]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzfs/libzfs_mount.c
fdfdd8d2808a69aa82ad74e2043a7cbc26337989
[mirror_zfs.git] / lib / libzfs / libzfs_mount.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014, 2021 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright 2017 RackTop Systems.
28 * Copyright (c) 2018 Datto Inc.
29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30 */
31
32 /*
33 * Routines to manage ZFS mounts. We separate all the nasty routines that have
34 * to deal with the OS. The following functions are the main entry points --
35 * they are used by mount and unmount and when changing a filesystem's
36 * mountpoint.
37 *
38 * zfs_is_mounted()
39 * zfs_mount()
40 * zfs_mount_at()
41 * zfs_unmount()
42 * zfs_unmountall()
43 *
44 * This file also contains the functions used to manage sharing filesystems:
45 *
46 * zfs_is_shared()
47 * zfs_share()
48 * zfs_unshare()
49 * zfs_unshareall()
50 * zfs_commit_shares()
51 *
52 * The following functions are available for pool consumers, and will
53 * mount/unmount and share/unshare all datasets within pool:
54 *
55 * zpool_enable_datasets()
56 * zpool_disable_datasets()
57 */
58
59 #include <dirent.h>
60 #include <dlfcn.h>
61 #include <errno.h>
62 #include <fcntl.h>
63 #include <libgen.h>
64 #include <libintl.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <zone.h>
70 #include <sys/mntent.h>
71 #include <sys/mount.h>
72 #include <sys/stat.h>
73 #include <sys/vfs.h>
74 #include <sys/dsl_crypt.h>
75
76 #include <libzfs.h>
77
78 #include "libzfs_impl.h"
79 #include <thread_pool.h>
80
81 #include <libshare.h>
82 #include <sys/systeminfo.h>
83 #define MAXISALEN 257 /* based on sysinfo(2) man page */
84
85 static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */
86
87 static void zfs_mount_task(void *);
88
89 static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
90 [SA_PROTOCOL_NFS] =
91 {ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
92 [SA_PROTOCOL_SMB] =
93 {ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
94 };
95
96 static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
97 SA_PROTOCOL_NFS,
98 SA_PROTOCOL_SMB,
99 SA_NO_PROTOCOL
100 };
101
102
103
104 static boolean_t
105 dir_is_empty_stat(const char *dirname)
106 {
107 struct stat st;
108
109 /*
110 * We only want to return false if the given path is a non empty
111 * directory, all other errors are handled elsewhere.
112 */
113 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
114 return (B_TRUE);
115 }
116
117 /*
118 * An empty directory will still have two entries in it, one
119 * entry for each of "." and "..".
120 */
121 if (st.st_size > 2) {
122 return (B_FALSE);
123 }
124
125 return (B_TRUE);
126 }
127
128 static boolean_t
129 dir_is_empty_readdir(const char *dirname)
130 {
131 DIR *dirp;
132 struct dirent64 *dp;
133 int dirfd;
134
135 if ((dirfd = openat(AT_FDCWD, dirname,
136 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
137 return (B_TRUE);
138 }
139
140 if ((dirp = fdopendir(dirfd)) == NULL) {
141 (void) close(dirfd);
142 return (B_TRUE);
143 }
144
145 while ((dp = readdir64(dirp)) != NULL) {
146
147 if (strcmp(dp->d_name, ".") == 0 ||
148 strcmp(dp->d_name, "..") == 0)
149 continue;
150
151 (void) closedir(dirp);
152 return (B_FALSE);
153 }
154
155 (void) closedir(dirp);
156 return (B_TRUE);
157 }
158
159 /*
160 * Returns true if the specified directory is empty. If we can't open the
161 * directory at all, return true so that the mount can fail with a more
162 * informative error message.
163 */
164 static boolean_t
165 dir_is_empty(const char *dirname)
166 {
167 struct statfs64 st;
168
169 /*
170 * If the statvfs call fails or the filesystem is not a ZFS
171 * filesystem, fall back to the slow path which uses readdir.
