]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/zdb/zdb.c
cea80b6908411d224508a3eddcf654cbf2af06c5
[mirror_zfs.git] / cmd / zdb / zdb.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
31 *
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 */
37
38 #include <stdio.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 #include <getopt.h>
43 #include <openssl/evp.h>
44 #include <sys/zfs_context.h>
45 #include <sys/spa.h>
46 #include <sys/spa_impl.h>
47 #include <sys/dmu.h>
48 #include <sys/zap.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zfs_sa.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/vdev.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/metaslab_impl.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_pool.h>
61 #include <sys/dsl_bookmark.h>
62 #include <sys/dbuf.h>
63 #include <sys/zil.h>
64 #include <sys/zil_impl.h>
65 #include <sys/stat.h>
66 #include <sys/resource.h>
67 #include <sys/dmu_send.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/zio_checksum.h>
70 #include <sys/zio_compress.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/arc.h>
73 #include <sys/arc_impl.h>
74 #include <sys/ddt.h>
75 #include <sys/zfeature.h>
76 #include <sys/abd.h>
77 #include <sys/blkptr.h>
78 #include <sys/dsl_crypt.h>
79 #include <sys/dsl_scan.h>
80 #include <sys/btree.h>
81 #include <zfs_comutil.h>
82 #include <sys/zstd/zstd.h>
83
84 #include <libnvpair.h>
85 #include <libzutil.h>
86
87 #include "zdb.h"
88
89 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
90 zio_compress_table[(idx)].ci_name : "UNKNOWN")
91 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
92 zio_checksum_table[(idx)].ci_name : "UNKNOWN")
93 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
94 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \
95 DMU_OT_ZAP_OTHER : \
96 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
97 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
98
99 /* Some platforms require part of inode IDs to be remapped */
100 #ifdef __APPLE__
101 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
102 #else
103 #define ZDB_MAP_OBJECT_ID(obj) (obj)
104 #endif
105
106 static const char *
107 zdb_ot_name(dmu_object_type_t type)
108 {
109 if (type < DMU_OT_NUMTYPES)
110 return (dmu_ot[type].ot_name);
111 else if ((type & DMU_OT_NEWTYPE) &&
112 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
113 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
114 else
115 return ("UNKNOWN");
116 }
117
118 extern int reference_tracking_enable;
119 extern int zfs_recover;
120 extern uint_t zfs_vdev_async_read_max_active;
121 extern boolean_t spa_load_verify_dryrun;
122 extern boolean_t spa_mode_readable_spacemaps;
123 extern uint_t zfs_reconstruct_indirect_combinations_max;
124 extern uint_t zfs_btree_verify_intensity;
125
126 static const char cmdname[] = "zdb";
127 uint8_t dump_opt[256];
128
129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
130
131 static uint64_t *zopt_metaslab = NULL;
132 static unsigned zopt_metaslab_args = 0;
133
134 typedef struct zopt_object_range {
135 uint64_t zor_obj_start;
136 uint64_t zor_obj_end;
137 uint64_t zor_flags;
138 } zopt_object_range_t;
139
140 static zopt_object_range_t *zopt_object_ranges = NULL;
141 static unsigned zopt_object_args = 0;
142
143 static int flagbits[256];
144
145 #define ZOR_FLAG_PLAIN_FILE 0x0001
146 #define ZOR_FLAG_DIRECTORY 0x0002
147 #define ZOR_FLAG_SPACE_MAP 0x0004
148 #define ZOR_FLAG_ZAP 0x0008
149 #define ZOR_FLAG_ALL_TYPES -1
150 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \
151 ZOR_FLAG_DIRECTORY | \
152 ZOR_FLAG_SPACE_MAP | \
153 ZOR_FLAG_ZAP)
154
155 #define ZDB_FLAG_CHECKSUM 0x0001
156 #define ZDB_FLAG_DECOMPRESS 0x0002
157 #define ZDB_FLAG_BSWAP 0x0004
158 #define ZDB_FLAG_GBH 0x0008
159 #define ZDB_FLAG_INDIRECT 0x0010
160 #define ZDB_FLAG_RAW 0x0020
161 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
162 #define ZDB_FLAG_VERBOSE 0x0080
163
164 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
165 static int leaked_objects = 0;
166 static range_tree_t *mos_refd_objs;
167
168 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
169 boolean_t);
170 static void mos_obj_refd(uint64_t);
171 static void mos_obj_refd_multiple(uint64_t);
172 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
173 dmu_tx_t *tx);
174
175 typedef struct sublivelist_verify {
176 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
177 zfs_btree_t sv_pair;
178
179 /* ALLOC's without a matching FREE, accumulates across sub-livelists */
180 zfs_btree_t sv_leftover;
181 } sublivelist_verify_t;
182
183 static int
184 livelist_compare(const void *larg, const void *rarg)
185 {
186 const blkptr_t *l = larg;
187 const blkptr_t *r = rarg;
188
189 /* Sort them according to dva[0] */
190 uint64_t l_dva0_vdev, r_dva0_vdev;
191 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
192 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
193 if (l_dva0_vdev < r_dva0_vdev)
194 return (-1);
195 else if (l_dva0_vdev > r_dva0_vdev)
196 return (+1);
197
198 /* if vdevs are equal, sort by offsets. */
199 uint64_t l_dva0_offset;
200 uint64_t r_dva0_offset;
201 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
202 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
203 if (l_dva0_offset < r_dva0_offset) {
204 return (-1);
205 } else if (l_dva0_offset > r_dva0_offset) {
206 return (+1);
207 }
208
209 /*
210 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
211 * it's possible the offsets are equal. In that case, sort by txg
212 */
213 if (l->blk_birth < r->blk_birth) {
214 return (-1);
215 } else if (l->blk_birth > r->blk_birth) {
216 return (+1);
217 }
218 return (0);
219 }
220
221 typedef struct sublivelist_verify_block {
222 dva_t svb_dva;
223
224 /*
225 * We need this to check if the block marked as allocated
226 * in the livelist was freed (and potentially reallocated)
227 * in the metaslab spacemaps at a later TXG.
228 */
229 uint64_t svb_allocated_txg;
230 } sublivelist_verify_block_t;
231
232 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
233
234 typedef struct sublivelist_verify_block_refcnt {
235 /* block pointer entry in livelist being verified */
236 blkptr_t svbr_blk;
237
238 /*
239 * Refcount gets incremented to 1 when we encounter the first
240 * FREE entry for the svfbr block pointer and a node for it
241 * is created in our ZDB verification/tracking metadata.
242 *
243 * As we encounter more FREE entries we increment this counter
244 * and similarly decrement it whenever we find the respective
245 * ALLOC entries for this block.
246 *
247 * When the refcount gets to 0 it means that all the FREE and
248 * ALLOC entries of this block have paired up and we no longer
249 * need to track it in our verification logic (e.g. the node
250 * containing this struct in our verification data structure
251 * should be freed).
252 *
253 * [refer to sublivelist_verify_blkptr() for the actual code]
254 */
255 uint32_t svbr_refcnt;
256 } sublivelist_verify_block_refcnt_t;
257
258 static int
259 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
260 {
261 const sublivelist_verify_block_refcnt_t *l = larg;
262 const sublivelist_verify_block_refcnt_t *r = rarg;
263 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
264 }
265
266 static int
267 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
268 dmu_tx_t *tx)
269 {
270 ASSERT3P(tx, ==, NULL);
271 struct sublivelist_verify *sv = arg;
272 sublivelist_verify_block_refcnt_t current = {
273 .svbr_blk = *bp,
274
275 /*
276 * Start with 1 in case this is the first free entry.
277 * This field is not used for our B-Tree comparisons
278 * anyway.
279 */
280 .svbr_refcnt = 1,
281 };
282
283 zfs_btree_index_t where;
284 sublivelist_verify_block_refcnt_t *pair =
285 zfs_btree_find(&sv->sv_pair, &current, &where);
286 if (free) {
287 if (pair == NULL) {
288 /* first free entry for this block pointer */
289 zfs_btree_add(&sv->sv_pair, &current);
290 } else {
291 pair->svbr_refcnt++;
292 }
293 } else {
294 if (pair == NULL) {
295 /* block that is currently marked as allocated */
296 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
297 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
298 break;
299 sublivelist_verify_block_t svb = {
300 .svb_dva = bp->blk_dva[i],
301 .svb_allocated_txg = bp->blk_birth
302 };
303
304 if (zfs_btree_find(&sv->sv_leftover, &svb,
305 &where) == NULL) {
306 zfs_btree_add_idx(&sv->sv_leftover,
307 &svb, &where);
308 }
309 }
310 } else {
311 /* alloc matches a free entry */
312 pair->svbr_refcnt--;
313 if (pair->svbr_refcnt == 0) {
314 /* all allocs and frees have been matched */
315 zfs_btree_remove_idx(&sv->sv_pair, &where);
316 }
317 }
318 }
319
320 return (0);
321 }
322
323 static int
324 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
325 {
326 int err;
327 struct sublivelist_verify *sv = args;
328
329 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
330 sizeof (sublivelist_verify_block_refcnt_t));
331
332 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
333 sv, NULL);
334
335 sublivelist_verify_block_refcnt_t *e;
336 zfs_btree_index_t *cookie = NULL;
337 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
338 char blkbuf[BP_SPRINTF_LEN];
339 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
340 &e->svbr_blk, B_TRUE);
341 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
342 e->svbr_refcnt, blkbuf);
343 }
344 zfs_btree_destroy(&sv->sv_pair);
345
346 return (err);
347 }
348
349 static int
350 livelist_block_compare(const void *larg, const void *rarg)
351 {
352 const sublivelist_verify_block_t *l = larg;
353 const sublivelist_verify_block_t *r = rarg;
354
355 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
356 return (-1);
357 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
358 return (+1);
359
360 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
361 return (-1);
362 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
363 return (+1);
364
365 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
366 return (-1);
367 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
368 return (+1);
369
370 return (0);
371 }
372
373 /*
374 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
375 * sublivelist_verify_t: sv->sv_leftover
376 */
377 static void
378 livelist_verify(dsl_deadlist_t *dl, void *arg)
379 {
380 sublivelist_verify_t *sv = arg;
381 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
382 }
383
384 /*
385 * Check for errors in the livelist entry and discard the intermediary
386 * data structures
387 */
388 static int
389 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
390 {
391 (void) args;
392 sublivelist_verify_t sv;
393 zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
394 sizeof (sublivelist_verify_block_t));
395 int err = sublivelist_verify_func(&sv, dle);
396 zfs_btree_clear(&sv.sv_leftover);
397 zfs_btree_destroy(&sv.sv_leftover);
398 return (err);
399 }
400
401 typedef struct metaslab_verify {
402 /*
403 * Tree containing all the leftover ALLOCs from the livelists
404 * that are part of this metaslab.
405 */
406 zfs_btree_t mv_livelist_allocs;
407
408 /*
409 * Metaslab information.
410 */
411 uint64_t mv_vdid;
412 uint64_t mv_msid;
413 uint64_t mv_start;
414 uint64_t mv_end;
415
416 /*
417 * What's currently allocated for this metaslab.
418 */
419 range_tree_t *mv_allocated;
420 } metaslab_verify_t;
421
422 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
423
424 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
425 void *arg);
426
427 typedef struct unflushed_iter_cb_arg {
428 spa_t *uic_spa;
429 uint64_t uic_txg;
430 void *uic_arg;
431 zdb_log_sm_cb_t uic_cb;
432 } unflushed_iter_cb_arg_t;
433
434 static int
435 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
436 {
437 unflushed_iter_cb_arg_t *uic = arg;
438 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
439 }
440
441 static void
442 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
443 {
444 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
445 return;
446
447 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
448 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
449 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
450 space_map_t *sm = NULL;
451 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
452 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
453
454 unflushed_iter_cb_arg_t uic = {
455 .uic_spa = spa,
456 .uic_txg = sls->sls_txg,
457 .uic_arg = arg,
458 .uic_cb = cb
459 };
460 VERIFY0(space_map_iterate(sm, space_map_length(sm),
461 iterate_through_spacemap_logs_cb, &uic));
462 space_map_close(sm);
463 }
464 spa_config_exit(spa, SCL_CONFIG, FTAG);
465 }
466
467 static void
468 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
469 uint64_t offset, uint64_t size)
470 {
471 sublivelist_verify_block_t svb = {{{0}}};
472 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
473 DVA_SET_OFFSET(&svb.svb_dva, offset);
474 DVA_SET_ASIZE(&svb.svb_dva, size);
475 zfs_btree_index_t where;
476 uint64_t end_offset = offset + size;
477
478 /*
479 * Look for an exact match for spacemap entry in the livelist entries.
480 * Then, look for other livelist entries that fall within the range
481 * of the spacemap entry as it may have been condensed
482 */
483 sublivelist_verify_block_t *found =
484 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
485 if (found == NULL) {
486 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
487 }
488 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
489 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
490 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
491 if (found->svb_allocated_txg <= txg) {
492 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
493 "from TXG %llx FREED at TXG %llx\n",
494 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
495 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
496 (u_longlong_t)found->svb_allocated_txg,
497 (u_longlong_t)txg);
498 }
499 }
500 }
501
502 static int
503 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
504 {
505 metaslab_verify_t *mv = arg;
506 uint64_t offset = sme->sme_offset;
507 uint64_t size = sme->sme_run;
508 uint64_t txg = sme->sme_txg;
509
510 if (sme->sme_type == SM_ALLOC) {
511 if (range_tree_contains(mv->mv_allocated,
512 offset, size)) {
513 (void) printf("ERROR: DOUBLE ALLOC: "
514 "%llu [%llx:%llx] "
515 "%llu:%llu LOG_SM\n",
516 (u_longlong_t)txg, (u_longlong_t)offset,
517 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
518 (u_longlong_t)mv->mv_msid);
519 } else {
520 range_tree_add(mv->mv_allocated,
521 offset, size);
522 }
523 } else {
524 if (!range_tree_contains(mv->mv_allocated,
525 offset, size)) {
526 (void) printf("ERROR: DOUBLE FREE: "
527 "%llu [%llx:%llx] "
528 "%llu:%llu LOG_SM\n",
529 (u_longlong_t)txg, (u_longlong_t)offset,
530 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
531 (u_longlong_t)mv->mv_msid);
532 } else {
533 range_tree_remove(mv->mv_allocated,
534 offset, size);
535 }
536 }
537
538 if (sme->sme_type != SM_ALLOC) {
539 /*
540 * If something is freed in the spacemap, verify that
541 * it is not listed as allocated in the livelist.
542 */
543 verify_livelist_allocs(mv, txg, offset, size);
544 }
545 return (0);
546 }
547
548 static int
549 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
550 uint64_t txg, void *arg)
551 {
552 metaslab_verify_t *mv = arg;
553 uint64_t offset = sme->sme_offset;
554 uint64_t vdev_id = sme->sme_vdev;
555
556 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
557
558 /* skip indirect vdevs */
559 if (!vdev_is_concrete(vd))
560 return (0);
561
562 if (vdev_id != mv->mv_vdid)
563 return (0);
564
565 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
566 if (ms->ms_id != mv->mv_msid)
567 return (0);
568
569 if (txg < metaslab_unflushed_txg(ms))
570 return (0);
571
572
573 ASSERT3U(txg, ==, sme->sme_txg);
574 return (metaslab_spacemap_validation_cb(sme, mv));
575 }
576
577 static void
578 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
579 {
580 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
581 }
582
583 static void
584 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
585 {
586 if (sm == NULL)
587 return;
588
589 VERIFY0(space_map_iterate(sm, space_map_length(sm),
590 metaslab_spacemap_validation_cb, mv));
591 }
592
593 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
594
595 /*
596 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
597 * they are part of that metaslab (mv_msid).
598 */
599 static void
600 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
601 {
602 zfs_btree_index_t where;
603 sublivelist_verify_block_t *svb;
604 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
605 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
606 svb != NULL;
607 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
608 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
609 continue;
610
611 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
612 (DVA_GET_OFFSET(&svb->svb_dva) +
613 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
614 (void) printf("ERROR: Found block that crosses "
615 "metaslab boundary: <%llu:%llx:%llx>\n",
616 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
617 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
618 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
619 continue;
620 }
621
622 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
623 continue;
624
625 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
626 continue;
627
628 if ((DVA_GET_OFFSET(&svb->svb_dva) +
629 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
630 (void) printf("ERROR: Found block that crosses "
631 "metaslab boundary: <%llu:%llx:%llx>\n",
632 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
633 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
634 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
635 continue;
636 }
637
638 zfs_btree_add(&mv->mv_livelist_allocs, svb);
639 }
640
641 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
642 svb != NULL;
643 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
644 zfs_btree_remove(&sv->sv_leftover, svb);
645 }
646 }
647
648 /*
649 * [Livelist Check]
650 * Iterate through all the sublivelists and:
651 * - report leftover frees (**)
652 * - record leftover ALLOCs together with their TXG [see Cross Check]
653 *
654 * (**) Note: Double ALLOCs are valid in datasets that have dedup
655 * enabled. Similarly double FREEs are allowed as well but
656 * only if they pair up with a corresponding ALLOC entry once
657 * we our done with our sublivelist iteration.
658 *
659 * [Spacemap Check]
660 * for each metaslab:
661 * - iterate over spacemap and then the metaslab's entries in the
662 * spacemap log, then report any double FREEs and ALLOCs (do not
663 * blow up).
664 *
665 * [Cross Check]
666 * After finishing the Livelist Check phase and while being in the
667 * Spacemap Check phase, we find all the recorded leftover ALLOCs
668 * of the livelist check that are part of the metaslab that we are
669 * currently looking at in the Spacemap Check. We report any entries
670 * that are marked as ALLOCs in the livelists but have been actually
671 * freed (and potentially allocated again) after their TXG stamp in
672 * the spacemaps. Also report any ALLOCs from the livelists that
673 * belong to indirect vdevs (e.g. their vdev completed removal).
674 *
675 * Note that this will miss Log Spacemap entries that cancelled each other
676 * out before being flushed to the metaslab, so we are not guaranteed
677 * to match all erroneous ALLOCs.
678 */
679 static void
680 livelist_metaslab_validate(spa_t *spa)
681 {
682 (void) printf("Verifying deleted livelist entries\n");
683
684 sublivelist_verify_t sv;
685 zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
686 sizeof (sublivelist_verify_block_t));
687 iterate_deleted_livelists(spa, livelist_verify, &sv);
688
689 (void) printf("Verifying metaslab entries\n");
690 vdev_t *rvd = spa->spa_root_vdev;
691 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
692 vdev_t *vd = rvd->vdev_child[c];
693
694 if (!vdev_is_concrete(vd))
695 continue;
696
697 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
698 metaslab_t *m = vd->vdev_ms[mid];
699
700 (void) fprintf(stderr,
701 "\rverifying concrete vdev %llu, "
702 "metaslab %llu of %llu ...",
703 (longlong_t)vd->vdev_id,
704 (longlong_t)mid,
705 (longlong_t)vd->vdev_ms_count);
706
707 uint64_t shift, start;
708 range_seg_type_t type =
709 metaslab_calculate_range_tree_type(vd, m,
710 &start, &shift);
711 metaslab_verify_t mv;
712 mv.mv_allocated = range_tree_create(NULL,
713 type, NULL, start, shift);
714 mv.mv_vdid = vd->vdev_id;
715 mv.mv_msid = m->ms_id;
716 mv.mv_start = m->ms_start;
717 mv.mv_end = m->ms_start + m->ms_size;
718 zfs_btree_create(&mv.mv_livelist_allocs,
719 livelist_block_compare,
720 sizeof (sublivelist_verify_block_t));
721
722 mv_populate_livelist_allocs(&mv, &sv);
723
724 spacemap_check_ms_sm(m->ms_sm, &mv);
725 spacemap_check_sm_log(spa, &mv);
726
727 range_tree_vacate(mv.mv_allocated, NULL, NULL);
728 range_tree_destroy(mv.mv_allocated);
729 zfs_btree_clear(&mv.mv_livelist_allocs);
730 zfs_btree_destroy(&mv.mv_livelist_allocs);
731 }
732 }
733 (void) fprintf(stderr, "\n");
734
735 /*
736 * If there are any segments in the leftover tree after we walked
737 * through all the metaslabs in the concrete vdevs then this means
738 * that we have segments in the livelists that belong to indirect
739 * vdevs and are marked as allocated.
740 */
741 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
742 zfs_btree_destroy(&sv.sv_leftover);
743 return;
744 }
745 (void) printf("ERROR: Found livelist blocks marked as allocated "
746 "for indirect vdevs:\n");
747
748 zfs_btree_index_t *where = NULL;
749 sublivelist_verify_block_t *svb;
750 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
751 NULL) {
752 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
753 ASSERT3U(vdev_id, <, rvd->vdev_children);
754 vdev_t *vd = rvd->vdev_child[vdev_id];
755 ASSERT(!vdev_is_concrete(vd));
756 (void) printf("<%d:%llx:%llx> TXG %llx\n",
757 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
758 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
759 (u_longlong_t)svb->svb_allocated_txg);
760 }
761 (void) printf("\n");
762 zfs_btree_destroy(&sv.sv_leftover);
763 }
764
765 /*
766 * These libumem hooks provide a reasonable set of defaults for the allocator's
767 * debugging facilities.
768 */
769 const char *
770 _umem_debug_init(void)
771 {
772 return ("default,verbose"); /* $UMEM_DEBUG setting */
773 }
774
775 const char *
776 _umem_logging_init(void)
777 {
778 return ("fail,contents"); /* $UMEM_LOGGING setting */
779 }
780
781 static void
782 usage(void)
783 {
784 (void) fprintf(stderr,
785 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
786 "[-I <inflight I/Os>]\n"
787 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
788 "\t\t[-K <key>]\n"
789 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
790 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
791 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
792 "\t%s [-v] <bookmark>\n"
793 "\t%s -C [-A] [-U <cache>]\n"
794 "\t%s -l [-Aqu] <device>\n"
795 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
796 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
797 "\t%s -O [-K <key>] <dataset> <path>\n"
798 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
799 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
800 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
801 "\t%s -E [-A] word0:word1:...:word15\n"
802 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
803 "<poolname>\n\n",
804 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
805 cmdname, cmdname, cmdname, cmdname);
806
807 (void) fprintf(stderr, " Dataset name must include at least one "
808 "separator character '/' or '@'\n");
809 (void) fprintf(stderr, " If dataset name is specified, only that "
810 "dataset is dumped\n");
811 (void) fprintf(stderr, " If object numbers or object number "
812 "ranges are specified, only those\n"
813 " objects or ranges are dumped.\n\n");
814 (void) fprintf(stderr,
815 " Object ranges take the form <start>:<end>[:<flags>]\n"
816 " start Starting object number\n"
817 " end Ending object number, or -1 for no upper bound\n"
818 " flags Optional flags to select object types:\n"
819 " A All objects (this is the default)\n"
820 " d ZFS directories\n"
821 " f ZFS files \n"
822 " m SPA space maps\n"
823 " z ZAPs\n"
824 " - Negate effect of next flag\n\n");
825 (void) fprintf(stderr, " Options to control amount of output:\n");
826 (void) fprintf(stderr, " -b --block-stats "
827 "block statistics\n");
828 (void) fprintf(stderr, " -c --checksum "
829 "checksum all metadata (twice for all data) blocks\n");
830 (void) fprintf(stderr, " -C --config "
831 "config (or cachefile if alone)\n");
832 (void) fprintf(stderr, " -d --datasets "
833 "dataset(s)\n");
834 (void) fprintf(stderr, " -D --dedup-stats "
835 "dedup statistics\n");
836 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
837 " decode and display block "
838 "from an embedded block pointer\n");
839 (void) fprintf(stderr, " -h --history "
840 "pool history\n");
841 (void) fprintf(stderr, " -i --intent-logs "
842 "intent logs\n");
843 (void) fprintf(stderr, " -l --label "
844 "read label contents\n");
845 (void) fprintf(stderr, " -k --checkpointed-state "
846 "examine the checkpointed state of the pool\n");
847 (void) fprintf(stderr, " -L --disable-leak-tracking "
848 "disable leak tracking (do not load spacemaps)\n");
849 (void) fprintf(stderr, " -m --metaslabs "
850 "metaslabs\n");
851 (void) fprintf(stderr, " -M --metaslab-groups "
852 "metaslab groups\n");
853 (void) fprintf(stderr, " -O --object-lookups "
854 "perform object lookups by path\n");
855 (void) fprintf(stderr, " -r --copy-object "
856 "copy an object by path to file\n");
857 (void) fprintf(stderr, " -R --read-block "
858 "read and display block from a device\n");
859 (void) fprintf(stderr, " -s --io-stats "
860 "report stats on zdb's I/O\n");
861 (void) fprintf(stderr, " -S --simulate-dedup "
862 "simulate dedup to measure effect\n");
863 (void) fprintf(stderr, " -v --verbose "
864 "verbose (applies to all others)\n");
865 (void) fprintf(stderr, " -y --livelist "
866 "perform livelist and metaslab validation on any livelists being "
867 "deleted\n\n");
868 (void) fprintf(stderr, " Below options are intended for use "
869 "with other options:\n");
870 (void) fprintf(stderr, " -A --ignore-assertions "
871 "ignore assertions (-A), enable panic recovery (-AA) or both "
872 "(-AAA)\n");
873 (void) fprintf(stderr, " -e --exported "
874 "pool is exported/destroyed/has altroot/not in a cachefile\n");
875 (void) fprintf(stderr, " -F --automatic-rewind "
876 "attempt automatic rewind within safe range of transaction "
877 "groups\n");
878 (void) fprintf(stderr, " -G --dump-debug-msg "
879 "dump zfs_dbgmsg buffer before exiting\n");
880 (void) fprintf(stderr, " -I --inflight=INTEGER "
881 "specify the maximum number of checksumming I/Os "
882 "[default is 200]\n");
883 (void) fprintf(stderr, " -K --key=KEY "
884 "decryption key for encrypted dataset\n");
885 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
886 "set global variable to an unsigned 32-bit integer\n");
887 (void) fprintf(stderr, " -p --path==PATH "
888 "use one or more with -e to specify path to vdev dir\n");
889 (void) fprintf(stderr, " -P --parseable "
890 "print numbers in parseable form\n");
891 (void) fprintf(stderr, " -q --skip-label "
892 "don't print label contents\n");
893 (void) fprintf(stderr, " -t --txg=INTEGER "
894 "highest txg to use when searching for uberblocks\n");
895 (void) fprintf(stderr, " -u --uberblock "
896 "uberblock\n");
897 (void) fprintf(stderr, " -U --cachefile=PATH "
898 "use alternate cachefile\n");
899 (void) fprintf(stderr, " -V --verbatim "
900 "do verbatim import\n");
901 (void) fprintf(stderr, " -x --dump-blocks=PATH "
902 "dump all read blocks into specified directory\n");
903 (void) fprintf(stderr, " -X --extreme-rewind "
904 "attempt extreme rewind (does not work with dataset)\n");
905 (void) fprintf(stderr, " -Y --all-reconstruction "
906 "attempt all reconstruction combinations for split blocks\n");
907 (void) fprintf(stderr, " -Z --zstd-headers "
908 "show ZSTD headers \n");
909 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
910 "to make only that option verbose\n");
911 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
912 exit(1);
913 }
914
915 static void
916 dump_debug_buffer(void)
917 {
918 if (dump_opt['G']) {
919 (void) printf("\n");
920 (void) fflush(stdout);
921 zfs_dbgmsg_print("zdb");
922 }
923 }
924
925 /*
926 * Called for usage errors that are discovered after a call to spa_open(),
927 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
928 */
929
930 static void
931 fatal(const char *fmt, ...)
932 {
933 va_list ap;
934
935 va_start(ap, fmt);
936 (void) fprintf(stderr, "%s: ", cmdname);
937 (void) vfprintf(stderr, fmt, ap);
938 va_end(ap);
939 (void) fprintf(stderr, "\n");
940
941 dump_debug_buffer();
942
943 exit(1);
944 }
945
946 static void
947 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
948 {
949 (void) size;
950 nvlist_t *nv;
951 size_t nvsize = *(uint64_t *)data;
952 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
953
954 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
955
956 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
957
958 umem_free(packed, nvsize);
959
960 dump_nvlist(nv, 8);
961
962 nvlist_free(nv);
963 }
964
965 static void
966 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
967 {
968 (void) os, (void) object, (void) size;
969 spa_history_phys_t *shp = data;
970
971 if (shp == NULL)
972 return;
973
974 (void) printf("\t\tpool_create_len = %llu\n",
975 (u_longlong_t)shp->sh_pool_create_len);
976 (void) printf("\t\tphys_max_off = %llu\n",
977 (u_longlong_t)shp->sh_phys_max_off);
978 (void) printf("\t\tbof = %llu\n",
979 (u_longlong_t)shp->sh_bof);
980 (void) printf("\t\teof = %llu\n",
981 (u_longlong_t)shp->sh_eof);
982 (void) printf("\t\trecords_lost = %llu\n",
983 (u_longlong_t)shp->sh_records_lost);
984 }
985
986 static void
987 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
988 {
989 if (dump_opt['P'])
990 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
991 else
992 nicenum(num, buf, buflen);
993 }
994
995 static const char histo_stars[] = "****************************************";
996 static const uint64_t histo_width = sizeof (histo_stars) - 1;
997
998 static void
999 dump_histogram(const uint64_t *histo, int size, int offset)
1000 {
1001 int i;
1002 int minidx = size - 1;
1003 int maxidx = 0;
1004 uint64_t max = 0;
1005
1006 for (i = 0; i < size; i++) {
1007 if (histo[i] == 0)
1008 continue;
1009 if (histo[i] > max)
1010 max = histo[i];
1011 if (i > maxidx)
1012 maxidx = i;
1013 if (i < minidx)
1014 minidx = i;
1015 }
1016
1017 if (max < histo_width)
1018 max = histo_width;
1019
1020 for (i = minidx; i <= maxidx; i++) {
1021 (void) printf("\t\t\t%3u: %6llu %s\n",
1022 i + offset, (u_longlong_t)histo[i],
1023 &histo_stars[(max - histo[i]) * histo_width / max]);
1024 }
1025 }
1026
1027 static void
1028 dump_zap_stats(objset_t *os, uint64_t object)
1029 {
1030 int error;
1031 zap_stats_t zs;
1032
1033 error = zap_get_stats(os, object, &zs);
1034 if (error)
1035 return;
1036
1037 if (zs.zs_ptrtbl_len == 0) {
1038 ASSERT(zs.zs_num_blocks == 1);
1039 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1040 (u_longlong_t)zs.zs_blocksize,
1041 (u_longlong_t)zs.zs_num_entries);
1042 return;
1043 }
1044
1045 (void) printf("\tFat ZAP stats:\n");
1046
1047 (void) printf("\t\tPointer table:\n");
1048 (void) printf("\t\t\t%llu elements\n",
1049 (u_longlong_t)zs.zs_ptrtbl_len);
1050 (void) printf("\t\t\tzt_blk: %llu\n",
1051 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1052 (void) printf("\t\t\tzt_numblks: %llu\n",
1053 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1054 (void) printf("\t\t\tzt_shift: %llu\n",
1055 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1056 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1057 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1058 (void) printf("\t\t\tzt_nextblk: %llu\n",
1059 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1060
1061 (void) printf("\t\tZAP entries: %llu\n",
1062 (u_longlong_t)zs.zs_num_entries);
1063 (void) printf("\t\tLeaf blocks: %llu\n",
1064 (u_longlong_t)zs.zs_num_leafs);
1065 (void) printf("\t\tTotal blocks: %llu\n",
1066 (u_longlong_t)zs.zs_num_blocks);
1067 (void) printf("\t\tzap_block_type: 0x%llx\n",
1068 (u_longlong_t)zs.zs_block_type);
1069 (void) printf("\t\tzap_magic: 0x%llx\n",
1070 (u_longlong_t)zs.zs_magic);
1071 (void) printf("\t\tzap_salt: 0x%llx\n",
1072 (u_longlong_t)zs.zs_salt);
1073
1074 (void) printf("\t\tLeafs with 2^n pointers:\n");
1075 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1076
1077 (void) printf("\t\tBlocks with n*5 entries:\n");
1078 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1079
1080 (void) printf("\t\tBlocks n/10 full:\n");
1081 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1082
1083 (void) printf("\t\tEntries with n chunks:\n");
1084 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1085
1086 (void) printf("\t\tBuckets with n entries:\n");
1087 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1088 }
1089
1090 static void
1091 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1092 {
1093 (void) os, (void) object, (void) data, (void) size;
1094 }
1095
1096 static void
1097 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1098 {
1099 (void) os, (void) object, (void) data, (void) size;
1100 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1101 }
1102
1103 static void
1104 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1105 {
1106 (void) os, (void) object, (void) data, (void) size;
1107 }
1108
1109 static void
1110 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1111 {
1112 uint64_t *arr;
1113 uint64_t oursize;
1114 if (dump_opt['d'] < 6)
1115 return;
1116
1117 if (data == NULL) {
1118 dmu_object_info_t doi;
1119
1120 VERIFY0(dmu_object_info(os, object, &doi));
1121 size = doi.doi_max_offset;
1122 /*
1123 * We cap the size at 1 mebibyte here to prevent
1124 * allocation failures and nigh-infinite printing if the
1125 * object is extremely large.
1126 */
1127 oursize = MIN(size, 1 << 20);
1128 arr = kmem_alloc(oursize, KM_SLEEP);
1129
1130 int err = dmu_read(os, object, 0, oursize, arr, 0);
1131 if (err != 0) {
1132 (void) printf("got error %u from dmu_read\n", err);
1133 kmem_free(arr, oursize);
1134 return;
1135 }
1136 } else {
1137 /*
1138 * Even though the allocation is already done in this code path,
1139 * we still cap the size to prevent excessive printing.
