which forces a reallocate, and makes
816 * convergence take longer. Therefore, after the first
817 * few passes, stop compressing to ensure convergence.
818 */
819 pass = spa_sync_pass(zio->io_spa);
820 ASSERT(pass > 1);
34dc7c2f 821
b128c09f
BB
822 if (pass > SYNC_PASS_DONT_COMPRESS)
823 compress = ZIO_COMPRESS_OFF;
34dc7c2f 824
b128c09f
BB
825 /*
826 * Only MOS (objset 0) data should need to be rewritten.
827 */
828 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0);
34dc7c2f 829
b128c09f
BB
830 /* Make sure someone doesn't change their mind on overwrites */
831 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp),
832 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp));
833 }
34dc7c2f 834
b128c09f
BB
835 if (compress != ZIO_COMPRESS_OFF) {
836 if (!zio_compress_data(compress, zio->io_data, zio->io_size,
837 &cbuf, &csize, &cbufsize)) {
838 compress = ZIO_COMPRESS_OFF;
839 } else if (csize != 0) {
840 zio_push_transform(zio, cbuf, csize, cbufsize, NULL);
841 }
842 }
34dc7c2f 843
b128c09f
BB
844 /*
845 * The final pass of spa_sync() must be all rewrites, but the first
846 * few passes offer a trade-off: allocating blocks defers convergence,
847 * but newly allocated blocks are sequential, so they can be written
848 * to disk faster. Therefore, we allow the first few passes of
849 * spa_sync() to allocate new blocks, but force rewrites after that.
850 * There should only be a handful of blocks after pass 1 in any case.
851 */
852 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize &&
853 pass > SYNC_PASS_REWRITE) {
854 ASSERT(csize != 0);
855 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
856 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
857 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
858 } else {
859 BP_ZERO(bp);
860 zio->io_pipeline = ZIO_WRITE_PIPELINE;
861 }
34dc7c2f 862
b128c09f
BB
863 if (csize == 0) {
864 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
865 } else {
866 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
867 BP_SET_LSIZE(bp, lsize);
868 BP_SET_PSIZE(bp, csize);
869 BP_SET_COMPRESS(bp, compress);
870 BP_SET_CHECKSUM(bp, zp->zp_checksum);
871 BP_SET_TYPE(bp, zp->zp_type);
872 BP_SET_LEVEL(bp, zp->zp_level);
873 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
874 }
34dc7c2f
BB
875
876 return (ZIO_PIPELINE_CONTINUE);
877}
878
b128c09f
BB
879/*
880 * ==========================================================================
881 * Execute the I/O pipeline
882 * ==========================================================================
883 */
884
885static void
886zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q)
34dc7c2f 887{
b128c09f 888 zio_type_t t = zio->io_type;
34dc7c2f
BB
889
890 /*
b128c09f
BB
891 * If we're a config writer, the normal issue and interrupt threads
892 * may all be blocked waiting for the config lock. In this case,
893 * select the otherwise-unused taskq for ZIO_TYPE_NULL.
34dc7c2f 894 */
b128c09f
BB
895 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER)
896 t = ZIO_TYPE_NULL;
34dc7c2f
BB
897
898 /*
b128c09f 899 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
34dc7c2f 900 */
b128c09f
BB
901 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
902 t = ZIO_TYPE_NULL;
34dc7c2f 903
b128c09f
BB
904 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q],
905 (task_func_t *)zio_execute, zio, TQ_SLEEP);
906}
34dc7c2f 907
b128c09f
BB
908static boolean_t
909zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
910{
911 kthread_t *executor = zio->io_executor;
912 spa_t *spa = zio->io_spa;
34dc7c2f 913
b128c09f
BB
914 for (zio_type_t t = 0; t < ZIO_TYPES; t++)
915 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
916 return (B_TRUE);
34dc7c2f 917
b128c09f
BB
918 return (B_FALSE);
919}
34dc7c2f 920
b128c09f
BB
921static int
922zio_issue_async(zio_t *zio)
923{
924 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
925
926 return (ZIO_PIPELINE_STOP);
34dc7c2f
BB
927}
928
b128c09f
BB
929void
930zio_interrupt(zio_t *zio)
34dc7c2f 931{
b128c09f
BB
932 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT);
933}
34dc7c2f 934
b128c09f
BB
935/*
936 * Execute the I/O pipeline until one of the following occurs:
937 * (1) the I/O completes; (2) the pipeline stalls waiting for
938 * dependent child I/Os; (3) the I/O issues, so we're waiting
939 * for an I/O completion interrupt; (4) the I/O is delegated by
940 * vdev-level caching or aggregation; (5) the I/O is deferred
941 * due to vdev-level queueing; (6) the I/O is handed off to
942 * another thread. In all cases, the pipeline stops whenever
943 * there's no CPU work; it never burns a thread in cv_wait().
944 *
945 * There's no locking on io_stage because there's no legitimate way
946 * for multiple threads to be attempting to process the same I/O.
947 */
948static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES];
34dc7c2f 949
b128c09f
BB
950void
951zio_execute(zio_t *zio)
952{
953 zio->io_executor = curthread;
34dc7c2f 954
b128c09f
BB
955 while (zio->io_stage < ZIO_STAGE_DONE) {
956 uint32_t pipeline = zio->io_pipeline;
957 zio_stage_t stage = zio->io_stage;
958 int rv;
34dc7c2f 959
b128c09f 960 ASSERT(!MUTEX_HELD(&zio->io_lock));
34dc7c2f 961
b128c09f
BB
962 while (((1U << ++stage) & pipeline) == 0)
963 continue;
964
965 ASSERT(stage <= ZIO_STAGE_DONE);
966 ASSERT(zio->io_stall == NULL);
34dc7c2f
BB
967
968 /*
b128c09f
BB
969 * If we are in interrupt context and this pipeline stage
970 * will grab a config lock that is held across I/O,
971 * issue async to avoid deadlock.