172 */
173 if ((statfs64(dirname, &st) != 0) ||
174 (st.f_type != ZFS_SUPER_MAGIC)) {
175 return (dir_is_empty_readdir(dirname));
176 }
177
178 /*
179 * At this point, we know the provided path is on a ZFS
180 * filesystem, so we can use stat instead of readdir to
181 * determine if the directory is empty or not. We try to avoid
182 * using readdir because that requires opening "dirname"; this
183 * open file descriptor can potentially end up in a child
184 * process if there's a concurrent fork, thus preventing the
185 * zfs_mount() from otherwise succeeding (the open file
186 * descriptor inherited by the child process will cause the
187 * parent's mount to fail with EBUSY). The performance
188 * implications of replacing the open, read, and close with a
189 * single stat is nice; but is not the main motivation for the
190 * added complexity.
191 */
192 return (dir_is_empty_stat(dirname));
193 }
194
195 /*
196 * Checks to see if the mount is active. If the filesystem is mounted, we fill
197 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
198 * 0.
199 */
200 boolean_t
201 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
202 {
203 struct mnttab entry;
204
205 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
206 return (B_FALSE);
207
208 if (where != NULL)
209 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
210
211 return (B_TRUE);
212 }
213
214 boolean_t
215 zfs_is_mounted(zfs_handle_t *zhp, char **where)
216 {
217 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
218 }
219
220 /*
221 * Checks any higher order concerns about whether the given dataset is
222 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes
223 * that the caller has verified the sanity of mounting the dataset at
224 * its mountpoint to the extent the caller wants.
225 */
226 static boolean_t
227 zfs_is_mountable_internal(zfs_handle_t *zhp)
228 {
229 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
230 getzoneid() == GLOBAL_ZONEID)
231 return (B_FALSE);
232
233 return (B_TRUE);
234 }
235
236 /*
237 * Returns true if the given dataset is mountable, false otherwise. Returns the
238 * mountpoint in 'buf'.
239 */
240 static boolean_t
241 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
242 zprop_source_t *source, int flags)
243 {
244 char sourceloc[MAXNAMELEN];
245 zprop_source_t sourcetype;
246
247 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
248 B_FALSE))
249 return (B_FALSE);
250
251 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
252 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
253
254 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
255 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
256 return (B_FALSE);
257
258 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
259 return (B_FALSE);
260
261 if (!zfs_is_mountable_internal(zhp))
262 return (B_FALSE);
263
264 if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
265 return (B_FALSE);
266
267 if (source)
268 *source = sourcetype;
269
270 return (B_TRUE);
271 }
272
273 /*
274 * The filesystem is mounted by invoking the system mount utility rather
275 * than by the system call mount(2). This ensures that the /etc/mtab
276 * file is correctly locked for the update. Performing our own locking
277 * and /etc/mtab update requires making an unsafe assumption about how
278 * the mount utility performs its locking. Unfortunately, this also means
279 * in the case of a mount failure we do not have the exact errno. We must
280 * make due with return value from the mount process.
281 *
282 * In the long term a shared library called libmount is under development
283 * which provides a common API to address the locking and errno issues.
284 * Once the standard mount utility has been updated to use this library
285 * we can add an autoconf check to conditionally use it.
286 *
287 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
288 */
289
290 static int
291 zfs_add_option(zfs_handle_t *zhp, char *options, int len,
292 zfs_prop_t prop, const char *on, const char *off)
293 {
294 char *source;
295 uint64_t value;
296
297 /* Skip adding duplicate default options */
298 if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
299 return (0);
300
301 /*
302 * zfs_prop_get_int() is not used to ensure our mount options
303 * are not influenced by the current /proc/self/mounts contents.