1140 */
1141 oursize = MIN(size, 1 << 20);
1142 arr = data;
1143 }
1144
1145 if (size == 0) {
1146 if (data == NULL)
1147 kmem_free(arr, oursize);
1148 (void) printf("\t\t[]\n");
1149 return;
1150 }
1151
1152 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1153 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1154 if (i % 4 != 0)
1155 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1156 else
1157 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1158 }
1159 if (oursize != size)
1160 (void) printf(", ... ");
1161 (void) printf("]\n");
1162
1163 if (data == NULL)
1164 kmem_free(arr, oursize);
1165 }
1166
1167 static void
1168 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1169 {
1170 (void) data, (void) size;
1171 zap_cursor_t zc;
1172 zap_attribute_t attr;
1173 void *prop;
1174 unsigned i;
1175
1176 dump_zap_stats(os, object);
1177 (void) printf("\n");
1178
1179 for (zap_cursor_init(&zc, os, object);
1180 zap_cursor_retrieve(&zc, &attr) == 0;
1181 zap_cursor_advance(&zc)) {
1182 (void) printf("\t\t%s = ", attr.za_name);
1183 if (attr.za_num_integers == 0) {
1184 (void) printf("\n");
1185 continue;
1186 }
1187 prop = umem_zalloc(attr.za_num_integers *
1188 attr.za_integer_length, UMEM_NOFAIL);
1189 (void) zap_lookup(os, object, attr.za_name,
1190 attr.za_integer_length, attr.za_num_integers, prop);
1191 if (attr.za_integer_length == 1) {
1192 if (strcmp(attr.za_name,
1193 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1194 strcmp(attr.za_name,
1195 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1196 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1197 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1198 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1199 uint8_t *u8 = prop;
1200
1201 for (i = 0; i < attr.za_num_integers; i++) {
1202 (void) printf("%02x", u8[i]);
1203 }
1204 } else {
1205 (void) printf("%s", (char *)prop);
1206 }
1207 } else {
1208 for (i = 0; i < attr.za_num_integers; i++) {
1209 switch (attr.za_integer_length) {
1210 case 2:
1211 (void) printf("%u ",
1212 ((uint16_t *)prop)[i]);
1213 break;
1214 case 4:
1215 (void) printf("%u ",
1216 ((uint32_t *)prop)[i]);
1217 break;
1218 case 8:
1219 (void) printf("%lld ",
1220 (u_longlong_t)((int64_t *)prop)[i]);
1221 break;
1222 }
1223 }
1224 }
1225 (void) printf("\n");
1226 umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1227 }
1228 zap_cursor_fini(&zc);
1229 }
1230
1231 static void
1232 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1233 {
1234 bpobj_phys_t *bpop = data;
1235 uint64_t i;
1236 char bytes[32], comp[32], uncomp[32];
1237
1238 /* make sure the output won't get truncated */
1239 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1240 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1241 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1242
1243 if (bpop == NULL)
1244 return;
1245
1246 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1247 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1248 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1249
1250 (void) printf("\t\tnum_blkptrs = %llu\n",
1251 (u_longlong_t)bpop->bpo_num_blkptrs);
1252 (void) printf("\t\tbytes = %s\n", bytes);
1253 if (size >= BPOBJ_SIZE_V1) {
1254 (void) printf("\t\tcomp = %s\n", comp);
1255 (void) printf("\t\tuncomp = %s\n", uncomp);
1256 }
1257 if (size >= BPOBJ_SIZE_V2) {
1258 (void) printf("\t\tsubobjs = %llu\n",
1259 (u_longlong_t)bpop->bpo_subobjs);
1260 (void) printf("\t\tnum_subobjs = %llu\n",
1261 (u_longlong_t)bpop->bpo_num_subobjs);
1262 }
1263 if (size >= sizeof (*bpop)) {
1264 (void) printf("\t\tnum_freed = %llu\n",
1265 (u_longlong_t)bpop->bpo_num_freed);
1266 }
1267
1268 if (dump_opt['d'] < 5)
1269 return;
1270
1271 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1272 char blkbuf[BP_SPRINTF_LEN];
1273 blkptr_t bp;
1274
1275 int err = dmu_read(os, object,
1276 i * sizeof (bp), sizeof (bp), &bp, 0);
1277 if (err != 0) {
1278 (void) printf("got error %u from dmu_read\n", err);
1279 break;
1280 }
1281 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1282 BP_GET_FREE(&bp));
1283 (void) printf("\t%s\n", blkbuf);
1284 }
1285 }
1286
1287 static void
1288 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1289 {
1290 (void) data, (void) size;
1291 dmu_object_info_t doi;
1292 int64_t i;
1293
1294 VERIFY0(dmu_object_info(os, object, &doi));
1295 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1296
1297 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1298 if (err != 0) {
1299 (void) printf("got error %u from dmu_read\n", err);
1300 kmem_free(subobjs, doi.doi_max_offset);
1301 return;
1302 }
1303
1304 int64_t last_nonzero = -1;
1305 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1306 if (subobjs[i] != 0)
1307 last_nonzero = i;
1308 }
1309
1310 for (i = 0; i <= last_nonzero; i++) {
1311 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1312 }
1313 kmem_free(subobjs, doi.doi_max_offset);
1314 }
1315
1316 static void
1317 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1318 {
1319 (void) data, (void) size;
1320 dump_zap_stats(os, object);
1321 /* contents are printed elsewhere, properly decoded */
1322 }
1323
1324 static void
1325 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1326 {
1327 (void) data, (void) size;
1328 zap_cursor_t zc;
1329 zap_attribute_t attr;
1330
1331 dump_zap_stats(os, object);
1332 (void) printf("\n");
1333
1334 for (zap_cursor_init(&zc, os, object);
1335 zap_cursor_retrieve(&zc, &attr) == 0;
1336 zap_cursor_advance(&zc)) {
1337 (void) printf("\t\t%s = ", attr.za_name);
1338 if (attr.za_num_integers == 0) {
1339 (void) printf("\n");
1340 continue;
1341 }
1342 (void) printf(" %llx : [%d:%d:%d]\n",
1343 (u_longlong_t)attr.za_first_integer,
1344 (int)ATTR_LENGTH(attr.za_first_integer),
1345 (int)ATTR_BSWAP(attr.za_first_integer),
1346 (int)ATTR_NUM(attr.za_first_integer));
1347 }
1348 zap_cursor_fini(&zc);
1349 }
1350
1351 static void
1352 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1353 {
1354 (void) data, (void) size;
1355 zap_cursor_t zc;
1356 zap_attribute_t attr;
1357 uint16_t *layout_attrs;
1358 unsigned i;
1359
1360 dump_zap_stats(os, object);
1361 (void) printf("\n");
1362
1363 for (zap_cursor_init(&zc, os, object);
1364 zap_cursor_retrieve(&zc, &attr) == 0;
1365 zap_cursor_advance(&zc)) {
1366 (void) printf("\t\t%s = [", attr.za_name);
1367 if (attr.za_num_integers == 0) {
1368 (void) printf("\n");
1369 continue;
1370 }
1371
1372 VERIFY(attr.za_integer_length == 2);
1373 layout_attrs = umem_zalloc(attr.za_num_integers *
1374 attr.za_integer_length, UMEM_NOFAIL);
1375
1376 VERIFY(zap_lookup(os, object, attr.za_name,
1377 attr.za_integer_length,
1378 attr.za_num_integers, layout_attrs) == 0);
1379
1380 for (i = 0; i != attr.za_num_integers; i++)
1381 (void) printf(" %d ", (int)layout_attrs[i]);
1382 (void) printf("]\n");
1383 umem_free(layout_attrs,
1384 attr.za_num_integers * attr.za_integer_length);
1385 }
1386 zap_cursor_fini(&zc);
1387 }
1388
1389 static void
1390 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1391 {
1392 (void) data, (void) size;
1393 zap_cursor_t zc;
1394 zap_attribute_t attr;
1395 const char *typenames[] = {
1396 /* 0 */ "not specified",
1397 /* 1 */ "FIFO",
1398 /* 2 */ "Character Device",
1399 /* 3 */ "3 (invalid)",
1400 /* 4 */ "Directory",
1401 /* 5 */ "5 (invalid)",
1402 /* 6 */ "Block Device",
1403 /* 7 */ "7 (invalid)",
1404 /* 8 */ "Regular File",
1405 /* 9 */ "9 (invalid)",
1406 /* 10 */ "Symbolic Link",
1407 /* 11 */ "11 (invalid)",
1408 /* 12 */ "Socket",
1409 /* 13 */ "Door",
1410 /* 14 */ "Event Port",
1411 /* 15 */ "15 (invalid)",
1412 };
1413
1414 dump_zap_stats(os, object);
1415 (void) printf("\n");
1416
1417 for (zap_cursor_init(&zc, os, object);
1418 zap_cursor_retrieve(&zc, &attr) == 0;
1419 zap_cursor_advance(&zc)) {
1420 (void) printf("\t\t%s = %lld (type: %s)\n",
1421 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1422 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1423 }
1424 zap_cursor_fini(&zc);
1425 }
1426
1427 static int
1428 get_dtl_refcount(vdev_t *vd)
1429 {
1430 int refcount = 0;
1431
1432 if (vd->vdev_ops->vdev_op_leaf) {
1433 space_map_t *sm = vd->vdev_dtl_sm;
1434
1435 if (sm != NULL &&
1436 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1437 return (1);
1438 return (0);
1439 }
1440
1441 for (unsigned c = 0; c < vd->vdev_children; c++)
1442 refcount += get_dtl_refcount(vd->vdev_child[c]);
1443 return (refcount);
1444 }
1445
1446 static int
1447 get_metaslab_refcount(vdev_t *vd)
1448 {
1449 int refcount = 0;
1450
1451 if (vd->vdev_top == vd) {
1452 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1453 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1454
1455 if (sm != NULL &&
1456 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1457 refcount++;
1458 }
1459 }
1460 for (unsigned c = 0; c < vd->vdev_children; c++)
1461 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1462
1463 return (refcount);
1464 }
1465
1466 static int
1467 get_obsolete_refcount(vdev_t *vd)
1468 {
1469 uint64_t obsolete_sm_object;
1470 int refcount = 0;
1471
1472 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1473 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1474 dmu_object_info_t doi;
1475 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1476 obsolete_sm_object, &doi));
1477 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1478 refcount++;
1479 }
1480 } else {
1481 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1482 ASSERT3U(obsolete_sm_object, ==, 0);
1483 }
1484 for (unsigned c = 0; c < vd->vdev_children; c++) {
1485 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1486 }
1487
1488 return (refcount);
1489 }
1490
1491 static int
1492 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1493 {
1494 uint64_t prev_obj =
1495 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1496 if (prev_obj != 0) {
1497 dmu_object_info_t doi;
1498 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1499 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1500 return (1);
1501 }
1502 }
1503 return (0);
1504 }
1505
1506 static int
1507 get_checkpoint_refcount(vdev_t *vd)
1508 {
1509 int refcount = 0;
1510
1511 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1512 zap_contains(spa_meta_objset(vd->vdev_spa),
1513 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1514 refcount++;
1515
1516 for (uint64_t c = 0; c < vd->vdev_children; c++)
1517 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1518
1519 return (refcount);
1520 }
1521
1522 static int
1523 get_log_spacemap_refcount(spa_t *spa)
1524 {
1525 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1526 }
1527
1528 static int
1529 verify_spacemap_refcounts(spa_t *spa)
1530 {
1531 uint64_t expected_refcount = 0;
1532 uint64_t actual_refcount;
1533
1534 (void) feature_get_refcount(spa,
1535 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1536 &expected_refcount);
1537 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1538 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1539 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1540 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1541 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1542 actual_refcount += get_log_spacemap_refcount(spa);
1543
1544 if (expected_refcount != actual_refcount) {
1545 (void) printf("space map refcount mismatch: expected %lld != "
1546 "actual %lld\n",
1547 (longlong_t)expected_refcount,
1548 (longlong_t)actual_refcount);
1549 return (2);
1550 }
1551 return (0);
1552 }
1553
1554 static void
1555 dump_spacemap(objset_t *os, space_map_t *sm)
1556 {
1557 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1558 "INVALID", "INVALID", "INVALID", "INVALID" };
1559
1560 if (sm == NULL)
1561 return;
1562
1563 (void) printf("space map object %llu:\n",
1564 (longlong_t)sm->sm_object);
1565 (void) printf(" smp_length = 0x%llx\n",
1566 (longlong_t)sm->sm_phys->smp_length);
1567 (void) printf(" smp_alloc = 0x%llx\n",
1568 (longlong_t)sm->sm_phys->smp_alloc);
1569
1570 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1571 return;
1572
1573 /*
1574 * Print out the freelist entries in both encoded and decoded form.
1575 */
1576 uint8_t mapshift = sm->sm_shift;
1577 int64_t alloc = 0;
1578 uint64_t word, entry_id = 0;
1579 for (uint64_t offset = 0; offset < space_map_length(sm);
1580 offset += sizeof (word)) {
1581
1582 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1583 sizeof (word), &word, DMU_READ_PREFETCH));
1584
1585 if (sm_entry_is_debug(word)) {
1586 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1587 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1588 if (de_txg == 0) {
1589 (void) printf(
1590 "\t [%6llu] PADDING\n",
1591 (u_longlong_t)entry_id);
1592 } else {
1593 (void) printf(
1594 "\t [%6llu] %s: txg %llu pass %llu\n",
1595 (u_longlong_t)entry_id,
1596 ddata[SM_DEBUG_ACTION_DECODE(word)],
1597 (u_longlong_t)de_txg,
1598 (u_longlong_t)de_sync_pass);
1599 }
1600 entry_id++;
1601 continue;
1602 }
1603
1604 uint8_t words;
1605 char entry_type;
1606 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1607
1608 if (sm_entry_is_single_word(word)) {
1609 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1610 'A' : 'F';
1611 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1612 sm->sm_start;
1613 entry_run = SM_RUN_DECODE(word) << mapshift;
1614 words = 1;
1615 } else {
1616 /* it is a two-word entry so we read another word */
1617 ASSERT(sm_entry_is_double_word(word));
1618
1619 uint64_t extra_word;
1620 offset += sizeof (extra_word);
1621 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1622 sizeof (extra_word), &extra_word,
1623 DMU_READ_PREFETCH));
1624
1625 ASSERT3U(offset, <=, space_map_length(sm));
1626
1627 entry_run = SM2_RUN_DECODE(word) << mapshift;
1628 entry_vdev = SM2_VDEV_DECODE(word);
1629 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1630 'A' : 'F';
1631 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1632 mapshift) + sm->sm_start;
1633 words = 2;
1634 }
1635
1636 (void) printf("\t [%6llu] %c range:"
1637 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1638 (u_longlong_t)entry_id,
1639 entry_type, (u_longlong_t)entry_off,
1640 (u_longlong_t)(entry_off + entry_run),
1641 (u_longlong_t)entry_run,
1642 (u_longlong_t)entry_vdev, words);
1643
1644 if (entry_type == 'A')
1645 alloc += entry_run;
1646 else
1647 alloc -= entry_run;
1648 entry_id++;
1649 }
1650 if (alloc != space_map_allocated(sm)) {
1651 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1652 "with space map summary (%lld)\n",
1653 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1654 }
1655 }
1656
1657 static void
1658 dump_metaslab_stats(metaslab_t *msp)
1659 {
1660 char maxbuf[32];
1661 range_tree_t *rt = msp->ms_allocatable;
1662 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1663 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1664
1665 /* max sure nicenum has enough space */
1666 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1667
1668 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1669
1670 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1671 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1672 "freepct", free_pct);
1673 (void) printf("\tIn-memory histogram:\n");
1674 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1675 }
1676
1677 static void
1678 dump_metaslab(metaslab_t *msp)
1679 {
1680 vdev_t *vd = msp->ms_group->mg_vd;
1681 spa_t *spa = vd->vdev_spa;
1682 space_map_t *sm = msp->ms_sm;
1683 char freebuf[32];
1684
1685 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1686 sizeof (freebuf));
1687
1688 (void) printf(
1689 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1690 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1691 (u_longlong_t)space_map_object(sm), freebuf);
1692
1693 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1694 mutex_enter(&msp->ms_lock);
1695 VERIFY0(metaslab_load(msp));
1696 range_tree_stat_verify(msp->ms_allocatable);
1697 dump_metaslab_stats(msp);
1698 metaslab_unload(msp);
1699 mutex_exit(&msp->ms_lock);
1700 }
1701
1702 if (dump_opt['m'] > 1 && sm != NULL &&
1703 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1704 /*
1705 * The space map histogram represents free space in chunks
1706 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1707 */
1708 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1709 (u_longlong_t)msp->ms_fragmentation);
1710 dump_histogram(sm->sm_phys->smp_histogram,
1711 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1712 }
1713
1714 if (vd->vdev_ops == &vdev_draid_ops)
1715 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1716 else
1717 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1718
1719 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1720
1721 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1722 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1723 (u_longlong_t)metaslab_unflushed_txg(msp));
1724 }
1725 }
1726
1727 static void
1728 print_vdev_metaslab_header(vdev_t *vd)
1729 {
1730 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1731 const char *bias_str = "";
1732 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1733 bias_str = VDEV_ALLOC_BIAS_LOG;
1734 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1735 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1736 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1737 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1738 }
1739
1740 uint64_t ms_flush_data_obj = 0;
1741 if (vd->vdev_top_zap != 0) {
1742 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1743 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1744 sizeof (uint64_t), 1, &ms_flush_data_obj);
1745 if (error != ENOENT) {
1746 ASSERT0(error);
1747 }
1748 }
1749
1750 (void) printf("\tvdev %10llu %s",
1751 (u_longlong_t)vd->vdev_id, bias_str);
1752
1753 if (ms_flush_data_obj != 0) {
1754 (void) printf(" ms_unflushed_phys object %llu",
1755 (u_longlong_t)ms_flush_data_obj);
1756 }
1757
1758 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1759 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1760 "offset", "spacemap", "free");
1761 (void) printf("\t%15s %19s %15s %12s\n",
1762 "---------------", "-------------------",
1763 "---------------", "------------");
1764 }
1765
1766 static void
1767 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1768 {
1769 vdev_t *rvd = spa->spa_root_vdev;
1770 metaslab_class_t *mc = spa_normal_class(spa);
1771 metaslab_class_t *smc = spa_special_class(spa);
1772 uint64_t fragmentation;
1773
1774 metaslab_class_histogram_verify(mc);
1775
1776 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1777 vdev_t *tvd = rvd->vdev_child[c];
1778 metaslab_group_t *mg = tvd->vdev_mg;
1779
1780 if (mg == NULL || (mg->mg_class != mc &&
1781 (!show_special || mg->mg_class != smc)))
1782 continue;
1783
1784 metaslab_group_histogram_verify(mg);
1785 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1786
1787 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1788 "fragmentation",
1789 (u_longlong_t)tvd->vdev_id,
1790 (u_longlong_t)tvd->vdev_ms_count);
1791 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1792 (void) printf("%3s\n", "-");
1793 } else {
1794 (void) printf("%3llu%%\n",
1795 (u_longlong_t)mg->mg_fragmentation);
1796 }
1797 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1798 }
1799
1800 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1801 fragmentation = metaslab_class_fragmentation(mc);
1802 if (fragmentation == ZFS_FRAG_INVALID)
1803 (void) printf("\t%3s\n", "-");
1804 else
1805 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1806 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1807 }
1808
1809 static void
1810 print_vdev_indirect(vdev_t *vd)
1811 {
1812 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1813 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1814 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1815
1816 if (vim == NULL) {
1817 ASSERT3P(vib, ==, NULL);
1818 return;
1819 }
1820
1821 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1822 vic->vic_mapping_object);
1823 ASSERT3U(vdev_indirect_births_object(vib), ==,
1824 vic->vic_births_object);
1825
1826 (void) printf("indirect births obj %llu:\n",
1827 (longlong_t)vic->vic_births_object);
1828 (void) printf(" vib_count = %llu\n",
1829 (longlong_t)vdev_indirect_births_count(vib));
1830 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1831 vdev_indirect_birth_entry_phys_t *cur_vibe =
1832 &vib->vib_entries[i];
1833 (void) printf("\toffset %llx -> txg %llu\n",
1834 (longlong_t)cur_vibe->vibe_offset,
1835 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1836 }
1837 (void) printf("\n");
1838
1839 (void) printf("indirect mapping obj %llu:\n",
1840 (longlong_t)vic->vic_mapping_object);
1841 (void) printf(" vim_max_offset = 0x%llx\n",
1842 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1843 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1844 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1845 (void) printf(" vim_count = %llu\n",
1846 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1847
1848 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1849 return;
1850
1851 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1852
1853 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1854 vdev_indirect_mapping_entry_phys_t *vimep =
1855 &vim->vim_entries[i];
1856 (void) printf("\t<%llx:%llx:%llx> -> "
1857 "<%llx:%llx:%llx> (%x obsolete)\n",
1858 (longlong_t)vd->vdev_id,
1859 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1860 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1861 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1862 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1863 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1864 counts[i]);
1865 }
1866 (void) printf("\n");
1867
1868 uint64_t obsolete_sm_object;
1869 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1870 if (obsolete_sm_object != 0) {
1871 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1872 (void) printf("obsolete space map object %llu:\n",
1873 (u_longlong_t)obsolete_sm_object);
1874 ASSERT(vd->vdev_obsolete_sm != NULL);
1875 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1876 obsolete_sm_object);
1877 dump_spacemap(mos, vd->vdev_obsolete_sm);
1878 (void) printf("\n");
1879 }
1880 }
1881
1882 static void
1883 dump_metaslabs(spa_t *spa)
1884 {
1885 vdev_t *vd, *rvd = spa->spa_root_vdev;
1886 uint64_t m, c = 0, children = rvd->vdev_children;
1887
1888 (void) printf("\nMetaslabs:\n");
1889
1890 if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1891 c = zopt_metaslab[0];
1892
1893 if (c >= children)
1894 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1895
1896 if (zopt_metaslab_args > 1) {
1897 vd = rvd->vdev_child[c];
1898 print_vdev_metaslab_header(vd);
1899
1900 for (m = 1; m < zopt_metaslab_args; m++) {
1901 if (zopt_metaslab[m] < vd->vdev_ms_count)
1902 dump_metaslab(
1903 vd->vdev_ms[zopt_metaslab[m]]);
1904 else
1905 (void) fprintf(stderr, "bad metaslab "
1906 "number %llu\n",
1907 (u_longlong_t)zopt_metaslab[m]);
1908 }
1909 (void) printf("\n");
1910 return;
1911 }
1912 children = c + 1;
1913 }
1914 for (; c < children; c++) {
1915 vd = rvd->vdev_child[c];
1916 print_vdev_metaslab_header(vd);
1917
1918 print_vdev_indirect(vd);
1919
1920 for (m = 0; m < vd->vdev_ms_count; m++)
1921 dump_metaslab(vd->vdev_ms[m]);
1922 (void) printf("\n");
1923 }
1924 }
1925
1926 static void
1927 dump_log_spacemaps(spa_t *spa)
1928 {
1929 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1930 return;
1931
1932 (void) printf("\nLog Space Maps in Pool:\n");
1933 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1934 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1935 space_map_t *sm = NULL;
1936 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1937 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1938
1939 (void) printf("Log Spacemap object %llu txg %llu\n",
1940 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1941 dump_spacemap(spa->spa_meta_objset, sm);
1942 space_map_close(sm);
1943 }
1944 (void) printf("\n");
1945 }
1946
1947 static void
1948 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1949 {
1950 const ddt_phys_t *ddp = dde->dde_phys;
1951 const ddt_key_t *ddk = &dde->dde_key;
1952 const char *types[4] = { "ditto", "single", "double", "triple" };
1953 char blkbuf[BP_SPRINTF_LEN];
1954 blkptr_t blk;
1955 int p;
1956
1957 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1958 if (ddp->ddp_phys_birth == 0)
1959 continue;
1960 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1961 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1962 (void) printf("index %llx refcnt %llu %s %s\n",
1963 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1964 types[p], blkbuf);
1965 }
1966 }
1967
1968 static void
1969 dump_dedup_ratio(const ddt_stat_t *dds)
1970 {
1971 double rL, rP, rD, D, dedup, compress, copies;
1972
1973 if (dds->dds_blocks == 0)
1974 return;
1975
1976 rL = (double)dds->dds_ref_lsize;
1977 rP = (double)dds->dds_ref_psize;
1978 rD = (double)dds->dds_ref_dsize;
1979 D = (double)dds->dds_dsize;
1980
1981 dedup = rD / D;
1982 compress = rL / rP;
1983 copies = rD / rP;
1984
1985 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1986 "dedup * compress / copies = %.2f\n\n",
1987 dedup, compress, copies, dedup * compress / copies);
1988 }
1989
1990 static void
1991 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
1992 {
1993 char name[DDT_NAMELEN];
1994 ddt_entry_t dde;
1995 uint64_t walk = 0;
1996 dmu_object_info_t doi;
1997 uint64_t count, dspace, mspace;
1998 int error;
1999
2000 error = ddt_object_info(ddt, type, class, &doi);
2001
2002 if (error == ENOENT)
2003 return;
2004 ASSERT(error == 0);
2005
2006 error = ddt_object_count(ddt, type, class, &count);
2007 ASSERT(error == 0);
2008 if (count == 0)
2009 return;
2010
2011 dspace = doi.doi_physical_blocks_512 << 9;
2012 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2013
2014 ddt_object_name(ddt, type, class, name);
2015
2016 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2017 name,
2018 (u_longlong_t)count,
2019 (u_longlong_t)(dspace / count),
2020 (u_longlong_t)(mspace / count));
2021
2022 if (dump_opt['D'] < 3)
2023 return;
2024
2025 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2026
2027 if (dump_opt['D'] < 4)
2028 return;
2029
2030 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2031 return;
2032
2033 (void) printf("%s contents:\n\n", name);
2034
2035 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2036 dump_dde(ddt, &dde, walk);
2037
2038 ASSERT3U(error, ==, ENOENT);
2039
2040 (void) printf("\n");
2041 }
2042
2043 static void
2044 dump_all_ddts(spa_t *spa)
2045 {
2046 ddt_histogram_t ddh_total = {{{0}}};
2047 ddt_stat_t dds_total = {0};
2048
2049 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2050 ddt_t *ddt = spa->spa_ddt[c];
2051 for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2052 for (enum ddt_class class = 0; class < DDT_CLASSES;
2053 class++) {
2054 dump_ddt(ddt, type, class);
2055 }
2056 }
2057 }
2058
2059 ddt_get_dedup_stats(spa, &dds_total);
2060
2061 if (dds_total.dds_blocks == 0) {
2062 (void) printf("All DDTs are empty\n");
2063 return;
2064 }
2065
2066 (void) printf("\n");
2067
2068 if (dump_opt['D'] > 1) {
2069 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2070 ddt_get_dedup_histogram(spa, &ddh_total);
2071 zpool_dump_ddt(&dds_total, &ddh_total);
2072 }
2073
2074 dump_dedup_ratio(&dds_total);
2075 }
2076
2077 static void
2078 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2079 {
2080 char *prefix = arg;
2081
2082 (void) printf("%s [%llu,%llu) length %llu\n",
2083 prefix,
2084 (u_longlong_t)start,
2085 (u_longlong_t)(start + size),
2086 (u_longlong_t)(size));
2087 }
2088
2089 static void
2090 dump_dtl(vdev_t *vd, int indent)
2091 {
2092 spa_t *spa = vd->vdev_spa;
2093 boolean_t required;
2094 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2095 "outage" };
2096 char prefix[256];
2097
2098 spa_vdev_state_enter(spa, SCL_NONE);
2099 required = vdev_dtl_required(vd);
2100 (void) spa_vdev_state_exit(spa, NULL, 0);
2101
2102 if (indent == 0)
2103 (void) printf("\nDirty time logs:\n\n");
2104
2105 (void) printf("\t%*s%s [%s]\n", indent, "",
2106 vd->vdev_path ? vd->vdev_path :
2107 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2108 required ? "DTL-required" : "DTL-expendable");
2109
2110 for (int t = 0; t < DTL_TYPES; t++) {
2111 range_tree_t *rt = vd->vdev_dtl[t];
2112 if (range_tree_space(rt) == 0)
2113 continue;
2114 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2115 indent + 2, "", name[t]);
2116 range_tree_walk(rt, dump_dtl_seg, prefix);
2117 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2118 dump_spacemap(spa->spa_meta_objset,
2119 vd->vdev_dtl_sm);
2120 }
2121
2122 for (unsigned c = 0; c < vd->vdev_children; c++)
2123 dump_dtl(vd->vdev_child[c], indent + 4);
2124 }
2125
2126 static void
2127 dump_history(spa_t *spa)
2128 {
2129 nvlist_t **events = NULL;
2130 char *buf;
2131 uint64_t resid, len, off = 0;
2132 uint_t num = 0;
2133 int error;
2134 char tbuf[30];
2135
2136 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2137 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2138 __func__);
2139 return;
2140 }
2141
2142 do {
2143 len = SPA_OLD_MAXBLOCKSIZE;
2144
2145 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2146 (void) fprintf(stderr, "Unable to read history: "
2147 "error %d\n", error);
2148 free(buf);
2149 return;
2150 }
2151
2152 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2153 break;
2154
2155 off -= resid;
2156 } while (len != 0);
2157
2158 (void) printf("\nHistory:\n");
2159 for (unsigned i = 0; i < num; i++) {
2160 boolean_t printed = B_FALSE;
2161
2162 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2163 time_t tsec;
2164 struct tm t;
2165
2166 tsec = fnvlist_lookup_uint64(events[i],
2167 ZPOOL_HIST_TIME);
2168 (void) localtime_r(&tsec, &t);
2169 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2170 } else {
2171 tbuf[0] = '\0';
2172 }
2173
2174 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2175 (void) printf("%s %s\n", tbuf,
2176 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2177 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2178 uint64_t ievent;
2179
2180 ievent = fnvlist_lookup_uint64(events[i],
2181 ZPOOL_HIST_INT_EVENT);
2182 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2183 goto next;
2184
2185 (void) printf(" %s [internal %s txg:%ju] %s\n",
2186 tbuf,
2187 zfs_history_event_names[ievent],
2188 fnvlist_lookup_uint64(events[i],
2189 ZPOOL_HIST_TXG),
2190 fnvlist_lookup_string(events[i],
2191 ZPOOL_HIST_INT_STR));
2192 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2193 (void) printf("%s [txg:%ju] %s", tbuf,
2194 fnvlist_lookup_uint64(events[i],
2195 ZPOOL_HIST_TXG),
2196 fnvlist_lookup_string(events[i],
2197 ZPOOL_HIST_INT_NAME));
2198
2199 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2200 (void) printf(" %s (%llu)",
2201 fnvlist_lookup_string(events[i],
2202 ZPOOL_HIST_DSNAME),
2203 (u_longlong_t)fnvlist_lookup_uint64(
2204 events[i],
2205 ZPOOL_HIST_DSID));
2206 }
2207
2208 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2209 ZPOOL_HIST_INT_STR));
2210 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2211 (void) printf("%s ioctl %s\n", tbuf,
2212 fnvlist_lookup_string(events[i],
2213 ZPOOL_HIST_IOCTL));
2214
2215 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2216 (void) printf(" input:\n");
2217 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2218 ZPOOL_HIST_INPUT_NVL), 8);
2219 }
2220 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2221 (void) printf(" output:\n");
2222 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2223 ZPOOL_HIST_OUTPUT_NVL), 8);
2224 }
2225 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2226 (void) printf(" errno: %lld\n",
2227 (longlong_t)fnvlist_lookup_int64(events[i],
2228 ZPOOL_HIST_ERRNO));
2229 }
2230 } else {
2231 goto next;
2232 }
2233
2234 printed = B_TRUE;
2235 next:
2236 if (dump_opt['h'] > 1) {
2237 if (!printed)
2238 (void) printf("unrecognized record:\n");
2239 dump_nvlist(events[i], 2);
2240 }
2241 }
2242 free(buf);
2243 }
2244
2245 static void
2246 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2247 {
2248 (void) os, (void) object, (void) data, (void) size;
2249 }
2250
2251 static uint64_t
2252 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2253 const zbookmark_phys_t *zb)
2254 {
2255 if (dnp == NULL) {
2256 ASSERT(zb->zb_level < 0);
2257 if (zb->zb_object == 0)
2258 return (zb->zb_blkid);
2259 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2260 }
2261
2262 ASSERT(zb->zb_level >= 0);
2263
2264 return ((zb->zb_blkid <<
2265 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2266 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2267 }
2268
2269 static void
2270 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2271 const blkptr_t *bp)
2272 {
2273 abd_t *pabd;
2274 void *buf;
2275 zio_t *zio;
2276 zfs_zstdhdr_t zstd_hdr;
2277 int error;
2278
2279 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2280 return;
2281
2282 if (BP_IS_HOLE(bp))
2283 return;
2284
2285 if (BP_IS_EMBEDDED(bp)) {
2286 buf = malloc(SPA_MAXBLOCKSIZE);
2287 if (buf == NULL) {
2288 (void) fprintf(stderr, "out of memory\n");
2289 exit(1);
2290 }
2291 decode_embedded_bp_compressed(bp, buf);
2292 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2293 free(buf);
2294 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2295 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2296 (void) snprintf(blkbuf + strlen(blkbuf),
2297 buflen - strlen(blkbuf),
2298 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2299 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2300 zfs_get_hdrlevel(&zstd_hdr));
2301 return;
2302 }
2303
2304 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2305 zio = zio_root(spa, NULL, NULL, 0);
2306
2307 /* Decrypt but don't decompress so we can read the compression header */
2308 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2309 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2310 NULL));
2311 error = zio_wait(zio);
2312 if (error) {
2313 (void) fprintf(stderr, "read failed: %d\n", error);
2314 return;
2315 }
2316 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2317 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2318 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2319 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2320
2321 (void) snprintf(blkbuf + strlen(blkbuf),
2322 buflen - strlen(blkbuf),
2323 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2324 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2325 zfs_get_hdrlevel(&zstd_hdr));
2326
2327 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2328 }
2329
2330 static void
2331 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2332 boolean_t bp_freed)
2333 {
2334 const dva_t *dva = bp->blk_dva;
2335 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2336 int i;
2337
2338 if (dump_opt['b'] >= 6) {
2339 snprintf_blkptr(blkbuf, buflen, bp);
2340 if (bp_freed) {
2341 (void) snprintf(blkbuf + strlen(blkbuf),
2342 buflen - strlen(blkbuf), " %s", "FREE");
2343 }
2344 return;
2345 }
2346
2347 if (BP_IS_EMBEDDED(bp)) {
2348 (void) sprintf(blkbuf,
2349 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2350 (int)BPE_GET_ETYPE(bp),
2351 (u_longlong_t)BPE_GET_LSIZE(bp),
2352 (u_longlong_t)BPE_GET_PSIZE(bp),
2353 (u_longlong_t)bp->blk_birth);
2354 return;
2355 }
2356
2357 blkbuf[0] = '\0';
2358
2359 for (i = 0; i < ndvas; i++)
2360 (void) snprintf(blkbuf + strlen(blkbuf),
2361 buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2362 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2363 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2364 (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2365
2366 if (BP_IS_HOLE(bp)) {
2367 (void) snprintf(blkbuf + strlen(blkbuf),
2368 buflen - strlen(blkbuf),
2369 "%llxL B=%llu",
2370 (u_longlong_t)BP_GET_LSIZE(bp),
2371 (u_longlong_t)bp->blk_birth);
2372 } else {
2373 (void) snprintf(blkbuf + strlen(blkbuf),
2374 buflen - strlen(blkbuf),
2375 "%llxL/%llxP F=%llu B=%llu/%llu",
2376 (u_longlong_t)BP_GET_LSIZE(bp),
2377 (u_longlong_t)BP_GET_PSIZE(bp),
2378 (u_longlong_t)BP_GET_FILL(bp),
2379 (u_longlong_t)bp->blk_birth,
2380 (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2381 if (bp_freed)
2382 (void) snprintf(blkbuf + strlen(blkbuf),
2383 buflen - strlen(blkbuf), " %s", "FREE");
2384 (void) snprintf(blkbuf + strlen(blkbuf),
2385 buflen - strlen(blkbuf),
2386 " cksum=%016llx:%016llx:%016llx:%016llx",
2387 (u_longlong_t)bp->blk_cksum.zc_word[0],