34dc7c2f 972 */
b128c09f
BB
973 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) &&
974 zio->io_vd == NULL &&
975 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
976 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
977 return;
34dc7c2f
BB
978 }
979
b128c09f
BB
980 zio->io_stage = stage;
981 rv = zio_pipeline[stage](zio);
34dc7c2f 982
b128c09f
BB
983 if (rv == ZIO_PIPELINE_STOP)
984 return;
34dc7c2f 985
b128c09f
BB
986 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
987 }
34dc7c2f
BB
988}
989
b128c09f
BB
990/*
991 * ==========================================================================
992 * Initiate I/O, either sync or async
993 * ==========================================================================
994 */
995int
996zio_wait(zio_t *zio)
34dc7c2f 997{
b128c09f 998 int error;
34dc7c2f 999
b128c09f
BB
1000 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1001 ASSERT(zio->io_executor == NULL);
34dc7c2f 1002
b128c09f 1003 zio->io_waiter = curthread;
34dc7c2f 1004
b128c09f 1005 zio_execute(zio);
34dc7c2f 1006
b128c09f
BB
1007 mutex_enter(&zio->io_lock);
1008 while (zio->io_executor != NULL)
1009 cv_wait(&zio->io_cv, &zio->io_lock);
1010 mutex_exit(&zio->io_lock);
34dc7c2f 1011
b128c09f
BB
1012 error = zio->io_error;
1013 zio_destroy(zio);
34dc7c2f 1014
b128c09f
BB
1015 return (error);
1016}
34dc7c2f 1017
b128c09f
BB
1018void
1019zio_nowait(zio_t *zio)
1020{
1021 ASSERT(zio->io_executor == NULL);
34dc7c2f 1022
b128c09f 1023 if (zio->io_parent == NULL && zio->io_child_type == ZIO_CHILD_LOGICAL) {
34dc7c2f 1024 /*
b128c09f
BB
1025 * This is a logical async I/O with no parent to wait for it.
1026 * Attach it to the pool's global async root zio so that
1027 * spa_unload() has a way of waiting for async I/O to finish.
34dc7c2f 1028 */
b128c09f
BB
1029 spa_t *spa = zio->io_spa;
1030 zio->io_async_root = B_TRUE;
1031 mutex_enter(&spa->spa_async_root_lock);
1032 spa->spa_async_root_count++;
1033 mutex_exit(&spa->spa_async_root_lock);
1034 }
34dc7c2f 1035
b128c09f
BB
1036 zio_execute(zio);
1037}
34dc7c2f 1038
b128c09f
BB
1039/*
1040 * ==========================================================================
1041 * Reexecute or suspend/resume failed I/O
1042 * ==========================================================================
1043 */
34dc7c2f 1044
b128c09f
BB
1045static void
1046zio_reexecute(zio_t *pio)
1047{
1048 zio_t *zio, *zio_next;
34dc7c2f 1049
b128c09f
BB
1050 pio->io_flags = pio->io_orig_flags;
1051 pio->io_stage = pio->io_orig_stage;
1052 pio->io_pipeline = pio->io_orig_pipeline;
1053 pio->io_reexecute = 0;
1054 pio->io_error = 0;
1055 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1056 pio->io_child_error[c] = 0;
34dc7c2f 1057
b128c09f 1058 if (IO_IS_ALLOCATING(pio)) {
34dc7c2f 1059 /*
b128c09f
BB
1060 * Remember the failed bp so that the io_ready() callback
1061 * can update its accounting upon reexecution. The block
1062 * was already freed in zio_done(); we indicate this with
1063 * a fill count of -1 so that zio_free() knows to skip it.
34dc7c2f 1064 */
b128c09f
BB
1065 blkptr_t *bp = pio->io_bp;
1066 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg);
1067 bp->blk_fill = BLK_FILL_ALREADY_FREED;
1068 pio->io_bp_orig = *bp;
1069 BP_ZERO(bp);
1070 }
34dc7c2f 1071
b128c09f
BB
1072 /*
1073 * As we reexecute pio's children, new children could be created.
1074 * New children go to the head of the io_child list, however,
1075 * so we will (correctly) not reexecute them. The key is that
1076 * the remainder of the io_child list, from 'zio_next' onward,
1077 * cannot be affected by any side effects of reexecuting 'zio'.
1078 */
1079 for (zio = pio->io_child; zio != NULL; zio = zio_next) {
1080 zio_next = zio->io_sibling_next;
1081 mutex_enter(&pio->io_lock);
1082 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++;
1083 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++;
1084 mutex_exit(&pio->io_lock);
1085 zio_reexecute(zio);
34dc7c2f 1086 }
34dc7c2f 1087
b128c09f
BB
1088 /*
1089 * Now that all children have been reexecuted, execute the parent.
1090 */
1091 zio_execute(pio);
34dc7c2f
BB
1092}
1093
b128c09f
BB
1094void
1095zio_suspend(spa_t *spa, zio_t *zio)
34dc7c2f 1096{
b128c09f
BB
1097 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1098 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1099 "failure and the failure mode property for this pool "
1100 "is set to panic.", spa_name(spa));
34dc7c2f 1101
b128c09f 1102 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
34dc7c2f 1103
b128c09f 1104 mutex_enter(&spa->spa_suspend_lock);
34dc7c2f 1105
b128c09f
BB
1106 if (spa->spa_suspend_zio_root == NULL)
1107 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0);
34dc7c2f 1108
b128c09f 1109 spa->spa_suspended = B_TRUE;
34dc7c2f 1110
b128c09f
BB
1111 if (zio != NULL) {
1112 ASSERT(zio != spa->spa_suspend_zio_root);
1113 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1114 ASSERT(zio->io_parent == NULL);
1115 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1116 zio_add_child(spa->spa_suspend_zio_root, zio);
1117 }
34dc7c2f 1118
b128c09f
BB
1119 mutex_exit(&spa->spa_suspend_lock);
1120}
34dc7c2f 1121
b128c09f
BB
1122void
1123zio_resume(spa_t *spa)
1124{
1125 zio_t *pio, *zio;
34dc7c2f
BB
1126
1127 /*
b128c09f 1128 * Reexecute all previously suspended i/o.
34dc7c2f 1129 */
b128c09f
BB
1130 mutex_enter(&spa->spa_suspend_lock);
1131 spa->spa_suspended = B_FALSE;
1132 cv_broadcast(&spa->spa_suspend_cv);
1133 pio = spa->spa_suspend_zio_root;
1134 spa->spa_suspend_zio_root = NULL;
1135 mutex_exit(&spa->spa_suspend_lock);
1136
1137 if (pio == NULL)
1138 return;
1139
1140 while ((zio = pio->io_child) != NULL) {
1141 zio_remove_child(pio, zio);
1142 zio->io_parent = NULL;
1143 zio_reexecute(zio);
34dc7c2f
BB
1144 }
1145
b128c09f
BB
1146 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0);
1147
1148 (void) zio_wait(pio);
1149}
1150
1151void
1152zio_resume_wait(spa_t *spa)
1153{
1154 mutex_enter(&spa->spa_suspend_lock);
1155 while (spa_suspended(spa))
1156 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1157 mutex_exit(&spa->spa_suspend_lock);
34dc7c2f
BB
1158}
1159
1160/*
1161 * ==========================================================================
b128c09f
BB
1162 * Gang blocks.