304 */
305 value = getprop_uint64(zhp, prop, &source);
306
307 (void) strlcat(options, ",", len);
308 (void) strlcat(options, value ? on : off, len);
309
310 return (0);
311 }
312
313 static int
314 zfs_add_options(zfs_handle_t *zhp, char *options, int len)
315 {
316 int error = 0;
317
318 error = zfs_add_option(zhp, options, len,
319 ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
320 /*
321 * don't add relatime/strictatime when atime=off, otherwise strictatime
322 * will force atime=on
323 */
324 if (strstr(options, MNTOPT_NOATIME) == NULL) {
325 error = zfs_add_option(zhp, options, len,
326 ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
327 }
328 error = error ? error : zfs_add_option(zhp, options, len,
329 ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
330 error = error ? error : zfs_add_option(zhp, options, len,
331 ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
332 error = error ? error : zfs_add_option(zhp, options, len,
333 ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
334 error = error ? error : zfs_add_option(zhp, options, len,
335 ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
336 error = error ? error : zfs_add_option(zhp, options, len,
337 ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
338
339 return (error);
340 }
341
342 int
343 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
344 {
345 char mountpoint[ZFS_MAXPROPLEN];
346
347 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
348 flags))
349 return (0);
350
351 return (zfs_mount_at(zhp, options, flags, mountpoint));
352 }
353
354 /*
355 * Mount the given filesystem.
356 */
357 int
358 zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
359 const char *mountpoint)
360 {
361 struct stat buf;
362 char mntopts[MNT_LINE_MAX];
363 char overlay[ZFS_MAXPROPLEN];
364 char prop_encroot[MAXNAMELEN];
365 boolean_t is_encroot;
366 zfs_handle_t *encroot_hp = zhp;
367 libzfs_handle_t *hdl = zhp->zfs_hdl;
368 uint64_t keystatus;
369 int remount = 0, rc;
370
371 if (options == NULL) {
372 (void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
373 } else {
374 (void) strlcpy(mntopts, options, sizeof (mntopts));
375 }
376
377 if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
378 remount = 1;
379
380 /* Potentially duplicates some checks if invoked by zfs_mount(). */
381 if (!zfs_is_mountable_internal(zhp))
382 return (0);
383
384 /*
385 * If the pool is imported read-only then all mounts must be read-only
386 */
387 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
388 (void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
389
390 /*
391 * Append default mount options which apply to the mount point.
392 * This is done because under Linux (unlike Solaris) multiple mount
393 * points may reference a single super block. This means that just
394 * given a super block there is no back reference to update the per
395 * mount point options.
396 */
397 rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
398 if (rc) {
399 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
400 "default options unavailable"));
401 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
402 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
403 mountpoint));
404 }
405
406 /*
407 * If the filesystem is encrypted the key must be loaded in order to
408 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
409 * or not we attempt to load the keys. Note: we must call
410 * zfs_refresh_properties() here since some callers of this function
411 * (most notably zpool_enable_datasets()) may implicitly load our key
412 * by loading the parent's key first.
413 */
414 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
415 zfs_refresh_properties(zhp);
416 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
417
418 /*
419 * If the key is unavailable and MS_CRYPT is set give the
420 * user a chance to enter the key. Otherwise just fail
421 * immediately.
422 */
423 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
424 if (flags & MS_CRYPT) {
425 rc = zfs_crypto_get_encryption_root(zhp,
426 &is_encroot, prop_encroot);
427 if (rc) {
428 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
429 "Failed to get encryption root for "
430 "'%s'."), zfs_get_name(zhp));
431 return (rc);
432 }
433
434 if (!is_encroot) {
435 encroot_hp = zfs_open(hdl, prop_encroot,
436 ZFS_TYPE_DATASET);
437 if (encroot_hp == NULL)
438 return (hdl->libzfs_error);
439 }
440
441 rc = zfs_crypto_load_key(encroot_hp,
442 B_FALSE, NULL);
443
444 if (!is_encroot)
445 zfs_close(encroot_hp);
446 if (rc)
447 return (rc);
448 } else {
449 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
450 "encryption key not loaded"));
451 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
452 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
453 mountpoint));
454 }
455 }
456
457 }
458
459 /*
460 * Append zfsutil option so the mount helper allow the mount
461 */
462 strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
463
464 /* Create the directory if it doesn't already exist */
465 if (lstat(mountpoint, &buf) != 0) {
466 if (mkdirp(mountpoint, 0755) != 0) {
467 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
468 "failed to create mountpoint: %s"),
469 strerror(errno));
470 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
471 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
472 mountpoint));
473 }
474 }
475
476 /*
477 * Overlay mounts are enabled by default but may be disabled
478 * via the 'overlay' property. The -O flag remains for compatibility.