2388 (u_longlong_t)bp->blk_cksum.zc_word[1],
2389 (u_longlong_t)bp->blk_cksum.zc_word[2],
2390 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2391 }
2392 }
2393
2394 static void
2395 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2396 const dnode_phys_t *dnp)
2397 {
2398 char blkbuf[BP_SPRINTF_LEN];
2399 int l;
2400
2401 if (!BP_IS_EMBEDDED(bp)) {
2402 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2403 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2404 }
2405
2406 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2407
2408 ASSERT(zb->zb_level >= 0);
2409
2410 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2411 if (l == zb->zb_level) {
2412 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2413 } else {
2414 (void) printf(" ");
2415 }
2416 }
2417
2418 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2419 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2420 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2421 (void) printf("%s\n", blkbuf);
2422 }
2423
2424 static int
2425 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2426 blkptr_t *bp, const zbookmark_phys_t *zb)
2427 {
2428 int err = 0;
2429
2430 if (bp->blk_birth == 0)
2431 return (0);
2432
2433 print_indirect(spa, bp, zb, dnp);
2434
2435 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2436 arc_flags_t flags = ARC_FLAG_WAIT;
2437 int i;
2438 blkptr_t *cbp;
2439 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2440 arc_buf_t *buf;
2441 uint64_t fill = 0;
2442 ASSERT(!BP_IS_REDACTED(bp));
2443
2444 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2445 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2446 if (err)
2447 return (err);
2448 ASSERT(buf->b_data);
2449
2450 /* recursively visit blocks below this */
2451 cbp = buf->b_data;
2452 for (i = 0; i < epb; i++, cbp++) {
2453 zbookmark_phys_t czb;
2454
2455 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2456 zb->zb_level - 1,
2457 zb->zb_blkid * epb + i);
2458 err = visit_indirect(spa, dnp, cbp, &czb);
2459 if (err)
2460 break;
2461 fill += BP_GET_FILL(cbp);
2462 }
2463 if (!err)
2464 ASSERT3U(fill, ==, BP_GET_FILL(bp));
2465 arc_buf_destroy(buf, &buf);
2466 }
2467
2468 return (err);
2469 }
2470
2471 static void
2472 dump_indirect(dnode_t *dn)
2473 {
2474 dnode_phys_t *dnp = dn->dn_phys;
2475 zbookmark_phys_t czb;
2476
2477 (void) printf("Indirect blocks:\n");
2478
2479 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2480 dn->dn_object, dnp->dn_nlevels - 1, 0);
2481 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2482 czb.zb_blkid = j;
2483 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2484 &dnp->dn_blkptr[j], &czb);
2485 }
2486
2487 (void) printf("\n");
2488 }
2489
2490 static void
2491 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2492 {
2493 (void) os, (void) object;
2494 dsl_dir_phys_t *dd = data;
2495 time_t crtime;
2496 char nice[32];
2497
2498 /* make sure nicenum has enough space */
2499 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2500
2501 if (dd == NULL)
2502 return;
2503
2504 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2505
2506 crtime = dd->dd_creation_time;
2507 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2508 (void) printf("\t\thead_dataset_obj = %llu\n",
2509 (u_longlong_t)dd->dd_head_dataset_obj);
2510 (void) printf("\t\tparent_dir_obj = %llu\n",
2511 (u_longlong_t)dd->dd_parent_obj);
2512 (void) printf("\t\torigin_obj = %llu\n",
2513 (u_longlong_t)dd->dd_origin_obj);
2514 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2515 (u_longlong_t)dd->dd_child_dir_zapobj);
2516 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2517 (void) printf("\t\tused_bytes = %s\n", nice);
2518 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2519 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2520 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2521 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2522 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2523 (void) printf("\t\tquota = %s\n", nice);
2524 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2525 (void) printf("\t\treserved = %s\n", nice);
2526 (void) printf("\t\tprops_zapobj = %llu\n",
2527 (u_longlong_t)dd->dd_props_zapobj);
2528 (void) printf("\t\tdeleg_zapobj = %llu\n",
2529 (u_longlong_t)dd->dd_deleg_zapobj);
2530 (void) printf("\t\tflags = %llx\n",
2531 (u_longlong_t)dd->dd_flags);
2532
2533 #define DO(which) \
2534 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2535 sizeof (nice)); \
2536 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2537 DO(HEAD);
2538 DO(SNAP);
2539 DO(CHILD);
2540 DO(CHILD_RSRV);
2541 DO(REFRSRV);
2542 #undef DO
2543 (void) printf("\t\tclones = %llu\n",
2544 (u_longlong_t)dd->dd_clones);
2545 }
2546
2547 static void
2548 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2549 {
2550 (void) os, (void) object;
2551 dsl_dataset_phys_t *ds = data;
2552 time_t crtime;
2553 char used[32], compressed[32], uncompressed[32], unique[32];
2554 char blkbuf[BP_SPRINTF_LEN];
2555
2556 /* make sure nicenum has enough space */
2557 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2558 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2559 "compressed truncated");
2560 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2561 "uncompressed truncated");
2562 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2563
2564 if (ds == NULL)
2565 return;
2566
2567 ASSERT(size == sizeof (*ds));
2568 crtime = ds->ds_creation_time;
2569 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2570 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2571 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2572 sizeof (uncompressed));
2573 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2574 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2575
2576 (void) printf("\t\tdir_obj = %llu\n",
2577 (u_longlong_t)ds->ds_dir_obj);
2578 (void) printf("\t\tprev_snap_obj = %llu\n",
2579 (u_longlong_t)ds->ds_prev_snap_obj);
2580 (void) printf("\t\tprev_snap_txg = %llu\n",
2581 (u_longlong_t)ds->ds_prev_snap_txg);
2582 (void) printf("\t\tnext_snap_obj = %llu\n",
2583 (u_longlong_t)ds->ds_next_snap_obj);
2584 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2585 (u_longlong_t)ds->ds_snapnames_zapobj);
2586 (void) printf("\t\tnum_children = %llu\n",
2587 (u_longlong_t)ds->ds_num_children);
2588 (void) printf("\t\tuserrefs_obj = %llu\n",
2589 (u_longlong_t)ds->ds_userrefs_obj);
2590 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2591 (void) printf("\t\tcreation_txg = %llu\n",
2592 (u_longlong_t)ds->ds_creation_txg);
2593 (void) printf("\t\tdeadlist_obj = %llu\n",
2594 (u_longlong_t)ds->ds_deadlist_obj);
2595 (void) printf("\t\tused_bytes = %s\n", used);
2596 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2597 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2598 (void) printf("\t\tunique = %s\n", unique);
2599 (void) printf("\t\tfsid_guid = %llu\n",
2600 (u_longlong_t)ds->ds_fsid_guid);
2601 (void) printf("\t\tguid = %llu\n",
2602 (u_longlong_t)ds->ds_guid);
2603 (void) printf("\t\tflags = %llx\n",
2604 (u_longlong_t)ds->ds_flags);
2605 (void) printf("\t\tnext_clones_obj = %llu\n",
2606 (u_longlong_t)ds->ds_next_clones_obj);
2607 (void) printf("\t\tprops_obj = %llu\n",
2608 (u_longlong_t)ds->ds_props_obj);
2609 (void) printf("\t\tbp = %s\n", blkbuf);
2610 }
2611
2612 static int
2613 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2614 {
2615 (void) arg, (void) tx;
2616 char blkbuf[BP_SPRINTF_LEN];
2617
2618 if (bp->blk_birth != 0) {
2619 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2620 (void) printf("\t%s\n", blkbuf);
2621 }
2622 return (0);
2623 }
2624
2625 static void
2626 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2627 {
2628 char bytes[32];
2629 bptree_phys_t *bt;
2630 dmu_buf_t *db;
2631
2632 /* make sure nicenum has enough space */
2633 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2634
2635 if (dump_opt['d'] < 3)
2636 return;
2637
2638 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2639 bt = db->db_data;
2640 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2641 (void) printf("\n %s: %llu datasets, %s\n",
2642 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2643 dmu_buf_rele(db, FTAG);
2644
2645 if (dump_opt['d'] < 5)
2646 return;
2647
2648 (void) printf("\n");
2649
2650 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2651 }
2652
2653 static int
2654 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2655 {
2656 (void) arg, (void) tx;
2657 char blkbuf[BP_SPRINTF_LEN];
2658
2659 ASSERT(bp->blk_birth != 0);
2660 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2661 (void) printf("\t%s\n", blkbuf);
2662 return (0);
2663 }
2664
2665 static void
2666 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2667 {
2668 char bytes[32];
2669 char comp[32];
2670 char uncomp[32];
2671 uint64_t i;
2672
2673 /* make sure nicenum has enough space */
2674 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2675 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2676 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2677
2678 if (dump_opt['d'] < 3)
2679 return;
2680
2681 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2682 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2683 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2684 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2685 if (bpo->bpo_havefreed) {
2686 (void) printf(" %*s: object %llu, %llu local "
2687 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2688 "%s (%s/%s comp)\n",
2689 indent * 8, name,
2690 (u_longlong_t)bpo->bpo_object,
2691 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2692 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2693 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2694 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2695 bytes, comp, uncomp);
2696 } else {
2697 (void) printf(" %*s: object %llu, %llu local "
2698 "blkptrs, %llu subobjs in object %llu, "
2699 "%s (%s/%s comp)\n",
2700 indent * 8, name,
2701 (u_longlong_t)bpo->bpo_object,
2702 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2703 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2704 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2705 bytes, comp, uncomp);
2706 }
2707
2708 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2709 uint64_t subobj;
2710 bpobj_t subbpo;
2711 int error;
2712 VERIFY0(dmu_read(bpo->bpo_os,
2713 bpo->bpo_phys->bpo_subobjs,
2714 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2715 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2716 if (error != 0) {
2717 (void) printf("ERROR %u while trying to open "
2718 "subobj id %llu\n",
2719 error, (u_longlong_t)subobj);
2720 continue;
2721 }
2722 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2723 bpobj_close(&subbpo);
2724 }
2725 } else {
2726 if (bpo->bpo_havefreed) {
2727 (void) printf(" %*s: object %llu, %llu blkptrs, "
2728 "%llu freed, %s\n",
2729 indent * 8, name,
2730 (u_longlong_t)bpo->bpo_object,
2731 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2732 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2733 bytes);
2734 } else {
2735 (void) printf(" %*s: object %llu, %llu blkptrs, "
2736 "%s\n",
2737 indent * 8, name,
2738 (u_longlong_t)bpo->bpo_object,
2739 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2740 bytes);
2741 }
2742 }
2743
2744 if (dump_opt['d'] < 5)
2745 return;
2746
2747
2748 if (indent == 0) {
2749 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2750 (void) printf("\n");
2751 }
2752 }
2753
2754 static int
2755 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2756 boolean_t print_list)
2757 {
2758 int err = 0;
2759 zfs_bookmark_phys_t prop;
2760 objset_t *mos = dp->dp_spa->spa_meta_objset;
2761 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2762
2763 if (err != 0) {
2764 return (err);
2765 }
2766
2767 (void) printf("\t#%s: ", strchr(name, '#') + 1);
2768 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2769 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2770 (u_longlong_t)prop.zbm_creation_txg,
2771 (u_longlong_t)prop.zbm_creation_time,
2772 (u_longlong_t)prop.zbm_redaction_obj);
2773
2774 IMPLY(print_list, print_redact);
2775 if (!print_redact || prop.zbm_redaction_obj == 0)
2776 return (0);
2777
2778 redaction_list_t *rl;
2779 VERIFY0(dsl_redaction_list_hold_obj(dp,
2780 prop.zbm_redaction_obj, FTAG, &rl));
2781
2782 redaction_list_phys_t *rlp = rl->rl_phys;
2783 (void) printf("\tRedacted:\n\t\tProgress: ");
2784 if (rlp->rlp_last_object != UINT64_MAX ||
2785 rlp->rlp_last_blkid != UINT64_MAX) {
2786 (void) printf("%llu %llu (incomplete)\n",
2787 (u_longlong_t)rlp->rlp_last_object,
2788 (u_longlong_t)rlp->rlp_last_blkid);
2789 } else {
2790 (void) printf("complete\n");
2791 }
2792 (void) printf("\t\tSnapshots: [");
2793 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2794 if (i > 0)
2795 (void) printf(", ");
2796 (void) printf("%0llu",
2797 (u_longlong_t)rlp->rlp_snaps[i]);
2798 }
2799 (void) printf("]\n\t\tLength: %llu\n",
2800 (u_longlong_t)rlp->rlp_num_entries);
2801
2802 if (!print_list) {
2803 dsl_redaction_list_rele(rl, FTAG);
2804 return (0);
2805 }
2806
2807 if (rlp->rlp_num_entries == 0) {
2808 dsl_redaction_list_rele(rl, FTAG);
2809 (void) printf("\t\tRedaction List: []\n\n");
2810 return (0);
2811 }
2812
2813 redact_block_phys_t *rbp_buf;
2814 uint64_t size;
2815 dmu_object_info_t doi;
2816
2817 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2818 size = doi.doi_max_offset;
2819 rbp_buf = kmem_alloc(size, KM_SLEEP);
2820
2821 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2822 rbp_buf, 0);
2823 if (err != 0) {
2824 dsl_redaction_list_rele(rl, FTAG);
2825 kmem_free(rbp_buf, size);
2826 return (err);
2827 }
2828
2829 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2830 "%llx, blksz: %x, count: %llx}",
2831 (u_longlong_t)rbp_buf[0].rbp_object,
2832 (u_longlong_t)rbp_buf[0].rbp_blkid,
2833 (uint_t)(redact_block_get_size(&rbp_buf[0])),
2834 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2835
2836 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2837 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2838 "blksz: %x, count: %llx}",
2839 (u_longlong_t)rbp_buf[i].rbp_object,
2840 (u_longlong_t)rbp_buf[i].rbp_blkid,
2841 (uint_t)(redact_block_get_size(&rbp_buf[i])),
2842 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2843 }
2844 dsl_redaction_list_rele(rl, FTAG);
2845 kmem_free(rbp_buf, size);
2846 (void) printf("]\n\n");
2847 return (0);
2848 }
2849
2850 static void
2851 dump_bookmarks(objset_t *os, int verbosity)
2852 {
2853 zap_cursor_t zc;
2854 zap_attribute_t attr;
2855 dsl_dataset_t *ds = dmu_objset_ds(os);
2856 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2857 objset_t *mos = os->os_spa->spa_meta_objset;
2858 if (verbosity < 4)
2859 return;
2860 dsl_pool_config_enter(dp, FTAG);
2861
2862 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2863 zap_cursor_retrieve(&zc, &attr) == 0;
2864 zap_cursor_advance(&zc)) {
2865 char osname[ZFS_MAX_DATASET_NAME_LEN];
2866 char buf[ZFS_MAX_DATASET_NAME_LEN];
2867 int len;
2868 dmu_objset_name(os, osname);
2869 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2870 attr.za_name);
2871 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2872 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2873 }
2874 zap_cursor_fini(&zc);
2875 dsl_pool_config_exit(dp, FTAG);
2876 }
2877
2878 static void
2879 bpobj_count_refd(bpobj_t *bpo)
2880 {
2881 mos_obj_refd(bpo->bpo_object);
2882
2883 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2884 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2885 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2886 uint64_t subobj;
2887 bpobj_t subbpo;
2888 int error;
2889 VERIFY0(dmu_read(bpo->bpo_os,
2890 bpo->bpo_phys->bpo_subobjs,
2891 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2892 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2893 if (error != 0) {
2894 (void) printf("ERROR %u while trying to open "
2895 "subobj id %llu\n",
2896 error, (u_longlong_t)subobj);
2897 continue;
2898 }
2899 bpobj_count_refd(&subbpo);
2900 bpobj_close(&subbpo);
2901 }
2902 }
2903 }
2904
2905 static int
2906 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2907 {
2908 spa_t *spa = arg;
2909 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2910 if (dle->dle_bpobj.bpo_object != empty_bpobj)
2911 bpobj_count_refd(&dle->dle_bpobj);
2912 return (0);
2913 }
2914
2915 static int
2916 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
2917 {
2918 ASSERT(arg == NULL);
2919 if (dump_opt['d'] >= 5) {
2920 char buf[128];
2921 (void) snprintf(buf, sizeof (buf),
2922 "mintxg %llu -> obj %llu",
2923 (longlong_t)dle->dle_mintxg,
2924 (longlong_t)dle->dle_bpobj.bpo_object);
2925
2926 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
2927 } else {
2928 (void) printf("mintxg %llu -> obj %llu\n",
2929 (longlong_t)dle->dle_mintxg,
2930 (longlong_t)dle->dle_bpobj.bpo_object);
2931 }
2932 return (0);
2933 }
2934
2935 static void
2936 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
2937 {
2938 char bytes[32];
2939 char comp[32];
2940 char uncomp[32];
2941 char entries[32];
2942 spa_t *spa = dmu_objset_spa(dl->dl_os);
2943 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2944
2945 if (dl->dl_oldfmt) {
2946 if (dl->dl_bpobj.bpo_object != empty_bpobj)
2947 bpobj_count_refd(&dl->dl_bpobj);
2948 } else {
2949 mos_obj_refd(dl->dl_object);
2950 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
2951 }
2952
2953 /* make sure nicenum has enough space */
2954 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2955 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2956 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2957 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
2958
2959 if (dump_opt['d'] < 3)
2960 return;
2961
2962 if (dl->dl_oldfmt) {
2963 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
2964 return;
2965 }
2966
2967 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
2968 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
2969 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
2970 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
2971 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
2972 name, bytes, comp, uncomp, entries);
2973
2974 if (dump_opt['d'] < 4)
2975 return;
2976
2977 (void) putchar('\n');
2978
2979 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
2980 }
2981
2982 static int
2983 verify_dd_livelist(objset_t *os)
2984 {
2985 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
2986 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2987 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
2988
2989 ASSERT(!dmu_objset_is_snapshot(os));
2990 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2991 return (0);
2992
2993 /* Iterate through the livelist to check for duplicates */
2994 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
2995 NULL);
2996
2997 dsl_pool_config_enter(dp, FTAG);
2998 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
2999 &ll_comp, &ll_uncomp);
3000
3001 dsl_dataset_t *origin_ds;
3002 ASSERT(dsl_pool_config_held(dp));
3003 VERIFY0(dsl_dataset_hold_obj(dp,
3004 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3005 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3006 &used, &comp, &uncomp));
3007 dsl_dataset_rele(origin_ds, FTAG);
3008 dsl_pool_config_exit(dp, FTAG);
3009 /*
3010 * It's possible that the dataset's uncomp space is larger than the
3011 * livelist's because livelists do not track embedded block pointers
3012 */
3013 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3014 char nice_used[32], nice_comp[32], nice_uncomp[32];
3015 (void) printf("Discrepancy in space accounting:\n");
3016 zdb_nicenum(used, nice_used, sizeof (nice_used));
3017 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3018 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3019 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3020 nice_used, nice_comp, nice_uncomp);
3021 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3022 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3023 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3024 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3025 nice_used, nice_comp, nice_uncomp);
3026 return (1);
3027 }
3028 return (0);
3029 }
3030
3031 static char *key_material = NULL;
3032
3033 static boolean_t
3034 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3035 {
3036 uint64_t keyformat, salt, iters;
3037 int i;
3038 unsigned char c;
3039
3040 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3041 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3042 1, &keyformat));
3043
3044 switch (keyformat) {
3045 case ZFS_KEYFORMAT_HEX:
3046 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3047 if (!isxdigit(key_material[i]) ||
3048 !isxdigit(key_material[i+1]))
3049 return (B_FALSE);
3050 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3051 return (B_FALSE);
3052 key_out[i / 2] = c;
3053 }
3054 break;
3055
3056 case ZFS_KEYFORMAT_PASSPHRASE:
3057 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3058 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3059 sizeof (uint64_t), 1, &salt));
3060 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3061 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3062 sizeof (uint64_t), 1, &iters));
3063
3064 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3065 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3066 WRAPPING_KEY_LEN, key_out) != 1)
3067 return (B_FALSE);
3068
3069 break;
3070
3071 default:
3072 fatal("no support for key format %u\n",
3073 (unsigned int) keyformat);
3074 }
3075
3076 return (B_TRUE);
3077 }
3078
3079 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3080 static boolean_t key_loaded = B_FALSE;
3081
3082 static void
3083 zdb_load_key(objset_t *os)
3084 {
3085 dsl_pool_t *dp;
3086 dsl_dir_t *dd, *rdd;
3087 uint8_t key[WRAPPING_KEY_LEN];
3088 uint64_t rddobj;
3089 int err;
3090
3091 dp = spa_get_dsl(os->os_spa);
3092 dd = os->os_dsl_dataset->ds_dir;
3093
3094 dsl_pool_config_enter(dp, FTAG);
3095 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3096 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3097 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3098 dsl_dir_name(rdd, encroot);
3099 dsl_dir_rele(rdd, FTAG);
3100
3101 if (!zdb_derive_key(dd, key))
3102 fatal("couldn't derive encryption key");
3103
3104 dsl_pool_config_exit(dp, FTAG);
3105
3106 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3107
3108 dsl_crypto_params_t *dcp;
3109 nvlist_t *crypto_args;
3110
3111 crypto_args = fnvlist_alloc();
3112 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3113 (uint8_t *)key, WRAPPING_KEY_LEN);
3114 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3115 NULL, crypto_args, &dcp));
3116 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3117
3118 dsl_crypto_params_free(dcp, (err != 0));
3119 fnvlist_free(crypto_args);
3120
3121 if (err != 0)
3122 fatal(
3123 "couldn't load encryption key for %s: %s",
3124 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3125 "crypto params not supported" : strerror(err));
3126
3127 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3128
3129 printf("Unlocked encryption root: %s\n", encroot);
3130 key_loaded = B_TRUE;
3131 }
3132
3133 static void
3134 zdb_unload_key(void)
3135 {
3136 if (!key_loaded)
3137 return;
3138
3139 VERIFY0(spa_keystore_unload_wkey(encroot));
3140 key_loaded = B_FALSE;
3141 }
3142
3143 static avl_tree_t idx_tree;
3144 static avl_tree_t domain_tree;
3145 static boolean_t fuid_table_loaded;
3146 static objset_t *sa_os = NULL;
3147 static sa_attr_type_t *sa_attr_table = NULL;
3148
3149 static int
3150 open_objset(const char *path, const void *tag, objset_t **osp)
3151 {
3152 int err;
3153 uint64_t sa_attrs = 0;
3154 uint64_t version = 0;
3155
3156 VERIFY3P(sa_os, ==, NULL);
3157
3158 /*
3159 * We can't own an objset if it's redacted. Therefore, we do this
3160 * dance: hold the objset, then acquire a long hold on its dataset, then
3161 * release the pool (which is held as part of holding the objset).
3162 */
3163
3164 if (dump_opt['K']) {
3165 /* decryption requested, try to load keys */
3166 err = dmu_objset_hold(path, tag, osp);
3167 if (err != 0) {
3168 (void) fprintf(stderr, "failed to hold dataset "
3169 "'%s': %s\n",
3170 path, strerror(err));
3171 return (err);
3172 }
3173 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3174 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3175
3176 /* succeeds or dies */
3177 zdb_load_key(*osp);
3178
3179 /* release it all */
3180 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3181 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3182 }
3183
3184 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3185
3186 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3187 if (err != 0) {
3188 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3189 path, strerror(err));
3190 return (err);
3191 }
3192 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3193 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3194
3195 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3196 (key_loaded || !(*osp)->os_encrypted)) {
3197 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3198 8, 1, &version);
3199 if (version >= ZPL_VERSION_SA) {
3200 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3201 8, 1, &sa_attrs);
3202 }
3203 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3204 &sa_attr_table);
3205 if (err != 0) {
3206 (void) fprintf(stderr, "sa_setup failed: %s\n",
3207 strerror(err));
3208 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3209 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3210 ds_hold_flags, tag);
3211 *osp = NULL;
3212 }
3213 }
3214 sa_os = *osp;
3215
3216 return (err);
3217 }
3218
3219 static void
3220 close_objset(objset_t *os, const void *tag)
3221 {
3222 VERIFY3P(os, ==, sa_os);
3223 if (os->os_sa != NULL)
3224 sa_tear_down(os);
3225 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3226 dsl_dataset_rele_flags(dmu_objset_ds(os),
3227 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3228 sa_attr_table = NULL;
3229 sa_os = NULL;
3230
3231 zdb_unload_key();
3232 }
3233
3234 static void
3235 fuid_table_destroy(void)
3236 {
3237 if (fuid_table_loaded) {
3238 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3239 fuid_table_loaded = B_FALSE;
3240 }
3241 }
3242
3243 /*
3244 * print uid or gid information.
3245 * For normal POSIX id just the id is printed in decimal format.
3246 * For CIFS files with FUID the fuid is printed in hex followed by
3247 * the domain-rid string.
3248 */
3249 static void
3250 print_idstr(uint64_t id, const char *id_type)
3251 {
3252 if (FUID_INDEX(id)) {
3253 const char *domain =
3254 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3255 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3256 (u_longlong_t)id, domain, (int)FUID_RID(id));
3257 } else {
3258 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3259 }
3260
3261 }
3262
3263 static void
3264 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3265 {
3266 uint32_t uid_idx, gid_idx;
3267
3268 uid_idx = FUID_INDEX(uid);
3269 gid_idx = FUID_INDEX(gid);
3270
3271 /* Load domain table, if not already loaded */
3272 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3273 uint64_t fuid_obj;
3274
3275 /* first find the fuid object. It lives in the master node */
3276 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3277 8, 1, &fuid_obj) == 0);
3278 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3279 (void) zfs_fuid_table_load(os, fuid_obj,
3280 &idx_tree, &domain_tree);
3281 fuid_table_loaded = B_TRUE;
3282 }
3283
3284 print_idstr(uid, "uid");
3285 print_idstr(gid, "gid");
3286 }
3287
3288 static void
3289 dump_znode_sa_xattr(sa_handle_t *hdl)
3290 {
3291 nvlist_t *sa_xattr;
3292 nvpair_t *elem = NULL;
3293 int sa_xattr_size = 0;
3294 int sa_xattr_entries = 0;
3295 int error;
3296 char *sa_xattr_packed;
3297
3298 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3299 if (error || sa_xattr_size == 0)
3300 return;
3301
3302 sa_xattr_packed = malloc(sa_xattr_size);
3303 if (sa_xattr_packed == NULL)
3304 return;
3305
3306 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3307 sa_xattr_packed, sa_xattr_size);
3308 if (error) {
3309 free(sa_xattr_packed);
3310 return;
3311 }
3312
3313 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3314 if (error) {
3315 free(sa_xattr_packed);
3316 return;
3317 }
3318
3319 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3320 sa_xattr_entries++;
3321
3322 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3323 sa_xattr_size, sa_xattr_entries);
3324 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3325 boolean_t can_print = !dump_opt['P'];
3326 uchar_t *value;
3327 uint_t cnt, idx;
3328
3329 (void) printf("\t\t%s = ", nvpair_name(elem));
3330 nvpair_value_byte_array(elem, &value, &cnt);
3331
3332 for (idx = 0; idx < cnt; ++idx) {
3333 if (!isprint(value[idx])) {
3334 can_print = B_FALSE;
3335 break;
3336 }
3337 }
3338
3339 for (idx = 0; idx < cnt; ++idx) {
3340 if (can_print)
3341 (void) putchar(value[idx]);
3342 else
3343 (void) printf("\\%3.3o", value[idx]);
3344 }
3345 (void) putchar('\n');
3346 }
3347
3348 nvlist_free(sa_xattr);
3349 free(sa_xattr_packed);
3350 }
3351
3352 static void
3353 dump_znode_symlink(sa_handle_t *hdl)
3354 {
3355 int sa_symlink_size = 0;
3356 char linktarget[MAXPATHLEN];
3357 int error;
3358
3359 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3360 if (error || sa_symlink_size == 0) {
3361 return;
3362 }
3363 if (sa_symlink_size >= sizeof (linktarget)) {
3364 (void) printf("symlink size %d is too large\n",
3365 sa_symlink_size);
3366 return;
3367 }
3368 linktarget[sa_symlink_size] = '\0';
3369 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3370 &linktarget, sa_symlink_size) == 0)
3371 (void) printf("\ttarget %s\n", linktarget);
3372 }
3373
3374 static void
3375 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3376 {
3377 (void) data, (void) size;
3378 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3379 sa_handle_t *hdl;
3380 uint64_t xattr, rdev, gen;
3381 uint64_t uid, gid, mode, fsize, parent, links;
3382 uint64_t pflags;
3383 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3384 time_t z_crtime, z_atime, z_mtime, z_ctime;
3385 sa_bulk_attr_t bulk[12];
3386 int idx = 0;
3387 int error;
3388
3389 VERIFY3P(os, ==, sa_os);
3390 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3391 (void) printf("Failed to get handle for SA znode\n");
3392 return;
3393 }
3394
3395 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3396 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3397 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3398 &links, 8);
3399 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3400 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3401 &mode, 8);
3402 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3403 NULL, &parent, 8);
3404 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3405 &fsize, 8);
3406 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3407 acctm, 16);
3408 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3409 modtm, 16);
3410 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3411 crtm, 16);
3412 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3413 chgtm, 16);
3414 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3415 &pflags, 8);
3416
3417 if (sa_bulk_lookup(hdl, bulk, idx)) {
3418 (void) sa_handle_destroy(hdl);
3419 return;
3420 }
3421
3422 z_crtime = (time_t)crtm[0];
3423 z_atime = (time_t)acctm[0];
3424 z_mtime = (time_t)modtm[0];
3425 z_ctime = (time_t)chgtm[0];
3426
3427 if (dump_opt['d'] > 4) {
3428 error = zfs_obj_to_path(os, object, path, sizeof (path));
3429 if (error == ESTALE) {
3430 (void) snprintf(path, sizeof (path), "on delete queue");
3431 } else if (error != 0) {
3432 leaked_objects++;
3433 (void) snprintf(path, sizeof (path),
3434 "path not found, possibly leaked");
3435 }
3436 (void) printf("\tpath %s\n", path);
3437 }
3438
3439 if (S_ISLNK(mode))
3440 dump_znode_symlink(hdl);
3441 dump_uidgid(os, uid, gid);
3442 (void) printf("\tatime %s", ctime(&z_atime));
3443 (void) printf("\tmtime %s", ctime(&z_mtime));
3444 (void) printf("\tctime %s", ctime(&z_ctime));
3445 (void) printf("\tcrtime %s", ctime(&z_crtime));
3446 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3447 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3448 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3449 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3450 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3451 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3452 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3453 uint64_t projid;
3454
3455 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3456 sizeof (uint64_t)) == 0)
3457 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3458 }
3459 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3460 sizeof (uint64_t)) == 0)
3461 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3462 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3463 sizeof (uint64_t)) == 0)
3464 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3465 dump_znode_sa_xattr(hdl);
3466 sa_handle_destroy(hdl);
3467 }
3468
3469 static void
3470 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3471 {
3472 (void) os, (void) object, (void) data, (void) size;
3473 }
3474
3475 static void
3476 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3477 {
3478 (void) os, (void) object, (void) data, (void) size;
3479 }
3480
3481 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3482 dump_none, /* unallocated */
3483 dump_zap, /* object directory */
3484 dump_uint64, /* object array */
3485 dump_none, /* packed nvlist */
3486 dump_packed_nvlist, /* packed nvlist size */
3487 dump_none, /* bpobj */
3488 dump_bpobj, /* bpobj header */
3489 dump_none, /* SPA space map header */
3490 dump_none, /* SPA space map */
3491 dump_none, /* ZIL intent log */
3492 dump_dnode, /* DMU dnode */
3493 dump_dmu_objset, /* DMU objset */
3494 dump_dsl_dir, /* DSL directory */
3495 dump_zap, /* DSL directory child map */
3496 dump_zap, /* DSL dataset snap map */
3497 dump_zap, /* DSL props */
3498 dump_dsl_dataset, /* DSL dataset */
3499 dump_znode, /* ZFS znode */
3500 dump_acl, /* ZFS V0 ACL */
3501 dump_uint8, /* ZFS plain file */
3502 dump_zpldir, /* ZFS directory */
3503 dump_zap, /* ZFS master node */
3504 dump_zap, /* ZFS delete queue */
3505 dump_uint8, /* zvol object */
3506 dump_zap, /* zvol prop */
3507 dump_uint8, /* other uint8[] */
3508 dump_uint64, /* other uint64[] */
3509 dump_zap, /* other ZAP */
3510 dump_zap, /* persistent error log */
3511 dump_uint8, /* SPA history */
3512 dump_history_offsets, /* SPA history offsets */
3513 dump_zap, /* Pool properties */
3514 dump_zap, /* DSL permissions */
3515 dump_acl, /* ZFS ACL */
3516 dump_uint8, /* ZFS SYSACL */
3517 dump_none, /* FUID nvlist */
3518 dump_packed_nvlist, /* FUID nvlist size */
3519 dump_zap, /* DSL dataset next clones */
3520 dump_zap, /* DSL scrub queue */
3521 dump_zap, /* ZFS user/group/project used */
3522 dump_zap, /* ZFS user/group/project quota */
3523 dump_zap, /* snapshot refcount tags */
3524 dump_ddt_zap, /* DDT ZAP object */
3525 dump_zap, /* DDT statistics */
3526 dump_znode, /* SA object */
3527 dump_zap, /* SA Master Node */
3528 dump_sa_attrs, /* SA attribute registration */
3529 dump_sa_layouts, /* SA attribute layouts */
3530 dump_zap, /* DSL scrub translations */
3531 dump_none, /* fake dedup BP */
3532 dump_zap, /* deadlist */
3533 dump_none, /* deadlist hdr */
3534 dump_zap, /* dsl clones */
3535 dump_bpobj_subobjs, /* bpobj subobjs */
3536 dump_unknown, /* Unknown type, must be last */
3537 };
3538
3539 static boolean_t
3540 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3541 {
3542 boolean_t match = B_TRUE;
3543
3544 switch (obj_type) {
3545 case DMU_OT_DIRECTORY_CONTENTS:
3546 if (!(flags & ZOR_FLAG_DIRECTORY))
3547 match = B_FALSE;
3548 break;
3549 case DMU_OT_PLAIN_FILE_CONTENTS:
3550 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3551 match = B_FALSE;
3552 break;
3553 case DMU_OT_SPACE_MAP:
3554 if (!(flags & ZOR_FLAG_SPACE_MAP))
3555 match = B_FALSE;
3556 break;
3557 default:
3558 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3559 if (!(flags & ZOR_FLAG_ZAP))
3560 match = B_FALSE;
3561 break;
3562 }
3563
3564 /*
3565 * If all bits except some of the supported flags are
3566 * set, the user combined the all-types flag (A) with
3567 * a negated flag to exclude some types (e.g. A-f to
3568 * show all object types except plain files).