1163 *
1164 * A gang block is a collection of small blocks that looks to the DMU
1165 * like one large block. When zio_dva_allocate() cannot find a block
1166 * of the requested size, due to either severe fragmentation or the pool
1167 * being nearly full, it calls zio_write_gang_block() to construct the
1168 * block from smaller fragments.
1169 *
1170 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1171 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1172 * an indirect block: it's an array of block pointers. It consumes
1173 * only one sector and hence is allocatable regardless of fragmentation.
1174 * The gang header's bps point to its gang members, which hold the data.
1175 *
1176 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1177 * as the verifier to ensure uniqueness of the SHA256 checksum.
1178 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1179 * not the gang header. This ensures that data block signatures (needed for
1180 * deduplication) are independent of how the block is physically stored.
1181 *
1182 * Gang blocks can be nested: a gang member may itself be a gang block.
1183 * Thus every gang block is a tree in which root and all interior nodes are
1184 * gang headers, and the leaves are normal blocks that contain user data.
1185 * The root of the gang tree is called the gang leader.
1186 *
1187 * To perform any operation (read, rewrite, free, claim) on a gang block,
1188 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1189 * in the io_gang_tree field of the original logical i/o by recursively
1190 * reading the gang leader and all gang headers below it. This yields
1191 * an in-core tree containing the contents of every gang header and the
1192 * bps for every constituent of the gang block.
1193 *
1194 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1195 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1196 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1197 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1198 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1199 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1200 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1201 * of the gang header plus zio_checksum_compute() of the data to update the
1202 * gang header's blk_cksum as described above.
1203 *
1204 * The two-phase assemble/issue model solves the problem of partial failure --
1205 * what if you'd freed part of a gang block but then couldn't read the
1206 * gang header for another part? Assembling the entire gang tree first
1207 * ensures that all the necessary gang header I/O has succeeded before
1208 * starting the actual work of free, claim, or write. Once the gang tree
1209 * is assembled, free and claim are in-memory operations that cannot fail.
1210 *
1211 * In the event that a gang write fails, zio_dva_unallocate() walks the
1212 * gang tree to immediately free (i.e. insert back into the space map)
1213 * everything we've allocated. This ensures that we don't get ENOSPC
1214 * errors during repeated suspend/resume cycles due to a flaky device.
1215 *
1216 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1217 * the gang tree, we won't modify the block, so we can safely defer the free
1218 * (knowing that the block is still intact). If we *can* assemble the gang
1219 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1220 * each constituent bp and we can allocate a new block on the next sync pass.
1221 *
1222 * In all cases, the gang tree allows complete recovery from partial failure.
34dc7c2f
BB
1223 * ==========================================================================
1224 */
b128c09f
BB
1225
1226static zio_t *
1227zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
34dc7c2f 1228{
b128c09f
BB
1229 if (gn != NULL)
1230 return (pio);
34dc7c2f 1231
b128c09f
BB
1232 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1233 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1234 &pio->io_bookmark));
1235}
1236
1237zio_t *
1238zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1239{
1240 zio_t *zio;
1241
1242 if (gn != NULL) {
1243 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1244 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1245 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
34dc7c2f 1246 /*
b128c09f
BB
1247 * As we rewrite each gang header, the pipeline will compute
1248 * a new gang block header checksum for it; but no one will
1249 * compute a new data checksum, so we do that here. The one
1250 * exception is the gang leader: the pipeline already computed
1251 * its data checksum because that stage precedes gang assembly.
1252 * (Presently, nothing actually uses interior data checksums;
1253 * this is just good hygiene.)
34dc7c2f 1254 */
b128c09f
BB
1255 if (gn != pio->io_logical->io_gang_tree) {
1256 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1257 data, BP_GET_PSIZE(bp));
1258 }
34dc7c2f 1259 } else {
b128c09f
BB
1260 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1261 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1262 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
34dc7c2f
BB
1263 }
1264
b128c09f
BB
1265 return (zio);
1266}
34dc7c2f 1267
b128c09f
BB
1268/* ARGSUSED */
1269zio_t *
1270zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1271{
1272 return (zio_free(pio, pio->io_spa, pio->io_txg, bp,
1273 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
34dc7c2f
BB
1274}
1275
b128c09f
BB
1276/* ARGSUSED */
1277zio_t *
1278zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
34dc7c2f 1279{
b128c09f
BB
1280 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1281 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1282}
1283
1284static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1285 NULL,
1286 zio_read_gang,
1287 zio_rewrite_gang,
1288 zio_free_gang,
1289 zio_claim_gang,
1290 NULL
1291};
34dc7c2f 1292
b128c09f 1293static void zio_gang_tree_assemble_done(zio_t *zio);
34dc7c2f 1294
b128c09f
BB
1295static zio_gang_node_t *
1296zio_gang_node_alloc(zio_gang_node_t **gnpp)
1297{
1298 zio_gang_node_t *gn;
34dc7c2f 1299
b128c09f 1300 ASSERT(*gnpp == NULL);
34dc7c2f 1301
b128c09f
BB
1302 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1303 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1304 *gnpp = gn;
34dc7c2f 1305
b128c09f 1306 return (gn);
34dc7c2f
BB
1307}
1308
34dc7c2f 1309static void
b128c09f 1310zio_gang_node_free(zio_gang_node_t **gnpp)
34dc7c2f 1311{
b128c09f 1312 zio_gang_node_t *gn = *gnpp;
34dc7c2f 1313
b128c09f
BB
1314 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1315 ASSERT(gn->gn_child[g] == NULL);
1316
1317 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1318 kmem_free(gn, sizeof (*gn));
1319 *gnpp = NULL;
34dc7c2f
BB
1320}
1321
b128c09f
BB
1322static void
1323zio_gang_tree_free(zio_gang_node_t **gnpp)
34dc7c2f 1324{
b128c09f 1325 zio_gang_node_t *gn = *gnpp;
34dc7c2f 1326
b128c09f
BB
1327 if (gn == NULL)
1328 return;
34dc7c2f 1329
b128c09f
BB
1330 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1331 zio_gang_tree_free(&gn->gn_child[g]);
34dc7c2f 1332
b128c09f 1333 zio_gang_node_free(gnpp);
34dc7c2f
BB
1334}
1335
b128c09f
BB
1336static void
1337zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp)
34dc7c2f 1338{
b128c09f
BB
1339 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1340
1341 ASSERT(lio->io_logical == lio);
1342 ASSERT(BP_IS_GANG(bp));
34dc7c2f 1343
b128c09f
BB
1344 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh,
1345 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1346 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark));
1347}
34dc7c2f 1348
b128c09f
BB
1349static void
1350zio_gang_tree_assemble_done(zio_t *zio)
1351{
1352 zio_t *lio = zio->io_logical;
1353 zio_gang_node_t *gn = zio->io_private;
1354 blkptr_t *bp = zio->io_bp;
34dc7c2f 1355
b128c09f
BB
1356 ASSERT(zio->io_parent == lio);
1357 ASSERT(zio->io_child == NULL);
34dc7c2f 1358
b128c09f
BB
1359 if (zio->io_error)
1360 return;
34dc7c2f 1361
b128c09f
BB
1362 if (BP_SHOULD_BYTESWAP(bp))
1363 byteswap_uint64_array(zio->io_data, zio->io_size);
34dc7c2f 1364
b128c09f
BB
1365 ASSERT(zio->io_data == gn->gn_gbh);
1366 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1367 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
34dc7c2f 1368
b128c09f
BB
1369 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1370 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1371 if (!BP_IS_GANG(gbp))
1372 continue;
1373 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]);
1374 }
34dc7c2f
BB
1375}
1376
b128c09f
BB
1377static void
1378zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
34dc7c2f 1379{
b128c09f
BB
1380 zio_t *lio = pio->io_logical;
1381 zio_t *zio;
34dc7c2f 1382
b128c09f
BB
1383 ASSERT(BP_IS_GANG(bp) == !!gn);
1384 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp));
1385 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree);
34dc7c2f 1386
b128c09f
BB
1387 /*
1388 * If you're a gang header, your data is in gn->gn_gbh.