479 */
480 if (!(flags & MS_OVERLAY)) {
481 if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
482 sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
483 if (strcmp(overlay, "on") == 0) {
484 flags |= MS_OVERLAY;
485 }
486 }
487 }
488
489 /*
490 * Determine if the mountpoint is empty. If so, refuse to perform the
491 * mount. We don't perform this check if 'remount' is
492 * specified or if overlay option (-O) is given
493 */
494 if ((flags & MS_OVERLAY) == 0 && !remount &&
495 !dir_is_empty(mountpoint)) {
496 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
497 "directory is not empty"));
498 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
499 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
500 }
501
502 /* perform the mount */
503 rc = do_mount(zhp, mountpoint, mntopts, flags);
504 if (rc) {
505 /*
506 * Generic errors are nasty, but there are just way too many
507 * from mount(), and they're well-understood. We pick a few
508 * common ones to improve upon.
509 */
510 if (rc == EBUSY) {
511 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
512 "mountpoint or dataset is busy"));
513 } else if (rc == EPERM) {
514 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
515 "Insufficient privileges"));
516 } else if (rc == ENOTSUP) {
517 int spa_version;
518
519 VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
520 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
521 "Can't mount a version %llu "
522 "file system on a version %d pool. Pool must be"
523 " upgraded to mount this file system."),
524 (u_longlong_t)zfs_prop_get_int(zhp,
525 ZFS_PROP_VERSION), spa_version);
526 } else {
527 zfs_error_aux(hdl, "%s", strerror(rc));
528 }
529 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
530 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
531 zhp->zfs_name));
532 }
533
534 /* remove the mounted entry before re-adding on remount */
535 if (remount)
536 libzfs_mnttab_remove(hdl, zhp->zfs_name);
537
538 /* add the mounted entry into our cache */
539 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
540 return (0);
541 }
542
543 /*
544 * Unmount a single filesystem.
545 */
546 static int
547 unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
548 {
549 int error;
550
551 error = do_unmount(zhp, mountpoint, flags);
552 if (error != 0) {
553 int libzfs_err;
554
555 switch (error) {
556 case EBUSY:
557 libzfs_err = EZFS_BUSY;
558 break;
559 case EIO:
560 libzfs_err = EZFS_IO;
561 break;
562 case ENOENT:
563 libzfs_err = EZFS_NOENT;
564 break;
565 case ENOMEM:
566 libzfs_err = EZFS_NOMEM;
567 break;
568 case EPERM:
569 libzfs_err = EZFS_PERM;
570 break;
571 default:
572 libzfs_err = EZFS_UMOUNTFAILED;
573 }
574 if (zhp) {
575 return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
576 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
577 mountpoint));
578 } else {
579 return (-1);
580 }
581 }
582
583 return (0);
584 }
585
586 /*
587 * Unmount the given filesystem.
588 */
589 int
590 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
591 {
592 libzfs_handle_t *hdl = zhp->zfs_hdl;
593 struct mnttab entry;
594 char *mntpt = NULL;
595 boolean_t encroot, unmounted = B_FALSE;
596
597 /* check to see if we need to unmount the filesystem */
598 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
599 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
600 /*
601 * mountpoint may have come from a call to
602 * getmnt/getmntany if it isn't NULL. If it is NULL,
603 * we know it comes from libzfs_mnttab_find which can
604 * then get freed later. We strdup it to play it safe.