3569 */
3570 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3571 match = B_FALSE;
3572
3573 break;
3574 }
3575
3576 return (match);
3577 }
3578
3579 static void
3580 dump_object(objset_t *os, uint64_t object, int verbosity,
3581 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3582 {
3583 dmu_buf_t *db = NULL;
3584 dmu_object_info_t doi;
3585 dnode_t *dn;
3586 boolean_t dnode_held = B_FALSE;
3587 void *bonus = NULL;
3588 size_t bsize = 0;
3589 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3590 char bonus_size[32];
3591 char aux[50];
3592 int error;
3593
3594 /* make sure nicenum has enough space */
3595 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3596 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3597 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3598 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3599 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3600 "bonus_size truncated");
3601
3602 if (*print_header) {
3603 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3604 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3605 "lsize", "%full", "type");
3606 *print_header = 0;
3607 }
3608
3609 if (object == 0) {
3610 dn = DMU_META_DNODE(os);
3611 dmu_object_info_from_dnode(dn, &doi);
3612 } else {
3613 /*
3614 * Encrypted datasets will have sensitive bonus buffers
3615 * encrypted. Therefore we cannot hold the bonus buffer and
3616 * must hold the dnode itself instead.
3617 */
3618 error = dmu_object_info(os, object, &doi);
3619 if (error)
3620 fatal("dmu_object_info() failed, errno %u", error);
3621
3622 if (!key_loaded && os->os_encrypted &&
3623 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3624 error = dnode_hold(os, object, FTAG, &dn);
3625 if (error)
3626 fatal("dnode_hold() failed, errno %u", error);
3627 dnode_held = B_TRUE;
3628 } else {
3629 error = dmu_bonus_hold(os, object, FTAG, &db);
3630 if (error)
3631 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3632 object, error);
3633 bonus = db->db_data;
3634 bsize = db->db_size;
3635 dn = DB_DNODE((dmu_buf_impl_t *)db);
3636 }
3637 }
3638
3639 /*
3640 * Default to showing all object types if no flags were specified.
3641 */
3642 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3643 !match_object_type(doi.doi_type, flags))
3644 goto out;
3645
3646 if (dnode_slots_used)
3647 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3648
3649 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3650 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3651 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3652 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3653 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3654 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3655 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3656 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3657 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3658
3659 aux[0] = '\0';
3660
3661 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3662 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3663 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3664 }
3665
3666 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3667 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3668 const char *compname = NULL;
3669 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3670 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3671 &compname) == 0) {
3672 (void) snprintf(aux + strlen(aux),
3673 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3674 compname);
3675 } else {
3676 (void) snprintf(aux + strlen(aux),
3677 sizeof (aux) - strlen(aux),
3678 " (Z=inherit=%s-unknown)",
3679 ZDB_COMPRESS_NAME(os->os_compress));
3680 }
3681 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3682 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3683 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3684 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3685 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3686 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3687 }
3688
3689 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3690 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3691 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3692
3693 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3694 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3695 "", "", "", "", "", "", bonus_size, "bonus",
3696 zdb_ot_name(doi.doi_bonus_type));
3697 }
3698
3699 if (verbosity >= 4) {
3700 (void) printf("\tdnode flags: %s%s%s%s\n",
3701 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3702 "USED_BYTES " : "",
3703 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3704 "USERUSED_ACCOUNTED " : "",
3705 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3706 "USEROBJUSED_ACCOUNTED " : "",
3707 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3708 "SPILL_BLKPTR" : "");
3709 (void) printf("\tdnode maxblkid: %llu\n",
3710 (longlong_t)dn->dn_phys->dn_maxblkid);
3711
3712 if (!dnode_held) {
3713 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3714 object, bonus, bsize);
3715 } else {
3716 (void) printf("\t\t(bonus encrypted)\n");
3717 }
3718
3719 if (key_loaded ||
3720 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3721 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3722 NULL, 0);
3723 } else {
3724 (void) printf("\t\t(object encrypted)\n");
3725 }
3726
3727 *print_header = B_TRUE;
3728 }
3729
3730 if (verbosity >= 5) {
3731 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3732 char blkbuf[BP_SPRINTF_LEN];
3733 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3734 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3735 (void) printf("\nSpill block: %s\n", blkbuf);
3736 }
3737 dump_indirect(dn);
3738 }
3739
3740 if (verbosity >= 5) {
3741 /*
3742 * Report the list of segments that comprise the object.
3743 */
3744 uint64_t start = 0;
3745 uint64_t end;
3746 uint64_t blkfill = 1;
3747 int minlvl = 1;
3748
3749 if (dn->dn_type == DMU_OT_DNODE) {
3750 minlvl = 0;
3751 blkfill = DNODES_PER_BLOCK;
3752 }
3753
3754 for (;;) {
3755 char segsize[32];
3756 /* make sure nicenum has enough space */
3757 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3758 "segsize truncated");
3759 error = dnode_next_offset(dn,
3760 0, &start, minlvl, blkfill, 0);
3761 if (error)
3762 break;
3763 end = start;
3764 error = dnode_next_offset(dn,
3765 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3766 zdb_nicenum(end - start, segsize, sizeof (segsize));
3767 (void) printf("\t\tsegment [%016llx, %016llx)"
3768 " size %5s\n", (u_longlong_t)start,
3769 (u_longlong_t)end, segsize);
3770 if (error)
3771 break;
3772 start = end;
3773 }
3774 }
3775
3776 out:
3777 if (db != NULL)
3778 dmu_buf_rele(db, FTAG);
3779 if (dnode_held)
3780 dnode_rele(dn, FTAG);
3781 }
3782
3783 static void
3784 count_dir_mos_objects(dsl_dir_t *dd)
3785 {
3786 mos_obj_refd(dd->dd_object);
3787 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3788 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3789 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3790 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3791
3792 /*
3793 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3794 * Ignore the references after the first one.
3795 */
3796 mos_obj_refd_multiple(dd->dd_crypto_obj);
3797 }
3798
3799 static void
3800 count_ds_mos_objects(dsl_dataset_t *ds)
3801 {
3802 mos_obj_refd(ds->ds_object);
3803 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3804 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3805 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3806 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3807 mos_obj_refd(ds->ds_bookmarks_obj);
3808
3809 if (!dsl_dataset_is_snapshot(ds)) {
3810 count_dir_mos_objects(ds->ds_dir);
3811 }
3812 }
3813
3814 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3815 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3816
3817 /*
3818 * Parse a string denoting a range of object IDs of the form
3819 * <start>[:<end>[:flags]], and store the results in zor.
3820 * Return 0 on success. On error, return 1 and update the msg
3821 * pointer to point to a descriptive error message.
3822 */
3823 static int
3824 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3825 {
3826 uint64_t flags = 0;
3827 char *p, *s, *dup, *flagstr, *tmp = NULL;
3828 size_t len;
3829 int i;
3830 int rc = 0;
3831
3832 if (strchr(range, ':') == NULL) {
3833 zor->zor_obj_start = strtoull(range, &p, 0);
3834 if (*p != '\0') {
3835 *msg = "Invalid characters in object ID";
3836 rc = 1;
3837 }
3838 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3839 zor->zor_obj_end = zor->zor_obj_start;
3840 return (rc);
3841 }
3842
3843 if (strchr(range, ':') == range) {
3844 *msg = "Invalid leading colon";
3845 rc = 1;
3846 return (rc);
3847 }
3848
3849 len = strlen(range);
3850 if (range[len - 1] == ':') {
3851 *msg = "Invalid trailing colon";
3852 rc = 1;
3853 return (rc);
3854 }
3855
3856 dup = strdup(range);
3857 s = strtok_r(dup, ":", &tmp);
3858 zor->zor_obj_start = strtoull(s, &p, 0);
3859
3860 if (*p != '\0') {
3861 *msg = "Invalid characters in start object ID";
3862 rc = 1;
3863 goto out;
3864 }
3865
3866 s = strtok_r(NULL, ":", &tmp);
3867 zor->zor_obj_end = strtoull(s, &p, 0);
3868
3869 if (*p != '\0') {
3870 *msg = "Invalid characters in end object ID";
3871 rc = 1;
3872 goto out;
3873 }
3874
3875 if (zor->zor_obj_start > zor->zor_obj_end) {
3876 *msg = "Start object ID may not exceed end object ID";
3877 rc = 1;
3878 goto out;
3879 }
3880
3881 s = strtok_r(NULL, ":", &tmp);
3882 if (s == NULL) {
3883 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3884 goto out;
3885 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
3886 *msg = "Invalid colon-delimited field after flags";
3887 rc = 1;
3888 goto out;
3889 }
3890
3891 flagstr = s;
3892 for (i = 0; flagstr[i]; i++) {
3893 int bit;
3894 boolean_t negation = (flagstr[i] == '-');
3895
3896 if (negation) {
3897 i++;
3898 if (flagstr[i] == '\0') {
3899 *msg = "Invalid trailing negation operator";
3900 rc = 1;
3901 goto out;
3902 }
3903 }
3904 bit = flagbits[(uchar_t)flagstr[i]];
3905 if (bit == 0) {
3906 *msg = "Invalid flag";
3907 rc = 1;
3908 goto out;
3909 }
3910 if (negation)
3911 flags &= ~bit;
3912 else
3913 flags |= bit;
3914 }
3915 zor->zor_flags = flags;
3916
3917 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3918 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
3919
3920 out:
3921 free(dup);
3922 return (rc);
3923 }
3924
3925 static void
3926 dump_objset(objset_t *os)
3927 {
3928 dmu_objset_stats_t dds = { 0 };
3929 uint64_t object, object_count;
3930 uint64_t refdbytes, usedobjs, scratch;
3931 char numbuf[32];
3932 char blkbuf[BP_SPRINTF_LEN + 20];
3933 char osname[ZFS_MAX_DATASET_NAME_LEN];
3934 const char *type = "UNKNOWN";
3935 int verbosity = dump_opt['d'];
3936 boolean_t print_header;
3937 unsigned i;
3938 int error;
3939 uint64_t total_slots_used = 0;
3940 uint64_t max_slot_used = 0;
3941 uint64_t dnode_slots;
3942 uint64_t obj_start;
3943 uint64_t obj_end;
3944 uint64_t flags;
3945
3946 /* make sure nicenum has enough space */
3947 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
3948
3949 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
3950 dmu_objset_fast_stat(os, &dds);
3951 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
3952
3953 print_header = B_TRUE;
3954
3955 if (dds.dds_type < DMU_OST_NUMTYPES)
3956 type = objset_types[dds.dds_type];
3957
3958 if (dds.dds_type == DMU_OST_META) {
3959 dds.dds_creation_txg = TXG_INITIAL;
3960 usedobjs = BP_GET_FILL(os->os_rootbp);
3961 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
3962 dd_used_bytes;
3963 } else {
3964 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
3965 }
3966
3967 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
3968
3969 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
3970
3971 if (verbosity >= 4) {
3972 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
3973 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
3974 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
3975 } else {
3976 blkbuf[0] = '\0';
3977 }
3978
3979 dmu_objset_name(os, osname);
3980
3981 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
3982 "%s, %llu objects%s%s\n",
3983 osname, type, (u_longlong_t)dmu_objset_id(os),
3984 (u_longlong_t)dds.dds_creation_txg,
3985 numbuf, (u_longlong_t)usedobjs, blkbuf,
3986 (dds.dds_inconsistent) ? " (inconsistent)" : "");
3987
3988 for (i = 0; i < zopt_object_args; i++) {
3989 obj_start = zopt_object_ranges[i].zor_obj_start;
3990 obj_end = zopt_object_ranges[i].zor_obj_end;
3991 flags = zopt_object_ranges[i].zor_flags;
3992
3993 object = obj_start;
3994 if (object == 0 || obj_start == obj_end)
3995 dump_object(os, object, verbosity, &print_header, NULL,
3996 flags);
3997 else
3998 object--;
3999
4000 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4001 object <= obj_end) {
4002 dump_object(os, object, verbosity, &print_header, NULL,
4003 flags);
4004 }
4005 }
4006
4007 if (zopt_object_args > 0) {
4008 (void) printf("\n");
4009 return;
4010 }
4011
4012 if (dump_opt['i'] != 0 || verbosity >= 2)
4013 dump_intent_log(dmu_objset_zil(os));
4014
4015 if (dmu_objset_ds(os) != NULL) {
4016 dsl_dataset_t *ds = dmu_objset_ds(os);
4017 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4018 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4019 !dmu_objset_is_snapshot(os)) {
4020 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4021 if (verify_dd_livelist(os) != 0)
4022 fatal("livelist is incorrect");
4023 }
4024
4025 if (dsl_dataset_remap_deadlist_exists(ds)) {
4026 (void) printf("ds_remap_deadlist:\n");
4027 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4028 }
4029 count_ds_mos_objects(ds);
4030 }
4031
4032 if (dmu_objset_ds(os) != NULL)
4033 dump_bookmarks(os, verbosity);
4034
4035 if (verbosity < 2)
4036 return;
4037
4038 if (BP_IS_HOLE(os->os_rootbp))
4039 return;
4040
4041 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4042 object_count = 0;
4043 if (DMU_USERUSED_DNODE(os) != NULL &&
4044 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4045 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4046 NULL, 0);
4047 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4048 NULL, 0);
4049 }
4050
4051 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4052 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4053 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4054 &print_header, NULL, 0);
4055
4056 object = 0;
4057 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4058 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4059 0);
4060 object_count++;
4061 total_slots_used += dnode_slots;
4062 max_slot_used = object + dnode_slots - 1;
4063 }
4064
4065 (void) printf("\n");
4066
4067 (void) printf(" Dnode slots:\n");
4068 (void) printf("\tTotal used: %10llu\n",
4069 (u_longlong_t)total_slots_used);
4070 (void) printf("\tMax used: %10llu\n",
4071 (u_longlong_t)max_slot_used);
4072 (void) printf("\tPercent empty: %10lf\n",
4073 (double)(max_slot_used - total_slots_used)*100 /
4074 (double)max_slot_used);
4075 (void) printf("\n");
4076
4077 if (error != ESRCH) {
4078 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4079 abort();
4080 }
4081
4082 ASSERT3U(object_count, ==, usedobjs);
4083
4084 if (leaked_objects != 0) {
4085 (void) printf("%d potentially leaked objects detected\n",
4086 leaked_objects);
4087 leaked_objects = 0;
4088 }
4089 }
4090
4091 static void
4092 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4093 {
4094 time_t timestamp = ub->ub_timestamp;
4095
4096 (void) printf("%s", header ? header : "");
4097 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4098 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4099 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4100 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4101 (void) printf("\ttimestamp = %llu UTC = %s",
4102 (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4103
4104 (void) printf("\tmmp_magic = %016llx\n",
4105 (u_longlong_t)ub->ub_mmp_magic);
4106 if (MMP_VALID(ub)) {
4107 (void) printf("\tmmp_delay = %0llu\n",
4108 (u_longlong_t)ub->ub_mmp_delay);
4109 if (MMP_SEQ_VALID(ub))
4110 (void) printf("\tmmp_seq = %u\n",
4111 (unsigned int) MMP_SEQ(ub));
4112 if (MMP_FAIL_INT_VALID(ub))
4113 (void) printf("\tmmp_fail = %u\n",
4114 (unsigned int) MMP_FAIL_INT(ub));
4115 if (MMP_INTERVAL_VALID(ub))
4116 (void) printf("\tmmp_write = %u\n",
4117 (unsigned int) MMP_INTERVAL(ub));
4118 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4119 (void) printf("\tmmp_valid = %x\n",
4120 (unsigned int) ub->ub_mmp_config & 0xFF);
4121 }
4122
4123 if (dump_opt['u'] >= 4) {
4124 char blkbuf[BP_SPRINTF_LEN];
4125 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4126 (void) printf("\trootbp = %s\n", blkbuf);
4127 }
4128 (void) printf("\tcheckpoint_txg = %llu\n",
4129 (u_longlong_t)ub->ub_checkpoint_txg);
4130 (void) printf("%s", footer ? footer : "");
4131 }
4132
4133 static void
4134 dump_config(spa_t *spa)
4135 {
4136 dmu_buf_t *db;
4137 size_t nvsize = 0;
4138 int error = 0;
4139
4140
4141 error = dmu_bonus_hold(spa->spa_meta_objset,
4142 spa->spa_config_object, FTAG, &db);
4143
4144 if (error == 0) {
4145 nvsize = *(uint64_t *)db->db_data;
4146 dmu_buf_rele(db, FTAG);
4147
4148 (void) printf("\nMOS Configuration:\n");
4149 dump_packed_nvlist(spa->spa_meta_objset,
4150 spa->spa_config_object, (void *)&nvsize, 1);
4151 } else {
4152 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4153 (u_longlong_t)spa->spa_config_object, error);
4154 }
4155 }
4156
4157 static void
4158 dump_cachefile(const char *cachefile)
4159 {
4160 int fd;
4161 struct stat64 statbuf;
4162 char *buf;
4163 nvlist_t *config;
4164
4165 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4166 (void) printf("cannot open '%s': %s\n", cachefile,
4167 strerror(errno));
4168 exit(1);
4169 }
4170
4171 if (fstat64(fd, &statbuf) != 0) {
4172 (void) printf("failed to stat '%s': %s\n", cachefile,
4173 strerror(errno));
4174 exit(1);
4175 }
4176
4177 if ((buf = malloc(statbuf.st_size)) == NULL) {
4178 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4179 (u_longlong_t)statbuf.st_size);
4180 exit(1);
4181 }
4182
4183 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4184 (void) fprintf(stderr, "failed to read %llu bytes\n",
4185 (u_longlong_t)statbuf.st_size);
4186 exit(1);
4187 }
4188
4189 (void) close(fd);
4190
4191 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4192 (void) fprintf(stderr, "failed to unpack nvlist\n");
4193 exit(1);
4194 }
4195
4196 free(buf);
4197
4198 dump_nvlist(config, 0);
4199
4200 nvlist_free(config);
4201 }
4202
4203 /*
4204 * ZFS label nvlist stats
4205 */
4206 typedef struct zdb_nvl_stats {
4207 int zns_list_count;
4208 int zns_leaf_count;
4209 size_t zns_leaf_largest;
4210 size_t zns_leaf_total;
4211 nvlist_t *zns_string;
4212 nvlist_t *zns_uint64;
4213 nvlist_t *zns_boolean;
4214 } zdb_nvl_stats_t;
4215
4216 static void
4217 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4218 {
4219 nvlist_t *list, **array;
4220 nvpair_t *nvp = NULL;
4221 const char *name;
4222 uint_t i, items;
4223
4224 stats->zns_list_count++;
4225
4226 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4227 name = nvpair_name(nvp);
4228
4229 switch (nvpair_type(nvp)) {
4230 case DATA_TYPE_STRING:
4231 fnvlist_add_string(stats->zns_string, name,
4232 fnvpair_value_string(nvp));
4233 break;
4234 case DATA_TYPE_UINT64:
4235 fnvlist_add_uint64(stats->zns_uint64, name,
4236 fnvpair_value_uint64(nvp));
4237 break;
4238 case DATA_TYPE_BOOLEAN:
4239 fnvlist_add_boolean(stats->zns_boolean, name);
4240 break;
4241 case DATA_TYPE_NVLIST:
4242 if (nvpair_value_nvlist(nvp, &list) == 0)
4243 collect_nvlist_stats(list, stats);
4244 break;
4245 case DATA_TYPE_NVLIST_ARRAY:
4246 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4247 break;
4248
4249 for (i = 0; i < items; i++) {
4250 collect_nvlist_stats(array[i], stats);
4251
4252 /* collect stats on leaf vdev */
4253 if (strcmp(name, "children") == 0) {
4254 size_t size;
4255
4256 (void) nvlist_size(array[i], &size,
4257 NV_ENCODE_XDR);
4258 stats->zns_leaf_total += size;
4259 if (size > stats->zns_leaf_largest)
4260 stats->zns_leaf_largest = size;
4261 stats->zns_leaf_count++;
4262 }
4263 }
4264 break;
4265 default:
4266 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4267 }
4268 }
4269 }
4270
4271 static void
4272 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4273 {
4274 zdb_nvl_stats_t stats = { 0 };
4275 size_t size, sum = 0, total;
4276 size_t noise;
4277
4278 /* requires nvlist with non-unique names for stat collection */
4279 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4280 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4281 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4282 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4283
4284 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4285
4286 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4287 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4288 (int)total, (int)(cap - total), 100.0 * total / cap);
4289
4290 collect_nvlist_stats(nvl, &stats);
4291
4292 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4293 size -= noise;
4294 sum += size;
4295 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4296 (int)fnvlist_num_pairs(stats.zns_uint64),
4297 (int)size, 100.0 * size / total);
4298
4299 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4300 size -= noise;
4301 sum += size;
4302 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4303 (int)fnvlist_num_pairs(stats.zns_string),
4304 (int)size, 100.0 * size / total);
4305
4306 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4307 size -= noise;
4308 sum += size;
4309 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4310 (int)fnvlist_num_pairs(stats.zns_boolean),
4311 (int)size, 100.0 * size / total);
4312
4313 size = total - sum; /* treat remainder as nvlist overhead */
4314 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4315 stats.zns_list_count, (int)size, 100.0 * size / total);
4316
4317 if (stats.zns_leaf_count > 0) {
4318 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4319
4320 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4321 stats.zns_leaf_count, (int)average);
4322 (void) printf("%24d bytes largest\n",
4323 (int)stats.zns_leaf_largest);
4324
4325 if (dump_opt['l'] >= 3 && average > 0)
4326 (void) printf(" space for %d additional leaf vdevs\n",
4327 (int)((cap - total) / average));
4328 }
4329 (void) printf("\n");
4330
4331 nvlist_free(stats.zns_string);
4332 nvlist_free(stats.zns_uint64);
4333 nvlist_free(stats.zns_boolean);
4334 }
4335
4336 typedef struct cksum_record {
4337 zio_cksum_t cksum;
4338 boolean_t labels[VDEV_LABELS];
4339 avl_node_t link;
4340 } cksum_record_t;
4341
4342 static int
4343 cksum_record_compare(const void *x1, const void *x2)
4344 {
4345 const cksum_record_t *l = (cksum_record_t *)x1;
4346 const cksum_record_t *r = (cksum_record_t *)x2;
4347 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4348 int difference = 0;
4349
4350 for (int i = 0; i < arraysize; i++) {
4351 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4352 if (difference)
4353 break;
4354 }
4355
4356 return (difference);
4357 }
4358
4359 static cksum_record_t *
4360 cksum_record_alloc(zio_cksum_t *cksum, int l)
4361 {
4362 cksum_record_t *rec;
4363
4364 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4365 rec->cksum = *cksum;
4366 rec->labels[l] = B_TRUE;
4367
4368 return (rec);
4369 }
4370
4371 static cksum_record_t *
4372 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4373 {
4374 cksum_record_t lookup = { .cksum = *cksum };
4375 avl_index_t where;
4376
4377 return (avl_find(tree, &lookup, &where));
4378 }
4379
4380 static cksum_record_t *
4381 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4382 {
4383 cksum_record_t *rec;
4384
4385 rec = cksum_record_lookup(tree, cksum);
4386 if (rec) {
4387 rec->labels[l] = B_TRUE;
4388 } else {
4389 rec = cksum_record_alloc(cksum, l);
4390 avl_add(tree, rec);
4391 }
4392
4393 return (rec);
4394 }
4395
4396 static int
4397 first_label(cksum_record_t *rec)
4398 {
4399 for (int i = 0; i < VDEV_LABELS; i++)
4400 if (rec->labels[i])
4401 return (i);
4402
4403 return (-1);
4404 }
4405
4406 static void
4407 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4408 {
4409 fputs(prefix, stdout);
4410 for (int i = 0; i < VDEV_LABELS; i++)
4411 if (rec->labels[i] == B_TRUE)
4412 printf("%d ", i);
4413 putchar('\n');
4414 }
4415
4416 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4417
4418 typedef struct zdb_label {
4419 vdev_label_t label;
4420 uint64_t label_offset;
4421 nvlist_t *config_nv;
4422 cksum_record_t *config;
4423 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4424 boolean_t header_printed;
4425 boolean_t read_failed;
4426 boolean_t cksum_valid;
4427 } zdb_label_t;
4428
4429 static void
4430 print_label_header(zdb_label_t *label, int l)
4431 {
4432
4433 if (dump_opt['q'])
4434 return;
4435
4436 if (label->header_printed == B_TRUE)
4437 return;
4438
4439 (void) printf("------------------------------------\n");
4440 (void) printf("LABEL %d %s\n", l,
4441 label->cksum_valid ? "" : "(Bad label cksum)");
4442 (void) printf("------------------------------------\n");
4443
4444 label->header_printed = B_TRUE;
4445 }
4446
4447 static void
4448 print_l2arc_header(void)
4449 {
4450 (void) printf("------------------------------------\n");
4451 (void) printf("L2ARC device header\n");
4452 (void) printf("------------------------------------\n");
4453 }
4454
4455 static void
4456 print_l2arc_log_blocks(void)
4457 {
4458 (void) printf("------------------------------------\n");
4459 (void) printf("L2ARC device log blocks\n");
4460 (void) printf("------------------------------------\n");
4461 }
4462
4463 static void
4464 dump_l2arc_log_entries(uint64_t log_entries,
4465 l2arc_log_ent_phys_t *le, uint64_t i)
4466 {
4467 for (int j = 0; j < log_entries; j++) {
4468 dva_t dva = le[j].le_dva;
4469 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4470 "vdev: %llu, offset: %llu\n",
4471 (u_longlong_t)i, j + 1,
4472 (u_longlong_t)DVA_GET_ASIZE(&dva),
4473 (u_longlong_t)DVA_GET_VDEV(&dva),
4474 (u_longlong_t)DVA_GET_OFFSET(&dva));
4475 (void) printf("|\t\t\t\tbirth: %llu\n",
4476 (u_longlong_t)le[j].le_birth);
4477 (void) printf("|\t\t\t\tlsize: %llu\n",
4478 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4479 (void) printf("|\t\t\t\tpsize: %llu\n",
4480 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4481 (void) printf("|\t\t\t\tcompr: %llu\n",
4482 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4483 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4484 (u_longlong_t)(&le[j])->le_complevel);
4485 (void) printf("|\t\t\t\ttype: %llu\n",
4486 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4487 (void) printf("|\t\t\t\tprotected: %llu\n",
4488 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4489 (void) printf("|\t\t\t\tprefetch: %llu\n",
4490 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4491 (void) printf("|\t\t\t\taddress: %llu\n",
4492 (u_longlong_t)le[j].le_daddr);
4493 (void) printf("|\t\t\t\tARC state: %llu\n",
4494 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4495 (void) printf("|\n");
4496 }
4497 (void) printf("\n");
4498 }
4499
4500 static void
4501 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4502 {
4503 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4504 (void) printf("|\t\tpayload_asize: %llu\n",
4505 (u_longlong_t)lbps->lbp_payload_asize);
4506 (void) printf("|\t\tpayload_start: %llu\n",
4507 (u_longlong_t)lbps->lbp_payload_start);
4508 (void) printf("|\t\tlsize: %llu\n",
4509 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4510 (void) printf("|\t\tasize: %llu\n",
4511 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4512 (void) printf("|\t\tcompralgo: %llu\n",
4513 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4514 (void) printf("|\t\tcksumalgo: %llu\n",
4515 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4516 (void) printf("|\n\n");
4517 }
4518
4519 static void
4520 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4521 l2arc_dev_hdr_phys_t *rebuild)
4522 {
4523 l2arc_log_blk_phys_t this_lb;
4524 uint64_t asize;
4525 l2arc_log_blkptr_t lbps[2];
4526 abd_t *abd;
4527 zio_cksum_t cksum;
4528 int failed = 0;
4529 l2arc_dev_t dev;
4530
4531 if (!dump_opt['q'])
4532 print_l2arc_log_blocks();
4533 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4534
4535 dev.l2ad_evict = l2dhdr->dh_evict;
4536 dev.l2ad_start = l2dhdr->dh_start;
4537 dev.l2ad_end = l2dhdr->dh_end;
4538
4539 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4540 /* no log blocks to read */
4541 if (!dump_opt['q']) {
4542 (void) printf("No log blocks to read\n");
4543 (void) printf("\n");
4544 }
4545 return;
4546 } else {
4547 dev.l2ad_hand = lbps[0].lbp_daddr +
4548 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4549 }
4550
4551 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4552
4553 for (;;) {
4554 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4555 break;
4556
4557 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4558 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4559 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4560 if (!dump_opt['q']) {
4561 (void) printf("Error while reading next log "
4562 "block\n\n");
4563 }
4564 break;
4565 }
4566
4567 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4568 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4569 failed++;
4570 if (!dump_opt['q']) {
4571 (void) printf("Invalid cksum\n");
4572 dump_l2arc_log_blkptr(&lbps[0]);
4573 }
4574 break;
4575 }
4576
4577 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4578 case ZIO_COMPRESS_OFF:
4579 break;
4580 default:
4581 abd = abd_alloc_for_io(asize, B_TRUE);
4582 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4583 if (zio_decompress_data(L2BLK_GET_COMPRESS(
4584 (&lbps[0])->lbp_prop), abd, &this_lb,
4585 asize, sizeof (this_lb), NULL) != 0) {
4586 (void) printf("L2ARC block decompression "
4587 "failed\n");
4588 abd_free(abd);
4589 goto out;
4590 }
4591 abd_free(abd);
4592 break;
4593 }
4594
4595 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4596 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4597 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4598 if (!dump_opt['q'])
4599 (void) printf("Invalid log block magic\n\n");
4600 break;
4601 }
4602
4603 rebuild->dh_lb_count++;
4604 rebuild->dh_lb_asize += asize;
4605 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4606 (void) printf("lb[%4llu]\tmagic: %llu\n",
4607 (u_longlong_t)rebuild->dh_lb_count,
4608 (u_longlong_t)this_lb.lb_magic);
4609 dump_l2arc_log_blkptr(&lbps[0]);
4610 }
4611
4612 if (dump_opt['l'] > 2 && !dump_opt['q'])
4613 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4614 this_lb.lb_entries,
4615 rebuild->dh_lb_count);
4616
4617 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4618 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4619 !dev.l2ad_first)
4620 break;
4621
4622 lbps[0] = lbps[1];
4623 lbps[1] = this_lb.lb_prev_lbp;
4624 }
4625 out:
4626 if (!dump_opt['q']) {
4627 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4628 (u_longlong_t)rebuild->dh_lb_count);
4629 (void) printf("\t\t %d with invalid cksum\n", failed);
4630 (void) printf("log_blk_asize:\t %llu\n\n",
4631 (u_longlong_t)rebuild->dh_lb_asize);
4632 }
4633 }
4634
4635 static int
4636 dump_l2arc_header(int fd)
4637 {
4638 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4639 int error = B_FALSE;
4640
4641 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4642 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4643 error = B_TRUE;
4644 } else {
4645 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4646 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4647
4648 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4649 error = B_TRUE;
4650 }
4651
4652 if (error) {
4653 (void) printf("L2ARC device header not found\n\n");
4654 /* Do not return an error here for backward compatibility */
4655 return (0);
4656 } else if (!dump_opt['q']) {
4657 print_l2arc_header();
4658
4659 (void) printf(" magic: %llu\n",
4660 (u_longlong_t)l2dhdr.dh_magic);
4661 (void) printf(" version: %llu\n",
4662 (u_longlong_t)l2dhdr.dh_version);
4663 (void) printf(" pool_guid: %llu\n",
4664 (u_longlong_t)l2dhdr.dh_spa_guid);
4665 (void) printf(" flags: %llu\n",
4666 (u_longlong_t)l2dhdr.dh_flags);
4667 (void) printf(" start_lbps[0]: %llu\n",
4668 (u_longlong_t)
4669 l2dhdr.dh_start_lbps[0].lbp_daddr);
4670 (void) printf(" start_lbps[1]: %llu\n",
4671 (u_longlong_t)
4672 l2dhdr.dh_start_lbps[1].lbp_daddr);
4673 (void) printf(" log_blk_ent: %llu\n",
4674 (u_longlong_t)l2dhdr.dh_log_entries);
4675 (void) printf(" start: %llu\n",
4676 (u_longlong_t)l2dhdr.dh_start);
4677 (void) printf(" end: %llu\n",
4678 (u_longlong_t)l2dhdr.dh_end);
4679 (void) printf(" evict: %llu\n",
4680 (u_longlong_t)l2dhdr.dh_evict);
4681 (void) printf(" lb_asize_refcount: %llu\n",
4682 (u_longlong_t)l2dhdr.dh_lb_asize);
4683 (void) printf(" lb_count_refcount: %llu\n",
4684 (u_longlong_t)l2dhdr.dh_lb_count);
4685 (void) printf(" trim_action_time: %llu\n",
4686 (u_longlong_t)l2dhdr.dh_trim_action_time);
4687 (void) printf(" trim_state: %llu\n\n",
4688 (u_longlong_t)l2dhdr.dh_trim_state);
4689 }
4690
4691 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4692 /*
4693 * The total aligned size of log blocks and the number of log blocks
4694 * reported in the header of the device may be less than what zdb
4695 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4696 * This happens because dump_l2arc_log_blocks() lacks the memory
4697 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4698 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4699 * and dh_lb_count will be lower to begin with than what exists on the
4700 * device. This is normal and zdb should not exit with an error. The
4701 * opposite case should never happen though, the values reported in the
4702 * header should never be higher than what dump_l2arc_log_blocks() and
4703 * l2arc_rebuild() report. If this happens there is a leak in the
4704 * accounting of log blocks.