1389 * If you're a gang member, your data is in 'data' and gn == NULL.
1390 */
1391 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data);
34dc7c2f 1392
b128c09f
BB
1393 if (gn != NULL) {
1394 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
34dc7c2f 1395
b128c09f
BB
1396 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1397 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1398 if (BP_IS_HOLE(gbp))
1399 continue;
1400 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1401 data = (char *)data + BP_GET_PSIZE(gbp);
1402 }
34dc7c2f
BB
1403 }
1404
b128c09f
BB
1405 if (gn == lio->io_gang_tree)
1406 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data);
34dc7c2f 1407
b128c09f
BB
1408 if (zio != pio)
1409 zio_nowait(zio);
34dc7c2f
BB
1410}
1411
1412static int
b128c09f 1413zio_gang_assemble(zio_t *zio)
34dc7c2f 1414{
b128c09f 1415 blkptr_t *bp = zio->io_bp;
34dc7c2f 1416
b128c09f 1417 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical);
34dc7c2f 1418
b128c09f 1419 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
34dc7c2f
BB
1420
1421 return (ZIO_PIPELINE_CONTINUE);
1422}
1423
1424static int
b128c09f 1425zio_gang_issue(zio_t *zio)
34dc7c2f 1426{
b128c09f
BB
1427 zio_t *lio = zio->io_logical;
1428 blkptr_t *bp = zio->io_bp;
34dc7c2f 1429
b128c09f
BB
1430 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1431 return (ZIO_PIPELINE_STOP);
34dc7c2f 1432
b128c09f 1433 ASSERT(BP_IS_GANG(bp) && zio == lio);
34dc7c2f 1434
b128c09f
BB
1435 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1436 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data);
1437 else
1438 zio_gang_tree_free(&lio->io_gang_tree);
34dc7c2f 1439
b128c09f 1440 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
34dc7c2f
BB
1441
1442 return (ZIO_PIPELINE_CONTINUE);
1443}
1444
1445static void
b128c09f 1446zio_write_gang_member_ready(zio_t *zio)
34dc7c2f
BB
1447{
1448 zio_t *pio = zio->io_parent;
b128c09f 1449 zio_t *lio = zio->io_logical;
34dc7c2f
BB
1450 dva_t *cdva = zio->io_bp->blk_dva;
1451 dva_t *pdva = pio->io_bp->blk_dva;
1452 uint64_t asize;
34dc7c2f 1453
b128c09f
BB
1454 if (BP_IS_HOLE(zio->io_bp))
1455 return;
1456
1457 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1458
1459 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1460 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas);
1461 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp));
1462 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp));
34dc7c2f 1463 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
34dc7c2f
BB
1464
1465 mutex_enter(&pio->io_lock);
b128c09f 1466 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
34dc7c2f
BB
1467 ASSERT(DVA_GET_GANG(&pdva[d]));
1468 asize = DVA_GET_ASIZE(&pdva[d]);
1469 asize += DVA_GET_ASIZE(&cdva[d]);
1470 DVA_SET_ASIZE(&pdva[d], asize);
1471 }
1472 mutex_exit(&pio->io_lock);
1473}
1474
1475static int
b128c09f 1476zio_write_gang_block(zio_t *pio)
34dc7c2f 1477{
b128c09f
BB
1478 spa_t *spa = pio->io_spa;
1479 blkptr_t *bp = pio->io_bp;
1480 zio_t *lio = pio->io_logical;
1481 zio_t *zio;
1482 zio_gang_node_t *gn, **gnpp;
34dc7c2f 1483 zio_gbh_phys_t *gbh;
b128c09f
BB
1484 uint64_t txg = pio->io_txg;
1485 uint64_t resid = pio->io_size;
1486 uint64_t lsize;
1487 int ndvas = lio->io_prop.zp_ndvas;
34dc7c2f 1488 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa));
b128c09f 1489 zio_prop_t zp;
34dc7c2f 1490 int error;
34dc7c2f 1491
b128c09f
BB
1492 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE,
1493 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp,
1494 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
34dc7c2f 1495 if (error) {
b128c09f 1496 pio->io_error = error;
34dc7c2f
BB
1497 return (ZIO_PIPELINE_CONTINUE);
1498 }
1499
b128c09f
BB
1500 if (pio == lio) {
1501 gnpp = &lio->io_gang_tree;
1502 } else {
1503 gnpp = pio->io_private;
1504 ASSERT(pio->io_ready == zio_write_gang_member_ready);
34dc7c2f
BB
1505 }
1506
b128c09f
BB
1507 gn = zio_gang_node_alloc(gnpp);
1508 gbh = gn->gn_gbh;
1509 bzero(gbh, SPA_GANGBLOCKSIZE);
34dc7c2f 1510
b128c09f
BB
1511 /*
1512 * Create the gang header.
1513 */
1514 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1515 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
34dc7c2f 1516
b128c09f
BB
1517 /*
1518 * Create and nowait the gang children.
1519 */
1520 for (int g = 0; resid != 0; resid -= lsize, g++) {
1521 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1522 SPA_MINBLOCKSIZE);
1523 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1524
1525 zp.zp_checksum = lio->io_prop.zp_checksum;
1526 zp.zp_compress = ZIO_COMPRESS_OFF;
1527 zp.zp_type = DMU_OT_NONE;
1528 zp.zp_level = 0;
1529 zp.zp_ndvas = lio->io_prop.zp_ndvas;
1530
1531 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1532 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1533 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1534 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1535 &pio->io_bookmark));
1536 }
34dc7c2f
BB
1537
1538 /*
b128c09f 1539 * Set pio's pipeline to just wait for zio to finish.
34dc7c2f 1540 */
b128c09f
BB
1541 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1542
1543 zio_nowait(zio);
1544
1545 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f
BB
1546}
1547
1548/*
1549 * ==========================================================================
1550 * Allocate and free blocks
1551 * ==========================================================================
1552 */
b128c09f 1553
34dc7c2f
BB
1554static int
1555zio_dva_allocate(zio_t *zio)
1556{
1557 spa_t *spa = zio->io_spa;
1558 metaslab_class_t *mc = spa->spa_normal_class;
1559 blkptr_t *bp = zio->io_bp;
1560 int error;
1561
1562 ASSERT(BP_IS_HOLE(bp));
1563 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
b128c09f
BB
1564 ASSERT3U(zio->io_prop.zp_ndvas, >, 0);
1565 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa));
34dc7c2f
BB
1566 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
1567
b128c09f
BB
1568 error = metaslab_alloc(spa, mc, zio->io_size, bp,
1569 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0);
34dc7c2f 1570
b128c09f
BB
1571 if (error) {
1572 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
1573 return (zio_write_gang_block(zio));
34dc7c2f
BB
1574 zio->io_error = error;
1575 }
1576
1577 return (ZIO_PIPELINE_CONTINUE);
1578}
1579
1580static int
1581zio_dva_free(zio_t *zio)
1582{
b128c09f 1583 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
34dc7c2f
BB
1584
1585 return (ZIO_PIPELINE_CONTINUE);
1586}
1587
1588static int
1589zio_dva_claim(zio_t *zio)
1590{
b128c09f
BB
1591 int error;
1592
1593 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
1594 if (error)
1595 zio->io_error = error;
34dc7c2f
BB
1596
1597 return (ZIO_PIPELINE_CONTINUE);
1598}
1599
b128c09f
BB
1600/*
1601 * Undo an allocation. This is used by zio_done() when an I/O fails
1602 * and we want to give back the block we just allocated.
1603 * This handles both normal blocks and gang blocks.
1604 */
1605static void
1606zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
1607{
1608 spa_t *spa = zio->io_spa;
1609 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE);
1610
1611 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
1612
1613 if (zio->io_bp == bp && !now) {
1614 /*
1615 * This is a rewrite for sync-to-convergence.
1616 * We can't do a metaslab_free(NOW) because bp wasn't allocated
1617 * during this sync pass, which means that metaslab_sync()
1618 * already committed the allocation.
1619 */
1620 ASSERT(DVA_EQUAL(BP_IDENTITY(bp),
1621 BP_IDENTITY(&zio->io_bp_orig)));
1622 ASSERT(spa_sync_pass(spa) > 1);
1623
1624 if (BP_IS_GANG(bp) && gn == NULL) {
1625 /*
1626 * This is a gang leader whose gang header(s) we
1627 * couldn't read now, so defer the free until later.
1628 * The block should still be intact because without
1629 * the headers, we'd never even start the rewrite.
1630 */
1631 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
1632 return;
1633 }
1634 }
1635
1636 if (!BP_IS_HOLE(bp))
1637 metaslab_free(spa, bp, bp->blk_birth, now);
1638
1639 if (gn != NULL) {
1640 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1641 zio_dva_unallocate(zio, gn->gn_child[g],
1642 &gn->gn_gbh->zg_blkptr[g]);
1643 }
1644 }
1645}
1646
1647/*
1648 * Try to allocate an intent log block. Return 0 on success, errno on failure.
1649 */
1650int
1651zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp,
1652 uint64_t txg)
1653{
1654 int error;
1655
1656 error = metaslab_alloc(spa, spa->spa_log_class, size,
1657 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1658
1659 if (error)
1660 error = metaslab_alloc(spa, spa->spa_normal_class, size,
1661 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1662
1663 if (error == 0) {
1664 BP_SET_LSIZE(new_bp, size);
1665 BP_SET_PSIZE(new_bp, size);
1666 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
1667 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
1668 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
1669 BP_SET_LEVEL(new_bp, 0);
1670 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
1671 }
1672
1673 return (error);
1674}
1675
1676/*
1677 * Free an intent log block. We know it can't be a gang block, so there's
1678 * nothing to do except metaslab_free() it.
1679 */
1680void
1681zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg)
1682{
1683 ASSERT(!BP_IS_GANG(bp));
1684
1685 metaslab_free(spa, bp, txg, B_FALSE);
1686}
1687
34dc7c2f
BB
1688/*
1689 * ==========================================================================
1690 * Read and write to physical devices
1691 * ==========================================================================
1692 */
1693
b128c09f
BB
1694static void
1695zio_vdev_io_probe_done(zio_t *zio)
1696{
1697 zio_t *dio;
1698 vdev_t *vd = zio->io_private;
1699
1700 mutex_enter(&vd->vdev_probe_lock);
1701 ASSERT(vd->vdev_probe_zio == zio);
1702 vd->vdev_probe_zio = NULL;
1703 mutex_exit(&vd->vdev_probe_lock);
1704
1705 while ((dio = zio->io_delegate_list) != NULL) {
1706 zio->io_delegate_list = dio->io_delegate_next;
1707 dio->io_delegate_next = NULL;
1708 if (!vdev_accessible(vd, dio))
1709 dio->io_error = ENXIO;
1710 zio_execute(dio);
1711 }
1712}
1713
1714/*
1715 * Probe the device to determine whether I/O failure is specific to this
1716 * zio (e.g. a bad sector) or affects the entire vdev (e.g. unplugged).
1717 */
1718static int
1719zio_vdev_io_probe(zio_t *zio)
1720{
1721 vdev_t *vd = zio->io_vd;
1722 zio_t *pio = NULL;
1723 boolean_t created_pio = B_FALSE;
1724
1725 /*
1726 * Don't probe the probe.