4705 */
4706 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4707 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4708 return (1);
4709
4710 return (0);
4711 }
4712
4713 static void
4714 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4715 {
4716 if (dump_opt['q'])
4717 return;
4718
4719 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4720 return;
4721
4722 print_label_header(label, l);
4723 dump_nvlist(label->config_nv, 4);
4724 print_label_numbers(" labels = ", label->config);
4725
4726 if (dump_opt['l'] >= 2)
4727 dump_nvlist_stats(label->config_nv, buflen);
4728 }
4729
4730 #define ZDB_MAX_UB_HEADER_SIZE 32
4731
4732 static void
4733 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4734 {
4735
4736 vdev_t vd;
4737 char header[ZDB_MAX_UB_HEADER_SIZE];
4738
4739 vd.vdev_ashift = ashift;
4740 vd.vdev_top = &vd;
4741
4742 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4743 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4744 uberblock_t *ub = (void *)((char *)&label->label + uoff);
4745 cksum_record_t *rec = label->uberblocks[i];
4746
4747 if (rec == NULL) {
4748 if (dump_opt['u'] >= 2) {
4749 print_label_header(label, label_num);
4750 (void) printf(" Uberblock[%d] invalid\n", i);
4751 }
4752 continue;
4753 }
4754
4755 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4756 continue;
4757
4758 if ((dump_opt['u'] < 4) &&
4759 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4760 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4761 continue;
4762
4763 print_label_header(label, label_num);
4764 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4765 " Uberblock[%d]\n", i);
4766 dump_uberblock(ub, header, "");
4767 print_label_numbers(" labels = ", rec);
4768 }
4769 }
4770
4771 static char curpath[PATH_MAX];
4772
4773 /*
4774 * Iterate through the path components, recursively passing
4775 * current one's obj and remaining path until we find the obj
4776 * for the last one.
4777 */
4778 static int
4779 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4780 {
4781 int err;
4782 boolean_t header = B_TRUE;
4783 uint64_t child_obj;
4784 char *s;
4785 dmu_buf_t *db;
4786 dmu_object_info_t doi;
4787
4788 if ((s = strchr(name, '/')) != NULL)
4789 *s = '\0';
4790 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4791
4792 (void) strlcat(curpath, name, sizeof (curpath));
4793
4794 if (err != 0) {
4795 (void) fprintf(stderr, "failed to lookup %s: %s\n",
4796 curpath, strerror(err));
4797 return (err);
4798 }
4799
4800 child_obj = ZFS_DIRENT_OBJ(child_obj);
4801 err = sa_buf_hold(os, child_obj, FTAG, &db);
4802 if (err != 0) {
4803 (void) fprintf(stderr,
4804 "failed to get SA dbuf for obj %llu: %s\n",
4805 (u_longlong_t)child_obj, strerror(err));
4806 return (EINVAL);
4807 }
4808 dmu_object_info_from_db(db, &doi);
4809 sa_buf_rele(db, FTAG);
4810
4811 if (doi.doi_bonus_type != DMU_OT_SA &&
4812 doi.doi_bonus_type != DMU_OT_ZNODE) {
4813 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4814 doi.doi_bonus_type, (u_longlong_t)child_obj);
4815 return (EINVAL);
4816 }
4817
4818 if (dump_opt['v'] > 6) {
4819 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
4820 (u_longlong_t)child_obj, curpath, doi.doi_type,
4821 doi.doi_bonus_type);
4822 }
4823
4824 (void) strlcat(curpath, "/", sizeof (curpath));
4825
4826 switch (doi.doi_type) {
4827 case DMU_OT_DIRECTORY_CONTENTS:
4828 if (s != NULL && *(s + 1) != '\0')
4829 return (dump_path_impl(os, child_obj, s + 1, retobj));
4830 zfs_fallthrough;
4831 case DMU_OT_PLAIN_FILE_CONTENTS:
4832 if (retobj != NULL) {
4833 *retobj = child_obj;
4834 } else {
4835 dump_object(os, child_obj, dump_opt['v'], &header,
4836 NULL, 0);
4837 }
4838 return (0);
4839 default:
4840 (void) fprintf(stderr, "object %llu has non-file/directory "
4841 "type %d\n", (u_longlong_t)obj, doi.doi_type);
4842 break;
4843 }
4844
4845 return (EINVAL);
4846 }
4847
4848 /*
4849 * Dump the blocks for the object specified by path inside the dataset.
4850 */
4851 static int
4852 dump_path(char *ds, char *path, uint64_t *retobj)
4853 {
4854 int err;
4855 objset_t *os;
4856 uint64_t root_obj;
4857
4858 err = open_objset(ds, FTAG, &os);
4859 if (err != 0)
4860 return (err);
4861
4862 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4863 if (err != 0) {
4864 (void) fprintf(stderr, "can't lookup root znode: %s\n",
4865 strerror(err));
4866 close_objset(os, FTAG);
4867 return (EINVAL);
4868 }
4869
4870 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4871
4872 err = dump_path_impl(os, root_obj, path, retobj);
4873
4874 close_objset(os, FTAG);
4875 return (err);
4876 }
4877
4878 static int
4879 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
4880 {
4881 int err = 0;
4882 uint64_t size, readsize, oursize, offset;
4883 ssize_t writesize;
4884 sa_handle_t *hdl;
4885
4886 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
4887 destfile);
4888
4889 VERIFY3P(os, ==, sa_os);
4890 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
4891 (void) printf("Failed to get handle for SA znode\n");
4892 return (err);
4893 }
4894 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
4895 (void) sa_handle_destroy(hdl);
4896 return (err);
4897 }
4898 (void) sa_handle_destroy(hdl);
4899
4900 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
4901 size);
4902 if (size == 0) {
4903 return (EINVAL);
4904 }
4905
4906 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
4907 if (fd == -1)
4908 return (errno);
4909 /*
4910 * We cap the size at 1 mebibyte here to prevent
4911 * allocation failures and nigh-infinite printing if the
4912 * object is extremely large.
4913 */
4914 oursize = MIN(size, 1 << 20);
4915 offset = 0;
4916 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
4917 if (buf == NULL) {
4918 (void) close(fd);
4919 return (ENOMEM);
4920 }
4921
4922 while (offset < size) {
4923 readsize = MIN(size - offset, 1 << 20);
4924 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
4925 if (err != 0) {
4926 (void) printf("got error %u from dmu_read\n", err);
4927 kmem_free(buf, oursize);
4928 (void) close(fd);
4929 return (err);
4930 }
4931 if (dump_opt['v'] > 3) {
4932 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
4933 " error=%d\n", offset, readsize, err);
4934 }
4935
4936 writesize = write(fd, buf, readsize);
4937 if (writesize < 0) {
4938 err = errno;
4939 break;
4940 } else if (writesize != readsize) {
4941 /* Incomplete write */
4942 (void) fprintf(stderr, "Short write, only wrote %llu of"
4943 " %" PRIu64 " bytes, exiting...\n",
4944 (u_longlong_t)writesize, readsize);
4945 break;
4946 }
4947
4948 offset += readsize;
4949 }
4950
4951 (void) close(fd);
4952
4953 if (buf != NULL)
4954 kmem_free(buf, oursize);
4955
4956 return (err);
4957 }
4958
4959 static boolean_t
4960 label_cksum_valid(vdev_label_t *label, uint64_t offset)
4961 {
4962 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
4963 zio_cksum_t expected_cksum;
4964 zio_cksum_t actual_cksum;
4965 zio_cksum_t verifier;
4966 zio_eck_t *eck;
4967 int byteswap;
4968
4969 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
4970 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
4971
4972 offset += offsetof(vdev_label_t, vl_vdev_phys);
4973 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
4974
4975 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
4976 if (byteswap)
4977 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
4978
4979 expected_cksum = eck->zec_cksum;
4980 eck->zec_cksum = verifier;
4981
4982 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
4983 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
4984 abd_free(abd);
4985
4986 if (byteswap)
4987 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
4988
4989 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
4990 return (B_TRUE);
4991
4992 return (B_FALSE);
4993 }
4994
4995 static int
4996 dump_label(const char *dev)
4997 {
4998 char path[MAXPATHLEN];
4999 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5000 uint64_t psize, ashift, l2cache;
5001 struct stat64 statbuf;
5002 boolean_t config_found = B_FALSE;
5003 boolean_t error = B_FALSE;
5004 boolean_t read_l2arc_header = B_FALSE;
5005 avl_tree_t config_tree;
5006 avl_tree_t uberblock_tree;
5007 void *node, *cookie;
5008 int fd;
5009
5010 /*
5011 * Check if we were given absolute path and use it as is.
5012 * Otherwise if the provided vdev name doesn't point to a file,
5013 * try prepending expected disk paths and partition numbers.
5014 */
5015 (void) strlcpy(path, dev, sizeof (path));
5016 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5017 int error;
5018
5019 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5020 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5021 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5022 error = ENOENT;
5023 }
5024
5025 if (error || (stat64(path, &statbuf) != 0)) {
5026 (void) printf("failed to find device %s, try "
5027 "specifying absolute path instead\n", dev);
5028 return (1);
5029 }
5030 }
5031
5032 if ((fd = open64(path, O_RDONLY)) < 0) {
5033 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5034 exit(1);
5035 }
5036
5037 if (fstat64_blk(fd, &statbuf) != 0) {
5038 (void) printf("failed to stat '%s': %s\n", path,
5039 strerror(errno));
5040 (void) close(fd);
5041 exit(1);
5042 }
5043
5044 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5045 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5046 strerror(errno));
5047
5048 avl_create(&config_tree, cksum_record_compare,
5049 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5050 avl_create(&uberblock_tree, cksum_record_compare,
5051 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5052
5053 psize = statbuf.st_size;
5054 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
5055 ashift = SPA_MINBLOCKSHIFT;
5056
5057 /*
5058 * 1. Read the label from disk
5059 * 2. Verify label cksum
5060 * 3. Unpack the configuration and insert in config tree.
5061 * 4. Traverse all uberblocks and insert in uberblock tree.
5062 */
5063 for (int l = 0; l < VDEV_LABELS; l++) {
5064 zdb_label_t *label = &labels[l];
5065 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5066 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5067 nvlist_t *config;
5068 cksum_record_t *rec;
5069 zio_cksum_t cksum;
5070 vdev_t vd;
5071
5072 label->label_offset = vdev_label_offset(psize, l, 0);
5073
5074 if (pread64(fd, &label->label, sizeof (label->label),
5075 label->label_offset) != sizeof (label->label)) {
5076 if (!dump_opt['q'])
5077 (void) printf("failed to read label %d\n", l);
5078 label->read_failed = B_TRUE;
5079 error = B_TRUE;
5080 continue;
5081 }
5082
5083 label->read_failed = B_FALSE;
5084 label->cksum_valid = label_cksum_valid(&label->label,
5085 label->label_offset);
5086
5087 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5088 nvlist_t *vdev_tree = NULL;
5089 size_t size;
5090
5091 if ((nvlist_lookup_nvlist(config,
5092 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5093 (nvlist_lookup_uint64(vdev_tree,
5094 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5095 ashift = SPA_MINBLOCKSHIFT;
5096
5097 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5098 size = buflen;
5099
5100 /* If the device is a cache device clear the header. */
5101 if (!read_l2arc_header) {
5102 if (nvlist_lookup_uint64(config,
5103 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5104 l2cache == POOL_STATE_L2CACHE) {
5105 read_l2arc_header = B_TRUE;
5106 }
5107 }
5108
5109 fletcher_4_native_varsize(buf, size, &cksum);
5110 rec = cksum_record_insert(&config_tree, &cksum, l);
5111
5112 label->config = rec;
5113 label->config_nv = config;
5114 config_found = B_TRUE;
5115 } else {
5116 error = B_TRUE;
5117 }
5118
5119 vd.vdev_ashift = ashift;
5120 vd.vdev_top = &vd;
5121
5122 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5123 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5124 uberblock_t *ub = (void *)((char *)label + uoff);
5125
5126 if (uberblock_verify(ub))
5127 continue;
5128
5129 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5130 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5131
5132 label->uberblocks[i] = rec;
5133 }
5134 }
5135
5136 /*
5137 * Dump the label and uberblocks.
5138 */
5139 for (int l = 0; l < VDEV_LABELS; l++) {
5140 zdb_label_t *label = &labels[l];
5141 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5142
5143 if (label->read_failed == B_TRUE)
5144 continue;
5145
5146 if (label->config_nv) {
5147 dump_config_from_label(label, buflen, l);
5148 } else {
5149 if (!dump_opt['q'])
5150 (void) printf("failed to unpack label %d\n", l);
5151 }
5152
5153 if (dump_opt['u'])
5154 dump_label_uberblocks(label, ashift, l);
5155
5156 nvlist_free(label->config_nv);
5157 }
5158
5159 /*
5160 * Dump the L2ARC header, if existent.
5161 */
5162 if (read_l2arc_header)
5163 error |= dump_l2arc_header(fd);
5164
5165 cookie = NULL;
5166 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5167 umem_free(node, sizeof (cksum_record_t));
5168
5169 cookie = NULL;
5170 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5171 umem_free(node, sizeof (cksum_record_t));
5172
5173 avl_destroy(&config_tree);
5174 avl_destroy(&uberblock_tree);
5175
5176 (void) close(fd);
5177
5178 return (config_found == B_FALSE ? 2 :
5179 (error == B_TRUE ? 1 : 0));
5180 }
5181
5182 static uint64_t dataset_feature_count[SPA_FEATURES];
5183 static uint64_t global_feature_count[SPA_FEATURES];
5184 static uint64_t remap_deadlist_count = 0;
5185
5186 static int
5187 dump_one_objset(const char *dsname, void *arg)
5188 {
5189 (void) arg;
5190 int error;
5191 objset_t *os;
5192 spa_feature_t f;
5193
5194 error = open_objset(dsname, FTAG, &os);
5195 if (error != 0)
5196 return (0);
5197
5198 for (f = 0; f < SPA_FEATURES; f++) {
5199 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5200 continue;
5201 ASSERT(spa_feature_table[f].fi_flags &
5202 ZFEATURE_FLAG_PER_DATASET);
5203 dataset_feature_count[f]++;
5204 }
5205
5206 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5207 remap_deadlist_count++;
5208 }
5209
5210 for (dsl_bookmark_node_t *dbn =
5211 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5212 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5213 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5214 if (dbn->dbn_phys.zbm_redaction_obj != 0)
5215 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
5216 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5217 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5218 }
5219
5220 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5221 !dmu_objset_is_snapshot(os)) {
5222 global_feature_count[SPA_FEATURE_LIVELIST]++;
5223 }
5224
5225 dump_objset(os);
5226 close_objset(os, FTAG);
5227 fuid_table_destroy();
5228 return (0);
5229 }
5230
5231 /*
5232 * Block statistics.
5233 */
5234 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5235 typedef struct zdb_blkstats {
5236 uint64_t zb_asize;
5237 uint64_t zb_lsize;
5238 uint64_t zb_psize;
5239 uint64_t zb_count;
5240 uint64_t zb_gangs;
5241 uint64_t zb_ditto_samevdev;
5242 uint64_t zb_ditto_same_ms;
5243 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5244 } zdb_blkstats_t;
5245
5246 /*
5247 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5248 */
5249 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5250 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5251 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5252 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5253
5254 static const char *zdb_ot_extname[] = {
5255 "deferred free",
5256 "dedup ditto",
5257 "other",
5258 "Total",
5259 };
5260
5261 #define ZB_TOTAL DN_MAX_LEVELS
5262 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5263
5264 typedef struct zdb_cb {
5265 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5266 uint64_t zcb_removing_size;
5267 uint64_t zcb_checkpoint_size;
5268 uint64_t zcb_dedup_asize;
5269 uint64_t zcb_dedup_blocks;
5270 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5271 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5272 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5273 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5274 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5275 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5276 uint64_t zcb_psize_total;
5277 uint64_t zcb_lsize_total;
5278 uint64_t zcb_asize_total;
5279 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5280 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5281 [BPE_PAYLOAD_SIZE + 1];
5282 uint64_t zcb_start;
5283 hrtime_t zcb_lastprint;
5284 uint64_t zcb_totalasize;
5285 uint64_t zcb_errors[256];
5286 int zcb_readfails;
5287 int zcb_haderrors;
5288 spa_t *zcb_spa;
5289 uint32_t **zcb_vd_obsolete_counts;
5290 } zdb_cb_t;
5291
5292 /* test if two DVA offsets from same vdev are within the same metaslab */
5293 static boolean_t
5294 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5295 {
5296 vdev_t *vd = vdev_lookup_top(spa, vdev);
5297 uint64_t ms_shift = vd->vdev_ms_shift;
5298
5299 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5300 }
5301
5302 /*
5303 * Used to simplify reporting of the histogram data.
5304 */
5305 typedef struct one_histo {
5306 const char *name;
5307 uint64_t *count;
5308 uint64_t *len;
5309 uint64_t cumulative;
5310 } one_histo_t;
5311
5312 /*
5313 * The number of separate histograms processed for psize, lsize and asize.
5314 */
5315 #define NUM_HISTO 3
5316
5317 /*
5318 * This routine will create a fixed column size output of three different
5319 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5320 * the count, length and cumulative length of the psize, lsize and
5321 * asize blocks.
5322 *
5323 * All three types of blocks are listed on a single line
5324 *
5325 * By default the table is printed in nicenumber format (e.g. 123K) but
5326 * if the '-P' parameter is specified then the full raw number (parseable)
5327 * is printed out.
5328 */
5329 static void
5330 dump_size_histograms(zdb_cb_t *zcb)
5331 {
5332 /*
5333 * A temporary buffer that allows us to convert a number into
5334 * a string using zdb_nicenumber to allow either raw or human
5335 * readable numbers to be output.
5336 */
5337 char numbuf[32];
5338
5339 /*
5340 * Define titles which are used in the headers of the tables
5341 * printed by this routine.
5342 */
5343 const char blocksize_title1[] = "block";
5344 const char blocksize_title2[] = "size";
5345 const char count_title[] = "Count";
5346 const char length_title[] = "Size";
5347 const char cumulative_title[] = "Cum.";
5348
5349 /*
5350 * Setup the histogram arrays (psize, lsize, and asize).
5351 */
5352 one_histo_t parm_histo[NUM_HISTO];
5353
5354 parm_histo[0].name = "psize";
5355 parm_histo[0].count = zcb->zcb_psize_count;
5356 parm_histo[0].len = zcb->zcb_psize_len;
5357 parm_histo[0].cumulative = 0;
5358
5359 parm_histo[1].name = "lsize";
5360 parm_histo[1].count = zcb->zcb_lsize_count;
5361 parm_histo[1].len = zcb->zcb_lsize_len;
5362 parm_histo[1].cumulative = 0;
5363
5364 parm_histo[2].name = "asize";
5365 parm_histo[2].count = zcb->zcb_asize_count;
5366 parm_histo[2].len = zcb->zcb_asize_len;
5367 parm_histo[2].cumulative = 0;
5368
5369
5370 (void) printf("\nBlock Size Histogram\n");
5371 /*
5372 * Print the first line titles
5373 */
5374 if (dump_opt['P'])
5375 (void) printf("\n%s\t", blocksize_title1);
5376 else
5377 (void) printf("\n%7s ", blocksize_title1);
5378
5379 for (int j = 0; j < NUM_HISTO; j++) {
5380 if (dump_opt['P']) {
5381 if (j < NUM_HISTO - 1) {
5382 (void) printf("%s\t\t\t", parm_histo[j].name);
5383 } else {
5384 /* Don't print trailing spaces */
5385 (void) printf(" %s", parm_histo[j].name);
5386 }
5387 } else {
5388 if (j < NUM_HISTO - 1) {
5389 /* Left aligned strings in the output */
5390 (void) printf("%-7s ",
5391 parm_histo[j].name);
5392 } else {
5393 /* Don't print trailing spaces */
5394 (void) printf("%s", parm_histo[j].name);
5395 }
5396 }
5397 }
5398 (void) printf("\n");
5399
5400 /*
5401 * Print the second line titles
5402 */
5403 if (dump_opt['P']) {
5404 (void) printf("%s\t", blocksize_title2);
5405 } else {
5406 (void) printf("%7s ", blocksize_title2);
5407 }
5408
5409 for (int i = 0; i < NUM_HISTO; i++) {
5410 if (dump_opt['P']) {
5411 (void) printf("%s\t%s\t%s\t",
5412 count_title, length_title, cumulative_title);
5413 } else {
5414 (void) printf("%7s%7s%7s",
5415 count_title, length_title, cumulative_title);
5416 }
5417 }
5418 (void) printf("\n");
5419
5420 /*
5421 * Print the rows
5422 */
5423 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5424
5425 /*
5426 * Print the first column showing the blocksize
5427 */
5428 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5429
5430 if (dump_opt['P']) {
5431 printf("%s", numbuf);
5432 } else {
5433 printf("%7s:", numbuf);
5434 }
5435
5436 /*
5437 * Print the remaining set of 3 columns per size:
5438 * for psize, lsize and asize
5439 */
5440 for (int j = 0; j < NUM_HISTO; j++) {
5441 parm_histo[j].cumulative += parm_histo[j].len[i];
5442
5443 zdb_nicenum(parm_histo[j].count[i],
5444 numbuf, sizeof (numbuf));
5445 if (dump_opt['P'])
5446 (void) printf("\t%s", numbuf);
5447 else
5448 (void) printf("%7s", numbuf);
5449
5450 zdb_nicenum(parm_histo[j].len[i],
5451 numbuf, sizeof (numbuf));
5452 if (dump_opt['P'])
5453 (void) printf("\t%s", numbuf);
5454 else
5455 (void) printf("%7s", numbuf);
5456
5457 zdb_nicenum(parm_histo[j].cumulative,
5458 numbuf, sizeof (numbuf));
5459 if (dump_opt['P'])
5460 (void) printf("\t%s", numbuf);
5461 else
5462 (void) printf("%7s", numbuf);
5463 }
5464 (void) printf("\n");
5465 }
5466 }
5467
5468 static void
5469 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5470 dmu_object_type_t type)
5471 {
5472 uint64_t refcnt = 0;
5473 int i;
5474
5475 ASSERT(type < ZDB_OT_TOTAL);
5476
5477 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5478 return;
5479
5480 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5481
5482 for (i = 0; i < 4; i++) {
5483 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5484 int t = (i & 1) ? type : ZDB_OT_TOTAL;
5485 int equal;
5486 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5487
5488 zb->zb_asize += BP_GET_ASIZE(bp);
5489 zb->zb_lsize += BP_GET_LSIZE(bp);
5490 zb->zb_psize += BP_GET_PSIZE(bp);
5491 zb->zb_count++;
5492
5493 /*
5494 * The histogram is only big enough to record blocks up to
5495 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5496 * "other", bucket.
5497 */
5498 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5499 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5500 zb->zb_psize_histogram[idx]++;
5501
5502 zb->zb_gangs += BP_COUNT_GANG(bp);
5503
5504 switch (BP_GET_NDVAS(bp)) {
5505 case 2:
5506 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5507 DVA_GET_VDEV(&bp->blk_dva[1])) {
5508 zb->zb_ditto_samevdev++;
5509
5510 if (same_metaslab(zcb->zcb_spa,
5511 DVA_GET_VDEV(&bp->blk_dva[0]),
5512 DVA_GET_OFFSET(&bp->blk_dva[0]),
5513 DVA_GET_OFFSET(&bp->blk_dva[1])))
5514 zb->zb_ditto_same_ms++;
5515 }
5516 break;
5517 case 3:
5518 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5519 DVA_GET_VDEV(&bp->blk_dva[1])) +
5520 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5521 DVA_GET_VDEV(&bp->blk_dva[2])) +
5522 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5523 DVA_GET_VDEV(&bp->blk_dva[2]));
5524 if (equal != 0) {
5525 zb->zb_ditto_samevdev++;
5526
5527 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5528 DVA_GET_VDEV(&bp->blk_dva[1]) &&
5529 same_metaslab(zcb->zcb_spa,
5530 DVA_GET_VDEV(&bp->blk_dva[0]),
5531 DVA_GET_OFFSET(&bp->blk_dva[0]),
5532 DVA_GET_OFFSET(&bp->blk_dva[1])))
5533 zb->zb_ditto_same_ms++;
5534 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5535 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5536 same_metaslab(zcb->zcb_spa,
5537 DVA_GET_VDEV(&bp->blk_dva[0]),
5538 DVA_GET_OFFSET(&bp->blk_dva[0]),
5539 DVA_GET_OFFSET(&bp->blk_dva[2])))
5540 zb->zb_ditto_same_ms++;
5541 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5542 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5543 same_metaslab(zcb->zcb_spa,
5544 DVA_GET_VDEV(&bp->blk_dva[1]),
5545 DVA_GET_OFFSET(&bp->blk_dva[1]),
5546 DVA_GET_OFFSET(&bp->blk_dva[2])))
5547 zb->zb_ditto_same_ms++;
5548 }
5549 break;
5550 }
5551 }
5552
5553 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5554
5555 if (BP_IS_EMBEDDED(bp)) {
5556 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5557 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5558 [BPE_GET_PSIZE(bp)]++;
5559 return;
5560 }
5561 /*
5562 * The binning histogram bins by powers of two up to
5563 * SPA_MAXBLOCKSIZE rather than creating bins for
5564 * every possible blocksize found in the pool.
5565 */
5566 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5567
5568 zcb->zcb_psize_count[bin]++;
5569 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5570 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5571
5572 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5573
5574 zcb->zcb_lsize_count[bin]++;
5575 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5576 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5577
5578 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5579
5580 zcb->zcb_asize_count[bin]++;
5581 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5582 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5583
5584 if (dump_opt['L'])
5585 return;
5586
5587 if (BP_GET_DEDUP(bp)) {
5588 ddt_t *ddt;
5589 ddt_entry_t *dde;
5590
5591 ddt = ddt_select(zcb->zcb_spa, bp);
5592 ddt_enter(ddt);
5593 dde = ddt_lookup(ddt, bp, B_FALSE);
5594
5595 if (dde == NULL) {
5596 refcnt = 0;
5597 } else {
5598 ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5599 ddt_phys_decref(ddp);
5600 refcnt = ddp->ddp_refcnt;
5601 if (ddt_phys_total_refcnt(dde) == 0)
5602 ddt_remove(ddt, dde);
5603 }
5604 ddt_exit(ddt);
5605 }
5606
5607 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5608 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5609 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5610 }
5611
5612 static void
5613 zdb_blkptr_done(zio_t *zio)
5614 {
5615 spa_t *spa = zio->io_spa;
5616 blkptr_t *bp = zio->io_bp;
5617 int ioerr = zio->io_error;
5618 zdb_cb_t *zcb = zio->io_private;
5619 zbookmark_phys_t *zb = &zio->io_bookmark;
5620
5621 mutex_enter(&spa->spa_scrub_lock);
5622 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5623 cv_broadcast(&spa->spa_scrub_io_cv);
5624
5625 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5626 char blkbuf[BP_SPRINTF_LEN];
5627
5628 zcb->zcb_haderrors = 1;
5629 zcb->zcb_errors[ioerr]++;
5630
5631 if (dump_opt['b'] >= 2)
5632 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5633 else
5634 blkbuf[0] = '\0';
5635
5636 (void) printf("zdb_blkptr_cb: "
5637 "Got error %d reading "
5638 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5639 ioerr,
5640 (u_longlong_t)zb->zb_objset,
5641 (u_longlong_t)zb->zb_object,
5642 (u_longlong_t)zb->zb_level,
5643 (u_longlong_t)zb->zb_blkid,
5644 blkbuf);
5645 }
5646 mutex_exit(&spa->spa_scrub_lock);
5647
5648 abd_free(zio->io_abd);
5649 }
5650
5651 static int
5652 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5653 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5654 {
5655 zdb_cb_t *zcb = arg;
5656 dmu_object_type_t type;
5657 boolean_t is_metadata;
5658
5659 if (zb->zb_level == ZB_DNODE_LEVEL)
5660 return (0);
5661
5662 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5663 char blkbuf[BP_SPRINTF_LEN];
5664 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5665 (void) printf("objset %llu object %llu "
5666 "level %lld offset 0x%llx %s\n",
5667 (u_longlong_t)zb->zb_objset,
5668 (u_longlong_t)zb->zb_object,
5669 (longlong_t)zb->zb_level,
5670 (u_longlong_t)blkid2offset(dnp, bp, zb),
5671 blkbuf);
5672 }
5673
5674 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5675 return (0);
5676
5677 type = BP_GET_TYPE(bp);
5678
5679 zdb_count_block(zcb, zilog, bp,
5680 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5681
5682 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5683
5684 if (!BP_IS_EMBEDDED(bp) &&
5685 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5686 size_t size = BP_GET_PSIZE(bp);
5687 abd_t *abd = abd_alloc(size, B_FALSE);
5688 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5689
5690 /* If it's an intent log block, failure is expected. */
5691 if (zb->zb_level == ZB_ZIL_LEVEL)
5692 flags |= ZIO_FLAG_SPECULATIVE;
5693
5694 mutex_enter(&spa->spa_scrub_lock);
5695 while (spa->spa_load_verify_bytes > max_inflight_bytes)
5696 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5697 spa->spa_load_verify_bytes += size;
5698 mutex_exit(&spa->spa_scrub_lock);
5699
5700 zio_nowait(zio_read(NULL, spa, bp, abd, size,
5701 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5702 }
5703
5704 zcb->zcb_readfails = 0;
5705
5706 /* only call gethrtime() every 100 blocks */
5707 static int iters;
5708 if (++iters > 100)
5709 iters = 0;
5710 else
5711 return (0);
5712
5713 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5714 uint64_t now = gethrtime();
5715 char buf[10];
5716 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5717 uint64_t kb_per_sec =
5718 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5719 uint64_t sec_remaining =
5720 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5721
5722 /* make sure nicenum has enough space */
5723 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5724
5725 zfs_nicebytes(bytes, buf, sizeof (buf));
5726 (void) fprintf(stderr,
5727 "\r%5s completed (%4"PRIu64"MB/s) "
5728 "estimated time remaining: "
5729 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
5730 buf, kb_per_sec / 1024,
5731 sec_remaining / 60 / 60,
5732 sec_remaining / 60 % 60,
5733 sec_remaining % 60);
5734
5735 zcb->zcb_lastprint = now;
5736 }
5737
5738 return (0);
5739 }
5740
5741 static void
5742 zdb_leak(void *arg, uint64_t start, uint64_t size)
5743 {
5744 vdev_t *vd = arg;
5745
5746 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5747 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5748 }
5749
5750 static metaslab_ops_t zdb_metaslab_ops = {
5751 NULL /* alloc */
5752 };
5753
5754 static int
5755 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5756 uint64_t txg, void *arg)
5757 {
5758 spa_vdev_removal_t *svr = arg;
5759
5760 uint64_t offset = sme->sme_offset;
5761 uint64_t size = sme->sme_run;
5762
5763 /* skip vdevs we don't care about */
5764 if (sme->sme_vdev != svr->svr_vdev_id)
5765 return (0);
5766
5767 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5768 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5769 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5770
5771 if (txg < metaslab_unflushed_txg(ms))
5772 return (0);
5773
5774 if (sme->sme_type == SM_ALLOC)
5775 range_tree_add(svr->svr_allocd_segs, offset, size);
5776 else
5777 range_tree_remove(svr->svr_allocd_segs, offset, size);
5778
5779 return (0);
5780 }
5781
5782 static void
5783 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5784 uint64_t size, void *arg)
5785 {
5786 (void) inner_offset, (void) arg;
5787
5788 /*
5789 * This callback was called through a remap from
5790 * a device being removed. Therefore, the vdev that
5791 * this callback is applied to is a concrete
5792 * vdev.
5793 */
5794 ASSERT(vdev_is_concrete(vd));
5795
5796 VERIFY0(metaslab_claim_impl(vd, offset, size,
5797 spa_min_claim_txg(vd->vdev_spa)));
5798 }
5799
5800 static void
5801 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
5802 {
5803 vdev_t *vd = arg;
5804
5805 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
5806 claim_segment_impl_cb, NULL);
5807 }
5808
5809 /*
5810 * After accounting for all allocated blocks that are directly referenced,
5811 * we might have missed a reference to a block from a partially complete
5812 * (and thus unused) indirect mapping object. We perform a secondary pass
5813 * through the metaslabs we have already mapped and claim the destination
5814 * blocks.
5815 */
5816 static void
5817 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
5818 {
5819 if (dump_opt['L'])
5820 return;
5821
5822 if (spa->spa_vdev_removal == NULL)
5823 return;
5824
5825 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5826
5827 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
5828 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
5829 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5830
5831 ASSERT0(range_tree_space(svr->svr_allocd_segs));
5832
5833 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
5834 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
5835 metaslab_t *msp = vd->vdev_ms[msi];
5836
5837 ASSERT0(range_tree_space(allocs));
5838 if (msp->ms_sm != NULL)
5839 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
5840 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
5841 }
5842 range_tree_destroy(allocs);
5843
5844 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
5845
5846 /*
5847 * Clear everything past what has been synced,
5848 * because we have not allocated mappings for
5849 * it yet.
5850 */
5851 range_tree_clear(svr->svr_allocd_segs,
5852 vdev_indirect_mapping_max_offset(vim),
5853 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
5854
5855 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
5856 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
5857
5858 spa_config_exit(spa, SCL_CONFIG, FTAG);
5859 }
5860
5861 static int
5862 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
5863 dmu_tx_t *tx)
5864 {
5865 (void) tx;
5866 zdb_cb_t *zcb = arg;
5867 spa_t *spa = zcb->zcb_spa;
5868 vdev_t *vd;
5869 const dva_t *dva = &bp->blk_dva[0];
5870
5871 ASSERT(!bp_freed);
5872 ASSERT(!dump_opt['L']);
5873 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
5874
5875 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5876 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
5877 ASSERT3P(vd, !=, NULL);
5878 spa_config_exit(spa, SCL_VDEV, FTAG);
5879
5880 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
5881 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
5882
5883 vdev_indirect_mapping_increment_obsolete_count(
5884 vd->vdev_indirect_mapping,
5885 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
5886 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
5887
5888 return (0);
5889 }
5890
5891 static uint32_t *
5892 zdb_load_obsolete_counts(vdev_t *vd)
5893 {
5894 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5895 spa_t *spa = vd->vdev_spa;
5896 spa_condensing_indirect_phys_t *scip =
5897 &spa->spa_condensing_indirect_phys;
5898 uint64_t obsolete_sm_object;
5899 uint32_t *counts;
5900
5901 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
5902 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
5903 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
5904 if (vd->vdev_obsolete_sm != NULL) {
5905 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5906 vd->vdev_obsolete_sm);
5907 }
5908 if (scip->scip_vdev == vd->vdev_id &&
5909 scip->scip_prev_obsolete_sm_object != 0) {
5910 space_map_t *prev_obsolete_sm = NULL;
5911 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
5912 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
5913 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5914 prev_obsolete_sm);
5915 space_map_close(prev_obsolete_sm);
5916 }
5917 return (counts);
5918 }
5919
5920 static void
5921 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
5922 {
5923 ddt_bookmark_t ddb = {0};
5924 ddt_entry_t dde;
5925 int error;
5926 int p;
5927
5928 ASSERT(!dump_opt['L']);
5929
5930 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
5931 blkptr_t blk;
5932 ddt_phys_t *ddp = dde.dde_phys;
5933
5934 if (ddb.ddb_class == DDT_CLASS_UNIQUE)
5935 return;
5936
5937 ASSERT(ddt_phys_total_refcnt(&dde) > 1);
5938
5939 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
5940 if (ddp->ddp_phys_birth == 0)
5941 continue;
5942 ddt_bp_create(ddb.ddb_checksum,
5943 &dde.dde_key, ddp, &blk);
5944 if (p == DDT_PHYS_DITTO) {
5945 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
5946 } else {
5947 zcb->zcb_dedup_asize +=
5948 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
5949 zcb->zcb_dedup_blocks++;
5950 }
5951 }
5952 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
5953 ddt_enter(ddt);
5954 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
5955 ddt_exit(ddt);
5956 }
5957
5958 ASSERT(error == ENOENT);
5959 }
5960
5961 typedef struct checkpoint_sm_exclude_entry_arg {
5962 vdev_t *cseea_vd;
5963 uint64_t cseea_checkpoint_size;
5964 } checkpoint_sm_exclude_entry_arg_t;
5965
5966 static int
5967 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
5968 {
5969 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
5970 vdev_t *vd = cseea->cseea_vd;
5971 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
5972 uint64_t end = sme->sme_offset + sme->sme_run;
5973
5974 ASSERT(sme->sme_type == SM_FREE);
5975
5976 /*
5977 * Since the vdev_checkpoint_sm exists in the vdev level
5978 * and the ms_sm space maps exist in the metaslab level,
5979 * an entry in the checkpoint space map could theoretically
5980 * cross the boundaries of the metaslab that it belongs.