1727 */
1728 if (zio->io_flags & ZIO_FLAG_PROBE)
1729 return (ZIO_PIPELINE_CONTINUE);
1730
1731 /*
1732 * To prevent 'probe storms' when a device fails, we create
1733 * just one probe i/o at a time. All zios that want to probe
1734 * this vdev will join the probe zio's io_delegate_list.
1735 */
1736 mutex_enter(&vd->vdev_probe_lock);
1737
1738 if ((pio = vd->vdev_probe_zio) == NULL) {
1739 vd->vdev_probe_zio = pio = zio_root(zio->io_spa,
1740 zio_vdev_io_probe_done, vd, ZIO_FLAG_CANFAIL);
1741 created_pio = B_TRUE;
1742 vd->vdev_probe_wanted = B_TRUE;
1743 spa_async_request(zio->io_spa, SPA_ASYNC_PROBE);
1744 }
1745
1746 zio->io_delegate_next = pio->io_delegate_list;
1747 pio->io_delegate_list = zio;
1748
1749 mutex_exit(&vd->vdev_probe_lock);
1750
1751 if (created_pio) {
1752 zio_nowait(vdev_probe(vd, pio));
1753 zio_nowait(pio);
1754 }
1755
1756 return (ZIO_PIPELINE_STOP);
1757}
1758
34dc7c2f
BB
1759static int
1760zio_vdev_io_start(zio_t *zio)
1761{
1762 vdev_t *vd = zio->io_vd;
34dc7c2f
BB
1763 uint64_t align;
1764 spa_t *spa = zio->io_spa;
1765
b128c09f
BB
1766 ASSERT(zio->io_error == 0);
1767 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
34dc7c2f 1768
b128c09f
BB
1769 if (vd == NULL) {
1770 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1771 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
34dc7c2f 1772
b128c09f
BB
1773 /*
1774 * The mirror_ops handle multiple DVAs in a single BP.
1775 */
1776 return (vdev_mirror_ops.vdev_op_io_start(zio));
34dc7c2f
BB
1777 }
1778
b128c09f
BB
1779 align = 1ULL << vd->vdev_top->vdev_ashift;
1780
34dc7c2f
BB
1781 if (P2PHASE(zio->io_size, align) != 0) {
1782 uint64_t asize = P2ROUNDUP(zio->io_size, align);
1783 char *abuf = zio_buf_alloc(asize);
b128c09f 1784 ASSERT(vd == vd->vdev_top);
34dc7c2f
BB
1785 if (zio->io_type == ZIO_TYPE_WRITE) {
1786 bcopy(zio->io_data, abuf, zio->io_size);
1787 bzero(abuf + zio->io_size, asize - zio->io_size);
1788 }
b128c09f 1789 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
34dc7c2f
BB
1790 }
1791
1792 ASSERT(P2PHASE(zio->io_offset, align) == 0);
1793 ASSERT(P2PHASE(zio->io_size, align) == 0);
fb5f0bc8
BB
1794 ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
1795
1796 /*
1797 * If this is a repair I/O, and there's no self-healing involved --
1798 * that is, we're just resilvering what we expect to resilver --
1799 * then don't do the I/O unless zio's txg is actually in vd's DTL.
1800 * This prevents spurious resilvering with nested replication.
1801 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
1802 * A is out of date, we'll read from C+D, then use the data to
1803 * resilver A+B -- but we don't actually want to resilver B, just A.
1804 * The top-level mirror has no way to know this, so instead we just
1805 * discard unnecessary repairs as we work our way down the vdev tree.
1806 * The same logic applies to any form of nested replication:
1807 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
1808 */
1809 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
1810 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
1811 zio->io_txg != 0 && /* not a delegated i/o */
1812 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
1813 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1814 ASSERT(zio->io_delegate_list == NULL);
1815 zio_vdev_io_bypass(zio);
1816 return (ZIO_PIPELINE_CONTINUE);
1817 }
34dc7c2f 1818
b128c09f
BB
1819 if (vd->vdev_ops->vdev_op_leaf &&
1820 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
1821
1822 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
1823 return (ZIO_PIPELINE_STOP);
1824
1825 if ((zio = vdev_queue_io(zio)) == NULL)
1826 return (ZIO_PIPELINE_STOP);
1827
1828 if (!vdev_accessible(vd, zio)) {
1829 zio->io_error = ENXIO;
1830 zio_interrupt(zio);
1831 return (ZIO_PIPELINE_STOP);
1832 }
b128c09f
BB
1833 }
1834
34dc7c2f
BB
1835 return (vd->vdev_ops->vdev_op_io_start(zio));
1836}
1837
1838static int
1839zio_vdev_io_done(zio_t *zio)
1840{
b128c09f
BB
1841 vdev_t *vd = zio->io_vd;
1842 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
1843 boolean_t unexpected_error = B_FALSE;
34dc7c2f 1844
b128c09f
BB
1845 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1846 return (ZIO_PIPELINE_STOP);
34dc7c2f 1847
b128c09f
BB
1848 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
1849
1850 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1851
1852 vdev_queue_io_done(zio);
1853
1854 if (zio->io_type == ZIO_TYPE_WRITE)
1855 vdev_cache_write(zio);
1856
1857 if (zio_injection_enabled && zio->io_error == 0)
1858 zio->io_error = zio_handle_device_injection(vd, EIO);
1859
1860 if (zio_injection_enabled && zio->io_error == 0)
1861 zio->io_error = zio_handle_label_injection(zio, EIO);
1862
1863 if (zio->io_error) {
1864 if (!vdev_accessible(vd, zio)) {
1865 zio->io_error = ENXIO;
1866 } else {
1867 unexpected_error = B_TRUE;
1868 }
1869 }
1870 }
1871
1872 ops->vdev_op_io_done(zio);
34dc7c2f 1873
b128c09f
BB
1874 if (unexpected_error)
1875 return (zio_vdev_io_probe(zio));
34dc7c2f 1876
b128c09f 1877 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f
BB
1878}
1879
1880static int
1881zio_vdev_io_assess(zio_t *zio)
1882{
1883 vdev_t *vd = zio->io_vd;
b128c09f
BB
1884
1885 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1886 return (ZIO_PIPELINE_STOP);
1887
1888 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1889 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
1890
1891 if (zio->io_vsd != NULL) {
1892 zio->io_vsd_free(zio);
1893 zio->io_vsd = NULL;
34dc7c2f
BB
1894 }
1895
b128c09f 1896 if (zio_injection_enabled && zio->io_error == 0)
34dc7c2f
BB
1897 zio->io_error = zio_handle_fault_injection(zio, EIO);
1898
1899 /*
1900 * If the I/O failed, determine whether we should attempt to retry it.