5981 *
5982 * In reality, because of the way that we populate and
5983 * manipulate the checkpoint's space maps currently,
5984 * there shouldn't be any entries that cross metaslabs.
5985 * Hence the assertion below.
5986 *
5987 * That said, there is no fundamental requirement that
5988 * the checkpoint's space map entries should not cross
5989 * metaslab boundaries. So if needed we could add code
5990 * that handles metaslab-crossing segments in the future.
5991 */
5992 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
5993 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
5994
5995 /*
5996 * By removing the entry from the allocated segments we
5997 * also verify that the entry is there to begin with.
5998 */
5999 mutex_enter(&ms->ms_lock);
6000 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6001 mutex_exit(&ms->ms_lock);
6002
6003 cseea->cseea_checkpoint_size += sme->sme_run;
6004 return (0);
6005 }
6006
6007 static void
6008 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6009 {
6010 spa_t *spa = vd->vdev_spa;
6011 space_map_t *checkpoint_sm = NULL;
6012 uint64_t checkpoint_sm_obj;
6013
6014 /*
6015 * If there is no vdev_top_zap, we are in a pool whose
6016 * version predates the pool checkpoint feature.
6017 */
6018 if (vd->vdev_top_zap == 0)
6019 return;
6020
6021 /*
6022 * If there is no reference of the vdev_checkpoint_sm in
6023 * the vdev_top_zap, then one of the following scenarios
6024 * is true:
6025 *
6026 * 1] There is no checkpoint
6027 * 2] There is a checkpoint, but no checkpointed blocks
6028 * have been freed yet
6029 * 3] The current vdev is indirect
6030 *
6031 * In these cases we return immediately.
6032 */
6033 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6034 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6035 return;
6036
6037 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6038 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6039 &checkpoint_sm_obj));
6040
6041 checkpoint_sm_exclude_entry_arg_t cseea;
6042 cseea.cseea_vd = vd;
6043 cseea.cseea_checkpoint_size = 0;
6044
6045 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6046 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6047
6048 VERIFY0(space_map_iterate(checkpoint_sm,
6049 space_map_length(checkpoint_sm),
6050 checkpoint_sm_exclude_entry_cb, &cseea));
6051 space_map_close(checkpoint_sm);
6052
6053 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6054 }
6055
6056 static void
6057 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6058 {
6059 ASSERT(!dump_opt['L']);
6060
6061 vdev_t *rvd = spa->spa_root_vdev;
6062 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6063 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6064 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6065 }
6066 }
6067
6068 static int
6069 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6070 uint64_t txg, void *arg)
6071 {
6072 int64_t *ualloc_space = arg;
6073
6074 uint64_t offset = sme->sme_offset;
6075 uint64_t vdev_id = sme->sme_vdev;
6076
6077 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6078 if (!vdev_is_concrete(vd))
6079 return (0);
6080
6081 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6082 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6083
6084 if (txg < metaslab_unflushed_txg(ms))
6085 return (0);
6086
6087 if (sme->sme_type == SM_ALLOC)
6088 *ualloc_space += sme->sme_run;
6089 else
6090 *ualloc_space -= sme->sme_run;
6091
6092 return (0);
6093 }
6094
6095 static int64_t
6096 get_unflushed_alloc_space(spa_t *spa)
6097 {
6098 if (dump_opt['L'])
6099 return (0);
6100
6101 int64_t ualloc_space = 0;
6102 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6103 &ualloc_space);
6104 return (ualloc_space);
6105 }
6106
6107 static int
6108 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6109 {
6110 maptype_t *uic_maptype = arg;
6111
6112 uint64_t offset = sme->sme_offset;
6113 uint64_t size = sme->sme_run;
6114 uint64_t vdev_id = sme->sme_vdev;
6115
6116 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6117
6118 /* skip indirect vdevs */
6119 if (!vdev_is_concrete(vd))
6120 return (0);
6121
6122 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6123
6124 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6125 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6126
6127 if (txg < metaslab_unflushed_txg(ms))
6128 return (0);
6129
6130 if (*uic_maptype == sme->sme_type)
6131 range_tree_add(ms->ms_allocatable, offset, size);
6132 else
6133 range_tree_remove(ms->ms_allocatable, offset, size);
6134
6135 return (0);
6136 }
6137
6138 static void
6139 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6140 {
6141 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6142 }
6143
6144 static void
6145 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6146 {
6147 vdev_t *rvd = spa->spa_root_vdev;
6148 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6149 vdev_t *vd = rvd->vdev_child[i];
6150
6151 ASSERT3U(i, ==, vd->vdev_id);
6152
6153 if (vd->vdev_ops == &vdev_indirect_ops)
6154 continue;
6155
6156 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6157 metaslab_t *msp = vd->vdev_ms[m];
6158
6159 (void) fprintf(stderr,
6160 "\rloading concrete vdev %llu, "
6161 "metaslab %llu of %llu ...",
6162 (longlong_t)vd->vdev_id,
6163 (longlong_t)msp->ms_id,
6164 (longlong_t)vd->vdev_ms_count);
6165
6166 mutex_enter(&msp->ms_lock);
6167 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6168
6169 /*
6170 * We don't want to spend the CPU manipulating the
6171 * size-ordered tree, so clear the range_tree ops.
6172 */
6173 msp->ms_allocatable->rt_ops = NULL;
6174
6175 if (msp->ms_sm != NULL) {
6176 VERIFY0(space_map_load(msp->ms_sm,
6177 msp->ms_allocatable, maptype));
6178 }
6179 if (!msp->ms_loaded)
6180 msp->ms_loaded = B_TRUE;
6181 mutex_exit(&msp->ms_lock);
6182 }
6183 }
6184
6185 load_unflushed_to_ms_allocatables(spa, maptype);
6186 }
6187
6188 /*
6189 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6190 * index in vim_entries that has the first entry in this metaslab.
6191 * On return, it will be set to the first entry after this metaslab.
6192 */
6193 static void
6194 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6195 uint64_t *vim_idxp)
6196 {
6197 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6198
6199 mutex_enter(&msp->ms_lock);
6200 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6201
6202 /*
6203 * We don't want to spend the CPU manipulating the
6204 * size-ordered tree, so clear the range_tree ops.
6205 */
6206 msp->ms_allocatable->rt_ops = NULL;
6207
6208 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6209 (*vim_idxp)++) {
6210 vdev_indirect_mapping_entry_phys_t *vimep =
6211 &vim->vim_entries[*vim_idxp];
6212 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6213 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6214 ASSERT3U(ent_offset, >=, msp->ms_start);
6215 if (ent_offset >= msp->ms_start + msp->ms_size)
6216 break;
6217
6218 /*
6219 * Mappings do not cross metaslab boundaries,
6220 * because we create them by walking the metaslabs.
6221 */
6222 ASSERT3U(ent_offset + ent_len, <=,
6223 msp->ms_start + msp->ms_size);
6224 range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6225 }
6226
6227 if (!msp->ms_loaded)
6228 msp->ms_loaded = B_TRUE;
6229 mutex_exit(&msp->ms_lock);
6230 }
6231
6232 static void
6233 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6234 {
6235 ASSERT(!dump_opt['L']);
6236
6237 vdev_t *rvd = spa->spa_root_vdev;
6238 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6239 vdev_t *vd = rvd->vdev_child[c];
6240
6241 ASSERT3U(c, ==, vd->vdev_id);
6242
6243 if (vd->vdev_ops != &vdev_indirect_ops)
6244 continue;
6245
6246 /*
6247 * Note: we don't check for mapping leaks on
6248 * removing vdevs because their ms_allocatable's
6249 * are used to look for leaks in allocated space.
6250 */
6251 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6252
6253 /*
6254 * Normally, indirect vdevs don't have any
6255 * metaslabs. We want to set them up for
6256 * zio_claim().
6257 */
6258 vdev_metaslab_group_create(vd);
6259 VERIFY0(vdev_metaslab_init(vd, 0));
6260
6261 vdev_indirect_mapping_t *vim __maybe_unused =
6262 vd->vdev_indirect_mapping;
6263 uint64_t vim_idx = 0;
6264 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6265
6266 (void) fprintf(stderr,
6267 "\rloading indirect vdev %llu, "
6268 "metaslab %llu of %llu ...",
6269 (longlong_t)vd->vdev_id,
6270 (longlong_t)vd->vdev_ms[m]->ms_id,
6271 (longlong_t)vd->vdev_ms_count);
6272
6273 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6274 &vim_idx);
6275 }
6276 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6277 }
6278 }
6279
6280 static void
6281 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6282 {
6283 zcb->zcb_spa = spa;
6284
6285 if (dump_opt['L'])
6286 return;
6287
6288 dsl_pool_t *dp = spa->spa_dsl_pool;
6289 vdev_t *rvd = spa->spa_root_vdev;
6290
6291 /*
6292 * We are going to be changing the meaning of the metaslab's
6293 * ms_allocatable. Ensure that the allocator doesn't try to
6294 * use the tree.
6295 */
6296 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6297 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6298 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6299
6300 zcb->zcb_vd_obsolete_counts =
6301 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6302 UMEM_NOFAIL);
6303
6304 /*
6305 * For leak detection, we overload the ms_allocatable trees
6306 * to contain allocated segments instead of free segments.
6307 * As a result, we can't use the normal metaslab_load/unload
6308 * interfaces.
6309 */
6310 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6311 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6312
6313 /*
6314 * On load_concrete_ms_allocatable_trees() we loaded all the
6315 * allocated entries from the ms_sm to the ms_allocatable for
6316 * each metaslab. If the pool has a checkpoint or is in the
6317 * middle of discarding a checkpoint, some of these blocks
6318 * may have been freed but their ms_sm may not have been
6319 * updated because they are referenced by the checkpoint. In
6320 * order to avoid false-positives during leak-detection, we
6321 * go through the vdev's checkpoint space map and exclude all
6322 * its entries from their relevant ms_allocatable.
6323 *
6324 * We also aggregate the space held by the checkpoint and add
6325 * it to zcb_checkpoint_size.
6326 *
6327 * Note that at this point we are also verifying that all the
6328 * entries on the checkpoint_sm are marked as allocated in
6329 * the ms_sm of their relevant metaslab.
6330 * [see comment in checkpoint_sm_exclude_entry_cb()]
6331 */
6332 zdb_leak_init_exclude_checkpoint(spa, zcb);
6333 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6334
6335 /* for cleaner progress output */
6336 (void) fprintf(stderr, "\n");
6337
6338 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6339 ASSERT(spa_feature_is_enabled(spa,
6340 SPA_FEATURE_DEVICE_REMOVAL));
6341 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6342 increment_indirect_mapping_cb, zcb, NULL);
6343 }
6344
6345 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6346 zdb_ddt_leak_init(spa, zcb);
6347 spa_config_exit(spa, SCL_CONFIG, FTAG);
6348 }
6349
6350 static boolean_t
6351 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6352 {
6353 boolean_t leaks = B_FALSE;
6354 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6355 uint64_t total_leaked = 0;
6356 boolean_t are_precise = B_FALSE;
6357
6358 ASSERT(vim != NULL);
6359
6360 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6361 vdev_indirect_mapping_entry_phys_t *vimep =
6362 &vim->vim_entries[i];
6363 uint64_t obsolete_bytes = 0;
6364 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6365 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6366
6367 /*
6368 * This is not very efficient but it's easy to
6369 * verify correctness.
6370 */
6371 for (uint64_t inner_offset = 0;
6372 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6373 inner_offset += 1ULL << vd->vdev_ashift) {
6374 if (range_tree_contains(msp->ms_allocatable,
6375 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6376 obsolete_bytes += 1ULL << vd->vdev_ashift;
6377 }
6378 }
6379
6380 int64_t bytes_leaked = obsolete_bytes -
6381 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6382 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6383 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6384
6385 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6386 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6387 (void) printf("obsolete indirect mapping count "
6388 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6389 (u_longlong_t)vd->vdev_id,
6390 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6391 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6392 (u_longlong_t)bytes_leaked);
6393 }
6394 total_leaked += ABS(bytes_leaked);
6395 }
6396
6397 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6398 if (!are_precise && total_leaked > 0) {
6399 int pct_leaked = total_leaked * 100 /
6400 vdev_indirect_mapping_bytes_mapped(vim);
6401 (void) printf("cannot verify obsolete indirect mapping "
6402 "counts of vdev %llu because precise feature was not "
6403 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6404 "unreferenced\n",
6405 (u_longlong_t)vd->vdev_id, pct_leaked,
6406 (u_longlong_t)total_leaked);
6407 } else if (total_leaked > 0) {
6408 (void) printf("obsolete indirect mapping count mismatch "
6409 "for vdev %llu -- %llx total bytes mismatched\n",
6410 (u_longlong_t)vd->vdev_id,
6411 (u_longlong_t)total_leaked);
6412 leaks |= B_TRUE;
6413 }
6414
6415 vdev_indirect_mapping_free_obsolete_counts(vim,
6416 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6417 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6418
6419 return (leaks);
6420 }
6421
6422 static boolean_t
6423 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6424 {
6425 if (dump_opt['L'])
6426 return (B_FALSE);
6427
6428 boolean_t leaks = B_FALSE;
6429 vdev_t *rvd = spa->spa_root_vdev;
6430 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6431 vdev_t *vd = rvd->vdev_child[c];
6432
6433 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6434 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6435 }
6436
6437 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6438 metaslab_t *msp = vd->vdev_ms[m];
6439 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6440 spa_embedded_log_class(spa)) ?
6441 vd->vdev_log_mg : vd->vdev_mg);
6442
6443 /*
6444 * ms_allocatable has been overloaded
6445 * to contain allocated segments. Now that
6446 * we finished traversing all blocks, any
6447 * block that remains in the ms_allocatable
6448 * represents an allocated block that we
6449 * did not claim during the traversal.
6450 * Claimed blocks would have been removed
6451 * from the ms_allocatable. For indirect
6452 * vdevs, space remaining in the tree
6453 * represents parts of the mapping that are
6454 * not referenced, which is not a bug.
6455 */
6456 if (vd->vdev_ops == &vdev_indirect_ops) {
6457 range_tree_vacate(msp->ms_allocatable,
6458 NULL, NULL);
6459 } else {
6460 range_tree_vacate(msp->ms_allocatable,
6461 zdb_leak, vd);
6462 }
6463 if (msp->ms_loaded) {
6464 msp->ms_loaded = B_FALSE;
6465 }
6466 }
6467 }
6468
6469 umem_free(zcb->zcb_vd_obsolete_counts,
6470 rvd->vdev_children * sizeof (uint32_t *));
6471 zcb->zcb_vd_obsolete_counts = NULL;
6472
6473 return (leaks);
6474 }
6475
6476 static int
6477 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6478 {
6479 (void) tx;
6480 zdb_cb_t *zcb = arg;
6481
6482 if (dump_opt['b'] >= 5) {
6483 char blkbuf[BP_SPRINTF_LEN];
6484 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6485 (void) printf("[%s] %s\n",
6486 "deferred free", blkbuf);
6487 }
6488 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6489 return (0);
6490 }
6491
6492 /*
6493 * Iterate over livelists which have been destroyed by the user but
6494 * are still present in the MOS, waiting to be freed
6495 */
6496 static void
6497 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6498 {
6499 objset_t *mos = spa->spa_meta_objset;
6500 uint64_t zap_obj;
6501 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6502 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6503 if (err == ENOENT)
6504 return;
6505 ASSERT0(err);
6506
6507 zap_cursor_t zc;
6508 zap_attribute_t attr;
6509 dsl_deadlist_t ll;
6510 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6511 ll.dl_os = NULL;
6512 for (zap_cursor_init(&zc, mos, zap_obj);
6513 zap_cursor_retrieve(&zc, &attr) == 0;
6514 (void) zap_cursor_advance(&zc)) {
6515 dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6516 func(&ll, arg);
6517 dsl_deadlist_close(&ll);
6518 }
6519 zap_cursor_fini(&zc);
6520 }
6521
6522 static int
6523 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6524 dmu_tx_t *tx)
6525 {
6526 ASSERT(!bp_freed);
6527 return (count_block_cb(arg, bp, tx));
6528 }
6529
6530 static int
6531 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6532 {
6533 zdb_cb_t *zbc = args;
6534 bplist_t blks;
6535 bplist_create(&blks);
6536 /* determine which blocks have been alloc'd but not freed */
6537 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6538 /* count those blocks */
6539 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6540 bplist_destroy(&blks);
6541 return (0);
6542 }
6543
6544 static void
6545 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6546 {
6547 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6548 }
6549
6550 /*
6551 * Count the blocks in the livelists that have been destroyed by the user
6552 * but haven't yet been freed.
6553 */
6554 static void
6555 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6556 {
6557 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6558 }
6559
6560 static void
6561 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6562 {
6563 ASSERT3P(arg, ==, NULL);
6564 global_feature_count[SPA_FEATURE_LIVELIST]++;
6565 dump_blkptr_list(ll, "Deleted Livelist");
6566 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6567 }
6568
6569 /*
6570 * Print out, register object references to, and increment feature counts for
6571 * livelists that have been destroyed by the user but haven't yet been freed.
6572 */
6573 static void
6574 deleted_livelists_dump_mos(spa_t *spa)
6575 {
6576 uint64_t zap_obj;
6577 objset_t *mos = spa->spa_meta_objset;
6578 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6579 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6580 if (err == ENOENT)
6581 return;
6582 mos_obj_refd(zap_obj);
6583 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6584 }
6585
6586 static int
6587 dump_block_stats(spa_t *spa)
6588 {
6589 zdb_cb_t *zcb;
6590 zdb_blkstats_t *zb, *tzb;
6591 uint64_t norm_alloc, norm_space, total_alloc, total_found;
6592 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6593 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6594 boolean_t leaks = B_FALSE;
6595 int e, c, err;
6596 bp_embedded_type_t i;
6597
6598 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6599
6600 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6601 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6602 (dump_opt['c'] == 1) ? "metadata " : "",
6603 dump_opt['c'] ? "checksums " : "",
6604 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6605 !dump_opt['L'] ? "nothing leaked " : "");
6606
6607 /*
6608 * When leak detection is enabled we load all space maps as SM_ALLOC
6609 * maps, then traverse the pool claiming each block we discover. If
6610 * the pool is perfectly consistent, the segment trees will be empty
6611 * when we're done. Anything left over is a leak; any block we can't
6612 * claim (because it's not part of any space map) is a double
6613 * allocation, reference to a freed block, or an unclaimed log block.
6614 *
6615 * When leak detection is disabled (-L option) we still traverse the
6616 * pool claiming each block we discover, but we skip opening any space
6617 * maps.
6618 */
6619 zdb_leak_init(spa, zcb);
6620
6621 /*
6622 * If there's a deferred-free bplist, process that first.
6623 */
6624 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6625 bpobj_count_block_cb, zcb, NULL);
6626
6627 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6628 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6629 bpobj_count_block_cb, zcb, NULL);
6630 }
6631
6632 zdb_claim_removing(spa, zcb);
6633
6634 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6635 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6636 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6637 zcb, NULL));
6638 }
6639
6640 deleted_livelists_count_blocks(spa, zcb);
6641
6642 if (dump_opt['c'] > 1)
6643 flags |= TRAVERSE_PREFETCH_DATA;
6644
6645 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6646 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6647 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6648 zcb->zcb_totalasize +=
6649 metaslab_class_get_alloc(spa_embedded_log_class(spa));
6650 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6651 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6652
6653 /*
6654 * If we've traversed the data blocks then we need to wait for those
6655 * I/Os to complete. We leverage "The Godfather" zio to wait on
6656 * all async I/Os to complete.
6657 */
6658 if (dump_opt['c']) {
6659 for (c = 0; c < max_ncpus; c++) {
6660 (void) zio_wait(spa->spa_async_zio_root[c]);
6661 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6662 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6663 ZIO_FLAG_GODFATHER);
6664 }
6665 }
6666 ASSERT0(spa->spa_load_verify_bytes);
6667
6668 /*
6669 * Done after zio_wait() since zcb_haderrors is modified in
6670 * zdb_blkptr_done()
6671 */
6672 zcb->zcb_haderrors |= err;
6673
6674 if (zcb->zcb_haderrors) {
6675 (void) printf("\nError counts:\n\n");
6676 (void) printf("\t%5s %s\n", "errno", "count");
6677 for (e = 0; e < 256; e++) {
6678 if (zcb->zcb_errors[e] != 0) {
6679 (void) printf("\t%5d %llu\n",
6680 e, (u_longlong_t)zcb->zcb_errors[e]);
6681 }
6682 }
6683 }
6684
6685 /*
6686 * Report any leaked segments.
6687 */
6688 leaks |= zdb_leak_fini(spa, zcb);
6689
6690 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6691
6692 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6693 norm_space = metaslab_class_get_space(spa_normal_class(spa));
6694
6695 total_alloc = norm_alloc +
6696 metaslab_class_get_alloc(spa_log_class(spa)) +
6697 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6698 metaslab_class_get_alloc(spa_special_class(spa)) +
6699 metaslab_class_get_alloc(spa_dedup_class(spa)) +
6700 get_unflushed_alloc_space(spa);
6701 total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
6702 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6703
6704 if (total_found == total_alloc && !dump_opt['L']) {
6705 (void) printf("\n\tNo leaks (block sum matches space"
6706 " maps exactly)\n");
6707 } else if (!dump_opt['L']) {
6708 (void) printf("block traversal size %llu != alloc %llu "
6709 "(%s %lld)\n",
6710 (u_longlong_t)total_found,
6711 (u_longlong_t)total_alloc,
6712 (dump_opt['L']) ? "unreachable" : "leaked",
6713 (longlong_t)(total_alloc - total_found));
6714 leaks = B_TRUE;
6715 }
6716
6717 if (tzb->zb_count == 0) {
6718 umem_free(zcb, sizeof (zdb_cb_t));
6719 return (2);
6720 }
6721
6722 (void) printf("\n");
6723 (void) printf("\t%-16s %14llu\n", "bp count:",
6724 (u_longlong_t)tzb->zb_count);
6725 (void) printf("\t%-16s %14llu\n", "ganged count:",
6726 (longlong_t)tzb->zb_gangs);
6727 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
6728 (u_longlong_t)tzb->zb_lsize,
6729 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6730 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6731 "bp physical:", (u_longlong_t)tzb->zb_psize,
6732 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6733 (double)tzb->zb_lsize / tzb->zb_psize);
6734 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6735 "bp allocated:", (u_longlong_t)tzb->zb_asize,
6736 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6737 (double)tzb->zb_lsize / tzb->zb_asize);
6738 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
6739 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6740 (u_longlong_t)zcb->zcb_dedup_blocks,
6741 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6742 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
6743 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6744
6745 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6746 uint64_t alloc = metaslab_class_get_alloc(
6747 spa_special_class(spa));
6748 uint64_t space = metaslab_class_get_space(
6749 spa_special_class(spa));
6750
6751 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6752 "Special class", (u_longlong_t)alloc,
6753 100.0 * alloc / space);
6754 }
6755
6756 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6757 uint64_t alloc = metaslab_class_get_alloc(
6758 spa_dedup_class(spa));
6759 uint64_t space = metaslab_class_get_space(
6760 spa_dedup_class(spa));
6761
6762 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6763 "Dedup class", (u_longlong_t)alloc,
6764 100.0 * alloc / space);
6765 }
6766
6767 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6768 uint64_t alloc = metaslab_class_get_alloc(
6769 spa_embedded_log_class(spa));
6770 uint64_t space = metaslab_class_get_space(
6771 spa_embedded_log_class(spa));
6772
6773 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
6774 "Embedded log class", (u_longlong_t)alloc,
6775 100.0 * alloc / space);
6776 }
6777
6778 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
6779 if (zcb->zcb_embedded_blocks[i] == 0)
6780 continue;
6781 (void) printf("\n");
6782 (void) printf("\tadditional, non-pointer bps of type %u: "
6783 "%10llu\n",
6784 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
6785
6786 if (dump_opt['b'] >= 3) {
6787 (void) printf("\t number of (compressed) bytes: "
6788 "number of bps\n");
6789 dump_histogram(zcb->zcb_embedded_histogram[i],
6790 sizeof (zcb->zcb_embedded_histogram[i]) /
6791 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
6792 }
6793 }
6794
6795 if (tzb->zb_ditto_samevdev != 0) {
6796 (void) printf("\tDittoed blocks on same vdev: %llu\n",
6797 (longlong_t)tzb->zb_ditto_samevdev);
6798 }
6799 if (tzb->zb_ditto_same_ms != 0) {
6800 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
6801 (longlong_t)tzb->zb_ditto_same_ms);
6802 }
6803
6804 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
6805 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
6806 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6807
6808 if (vim == NULL) {
6809 continue;
6810 }
6811
6812 char mem[32];
6813 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
6814 mem, vdev_indirect_mapping_size(vim));
6815
6816 (void) printf("\tindirect vdev id %llu has %llu segments "
6817 "(%s in memory)\n",
6818 (longlong_t)vd->vdev_id,
6819 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
6820 }
6821
6822 if (dump_opt['b'] >= 2) {
6823 int l, t, level;
6824 char csize[32], lsize[32], psize[32], asize[32];
6825 char avg[32], gang[32];
6826 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
6827 "\t avg\t comp\t%%Total\tType\n");
6828
6829 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
6830 UMEM_NOFAIL);
6831
6832 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
6833 const char *typename;
6834
6835 /* make sure nicenum has enough space */
6836 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
6837 "csize truncated");
6838 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
6839 "lsize truncated");
6840 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
6841 "psize truncated");
6842 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
6843 "asize truncated");
6844 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
6845 "avg truncated");
6846 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
6847 "gang truncated");
6848
6849 if (t < DMU_OT_NUMTYPES)
6850 typename = dmu_ot[t].ot_name;
6851 else
6852 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
6853
6854 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
6855 (void) printf("%6s\t%5s\t%5s\t%5s"
6856 "\t%5s\t%5s\t%6s\t%s\n",
6857 "-",
6858 "-",
6859 "-",
6860 "-",
6861 "-",
6862 "-",
6863 "-",
6864 typename);
6865 continue;
6866 }
6867
6868 for (l = ZB_TOTAL - 1; l >= -1; l--) {
6869 level = (l == -1 ? ZB_TOTAL : l);
6870 zb = &zcb->zcb_type[level][t];
6871
6872 if (zb->zb_asize == 0)
6873 continue;
6874
6875 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
6876 (level > 0 || DMU_OT_IS_METADATA(t))) {
6877 mdstats->zb_count += zb->zb_count;
6878 mdstats->zb_lsize += zb->zb_lsize;
6879 mdstats->zb_psize += zb->zb_psize;
6880 mdstats->zb_asize += zb->zb_asize;
6881 mdstats->zb_gangs += zb->zb_gangs;
6882 }
6883
6884 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
6885 continue;
6886
6887 if (level == 0 && zb->zb_asize ==
6888 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
6889 continue;
6890
6891 zdb_nicenum(zb->zb_count, csize,
6892 sizeof (csize));
6893 zdb_nicenum(zb->zb_lsize, lsize,
6894 sizeof (lsize));
6895 zdb_nicenum(zb->zb_psize, psize,
6896 sizeof (psize));
6897 zdb_nicenum(zb->zb_asize, asize,
6898 sizeof (asize));
6899 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
6900 sizeof (avg));
6901 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
6902
6903 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6904 "\t%5.2f\t%6.2f\t",
6905 csize, lsize, psize, asize, avg,
6906 (double)zb->zb_lsize / zb->zb_psize,
6907 100.0 * zb->zb_asize / tzb->zb_asize);
6908
6909 if (level == ZB_TOTAL)
6910 (void) printf("%s\n", typename);
6911 else
6912 (void) printf(" L%d %s\n",
6913 level, typename);
6914
6915 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
6916 (void) printf("\t number of ganged "
6917 "blocks: %s\n", gang);
6918 }
6919
6920 if (dump_opt['b'] >= 4) {
6921 (void) printf("psize "
6922 "(in 512-byte sectors): "
6923 "number of blocks\n");
6924 dump_histogram(zb->zb_psize_histogram,
6925 PSIZE_HISTO_SIZE, 0);
6926 }
6927 }
6928 }
6929 zdb_nicenum(mdstats->zb_count, csize,
6930 sizeof (csize));
6931 zdb_nicenum(mdstats->zb_lsize, lsize,
6932 sizeof (lsize));
6933 zdb_nicenum(mdstats->zb_psize, psize,
6934 sizeof (psize));
6935 zdb_nicenum(mdstats->zb_asize, asize,
6936 sizeof (asize));
6937 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
6938 sizeof (avg));
6939 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
6940
6941 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6942 "\t%5.2f\t%6.2f\t",
6943 csize, lsize, psize, asize, avg,
6944 (double)mdstats->zb_lsize / mdstats->zb_psize,
6945 100.0 * mdstats->zb_asize / tzb->zb_asize);
6946 (void) printf("%s\n", "Metadata Total");
6947
6948 /* Output a table summarizing block sizes in the pool */
6949 if (dump_opt['b'] >= 2) {
6950 dump_size_histograms(zcb);
6951 }
6952
6953 umem_free(mdstats, sizeof (zfs_blkstat_t));
6954 }
6955
6956 (void) printf("\n");
6957
6958 if (leaks) {
6959 umem_free(zcb, sizeof (zdb_cb_t));
6960 return (2);
6961 }
6962
6963 if (zcb->zcb_haderrors) {
6964 umem_free(zcb, sizeof (zdb_cb_t));
6965 return (3);
6966 }
6967
6968 umem_free(zcb, sizeof (zdb_cb_t));
6969 return (0);
6970 }
6971
6972 typedef struct zdb_ddt_entry {
6973 ddt_key_t zdde_key;
6974 uint64_t zdde_ref_blocks;
6975 uint64_t zdde_ref_lsize;
6976 uint64_t zdde_ref_psize;
6977 uint64_t zdde_ref_dsize;
6978 avl_node_t zdde_node;
6979 } zdb_ddt_entry_t;
6980
6981 static int
6982 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6983 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6984 {
6985 (void) zilog, (void) dnp;
6986 avl_tree_t *t = arg;
6987 avl_index_t where;
6988 zdb_ddt_entry_t *zdde, zdde_search;
6989
6990 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
6991 BP_IS_EMBEDDED(bp))
6992 return (0);
6993
6994 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
6995 (void) printf("traversing objset %llu, %llu objects, "
6996 "%lu blocks so far\n",
6997 (u_longlong_t)zb->zb_objset,
6998 (u_longlong_t)BP_GET_FILL(bp),
6999 avl_numnodes(t));
7000 }
7001
7002 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7003 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7004 return (0);
7005
7006 ddt_key_fill(&zdde_search.zdde_key, bp);
7007
7008 zdde = avl_find(t, &zdde_search, &where);
7009
7010 if (zdde == NULL) {
7011 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7012 zdde->zdde_key = zdde_search.zdde_key;
7013 avl_insert(t, zdde, where);
7014 }
7015
7016 zdde->zdde_ref_blocks += 1;
7017 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7018 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7019 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7020
7021 return (0);
7022 }
7023
7024 static void
7025 dump_simulated_ddt(spa_t *spa)
7026 {
7027 avl_tree_t t;
7028 void *cookie = NULL;
7029 zdb_ddt_entry_t *zdde;
7030 ddt_histogram_t ddh_total = {{{0}}};
7031 ddt_stat_t dds_total = {0};
7032
7033 avl_create(&t, ddt_entry_compare,
7034 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7035
7036 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7037
7038 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7039 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7040
7041 spa_config_exit(spa, SCL_CONFIG, FTAG);
7042
7043 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7044 ddt_stat_t dds;
7045 uint64_t refcnt = zdde->zdde_ref_blocks;
7046 ASSERT(refcnt != 0);
7047
7048 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
7049 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
7050 dds.dds_psize = zdde->zdde_ref_psize / refcnt;
7051 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
7052
7053 dds.dds_ref_blocks = zdde->zdde_ref_blocks;
7054 dds.dds_ref_lsize = zdde->zdde_ref_lsize;
7055 dds.dds_ref_psize = zdde->zdde_ref_psize;
7056 dds.dds_ref_dsize = zdde->zdde_ref_dsize;
7057
7058 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
7059 &dds, 0);
7060
7061 umem_free(zdde, sizeof (*zdde));
7062 }
7063
7064 avl_destroy(&t);
7065
7066 ddt_histogram_stat(&dds_total, &ddh_total);
7067
7068 (void) printf("Simulated DDT histogram:\n");
7069
7070 zpool_dump_ddt(&dds_total, &ddh_total);
7071
7072 dump_dedup_ratio(&dds_total);
7073 }
7074
7075 static int
7076 verify_device_removal_feature_counts(spa_t *spa)
7077 {
7078 uint64_t dr_feature_refcount = 0;
7079 uint64_t oc_feature_refcount = 0;
7080 uint64_t indirect_vdev_count = 0;
7081 uint64_t precise_vdev_count = 0;
7082 uint64_t obsolete_counts_object_count = 0;
7083 uint64_t obsolete_sm_count = 0;
7084 uint64_t obsolete_counts_count = 0;
7085 uint64_t scip_count = 0;
7086 uint64_t obsolete_bpobj_count = 0;
7087 int ret = 0;
7088
7089 spa_condensing_indirect_phys_t *scip =
7090 &spa->spa_condensing_indirect_phys;
7091 if (scip->scip_next_mapping_object != 0) {
7092 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7093 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7094 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7095
7096 (void) printf("Condensing indirect vdev %llu: new mapping "
7097 "object %llu, prev obsolete sm %llu\n",
7098 (u_longlong_t)scip->scip_vdev,
7099 (u_longlong_t)scip->scip_next_mapping_object,
7100 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7101 if (scip->scip_prev_obsolete_sm_object != 0) {
7102 space_map_t *prev_obsolete_sm = NULL;
7103 VERIFY0(space_map_open(&prev_obsolete_sm,
7104 spa->spa_meta_objset,
7105 scip->scip_prev_obsolete_sm_object,
7106 0, vd->vdev_asize, 0));
7107 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7108 (void) printf("\n");
7109 space_map_close(prev_obsolete_sm);
7110 }
7111
7112 scip_count += 2;
7113 }
7114
7115 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7116 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7117 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7118
7119 if (vic->vic_mapping_object != 0) {
7120 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7121 vd->vdev_removing);
7122 indirect_vdev_count++;
7123
7124 if (vd->vdev_indirect_mapping->vim_havecounts) {
7125 obsolete_counts_count++;
7126 }
7127 }
7128
7129 boolean_t are_precise;
7130 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7131 if (are_precise) {
7132 ASSERT(vic->vic_mapping_object != 0);
7133 precise_vdev_count++;
7134 }
7135
7136 uint64_t obsolete_sm_object;
7137 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7138 if (obsolete_sm_object != 0) {
7139 ASSERT(vic->vic_mapping_object != 0);
7140 obsolete_sm_count++;
7141 }
7142 }
7143
7144 (void) feature_get_refcount(spa,
7145 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7146 &dr_feature_refcount);
7147 (void) feature_get_refcount(spa,
7148 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7149 &oc_feature_refcount);
7150
7151 if (dr_feature_refcount != indirect_vdev_count) {
7152 ret = 1;
7153 (void) printf("Number of indirect vdevs (%llu) " \
7154 "does not match feature count (%llu)\n",
7155 (u_longlong_t)indirect_vdev_count,
7156 (u_longlong_t)dr_feature_refcount);
7157 } else {
7158 (void) printf("Verified device_removal feature refcount " \
7159 "of %llu is correct\n",
7160 (u_longlong_t)dr_feature_refcount);
7161 }
7162
7163 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7164 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7165 obsolete_bpobj_count++;
7166 }
7167
7168
7169 obsolete_counts_object_count = precise_vdev_count;
7170 obsolete_counts_object_count += obsolete_sm_count;
7171 obsolete_counts_object_count += obsolete_counts_count;
7172 obsolete_counts_object_count += scip_count;
7173 obsolete_counts_object_count += obsolete_bpobj_count;
7174 obsolete_counts_object_count += remap_deadlist_count;
7175
7176 if (oc_feature_refcount != obsolete_counts_object_count) {
7177 ret = 1;
7178 (void) printf("Number of obsolete counts objects (%llu) " \
7179 "does not match feature count (%llu)\n",
7180 (u_longlong_t)obsolete_counts_object_count,
7181 (u_longlong_t)oc_feature_refcount);
7182 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7183 "ob:%llu rd:%llu\n",
7184 (u_longlong_t)precise_vdev_count,
7185 (u_longlong_t)obsolete_sm_count,
7186 (u_longlong_t)obsolete_counts_count,
7187 (u_longlong_t)scip_count,
7188 (u_longlong_t)obsolete_bpobj_count,
7189 (u_longlong_t)remap_deadlist_count);
7190 } else {
7191 (void) printf("Verified indirect_refcount feature refcount " \
7192 "of %llu is correct\n",
7193 (u_longlong_t)oc_feature_refcount);
7194 }
7195 return (ret);
7196 }
7197
7198 static void
7199 zdb_set_skip_mmp(char *target)
7200 {
7201 spa_t *spa;
7202
7203 /*
7204 * Disable the activity check to allow examination of
7205 * active pools.