1901 */
b128c09f
BB
1902 if (zio->io_error && vd == NULL &&
1903 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
1904 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
1905 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
34dc7c2f 1906 zio->io_error = 0;
b128c09f
BB
1907 zio->io_flags |= ZIO_FLAG_IO_RETRY |
1908 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
34dc7c2f 1909 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1;
b128c09f
BB
1910 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1911 return (ZIO_PIPELINE_STOP);
34dc7c2f
BB
1912 }
1913
b128c09f
BB
1914 /*
1915 * If we got an error on a leaf device, convert it to ENXIO
1916 * if the device is not accessible at all.
1917 */
1918 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
1919 !vdev_accessible(vd, zio))
1920 zio->io_error = ENXIO;
1921
1922 /*
1923 * If we can't write to an interior vdev (mirror or RAID-Z),
1924 * set vdev_cant_write so that we stop trying to allocate from it.
1925 */
1926 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
1927 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
1928 vd->vdev_cant_write = B_TRUE;
1929
1930 if (zio->io_error)
1931 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1932
34dc7c2f
BB
1933 return (ZIO_PIPELINE_CONTINUE);
1934}
1935
1936void
1937zio_vdev_io_reissue(zio_t *zio)
1938{
1939 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1940 ASSERT(zio->io_error == 0);
1941
1942 zio->io_stage--;
1943}
1944
1945void
1946zio_vdev_io_redone(zio_t *zio)
1947{
1948 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
1949
1950 zio->io_stage--;
1951}
1952
1953void
1954zio_vdev_io_bypass(zio_t *zio)
1955{
1956 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1957 ASSERT(zio->io_error == 0);
1958
1959 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
1960 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1;
1961}
1962
1963/*
1964 * ==========================================================================
1965 * Generate and verify checksums
1966 * ==========================================================================
1967 */
1968static int
1969zio_checksum_generate(zio_t *zio)
1970{
34dc7c2f 1971 blkptr_t *bp = zio->io_bp;
b128c09f 1972 enum zio_checksum checksum;
34dc7c2f 1973
b128c09f
BB
1974 if (bp == NULL) {
1975 /*
1976 * This is zio_write_phys().
1977 * We're either generating a label checksum, or none at all.
1978 */
1979 checksum = zio->io_prop.zp_checksum;
34dc7c2f 1980
b128c09f
BB
1981 if (checksum == ZIO_CHECKSUM_OFF)
1982 return (ZIO_PIPELINE_CONTINUE);
1983
1984 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
1985 } else {
1986 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
1987 ASSERT(!IO_IS_ALLOCATING(zio));
1988 checksum = ZIO_CHECKSUM_GANG_HEADER;
1989 } else {
1990 checksum = BP_GET_CHECKSUM(bp);
1991 }
1992 }
34dc7c2f 1993
b128c09f 1994 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
34dc7c2f
BB
1995
1996 return (ZIO_PIPELINE_CONTINUE);
1997}
1998
1999static int
b128c09f 2000zio_checksum_verify(zio_t *zio)
34dc7c2f 2001{
b128c09f
BB
2002 blkptr_t *bp = zio->io_bp;
2003 int error;
34dc7c2f 2004
b128c09f
BB
2005 if (bp == NULL) {
2006 /*
2007 * This is zio_read_phys().
2008 * We're either verifying a label checksum, or nothing at all.
2009 */
2010 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2011 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f 2012
b128c09f
BB
2013 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2014 }
34dc7c2f 2015
b128c09f
BB
2016 if ((error = zio_checksum_error(zio)) != 0) {
2017 zio->io_error = error;
2018 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
34dc7c2f
BB
2019 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
2020 zio->io_spa, zio->io_vd, zio, 0, 0);
b128c09f 2021 }
34dc7c2f
BB
2022 }
2023
2024 return (ZIO_PIPELINE_CONTINUE);
2025}
2026
2027/*
2028 * Called by RAID-Z to ensure we don't compute the checksum twice.
2029 */
2030void
2031zio_checksum_verified(zio_t *zio)
2032{
2033 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
2034}
2035
2036/*
b128c09f
BB
2037 * ==========================================================================
2038 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2039 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2040 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2041 * indicate errors that are specific to one I/O, and most likely permanent.
2042 * Any other error is presumed to be worse because we weren't expecting it.
2043 * ==========================================================================
34dc7c2f 2044 */
b128c09f
BB
2045int
2046zio_worst_error(int e1, int e2)
34dc7c2f 2047{
b128c09f
BB
2048 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2049 int r1, r2;
2050
2051 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2052 if (e1 == zio_error_rank[r1])
2053 break;
34dc7c2f 2054
b128c09f
BB
2055 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2056 if (e2 == zio_error_rank[r2])
2057 break;
2058
2059 return (r1 > r2 ? e1 : e2);
34dc7c2f
BB
2060}
2061
2062/*
2063 * ==========================================================================
b128c09f 2064 * I/O completion
34dc7c2f
BB
2065 * ==========================================================================
2066 */
b128c09f
BB
2067static int
2068zio_ready(zio_t *zio)
34dc7c2f 2069{
b128c09f
BB
2070 blkptr_t *bp = zio->io_bp;
2071 zio_t *pio = zio->io_parent;
34dc7c2f 2072
b128c09f
BB
2073 if (zio->io_ready) {
2074 if (BP_IS_GANG(bp) &&
2075 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY))
2076 return (ZIO_PIPELINE_STOP);
34dc7c2f 2077
b128c09f
BB
2078 ASSERT(IO_IS_ALLOCATING(zio));
2079 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2080 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
34dc7c2f 2081
b128c09f
BB
2082 zio->io_ready(zio);
2083 }
34dc7c2f 2084
b128c09f
BB
2085 if (bp != NULL && bp != &zio->io_bp_copy)
2086 zio->io_bp_copy = *bp;
34dc7c2f 2087
b128c09f
BB
2088 if (zio->io_error)
2089 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
34dc7c2f 2090
b128c09f
BB
2091 if (pio != NULL)
2092 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
34dc7c2f 2093
b128c09f 2094 return (ZIO_PIPELINE_CONTINUE);
34dc7c2f
BB
2095}
2096
b128c09f
BB
2097static int
2098zio_done(zio_t *zio)
34dc7c2f 2099{
b128c09f
BB
2100 spa_t *spa = zio->io_spa;
2101 zio_t *pio = zio->io_parent;
2102 zio_t *lio = zio->io_logical;
2103 blkptr_t *bp = zio->io_bp;
2104 vdev_t *vd = zio->io_vd;
2105 uint64_t psize = zio->io_size;
34dc7c2f 2106
b128c09f
BB
2107 /*
2108 * If our of children haven't all completed,
2109 * wait for them and then repeat this pipeline stage.
2110 */
2111 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2112 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2113 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2114 return (ZIO_PIPELINE_STOP);
34dc7c2f 2115
b128c09f
BB
2116 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2117 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2118 ASSERT(zio->io_children[c][w] == 0);
2119
2120 if (bp != NULL) {
2121 ASSERT(bp->blk_pad[0] == 0);
2122 ASSERT(bp->blk_pad[1] == 0);
2123 ASSERT(bp->blk_pad[2] == 0);
2124 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2125 (pio != NULL && bp == pio->io_bp));
2126 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2127 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2128 ASSERT(!BP_SHOULD_BYTESWAP(bp));
2129 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp));
2130 ASSERT(BP_COUNT_GANG(bp) == 0 ||
2131 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2132 }
2133 }
2134
2135 /*
2136 * If there were child vdev or gang errors, they apply to us now.
2137 */
2138 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2139 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2140
2141 zio_pop_transforms(zio); /* note: may set zio->io_error */
2142
2143 vdev_stat_update(zio, psize);
2144
2145 if (zio->io_error) {
2146 /*
2147 * If this I/O is attached to a particular vdev,
2148 * generate an error message describing the I/O failure
2149 * at the block level. We ignore these errors if the
2150 * device is currently unavailable.
2151 */
2152 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2153 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
34dc7c2f 2154
b128c09f
BB
2155 if ((zio->io_error == EIO ||
2156 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) {
2157 /*
2158 * For logical I/O requests, tell the SPA to log the
2159 * error and generate a logical data ereport.
2160 */
2161 spa_log_error(spa, zio);
2162 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2163 0, 0);
2164 }
2165 }
34dc7c2f 2166
b128c09f
BB
2167 if (zio->io_error && zio == lio) {
2168 /*
2169 * Determine whether zio should be reexecuted. This will
2170 * propagate all the way to the root via zio_notify_parent().
2171 */
2172 ASSERT(vd == NULL && bp != NULL);
2173
2174 if (IO_IS_ALLOCATING(zio))
2175 if (zio->io_error != ENOSPC)
2176 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2177 else
2178 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2179
2180 if ((zio->io_type == ZIO_TYPE_READ ||
2181 zio->io_type == ZIO_TYPE_FREE) &&
2182 zio->io_error == ENXIO &&
fb5f0bc8 2183 spa->spa_load_state == SPA_LOAD_NONE &&
b128c09f
BB
2184 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2185 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2186
2187 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2188 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
34dc7c2f
BB
2189 }
2190
2191 /*
b128c09f
BB
2192 * If there were logical child errors, they apply to us now.
2193 * We defer this until now to avoid conflating logical child
2194 * errors with errors that happened to the zio itself when
2195 * updating vdev stats and reporting FMA events above.
34dc7c2f 2196 */
b128c09f 2197 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
34dc7c2f 2198
b128c09f
BB
2199 if (zio->io_reexecute) {
2200 /*
2201 * This is a logical I/O that wants to reexecute.
2202 *
2203 * Reexecute is top-down. When an i/o fails, if it's not
2204 * the root, it simply notifies its parent and sticks around.
2205 * The parent, seeing that it still has children in zio_done(),
2206 * does the same. This percolates all the way up to the root.
2207 * The root i/o will reexecute or suspend the entire tree.
2208 *
2209 * This approach ensures that zio_reexecute() honors
2210 * all the original i/o dependency relationships, e.g.
2211 * parents not executing until children are ready.
2212 */
2213 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
34dc7c2f 2214
b128c09f
BB
2215 if (IO_IS_ALLOCATING(zio))
2216 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2217
2218 zio_gang_tree_free(&zio->io_gang_tree);
2219
2220 if (pio != NULL) {
2221 /*
2222 * We're not a root i/o, so there's nothing to do
2223 * but notify our parent. Don't propagate errors
2224 * upward since we haven't permanently failed yet.
2225 */
2226 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2227 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2228 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2229 /*
2230 * We'd fail again if we reexecuted now, so suspend
2231 * until conditions improve (e.g. device comes online).
2232 */
2233 zio_suspend(spa, zio);
2234 } else {
2235 /*
2236 * Reexecution is potentially a huge amount of work.
2237 * Hand it off to the otherwise-unused claim taskq.
2238 */
2239 (void) taskq_dispatch(
2240 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2241 (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2242 }
2243 return (ZIO_PIPELINE_STOP);
34dc7c2f
BB
2244 }
2245
b128c09f
BB
2246 ASSERT(zio->io_child == NULL);
2247 ASSERT(zio->io_reexecute == 0);
2248 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
34dc7c2f 2249
b128c09f
BB
2250 if (zio->io_done)
2251 zio->io_done(zio);
34dc7c2f 2252
b128c09f
BB
2253 zio_gang_tree_free(&zio->io_gang_tree);
2254
2255 ASSERT(zio->io_delegate_list == NULL);
2256 ASSERT(zio->io_delegate_next == NULL);
34dc7c2f 2257
b128c09f
BB
2258 if (pio != NULL) {
2259 zio_remove_child(pio, zio);
2260 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2261 }
34dc7c2f 2262
b128c09f
BB
2263 if (zio->io_waiter != NULL) {
2264 mutex_enter(&zio->io_lock);
2265 zio->io_executor = NULL;
2266 cv_broadcast(&zio->io_cv);
2267 mutex_exit(&zio->io_lock);
2268 } else {
2269 zio_destroy(zio);
2270 }
34dc7c2f 2271
b128c09f 2272 return (ZIO_PIPELINE_STOP);
34dc7c2f
BB
2273}
2274
2275/*
b128c09f
BB
2276 * ==========================================================================
2277 * I/O pipeline definition
2278 * ==========================================================================
34dc7c2f 2279 */
b128c09f
BB
2280static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = {
2281 NULL,
2282 zio_issue_async,
2283 zio_read_bp_init,
2284 zio_write_bp_init,
2285 zio_checksum_generate,
2286 zio_gang_assemble,
2287 zio_gang_issue,
2288 zio_dva_allocate,
2289 zio_dva_free,
2290 zio_dva_claim,
2291 zio_ready,
2292 zio_vdev_io_start,
2293 zio_vdev_io_done,
2294 zio_vdev_io_assess,
2295 zio_checksum_verify,
2296 zio_done
2297};