7206 */
7207 mutex_enter(&spa_namespace_lock);
7208 if ((spa = spa_lookup(target)) != NULL) {
7209 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7210 }
7211 mutex_exit(&spa_namespace_lock);
7212 }
7213
7214 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7215 /*
7216 * Import the checkpointed state of the pool specified by the target
7217 * parameter as readonly. The function also accepts a pool config
7218 * as an optional parameter, else it attempts to infer the config by
7219 * the name of the target pool.
7220 *
7221 * Note that the checkpointed state's pool name will be the name of
7222 * the original pool with the above suffix appended to it. In addition,
7223 * if the target is not a pool name (e.g. a path to a dataset) then
7224 * the new_path parameter is populated with the updated path to
7225 * reflect the fact that we are looking into the checkpointed state.
7226 *
7227 * The function returns a newly-allocated copy of the name of the
7228 * pool containing the checkpointed state. When this copy is no
7229 * longer needed it should be freed with free(3C). Same thing
7230 * applies to the new_path parameter if allocated.
7231 */
7232 static char *
7233 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7234 {
7235 int error = 0;
7236 char *poolname, *bogus_name = NULL;
7237 boolean_t freecfg = B_FALSE;
7238
7239 /* If the target is not a pool, the extract the pool name */
7240 char *path_start = strchr(target, '/');
7241 if (path_start != NULL) {
7242 size_t poolname_len = path_start - target;
7243 poolname = strndup(target, poolname_len);
7244 } else {
7245 poolname = target;
7246 }
7247
7248 if (cfg == NULL) {
7249 zdb_set_skip_mmp(poolname);
7250 error = spa_get_stats(poolname, &cfg, NULL, 0);
7251 if (error != 0) {
7252 fatal("Tried to read config of pool \"%s\" but "
7253 "spa_get_stats() failed with error %d\n",
7254 poolname, error);
7255 }
7256 freecfg = B_TRUE;
7257 }
7258
7259 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7260 if (target != poolname)
7261 free(poolname);
7262 return (NULL);
7263 }
7264 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7265
7266 error = spa_import(bogus_name, cfg, NULL,
7267 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7268 ZFS_IMPORT_SKIP_MMP);
7269 if (freecfg)
7270 nvlist_free(cfg);
7271 if (error != 0) {
7272 fatal("Tried to import pool \"%s\" but spa_import() failed "
7273 "with error %d\n", bogus_name, error);
7274 }
7275
7276 if (new_path != NULL && path_start != NULL) {
7277 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7278 free(bogus_name);
7279 if (path_start != NULL)
7280 free(poolname);
7281 return (NULL);
7282 }
7283 }
7284
7285 if (target != poolname)
7286 free(poolname);
7287
7288 return (bogus_name);
7289 }
7290
7291 typedef struct verify_checkpoint_sm_entry_cb_arg {
7292 vdev_t *vcsec_vd;
7293
7294 /* the following fields are only used for printing progress */
7295 uint64_t vcsec_entryid;
7296 uint64_t vcsec_num_entries;
7297 } verify_checkpoint_sm_entry_cb_arg_t;
7298
7299 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7300
7301 static int
7302 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7303 {
7304 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7305 vdev_t *vd = vcsec->vcsec_vd;
7306 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7307 uint64_t end = sme->sme_offset + sme->sme_run;
7308
7309 ASSERT(sme->sme_type == SM_FREE);
7310
7311 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7312 (void) fprintf(stderr,
7313 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7314 (longlong_t)vd->vdev_id,
7315 (longlong_t)vcsec->vcsec_entryid,
7316 (longlong_t)vcsec->vcsec_num_entries);
7317 }
7318 vcsec->vcsec_entryid++;
7319
7320 /*
7321 * See comment in checkpoint_sm_exclude_entry_cb()
7322 */
7323 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7324 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7325
7326 /*
7327 * The entries in the vdev_checkpoint_sm should be marked as
7328 * allocated in the checkpointed state of the pool, therefore
7329 * their respective ms_allocateable trees should not contain them.
7330 */
7331 mutex_enter(&ms->ms_lock);
7332 range_tree_verify_not_present(ms->ms_allocatable,
7333 sme->sme_offset, sme->sme_run);
7334 mutex_exit(&ms->ms_lock);
7335
7336 return (0);
7337 }
7338
7339 /*
7340 * Verify that all segments in the vdev_checkpoint_sm are allocated
7341 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7342 * ms_allocatable).
7343 *
7344 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7345 * each vdev in the current state of the pool to the metaslab space maps
7346 * (ms_sm) of the checkpointed state of the pool.
7347 *
7348 * Note that the function changes the state of the ms_allocatable
7349 * trees of the current spa_t. The entries of these ms_allocatable
7350 * trees are cleared out and then repopulated from with the free
7351 * entries of their respective ms_sm space maps.
7352 */
7353 static void
7354 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7355 {
7356 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7357 vdev_t *current_rvd = current->spa_root_vdev;
7358
7359 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7360
7361 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7362 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7363 vdev_t *current_vd = current_rvd->vdev_child[c];
7364
7365 space_map_t *checkpoint_sm = NULL;
7366 uint64_t checkpoint_sm_obj;
7367
7368 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7369 /*
7370 * Since we don't allow device removal in a pool
7371 * that has a checkpoint, we expect that all removed
7372 * vdevs were removed from the pool before the
7373 * checkpoint.
7374 */
7375 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7376 continue;
7377 }
7378
7379 /*
7380 * If the checkpoint space map doesn't exist, then nothing
7381 * here is checkpointed so there's nothing to verify.
7382 */
7383 if (current_vd->vdev_top_zap == 0 ||
7384 zap_contains(spa_meta_objset(current),
7385 current_vd->vdev_top_zap,
7386 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7387 continue;
7388
7389 VERIFY0(zap_lookup(spa_meta_objset(current),
7390 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7391 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7392
7393 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7394 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7395 current_vd->vdev_ashift));
7396
7397 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7398 vcsec.vcsec_vd = ckpoint_vd;
7399 vcsec.vcsec_entryid = 0;
7400 vcsec.vcsec_num_entries =
7401 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7402 VERIFY0(space_map_iterate(checkpoint_sm,
7403 space_map_length(checkpoint_sm),
7404 verify_checkpoint_sm_entry_cb, &vcsec));
7405 if (dump_opt['m'] > 3)
7406 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7407 space_map_close(checkpoint_sm);
7408 }
7409
7410 /*
7411 * If we've added vdevs since we took the checkpoint, ensure
7412 * that their checkpoint space maps are empty.
7413 */
7414 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7415 for (uint64_t c = ckpoint_rvd->vdev_children;
7416 c < current_rvd->vdev_children; c++) {
7417 vdev_t *current_vd = current_rvd->vdev_child[c];
7418 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7419 }
7420 }
7421
7422 /* for cleaner progress output */
7423 (void) fprintf(stderr, "\n");
7424 }
7425
7426 /*
7427 * Verifies that all space that's allocated in the checkpoint is
7428 * still allocated in the current version, by checking that everything
7429 * in checkpoint's ms_allocatable (which is actually allocated, not
7430 * allocatable/free) is not present in current's ms_allocatable.
7431 *
7432 * Note that the function changes the state of the ms_allocatable
7433 * trees of both spas when called. The entries of all ms_allocatable
7434 * trees are cleared out and then repopulated from their respective
7435 * ms_sm space maps. In the checkpointed state we load the allocated
7436 * entries, and in the current state we load the free entries.
7437 */
7438 static void
7439 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7440 {
7441 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7442 vdev_t *current_rvd = current->spa_root_vdev;
7443
7444 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7445 load_concrete_ms_allocatable_trees(current, SM_FREE);
7446
7447 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7448 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7449 vdev_t *current_vd = current_rvd->vdev_child[i];
7450
7451 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7452 /*
7453 * See comment in verify_checkpoint_vdev_spacemaps()
7454 */
7455 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7456 continue;
7457 }
7458
7459 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7460 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7461 metaslab_t *current_msp = current_vd->vdev_ms[m];
7462
7463 (void) fprintf(stderr,
7464 "\rverifying vdev %llu of %llu, "
7465 "metaslab %llu of %llu ...",
7466 (longlong_t)current_vd->vdev_id,
7467 (longlong_t)current_rvd->vdev_children,
7468 (longlong_t)current_vd->vdev_ms[m]->ms_id,
7469 (longlong_t)current_vd->vdev_ms_count);
7470
7471 /*
7472 * We walk through the ms_allocatable trees that
7473 * are loaded with the allocated blocks from the
7474 * ms_sm spacemaps of the checkpoint. For each
7475 * one of these ranges we ensure that none of them
7476 * exists in the ms_allocatable trees of the
7477 * current state which are loaded with the ranges
7478 * that are currently free.
7479 *
7480 * This way we ensure that none of the blocks that
7481 * are part of the checkpoint were freed by mistake.
7482 */
7483 range_tree_walk(ckpoint_msp->ms_allocatable,
7484 (range_tree_func_t *)range_tree_verify_not_present,
7485 current_msp->ms_allocatable);
7486 }
7487 }
7488
7489 /* for cleaner progress output */
7490 (void) fprintf(stderr, "\n");
7491 }
7492
7493 static void
7494 verify_checkpoint_blocks(spa_t *spa)
7495 {
7496 ASSERT(!dump_opt['L']);
7497
7498 spa_t *checkpoint_spa;
7499 char *checkpoint_pool;
7500 int error = 0;
7501
7502 /*
7503 * We import the checkpointed state of the pool (under a different
7504 * name) so we can do verification on it against the current state
7505 * of the pool.
7506 */
7507 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7508 NULL);
7509 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7510
7511 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7512 if (error != 0) {
7513 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7514 "error %d\n", checkpoint_pool, error);
7515 }
7516
7517 /*
7518 * Ensure that ranges in the checkpoint space maps of each vdev
7519 * are allocated according to the checkpointed state's metaslab
7520 * space maps.
7521 */
7522 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7523
7524 /*
7525 * Ensure that allocated ranges in the checkpoint's metaslab
7526 * space maps remain allocated in the metaslab space maps of
7527 * the current state.
7528 */
7529 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7530
7531 /*
7532 * Once we are done, we get rid of the checkpointed state.
7533 */
7534 spa_close(checkpoint_spa, FTAG);
7535 free(checkpoint_pool);
7536 }
7537
7538 static void
7539 dump_leftover_checkpoint_blocks(spa_t *spa)
7540 {
7541 vdev_t *rvd = spa->spa_root_vdev;
7542
7543 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7544 vdev_t *vd = rvd->vdev_child[i];
7545
7546 space_map_t *checkpoint_sm = NULL;
7547 uint64_t checkpoint_sm_obj;
7548
7549 if (vd->vdev_top_zap == 0)
7550 continue;
7551
7552 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7553 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7554 continue;
7555
7556 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7557 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7558 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7559
7560 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7561 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7562 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7563 space_map_close(checkpoint_sm);
7564 }
7565 }
7566
7567 static int
7568 verify_checkpoint(spa_t *spa)
7569 {
7570 uberblock_t checkpoint;
7571 int error;
7572
7573 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7574 return (0);
7575
7576 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7577 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7578 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7579
7580 if (error == ENOENT && !dump_opt['L']) {
7581 /*
7582 * If the feature is active but the uberblock is missing
7583 * then we must be in the middle of discarding the
7584 * checkpoint.
7585 */
7586 (void) printf("\nPartially discarded checkpoint "
7587 "state found:\n");
7588 if (dump_opt['m'] > 3)
7589 dump_leftover_checkpoint_blocks(spa);
7590 return (0);
7591 } else if (error != 0) {
7592 (void) printf("lookup error %d when looking for "
7593 "checkpointed uberblock in MOS\n", error);
7594 return (error);
7595 }
7596 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7597
7598 if (checkpoint.ub_checkpoint_txg == 0) {
7599 (void) printf("\nub_checkpoint_txg not set in checkpointed "
7600 "uberblock\n");
7601 error = 3;
7602 }
7603
7604 if (error == 0 && !dump_opt['L'])
7605 verify_checkpoint_blocks(spa);
7606
7607 return (error);
7608 }
7609
7610 static void
7611 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7612 {
7613 (void) arg;
7614 for (uint64_t i = start; i < size; i++) {
7615 (void) printf("MOS object %llu referenced but not allocated\n",
7616 (u_longlong_t)i);
7617 }
7618 }
7619
7620 static void
7621 mos_obj_refd(uint64_t obj)
7622 {
7623 if (obj != 0 && mos_refd_objs != NULL)
7624 range_tree_add(mos_refd_objs, obj, 1);
7625 }
7626
7627 /*
7628 * Call on a MOS object that may already have been referenced.
7629 */
7630 static void
7631 mos_obj_refd_multiple(uint64_t obj)
7632 {
7633 if (obj != 0 && mos_refd_objs != NULL &&
7634 !range_tree_contains(mos_refd_objs, obj, 1))
7635 range_tree_add(mos_refd_objs, obj, 1);
7636 }
7637
7638 static void
7639 mos_leak_vdev_top_zap(vdev_t *vd)
7640 {
7641 uint64_t ms_flush_data_obj;
7642 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7643 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7644 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7645 if (error == ENOENT)
7646 return;
7647 ASSERT0(error);
7648
7649 mos_obj_refd(ms_flush_data_obj);
7650 }
7651
7652 static void
7653 mos_leak_vdev(vdev_t *vd)
7654 {
7655 mos_obj_refd(vd->vdev_dtl_object);
7656 mos_obj_refd(vd->vdev_ms_array);
7657 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7658 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7659 mos_obj_refd(vd->vdev_leaf_zap);
7660 if (vd->vdev_checkpoint_sm != NULL)
7661 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7662 if (vd->vdev_indirect_mapping != NULL) {
7663 mos_obj_refd(vd->vdev_indirect_mapping->
7664 vim_phys->vimp_counts_object);
7665 }
7666 if (vd->vdev_obsolete_sm != NULL)
7667 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7668
7669 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7670 metaslab_t *ms = vd->vdev_ms[m];
7671 mos_obj_refd(space_map_object(ms->ms_sm));
7672 }
7673
7674 if (vd->vdev_root_zap != 0)
7675 mos_obj_refd(vd->vdev_root_zap);
7676
7677 if (vd->vdev_top_zap != 0) {
7678 mos_obj_refd(vd->vdev_top_zap);
7679 mos_leak_vdev_top_zap(vd);
7680 }
7681
7682 for (uint64_t c = 0; c < vd->vdev_children; c++) {
7683 mos_leak_vdev(vd->vdev_child[c]);
7684 }
7685 }
7686
7687 static void
7688 mos_leak_log_spacemaps(spa_t *spa)
7689 {
7690 uint64_t spacemap_zap;
7691 int error = zap_lookup(spa_meta_objset(spa),
7692 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7693 sizeof (spacemap_zap), 1, &spacemap_zap);
7694 if (error == ENOENT)
7695 return;
7696 ASSERT0(error);
7697
7698 mos_obj_refd(spacemap_zap);
7699 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7700 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7701 mos_obj_refd(sls->sls_sm_obj);
7702 }
7703
7704 static void
7705 errorlog_count_refd(objset_t *mos, uint64_t errlog)
7706 {
7707 zap_cursor_t zc;
7708 zap_attribute_t za;
7709 for (zap_cursor_init(&zc, mos, errlog);
7710 zap_cursor_retrieve(&zc, &za) == 0;
7711 zap_cursor_advance(&zc)) {
7712 mos_obj_refd(za.za_first_integer);
7713 }
7714 zap_cursor_fini(&zc);
7715 }
7716
7717 static int
7718 dump_mos_leaks(spa_t *spa)
7719 {
7720 int rv = 0;
7721 objset_t *mos = spa->spa_meta_objset;
7722 dsl_pool_t *dp = spa->spa_dsl_pool;
7723
7724 /* Visit and mark all referenced objects in the MOS */
7725
7726 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7727 mos_obj_refd(spa->spa_pool_props_object);
7728 mos_obj_refd(spa->spa_config_object);
7729 mos_obj_refd(spa->spa_ddt_stat_object);
7730 mos_obj_refd(spa->spa_feat_desc_obj);
7731 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7732 mos_obj_refd(spa->spa_feat_for_read_obj);
7733 mos_obj_refd(spa->spa_feat_for_write_obj);
7734 mos_obj_refd(spa->spa_history);
7735 mos_obj_refd(spa->spa_errlog_last);
7736 mos_obj_refd(spa->spa_errlog_scrub);
7737
7738 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
7739 errorlog_count_refd(mos, spa->spa_errlog_last);
7740 errorlog_count_refd(mos, spa->spa_errlog_scrub);
7741 }
7742
7743 mos_obj_refd(spa->spa_all_vdev_zaps);
7744 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7745 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
7746 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
7747 bpobj_count_refd(&spa->spa_deferred_bpobj);
7748 mos_obj_refd(dp->dp_empty_bpobj);
7749 bpobj_count_refd(&dp->dp_obsolete_bpobj);
7750 bpobj_count_refd(&dp->dp_free_bpobj);
7751 mos_obj_refd(spa->spa_l2cache.sav_object);
7752 mos_obj_refd(spa->spa_spares.sav_object);
7753
7754 if (spa->spa_syncing_log_sm != NULL)
7755 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
7756 mos_leak_log_spacemaps(spa);
7757
7758 mos_obj_refd(spa->spa_condensing_indirect_phys.
7759 scip_next_mapping_object);
7760 mos_obj_refd(spa->spa_condensing_indirect_phys.
7761 scip_prev_obsolete_sm_object);
7762 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
7763 vdev_indirect_mapping_t *vim =
7764 vdev_indirect_mapping_open(mos,
7765 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
7766 mos_obj_refd(vim->vim_phys->vimp_counts_object);
7767 vdev_indirect_mapping_close(vim);
7768 }
7769 deleted_livelists_dump_mos(spa);
7770
7771 if (dp->dp_origin_snap != NULL) {
7772 dsl_dataset_t *ds;
7773
7774 dsl_pool_config_enter(dp, FTAG);
7775 VERIFY0(dsl_dataset_hold_obj(dp,
7776 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
7777 FTAG, &ds));
7778 count_ds_mos_objects(ds);
7779 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
7780 dsl_dataset_rele(ds, FTAG);
7781 dsl_pool_config_exit(dp, FTAG);
7782
7783 count_ds_mos_objects(dp->dp_origin_snap);
7784 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
7785 }
7786 count_dir_mos_objects(dp->dp_mos_dir);
7787 if (dp->dp_free_dir != NULL)
7788 count_dir_mos_objects(dp->dp_free_dir);
7789 if (dp->dp_leak_dir != NULL)
7790 count_dir_mos_objects(dp->dp_leak_dir);
7791
7792 mos_leak_vdev(spa->spa_root_vdev);
7793
7794 for (uint64_t class = 0; class < DDT_CLASSES; class++) {
7795 for (uint64_t type = 0; type < DDT_TYPES; type++) {
7796 for (uint64_t cksum = 0;
7797 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
7798 ddt_t *ddt = spa->spa_ddt[cksum];
7799 mos_obj_refd(ddt->ddt_object[type][class]);
7800 }
7801 }
7802 }
7803
7804 /*
7805 * Visit all allocated objects and make sure they are referenced.
7806 */
7807 uint64_t object = 0;
7808 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
7809 if (range_tree_contains(mos_refd_objs, object, 1)) {
7810 range_tree_remove(mos_refd_objs, object, 1);
7811 } else {
7812 dmu_object_info_t doi;
7813 const char *name;
7814 VERIFY0(dmu_object_info(mos, object, &doi));
7815 if (doi.doi_type & DMU_OT_NEWTYPE) {
7816 dmu_object_byteswap_t bswap =
7817 DMU_OT_BYTESWAP(doi.doi_type);
7818 name = dmu_ot_byteswap[bswap].ob_name;
7819 } else {
7820 name = dmu_ot[doi.doi_type].ot_name;
7821 }
7822
7823 (void) printf("MOS object %llu (%s) leaked\n",
7824 (u_longlong_t)object, name);
7825 rv = 2;
7826 }
7827 }
7828 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
7829 if (!range_tree_is_empty(mos_refd_objs))
7830 rv = 2;
7831 range_tree_vacate(mos_refd_objs, NULL, NULL);
7832 range_tree_destroy(mos_refd_objs);
7833 return (rv);
7834 }
7835
7836 typedef struct log_sm_obsolete_stats_arg {
7837 uint64_t lsos_current_txg;
7838
7839 uint64_t lsos_total_entries;
7840 uint64_t lsos_valid_entries;
7841
7842 uint64_t lsos_sm_entries;
7843 uint64_t lsos_valid_sm_entries;
7844 } log_sm_obsolete_stats_arg_t;
7845
7846 static int
7847 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
7848 uint64_t txg, void *arg)
7849 {
7850 log_sm_obsolete_stats_arg_t *lsos = arg;
7851
7852 uint64_t offset = sme->sme_offset;
7853 uint64_t vdev_id = sme->sme_vdev;
7854
7855 if (lsos->lsos_current_txg == 0) {
7856 /* this is the first log */
7857 lsos->lsos_current_txg = txg;
7858 } else if (lsos->lsos_current_txg < txg) {
7859 /* we just changed log - print stats and reset */
7860 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7861 (u_longlong_t)lsos->lsos_valid_sm_entries,
7862 (u_longlong_t)lsos->lsos_sm_entries,
7863 (u_longlong_t)lsos->lsos_current_txg);
7864 lsos->lsos_valid_sm_entries = 0;
7865 lsos->lsos_sm_entries = 0;
7866 lsos->lsos_current_txg = txg;
7867 }
7868 ASSERT3U(lsos->lsos_current_txg, ==, txg);
7869
7870 lsos->lsos_sm_entries++;
7871 lsos->lsos_total_entries++;
7872
7873 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
7874 if (!vdev_is_concrete(vd))
7875 return (0);
7876
7877 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7878 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
7879
7880 if (txg < metaslab_unflushed_txg(ms))
7881 return (0);
7882 lsos->lsos_valid_sm_entries++;
7883 lsos->lsos_valid_entries++;
7884 return (0);
7885 }
7886
7887 static void
7888 dump_log_spacemap_obsolete_stats(spa_t *spa)
7889 {
7890 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
7891 return;
7892
7893 log_sm_obsolete_stats_arg_t lsos = {0};
7894
7895 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
7896
7897 iterate_through_spacemap_logs(spa,
7898 log_spacemap_obsolete_stats_cb, &lsos);
7899
7900 /* print stats for latest log */
7901 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7902 (u_longlong_t)lsos.lsos_valid_sm_entries,
7903 (u_longlong_t)lsos.lsos_sm_entries,
7904 (u_longlong_t)lsos.lsos_current_txg);
7905
7906 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
7907 (u_longlong_t)lsos.lsos_valid_entries,
7908 (u_longlong_t)lsos.lsos_total_entries);
7909 }
7910
7911 static void
7912 dump_zpool(spa_t *spa)
7913 {
7914 dsl_pool_t *dp = spa_get_dsl(spa);
7915 int rc = 0;
7916
7917 if (dump_opt['y']) {
7918 livelist_metaslab_validate(spa);
7919 }
7920
7921 if (dump_opt['S']) {
7922 dump_simulated_ddt(spa);
7923 return;
7924 }
7925
7926 if (!dump_opt['e'] && dump_opt['C'] > 1) {
7927 (void) printf("\nCached configuration:\n");
7928 dump_nvlist(spa->spa_config, 8);
7929 }
7930
7931 if (dump_opt['C'])
7932 dump_config(spa);
7933
7934 if (dump_opt['u'])
7935 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
7936
7937 if (dump_opt['D'])
7938 dump_all_ddts(spa);
7939
7940 if (dump_opt['d'] > 2 || dump_opt['m'])
7941 dump_metaslabs(spa);
7942 if (dump_opt['M'])
7943 dump_metaslab_groups(spa, dump_opt['M'] > 1);
7944 if (dump_opt['d'] > 2 || dump_opt['m']) {
7945 dump_log_spacemaps(spa);
7946 dump_log_spacemap_obsolete_stats(spa);
7947 }
7948
7949 if (dump_opt['d'] || dump_opt['i']) {
7950 spa_feature_t f;
7951 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
7952 0);
7953 dump_objset(dp->dp_meta_objset);
7954
7955 if (dump_opt['d'] >= 3) {
7956 dsl_pool_t *dp = spa->spa_dsl_pool;
7957 dump_full_bpobj(&spa->spa_deferred_bpobj,
7958 "Deferred frees", 0);
7959 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7960 dump_full_bpobj(&dp->dp_free_bpobj,
7961 "Pool snapshot frees", 0);
7962 }
7963 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
7964 ASSERT(spa_feature_is_enabled(spa,
7965 SPA_FEATURE_DEVICE_REMOVAL));
7966 dump_full_bpobj(&dp->dp_obsolete_bpobj,
7967 "Pool obsolete blocks", 0);
7968 }
7969
7970 if (spa_feature_is_active(spa,
7971 SPA_FEATURE_ASYNC_DESTROY)) {
7972 dump_bptree(spa->spa_meta_objset,
7973 dp->dp_bptree_obj,
7974 "Pool dataset frees");
7975 }
7976 dump_dtl(spa->spa_root_vdev, 0);
7977 }
7978
7979 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
7980 global_feature_count[f] = UINT64_MAX;
7981 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
7982 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
7983 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
7984
7985 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
7986 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7987
7988 if (rc == 0 && !dump_opt['L'])
7989 rc = dump_mos_leaks(spa);
7990
7991 for (f = 0; f < SPA_FEATURES; f++) {
7992 uint64_t refcount;
7993
7994 uint64_t *arr;
7995 if (!(spa_feature_table[f].fi_flags &
7996 ZFEATURE_FLAG_PER_DATASET)) {
7997 if (global_feature_count[f] == UINT64_MAX)
7998 continue;
7999 if (!spa_feature_is_enabled(spa, f)) {
8000 ASSERT0(global_feature_count[f]);
8001 continue;
8002 }
8003 arr = global_feature_count;
8004 } else {
8005 if (!spa_feature_is_enabled(spa, f)) {
8006 ASSERT0(dataset_feature_count[f]);
8007 continue;
8008 }
8009 arr = dataset_feature_count;
8010 }
8011 if (feature_get_refcount(spa, &spa_feature_table[f],
8012 &refcount) == ENOTSUP)
8013 continue;
8014 if (arr[f] != refcount) {
8015 (void) printf("%s feature refcount mismatch: "
8016 "%lld consumers != %lld refcount\n",
8017 spa_feature_table[f].fi_uname,
8018 (longlong_t)arr[f], (longlong_t)refcount);
8019 rc = 2;
8020 } else {
8021 (void) printf("Verified %s feature refcount "
8022 "of %llu is correct\n",
8023 spa_feature_table[f].fi_uname,
8024 (longlong_t)refcount);
8025 }
8026 }
8027
8028 if (rc == 0)
8029 rc = verify_device_removal_feature_counts(spa);
8030 }
8031
8032 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8033 rc = dump_block_stats(spa);
8034
8035 if (rc == 0)
8036 rc = verify_spacemap_refcounts(spa);
8037
8038 if (dump_opt['s'])
8039 show_pool_stats(spa);
8040
8041 if (dump_opt['h'])
8042 dump_history(spa);
8043
8044 if (rc == 0)
8045 rc = verify_checkpoint(spa);
8046
8047 if (rc != 0) {
8048 dump_debug_buffer();
8049 exit(rc);
8050 }
8051 }
8052
8053 #define ZDB_FLAG_CHECKSUM 0x0001
8054 #define ZDB_FLAG_DECOMPRESS 0x0002
8055 #define ZDB_FLAG_BSWAP 0x0004
8056 #define ZDB_FLAG_GBH 0x0008
8057 #define ZDB_FLAG_INDIRECT 0x0010
8058 #define ZDB_FLAG_RAW 0x0020
8059 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8060 #define ZDB_FLAG_VERBOSE 0x0080
8061
8062 static int flagbits[256];
8063 static char flagbitstr[16];
8064
8065 static void
8066 zdb_print_blkptr(const blkptr_t *bp, int flags)
8067 {
8068 char blkbuf[BP_SPRINTF_LEN];
8069
8070 if (flags & ZDB_FLAG_BSWAP)
8071 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8072
8073 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8074 (void) printf("%s\n", blkbuf);
8075 }
8076
8077 static void
8078 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8079 {
8080 int i;
8081
8082 for (i = 0; i < nbps; i++)
8083 zdb_print_blkptr(&bp[i], flags);
8084 }
8085
8086 static void
8087 zdb_dump_gbh(void *buf, int flags)
8088 {
8089 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8090 }
8091
8092 static void
8093 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8094 {
8095 if (flags & ZDB_FLAG_BSWAP)
8096 byteswap_uint64_array(buf, size);
8097 VERIFY(write(fileno(stdout), buf, size) == size);
8098 }
8099
8100 static void
8101 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8102 {
8103 uint64_t *d = (uint64_t *)buf;
8104 unsigned nwords = size / sizeof (uint64_t);
8105 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8106 unsigned i, j;
8107 const char *hdr;
8108 char *c;
8109
8110
8111 if (do_bswap)
8112 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8113 else
8114 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8115
8116 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8117
8118 #ifdef _LITTLE_ENDIAN
8119 /* correct the endianness */
8120 do_bswap = !do_bswap;
8121 #endif
8122 for (i = 0; i < nwords; i += 2) {
8123 (void) printf("%06llx: %016llx %016llx ",
8124 (u_longlong_t)(i * sizeof (uint64_t)),
8125 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8126 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8127
8128 c = (char *)&d[i];
8129 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8130 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8131 (void) printf("\n");
8132 }
8133 }
8134
8135 /*
8136 * There are two acceptable formats:
8137 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8138 * child[.child]* - For example: 0.1.1
8139 *
8140 * The second form can be used to specify arbitrary vdevs anywhere
8141 * in the hierarchy. For example, in a pool with a mirror of
8142 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8143 */
8144 static vdev_t *
8145 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8146 {
8147 char *s, *p, *q;
8148 unsigned i;
8149
8150 if (vdev == NULL)
8151 return (NULL);
8152
8153 /* First, assume the x.x.x.x format */
8154 i = strtoul(path, &s, 10);
8155 if (s == path || (s && *s != '.' && *s != '\0'))
8156 goto name;
8157 if (i >= vdev->vdev_children)
8158 return (NULL);
8159
8160 vdev = vdev->vdev_child[i];
8161 if (s && *s == '\0')
8162 return (vdev);
8163 return (zdb_vdev_lookup(vdev, s+1));
8164
8165 name:
8166 for (i = 0; i < vdev->vdev_children; i++) {
8167 vdev_t *vc = vdev->vdev_child[i];
8168
8169 if (vc->vdev_path == NULL) {
8170 vc = zdb_vdev_lookup(vc, path);
8171 if (vc == NULL)
8172 continue;
8173 else
8174 return (vc);
8175 }
8176
8177 p = strrchr(vc->vdev_path, '/');
8178 p = p ? p + 1 : vc->vdev_path;
8179 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8180
8181 if (strcmp(vc->vdev_path, path) == 0)
8182 return (vc);
8183 if (strcmp(p, path) == 0)
8184 return (vc);
8185 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8186 return (vc);
8187 }
8188
8189 return (NULL);
8190 }
8191
8192 static int
8193 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8194 {
8195 dsl_dataset_t *ds;
8196
8197 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8198 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8199 NULL, &ds);
8200 if (error != 0) {
8201 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8202 (u_longlong_t)objset_id, strerror(error));
8203 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8204 return (error);
8205 }
8206 dsl_dataset_name(ds, outstr);
8207 dsl_dataset_rele(ds, NULL);
8208 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8209 return (0);
8210 }
8211
8212 static boolean_t
8213 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8214 {
8215 char *s0, *s1, *tmp = NULL;
8216
8217 if (sizes == NULL)
8218 return (B_FALSE);
8219
8220 s0 = strtok_r(sizes, "/", &tmp);
8221 if (s0 == NULL)
8222 return (B_FALSE);
8223 s1 = strtok_r(NULL, "/", &tmp);
8224 *lsize = strtoull(s0, NULL, 16);
8225 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8226 return (*lsize >= *psize && *psize > 0);
8227 }
8228
8229 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8230
8231 static boolean_t
8232 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8233 uint64_t psize, int flags)
8234 {
8235 (void) buf;
8236 boolean_t exceeded = B_FALSE;
8237 /*
8238 * We don't know how the data was compressed, so just try
8239 * every decompress function at every inflated blocksize.
8240 */
8241 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8242 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8243 int *cfuncp = cfuncs;
8244 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8245 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8246 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8247 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8248 *cfuncp++ = ZIO_COMPRESS_LZ4;
8249 *cfuncp++ = ZIO_COMPRESS_LZJB;
8250 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8251 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8252 if (((1ULL << c) & mask) == 0)
8253 *cfuncp++ = c;
8254
8255 /*
8256 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8257 * could take a while and we should let the user know
8258 * we are not stuck. On the other hand, printing progress
8259 * info gets old after a while. User can specify 'v' flag
8260 * to see the progression.
8261 */
8262 if (lsize == psize)
8263 lsize += SPA_MINBLOCKSIZE;
8264 else
8265 maxlsize = lsize;
8266 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8267 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8268 if (flags & ZDB_FLAG_VERBOSE) {
8269 (void) fprintf(stderr,
8270 "Trying %05llx -> %05llx (%s)\n",
8271 (u_longlong_t)psize,
8272 (u_longlong_t)lsize,
8273 zio_compress_table[*cfuncp].\
8274 ci_name);
8275 }
8276
8277 /*
8278 * We randomize lbuf2, and decompress to both
8279 * lbuf and lbuf2. This way, we will know if
8280 * decompression fill exactly to lsize.
8281 */
8282 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8283
8284 if (zio_decompress_data(*cfuncp, pabd,
8285 lbuf, psize, lsize, NULL) == 0 &&
8286 zio_decompress_data(*cfuncp, pabd,
8287 lbuf2, psize, lsize, NULL) == 0 &&
8288 memcmp(lbuf, lbuf2, lsize) == 0)
8289 break;
8290 }
8291 if (*cfuncp != 0)
8292 break;
8293 }
8294 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8295
8296 if (lsize > maxlsize) {
8297 exceeded = B_TRUE;
8298 }
8299 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8300 printf("\nZLE decompression was selected. If you "
8301 "suspect the results are wrong,\ntry avoiding ZLE "
8302 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8303 }
8304
8305 return (exceeded);
8306 }
8307
8308 /*
8309 * Read a block from a pool and print it out. The syntax of the
8310 * block descriptor is:
8311 *
8312 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8313 *
8314 * pool - The name of the pool you wish to read from
8315 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8316 * offset - offset, in hex, in bytes
8317 * size - Amount of data to read, in hex, in bytes
8318 * flags - A string of characters specifying options
8319 * b: Decode a blkptr at given offset within block
8320 * c: Calculate and display checksums
8321 * d: Decompress data before dumping
8322 * e: Byteswap data before dumping
8323 * g: Display data as a gang block header
8324 * i: Display as an indirect block
8325 * r: Dump raw data to stdout
8326 * v: Verbose
8327 *
8328 */
8329 static void
8330 zdb_read_block(char *thing, spa_t *spa)
8331 {
8332 blkptr_t blk, *bp = &blk;
8333 dva_t *dva = bp->blk_dva;
8334 int flags = 0;
8335 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8336 zio_t *zio;
8337 vdev_t *vd;
8338 abd_t *pabd;
8339 void *lbuf, *buf;
8340 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8341 const char *vdev, *errmsg = NULL;
8342 int i, error;
8343 boolean_t borrowed = B_FALSE, found = B_FALSE;
8344
8345 dup = strdup(thing);
8346 s = strtok_r(dup, ":", &tmp);
8347 vdev = s ?: "";
8348 s = strtok_r(NULL, ":", &tmp);
8349 offset = strtoull(s ? s : "", NULL, 16);
8350 sizes = strtok_r(NULL, ":", &tmp);
8351 s = strtok_r(NULL, ":", &tmp);
8352 flagstr = strdup(s ?: "");
8353
8354 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8355 errmsg = "invalid size(s)";
8356 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8357 errmsg = "size must be a multiple of sector size";
8358 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8359 errmsg = "offset must be a multiple of sector size";
8360 if (errmsg) {
8361 (void) printf("Invalid block specifier: %s - %s\n",
8362 thing, errmsg);
8363 goto done;
8364 }
8365
8366 tmp = NULL;
8367 for (s = strtok_r(flagstr, ":", &tmp);
8368 s != NULL;
8369 s = strtok_r(NULL, ":", &tmp)) {
8370 for (i = 0; i < strlen(flagstr); i++) {
8371 int bit = flagbits[(uchar_t)flagstr[i]];
8372
8373 if (bit == 0) {
8374 (void) printf("***Ignoring flag: %c\n",
8375 (uchar_t)flagstr[i]);
8376 continue;
8377 }
8378 found = B_TRUE;
8379 flags |= bit;
8380
8381 p = &flagstr[i + 1];
8382 if (*p != ':' && *p != '\0') {
8383 int j = 0, nextbit = flagbits[(uchar_t)*p];
8384 char *end, offstr[8] = { 0 };
8385 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8386 (nextbit == 0)) {
8387 /* look ahead to isolate the offset */
8388 while (nextbit == 0 &&
8389 strchr(flagbitstr, *p) == NULL) {
8390 offstr[j] = *p;
8391 j++;
8392 if (i + j > strlen(flagstr))
8393 break;
8394 p++;
8395 nextbit = flagbits[(uchar_t)*p];
8396 }
8397 blkptr_offset = strtoull(offstr, &end,
8398 16);
8399 i += j;
8400 } else if (nextbit == 0) {
8401 (void) printf("***Ignoring flag arg:"
8402 " '%c'\n", (uchar_t)*p);
8403 }
8404 }
8405 }
8406 }
8407 if (blkptr_offset % sizeof (blkptr_t)) {
8408 printf("Block pointer offset 0x%llx "
8409 "must be divisible by 0x%x\n",
8410 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8411 goto done;
8412 }
8413 if (found == B_FALSE && strlen(flagstr) > 0) {
8414 printf("Invalid flag arg: '%s'\n", flagstr);
8415 goto done;
8416 }
8417
8418 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8419 if (vd == NULL) {
8420 (void) printf("***Invalid vdev: %s\n", vdev);
8421 goto done;
8422 } else {
8423 if (vd->vdev_path)
8424 (void) fprintf(stderr, "Found vdev: %s\n",
8425 vd->vdev_path);
8426 else
8427 (void) fprintf(stderr, "Found vdev type: %s\n",
8428 vd->vdev_ops->vdev_op_type);
8429 }
8430
8431 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8432 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8433
8434 BP_ZERO(bp);
8435
8436 DVA_SET_VDEV(&dva[0], vd->vdev_id);
8437 DVA_SET_OFFSET(&dva[0], offset);
8438 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8439 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8440
8441 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8442
8443 BP_SET_LSIZE(bp, lsize);
8444 BP_SET_PSIZE(bp, psize);
8445 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8446 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8447 BP_SET_TYPE(bp, DMU_OT_NONE);
8448 BP_SET_LEVEL(bp, 0);
8449 BP_SET_DEDUP(bp, 0);
8450 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8451
8452 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8453 zio = zio_root(spa, NULL, NULL, 0);
8454
8455 if (vd == vd->vdev_top) {
8456 /*
8457 * Treat this as a normal block read.
8458 */
8459 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8460 ZIO_PRIORITY_SYNC_READ,
8461 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8462 } else {
8463 /*
8464 * Treat this as a vdev child I/O.
8465 */
8466 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8467 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8468 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
8469 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8470 ZIO_FLAG_OPTIONAL, NULL, NULL));
8471 }
8472
8473 error = zio_wait(zio);
8474 spa_config_exit(spa, SCL_STATE, FTAG);
8475
8476 if (error) {
8477 (void) printf("Read of %s failed, error: %d\n", thing, error);
8478 goto out;
8479 }
8480
8481 uint64_t orig_lsize = lsize;
8482 buf = lbuf;
8483 if (flags & ZDB_FLAG_DECOMPRESS) {
8484 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8485 lsize, psize, flags);
8486 if (failed) {
8487 (void) printf("Decompress of %s failed\n", thing);
8488 goto out;
8489 }
8490 } else {
8491 buf = abd_borrow_buf_copy(pabd, lsize);
8492 borrowed = B_TRUE;
8493 }
8494 /*
8495 * Try to detect invalid block pointer. If invalid, try
8496 * decompressing.
8497 */
8498 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8499 !(flags & ZDB_FLAG_DECOMPRESS)) {
8500 const blkptr_t *b = (const blkptr_t *)(void *)
8501 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8502 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
8503 B_FALSE) {
8504 abd_return_buf_copy(pabd, buf, lsize);
8505 borrowed = B_FALSE;
8506 buf = lbuf;
8507 boolean_t failed = zdb_decompress_block(pabd, buf,
8508 lbuf, lsize, psize, flags);
8509 b = (const blkptr_t *)(void *)
8510 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8511 if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
8512 BLK_VERIFY_LOG) == B_FALSE) {
8513 printf("invalid block pointer at this DVA\n");
8514 goto out;
8515 }
8516 }
8517 }
8518
8519 if (flags & ZDB_FLAG_PRINT_BLKPTR)
8520 zdb_print_blkptr((blkptr_t *)(void *)
8521 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8522 else if (flags & ZDB_FLAG_RAW)
8523 zdb_dump_block_raw(buf, lsize, flags);
8524 else if (flags & ZDB_FLAG_INDIRECT)
8525 zdb_dump_indirect((blkptr_t *)buf,
8526 orig_lsize / sizeof (blkptr_t), flags);
8527 else if (flags & ZDB_FLAG_GBH)
8528 zdb_dump_gbh(buf, flags);
8529 else
8530 zdb_dump_block(thing, buf, lsize, flags);
8531
8532 /*
8533 * If :c was specified, iterate through the checksum table to
8534 * calculate and display each checksum for our specified
8535 * DVA and length.
8536 */
8537 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8538 !(flags & ZDB_FLAG_GBH)) {
8539 zio_t *czio;
8540 (void) printf("\n");
8541 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8542 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8543
8544 if ((zio_checksum_table[ck].ci_flags &
8545 ZCHECKSUM_FLAG_EMBEDDED) ||
8546 ck == ZIO_CHECKSUM_NOPARITY) {
8547 continue;
8548 }
8549 BP_SET_CHECKSUM(bp, ck);
8550 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8551 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8552 czio->io_bp = bp;
8553
8554 if (vd == vd->vdev_top) {
8555 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8556 NULL, NULL,
8557 ZIO_PRIORITY_SYNC_READ,
8558 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8559 ZIO_FLAG_DONT_RETRY, NULL));
8560 } else {
8561 zio_nowait(zio_vdev_child_io(czio, bp, vd,
8562 offset, pabd, psize, ZIO_TYPE_READ,
8563 ZIO_PRIORITY_SYNC_READ,
8564 ZIO_FLAG_DONT_CACHE |
8565 ZIO_FLAG_DONT_PROPAGATE |
8566 ZIO_FLAG_DONT_RETRY |
8567 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8568 ZIO_FLAG_SPECULATIVE |
8569 ZIO_FLAG_OPTIONAL, NULL, NULL));
8570 }
8571 error = zio_wait(czio);
8572 if (error == 0 || error == ECKSUM) {
8573 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
8574 ck_zio->io_offset =
8575 DVA_GET_OFFSET(&bp->blk_dva[0]);
8576 ck_zio->io_bp = bp;
8577 zio_checksum_compute(ck_zio, ck, pabd, lsize);
8578 printf(
8579 "%12s\t"
8580 "cksum=%016llx:%016llx:%016llx:%016llx\n",
8581 zio_checksum_table[ck].ci_name,
8582 (u_longlong_t)bp->blk_cksum.zc_word[0],
8583 (u_longlong_t)bp->blk_cksum.zc_word[1],
8584 (u_longlong_t)bp->blk_cksum.zc_word[2],
8585 (u_longlong_t)bp->blk_cksum.zc_word[3]);
8586 zio_wait(ck_zio);
8587 } else {
8588 printf("error %d reading block\n", error);
8589 }
8590 spa_config_exit(spa, SCL_STATE, FTAG);
8591 }
8592 }
8593
8594 if (borrowed)
8595 abd_return_buf_copy(pabd, buf, lsize);
8596
8597 out:
8598 abd_free(pabd);
8599 umem_free(lbuf, SPA_MAXBLOCKSIZE);
8600 done:
8601 free(flagstr);
8602 free(dup);
8603 }
8604
8605 static void
8606 zdb_embedded_block(char *thing)
8607 {
8608 blkptr_t bp = {{{{0}}}};
8609 unsigned long long *words = (void *)&bp;
8610 char *buf;
8611 int err;
8612
8613 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8614 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8615 words + 0, words + 1, words + 2, words + 3,
8616 words + 4, words + 5, words + 6, words + 7,
8617 words + 8, words + 9, words + 10, words + 11,
8618 words + 12, words + 13, words + 14, words + 15);
8619 if (err != 16) {
8620 (void) fprintf(stderr, "invalid input format\n");
8621 exit(1);
8622 }
8623 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8624 buf = malloc(SPA_MAXBLOCKSIZE);
8625 if (buf == NULL) {
8626 (void) fprintf(stderr, "out of memory\n");
8627 exit(1);
8628 }
8629 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8630 if (err != 0) {
8631 (void) fprintf(stderr, "decode failed: %u\n", err);
8632 exit(1);
8633 }
8634 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8635 free(buf);
8636 }
8637
8638 /* check for valid hex or decimal numeric string */
8639 static boolean_t
8640 zdb_numeric(char *str)
8641 {
8642 int i = 0;
8643
8644 if (strlen(str) == 0)
8645 return (B_FALSE);
8646 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8647 i = 2;
8648 for (; i < strlen(str); i++) {
8649 if (!isxdigit(str[i]))
8650 return (B_FALSE);
8651 }
8652 return (B_TRUE);
8653 }
8654
8655 int
8656 main(int argc, char **argv)
8657 {
8658 int c;
8659 spa_t *spa = NULL;
8660 objset_t *os = NULL;
8661 int dump_all = 1;
8662 int verbose = 0;
8663 int error = 0;
8664 char **searchdirs = NULL;
8665 int nsearch = 0;
8666 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8667 nvlist_t *policy = NULL;
8668 uint64_t max_txg = UINT64_MAX;
8669 int64_t objset_id = -1;
8670 uint64_t object;
8671 int flags = ZFS_IMPORT_MISSING_LOG;
8672 int rewind = ZPOOL_NEVER_REWIND;
8673 char *spa_config_path_env, *objset_str;
8674 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8675 nvlist_t *cfg = NULL;
8676
8677 dprintf_setup(&argc, argv);
8678
8679 /*
8680 * If there is an environment variable SPA_CONFIG_PATH it overrides
8681 * default spa_config_path setting. If -U flag is specified it will
8682 * override this environment variable settings once again.
8683 */
8684 spa_config_path_env = getenv("SPA_CONFIG_PATH");
8685 if (spa_config_path_env != NULL)
8686 spa_config_path = spa_config_path_env;
8687
8688 /*
8689 * For performance reasons, we set this tunable down. We do so before
8690 * the arg parsing section so that the user can override this value if
8691 * they choose.
8692 */
8693 zfs_btree_verify_intensity = 3;
8694
8695 struct option long_options[] = {
8696 {"ignore-assertions", no_argument, NULL, 'A'},
8697 {"block-stats", no_argument, NULL, 'b'},
8698 {"checksum", no_argument, NULL, 'c'},
8699 {"config", no_argument, NULL, 'C'},
8700 {"datasets", no_argument, NULL, 'd'},
8701 {"dedup-stats", no_argument, NULL, 'D'},
8702 {"exported", no_argument, NULL, 'e'},
8703 {"embedded-block-pointer", no_argument, NULL, 'E'},
8704 {"automatic-rewind", no_argument, NULL, 'F'},
8705 {"dump-debug-msg", no_argument, NULL, 'G'},
8706 {"history", no_argument, NULL, 'h'},
8707 {"intent-logs", no_argument, NULL, 'i'},
8708 {"inflight", required_argument, NULL, 'I'},
8709 {"checkpointed-state", no_argument, NULL, 'k'},
8710 {"key", required_argument, NULL, 'K'},
8711 {"label", no_argument, NULL, 'l'},
8712 {"disable-leak-tracking", no_argument, NULL, 'L'},
8713 {"metaslabs", no_argument, NULL, 'm'},
8714 {"metaslab-groups", no_argument, NULL, 'M'},
8715 {"numeric", no_argument, NULL, 'N'},
8716 {"option", required_argument, NULL, 'o'},
8717 {"object-lookups", no_argument, NULL, 'O'},
8718 {"path", required_argument, NULL, 'p'},
8719 {"parseable", no_argument, NULL, 'P'},
8720 {"skip-label", no_argument, NULL, 'q'},
8721 {"copy-object", no_argument, NULL, 'r'},
8722 {"read-block", no_argument, NULL, 'R'},
8723 {"io-stats", no_argument, NULL, 's'},
8724 {"simulate-dedup", no_argument, NULL, 'S'},
8725 {"txg", required_argument, NULL, 't'},
8726 {"uberblock", no_argument, NULL, 'u'},
8727 {"cachefile", required_argument, NULL, 'U'},
8728 {"verbose", no_argument, NULL, 'v'},
8729 {"verbatim", no_argument, NULL, 'V'},
8730 {"dump-blocks", required_argument, NULL, 'x'},
8731 {"extreme-rewind", no_argument, NULL, 'X'},
8732 {"all-reconstruction", no_argument, NULL, 'Y'},
8733 {"livelist", no_argument, NULL, 'y'},
8734 {"zstd-headers", no_argument, NULL, 'Z'},
8735 {0, 0, 0, 0}
8736 };
8737
8738 while ((c = getopt_long(argc, argv,
8739 "AbcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
8740 long_options, NULL)) != -1) {
8741 switch (c) {
8742 case 'b':
8743 case 'c':
8744 case 'C':
8745 case 'd':
8746 case 'D':
8747 case 'E':
8748 case 'G':
8749 case 'h':
8750 case 'i':
8751 case 'l':
8752 case 'm':
8753 case 'M':
8754 case 'N':
8755 case 'O':
8756 case 'r':
8757 case 'R':
8758 case 's':
8759 case 'S':
8760 case 'u':
8761 case 'y':
8762 case 'Z':
8763 dump_opt[c]++;
8764 dump_all = 0;
8765 break;
8766 case 'A':
8767 case 'e':
8768 case 'F':
8769 case 'k':
8770 case 'L':
8771 case 'P':
8772 case 'q':
8773 case 'X':
8774 dump_opt[c]++;
8775 break;
8776 case 'Y':
8777 zfs_reconstruct_indirect_combinations_max = INT_MAX;
8778 zfs_deadman_enabled = 0;
8779 break;
8780 /* NB: Sort single match options below. */
8781 case 'I':
8782 max_inflight_bytes = strtoull(optarg, NULL, 0);
8783 if (max_inflight_bytes == 0) {
8784 (void) fprintf(stderr, "maximum number "
8785 "of inflight bytes must be greater "
8786 "than 0\n");
8787 usage();
8788 }
8789 break;
8790 case 'K':
8791 dump_opt[c]++;
8792 key_material = strdup(optarg);
8793 /* redact key material in process table */
8794 while (*optarg != '\0') { *optarg++ = '*'; }
8795 break;
8796 case 'o':
8797 error = set_global_var(optarg);
8798 if (error != 0)
8799 usage();
8800 break;
8801 case 'p':
8802 if (searchdirs == NULL) {
8803 searchdirs = umem_alloc(sizeof (char *),
8804 UMEM_NOFAIL);
8805 } else {
8806 char **tmp = umem_alloc((nsearch + 1) *
8807 sizeof (char *), UMEM_NOFAIL);
8808 memcpy(tmp, searchdirs, nsearch *
8809 sizeof (char *));
8810 umem_free(searchdirs,
8811 nsearch * sizeof (char *));
8812 searchdirs = tmp;
8813 }
8814 searchdirs[nsearch++] = optarg;
8815 break;
8816 case 't':
8817 max_txg = strtoull(optarg, NULL, 0);
8818 if (max_txg < TXG_INITIAL) {
8819 (void) fprintf(stderr, "incorrect txg "
8820 "specified: %s\n", optarg);
8821 usage();
8822 }
8823 break;
8824 case 'U':
8825 spa_config_path = optarg;
8826 if (spa_config_path[0] != '/') {
8827 (void) fprintf(stderr,
8828 "cachefile must be an absolute path "
8829 "(i.e. start with a slash)\n");
8830 usage();
8831 }
8832 break;
8833 case 'v':
8834 verbose++;
8835 break;
8836 case 'V':
8837 flags = ZFS_IMPORT_VERBATIM;
8838 break;
8839 case 'x':
8840 vn_dumpdir = optarg;
8841 break;
8842 default:
8843 usage();
8844 break;
8845 }
8846 }
8847
8848 if (!dump_opt['e'] && searchdirs != NULL) {
8849 (void) fprintf(stderr, "-p option requires use of -e\n");
8850 usage();
8851 }
8852 #if defined(_LP64)
8853 /*
8854 * ZDB does not typically re-read blocks; therefore limit the ARC
8855 * to 256 MB, which can be used entirely for metadata.
8856 */
8857 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
8858 zfs_arc_max = 256 * 1024 * 1024;
8859 #endif
8860
8861 /*
8862 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
8863 * "zdb -b" uses traversal prefetch which uses async reads.
8864 * For good performance, let several of them be active at once.
8865 */
8866 zfs_vdev_async_read_max_active = 10;
8867
8868 /*
8869 * Disable reference tracking for better performance.
8870 */
8871 reference_tracking_enable = B_FALSE;
8872
8873 /*
8874 * Do not fail spa_load when spa_load_verify fails. This is needed
8875 * to load non-idle pools.
8876 */
8877 spa_load_verify_dryrun = B_TRUE;
8878
8879 /*
8880 * ZDB should have ability to read spacemaps.
8881 */
8882 spa_mode_readable_spacemaps = B_TRUE;
8883
8884 kernel_init(SPA_MODE_READ);
8885
8886 if (dump_all)
8887 verbose = MAX(verbose, 1);
8888
8889 for (c = 0; c < 256; c++) {
8890 if (dump_all && strchr("AeEFkKlLNOPrRSXy", c) == NULL)
8891 dump_opt[c] = 1;
8892 if (dump_opt[c])
8893 dump_opt[c] += verbose;
8894 }
8895
8896 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
8897 zfs_recover = (dump_opt['A'] > 1);
8898
8899 argc -= optind;
8900 argv += optind;
8901 if (argc < 2 && dump_opt['R'])
8902 usage();
8903
8904 if (dump_opt['E']) {
8905 if (argc != 1)
8906 usage();
8907 zdb_embedded_block(argv[0]);
8908 return (0);
8909 }
8910
8911 if (argc < 1) {
8912 if (!dump_opt['e'] && dump_opt['C']) {
8913 dump_cachefile(spa_config_path);
8914 return (0);
8915 }
8916 usage();
8917 }
8918
8919 if (dump_opt['l'])
8920 return (dump_label(argv[0]));
8921
8922 if (dump_opt['O']) {
8923 if (argc != 2)
8924 usage();
8925 dump_opt['v'] = verbose + 3;
8926 return (dump_path(argv[0], argv[1], NULL));
8927 }
8928 if (dump_opt['r']) {
8929 target_is_spa = B_FALSE;
8930 if (argc != 3)
8931 usage();
8932 dump_opt['v'] = verbose;
8933 error = dump_path(argv[0], argv[1], &object);
8934 if (error != 0)
8935 fatal("internal error: %s", strerror(error));
8936 }
8937
8938 if (dump_opt['X'] || dump_opt['F'])
8939 rewind = ZPOOL_DO_REWIND |
8940 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
8941
8942 /* -N implies -d */
8943 if (dump_opt['N'] && dump_opt['d'] == 0)
8944 dump_opt['d'] = dump_opt['N'];
8945
8946 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
8947 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
8948 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
8949 fatal("internal error: %s", strerror(ENOMEM));
8950
8951 error = 0;
8952 target = argv[0];
8953
8954 if (strpbrk(target, "/@") != NULL) {
8955 size_t targetlen;
8956
8957 target_pool = strdup(target);
8958 *strpbrk(target_pool, "/@") = '\0';
8959
8960 target_is_spa = B_FALSE;
8961 targetlen = strlen(target);
8962 if (targetlen && target[targetlen - 1] == '/')
8963 target[targetlen - 1] = '\0';
8964
8965 /*
8966 * See if an objset ID was supplied (-d <pool>/<objset ID>).
8967 * To disambiguate tank/100, consider the 100 as objsetID
8968 * if -N was given, otherwise 100 is an objsetID iff
8969 * tank/100 as a named dataset fails on lookup.
8970 */
8971 objset_str = strchr(target, '/');
8972 if (objset_str && strlen(objset_str) > 1 &&
8973 zdb_numeric(objset_str + 1)) {
8974 char *endptr;
8975 errno = 0;
8976 objset_str++;
8977 objset_id = strtoull(objset_str, &endptr, 0);
8978 /* dataset 0 is the same as opening the pool */
8979 if (errno == 0 && endptr != objset_str &&
8980 objset_id != 0) {
8981 if (dump_opt['N'])
8982 dataset_lookup = B_TRUE;
8983 }
8984 /* normal dataset name not an objset ID */
8985 if (endptr == objset_str) {
8986 objset_id = -1;
8987 }
8988 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
8989 dump_opt['N']) {
8990 printf("Supply a numeric objset ID with -N\n");
8991 exit(1);
8992 }
8993 } else {
8994 target_pool = target;
8995 }
8996
8997 if (dump_opt['e']) {
8998 importargs_t args = { 0 };
8999
9000 args.paths = nsearch;
9001 args.path = searchdirs;
9002 args.can_be_active = B_TRUE;
9003
9004 libpc_handle_t lpch = {
9005 .lpc_lib_handle = NULL,
9006 .lpc_ops = &libzpool_config_ops,
9007 .lpc_printerr = B_TRUE
9008 };
9009 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9010
9011 if (error == 0) {
9012
9013 if (nvlist_add_nvlist(cfg,
9014 ZPOOL_LOAD_POLICY, policy) != 0) {
9015 fatal("can't open '%s': %s",
9016 target, strerror(ENOMEM));
9017 }
9018
9019 if (dump_opt['C'] > 1) {
9020 (void) printf("\nConfiguration for import:\n");
9021 dump_nvlist(cfg, 8);
9022 }
9023
9024 /*
9025 * Disable the activity check to allow examination of
9026 * active pools.
9027 */
9028 error = spa_import(target_pool, cfg, NULL,
9029 flags | ZFS_IMPORT_SKIP_MMP);
9030 }
9031 }
9032
9033 if (searchdirs != NULL) {
9034 umem_free(searchdirs, nsearch * sizeof (char *));
9035 searchdirs = NULL;
9036 }
9037
9038 /*
9039 * import_checkpointed_state makes the assumption that the
9040 * target pool that we pass it is already part of the spa
9041 * namespace. Because of that we need to make sure to call
9042 * it always after the -e option has been processed, which
9043 * imports the pool to the namespace if it's not in the
9044 * cachefile.
9045 */
9046 char *checkpoint_pool = NULL;
9047 char *checkpoint_target = NULL;
9048 if (dump_opt['k']) {
9049 checkpoint_pool = import_checkpointed_state(target, cfg,
9050 &checkpoint_target);
9051
9052 if (checkpoint_target != NULL)
9053 target = checkpoint_target;
9054 }
9055
9056 if (cfg != NULL) {
9057 nvlist_free(cfg);
9058 cfg = NULL;
9059 }
9060
9061 if (target_pool != target)
9062 free(target_pool);
9063
9064 if (error == 0) {
9065 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9066 ASSERT(checkpoint_pool != NULL);
9067 ASSERT(checkpoint_target == NULL);
9068
9069 error = spa_open(checkpoint_pool, &spa, FTAG);
9070 if (error != 0) {
9071 fatal("Tried to open pool \"%s\" but "
9072 "spa_open() failed with error %d\n",
9073 checkpoint_pool, error);
9074 }
9075
9076 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
9077 zdb_set_skip_mmp(target);
9078 error = spa_open_rewind(target, &spa, FTAG, policy,
9079 NULL);
9080 if (error) {
9081 /*
9082 * If we're missing the log device then
9083 * try opening the pool after clearing the
9084 * log state.
9085 */
9086 mutex_enter(&spa_namespace_lock);
9087 if ((spa = spa_lookup(target)) != NULL &&
9088 spa->spa_log_state == SPA_LOG_MISSING) {
9089 spa->spa_log_state = SPA_LOG_CLEAR;
9090 error = 0;
9091 }
9092 mutex_exit(&spa_namespace_lock);
9093
9094 if (!error) {
9095 error = spa_open_rewind(target, &spa,
9096 FTAG, policy, NULL);
9097 }
9098 }
9099 } else if (strpbrk(target, "#") != NULL) {
9100 dsl_pool_t *dp;
9101 error = dsl_pool_hold(target, FTAG, &dp);
9102 if (error != 0) {
9103 fatal("can't dump '%s': %s", target,
9104 strerror(error));
9105 }
9106 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9107 dsl_pool_rele(dp, FTAG);
9108 if (error != 0) {
9109 fatal("can't dump '%s': %s", target,
9110 strerror(error));
9111 }
9112 return (error);
9113 } else {
9114 target_pool = strdup(target);
9115 if (strpbrk(target, "/@") != NULL)
9116 *strpbrk(target_pool, "/@") = '\0';
9117
9118 zdb_set_skip_mmp(target);
9119 /*
9120 * If -N was supplied, the user has indicated that
9121 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9122 * we first assume that the dataset string is the
9123 * dataset name. If dmu_objset_hold fails with the
9124 * dataset string, and we have an objset_id, retry the
9125 * lookup with the objsetID.
9126 */
9127 boolean_t retry = B_TRUE;
9128 retry_lookup:
9129 if (dataset_lookup == B_TRUE) {
9130 /*
9131 * Use the supplied id to get the name
9132 * for open_objset.
9133 */
9134 error = spa_open(target_pool, &spa, FTAG);
9135 if (error == 0) {
9136 error = name_from_objset_id(spa,
9137 objset_id, dsname);
9138 spa_close(spa, FTAG);
9139 if (error == 0)
9140 target = dsname;
9141 }
9142 }
9143 if (error == 0) {
9144 if (objset_id > 0 && retry) {
9145 int err = dmu_objset_hold(target, FTAG,
9146 &os);
9147 if (err) {
9148 dataset_lookup = B_TRUE;
9149 retry = B_FALSE;
9150 goto retry_lookup;
9151 } else {
9152 dmu_objset_rele(os, FTAG);
9153 }
9154 }
9155 error = open_objset(target, FTAG, &os);
9156 }
9157 if (error == 0)
9158 spa = dmu_objset_spa(os);
9159 free(target_pool);
9160 }
9161 }
9162 nvlist_free(policy);
9163
9164 if (error)
9165 fatal("can't open '%s': %s", target, strerror(error));
9166
9167 /*
9168 * Set the pool failure mode to panic in order to prevent the pool
9169 * from suspending. A suspended I/O will have no way to resume and
9170 * can prevent the zdb(8) command from terminating as expected.
9171 */
9172 if (spa != NULL)
9173 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9174
9175 argv++;
9176 argc--;
9177 if (dump_opt['r']) {
9178 error = zdb_copy_object(os, object, argv[1]);
9179 } else if (!dump_opt['R']) {
9180 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9181 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9182 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9183 flagbits['z'] = ZOR_FLAG_ZAP;
9184 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9185
9186 if (argc > 0 && dump_opt['d']) {
9187 zopt_object_args = argc;
9188 zopt_object_ranges = calloc(zopt_object_args,
9189 sizeof (zopt_object_range_t));
9190 for (unsigned i = 0; i < zopt_object_args; i++) {
9191 int err;
9192 const char *msg = NULL;
9193
9194 err = parse_object_range(argv[i],
9195 &zopt_object_ranges[i], &msg);
9196 if (err != 0)
9197 fatal("Bad object or range: '%s': %s\n",
9198 argv[i], msg ?: "");
9199 }
9200 } else if (argc > 0 && dump_opt['m']) {
9201 zopt_metaslab_args = argc;
9202 zopt_metaslab = calloc(zopt_metaslab_args,
9203 sizeof (uint64_t));
9204 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9205 errno = 0;
9206 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9207 if (zopt_metaslab[i] == 0 && errno != 0)
9208 fatal("bad number %s: %s", argv[i],
9209 strerror(errno));
9210 }
9211 }
9212 if (os != NULL) {
9213 dump_objset(os);
9214 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9215 dump_objset(spa->spa_meta_objset);
9216 } else {
9217 dump_zpool(spa);
9218 }
9219 } else {
9220 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9221 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9222 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9223 flagbits['e'] = ZDB_FLAG_BSWAP;
9224 flagbits['g'] = ZDB_FLAG_GBH;
9225 flagbits['i'] = ZDB_FLAG_INDIRECT;
9226 flagbits['r'] = ZDB_FLAG_RAW;
9227 flagbits['v'] = ZDB_FLAG_VERBOSE;
9228
9229 for (int i = 0; i < argc; i++)
9230 zdb_read_block(argv[i], spa);
9231 }
9232
9233 if (dump_opt['k']) {
9234 free(checkpoint_pool);
9235 if (!target_is_spa)
9236 free(checkpoint_target);
9237 }
9238
9239 if (os != NULL) {
9240 close_objset(os, FTAG);
9241 } else {
9242 spa_close(spa, FTAG);
9243 }
9244
9245 fuid_table_destroy();
9246
9247 dump_debug_buffer();
9248
9249 kernel_fini();
9250
9251 return (error);
9252 }