605 */
606 if (mountpoint == NULL)
607 mntpt = zfs_strdup(hdl, entry.mnt_mountp);
608 else
609 mntpt = zfs_strdup(hdl, mountpoint);
610
611 /*
612 * Unshare and unmount the filesystem
613 */
614 if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
615 free(mntpt);
616 return (-1);
617 }
618 zfs_commit_shares(NULL);
619
620 if (unmount_one(zhp, mntpt, flags) != 0) {
621 free(mntpt);
622 (void) zfs_share(zhp, NULL);
623 zfs_commit_shares(NULL);
624 return (-1);
625 }
626
627 libzfs_mnttab_remove(hdl, zhp->zfs_name);
628 free(mntpt);
629 unmounted = B_TRUE;
630 }
631
632 /*
633 * If the MS_CRYPT flag is provided we must ensure we attempt to
634 * unload the dataset's key regardless of whether we did any work
635 * to unmount it. We only do this for encryption roots.
636 */
637 if ((flags & MS_CRYPT) != 0 &&
638 zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
639 zfs_refresh_properties(zhp);
640
641 if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
642 unmounted) {
643 (void) zfs_mount(zhp, NULL, 0);
644 return (-1);
645 }
646
647 if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
648 ZFS_KEYSTATUS_AVAILABLE &&
649 zfs_crypto_unload_key(zhp) != 0) {
650 (void) zfs_mount(zhp, NULL, 0);
651 return (-1);
652 }
653 }
654
655 zpool_disable_volume_os(zhp->zfs_name);
656
657 return (0);
658 }
659
660 /*
661 * Unmount this filesystem and any children inheriting the mountpoint property.
662 * To do this, just act like we're changing the mountpoint property, but don't
663 * remount the filesystems afterwards.
664 */
665 int
666 zfs_unmountall(zfs_handle_t *zhp, int flags)
667 {
668 prop_changelist_t *clp;
669 int ret;
670
671 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
672 CL_GATHER_ITER_MOUNTED, flags);
673 if (clp == NULL)
674 return (-1);
675
676 ret = changelist_prefix(clp);
677 changelist_free(clp);
678
679 return (ret);
680 }
681
682 /*
683 * Unshare a filesystem by mountpoint.
684 */
685 static int
686 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
687 enum sa_protocol proto)
688 {
689 int err = sa_disable_share(mountpoint, proto);
690 if (err != SA_OK)
691 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
692 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
693 name, sa_errorstr(err)));
694
695 return (0);
696 }
697
698 /*
699 * Share the given filesystem according to the options in the specified
700 * protocol specific properties (sharenfs, sharesmb). We rely
701 * on "libshare" to do the dirty work for us.
702 */
703 int
704 zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
705 {
706 char mountpoint[ZFS_MAXPROPLEN];
707 char shareopts[ZFS_MAXPROPLEN];
708 char sourcestr[ZFS_MAXPROPLEN];
709 const enum sa_protocol *curr_proto;
710 zprop_source_t sourcetype;
711 int err = 0;
712
713 if (proto == NULL)
714 proto = share_all_proto;
715
716 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
717 return (0);
718
719 for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
720 /*
721 * Return success if there are no share options.
722 */
723 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
724 shareopts, sizeof (shareopts), &sourcetype, sourcestr,
725 ZFS_MAXPROPLEN, B_FALSE) != 0 ||
726 strcmp(shareopts, "off") == 0)
727 continue;
728
729 /*
730 * If the 'zoned' property is set, then zfs_is_mountable()
731 * will have already bailed out if we are in the global zone.
732 * But local zones cannot be NFS servers, so we ignore it for
733 * local zones as well.
734 */
735 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
736 continue;
737
738 err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
739 *curr_proto);
740 if (err != SA_OK) {
741 return (zfs_error_fmt(zhp->zfs_hdl,
742 proto_table[*curr_proto].p_share_err,
743 dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
744 zfs_get_name(zhp), sa_errorstr(err)));
745 }
746
747 }
748 return (0);
749 }
750
751 /*
752 * Check to see if the filesystem is currently shared.
753 */
754 boolean_t
755 zfs_is_shared(zfs_handle_t *zhp, char **where,
756 const enum sa_protocol *proto)
757 {
758 char *mountpoint;
759 if (proto == NULL)
760 proto = share_all_proto;
761
762 if (ZFS_IS_VOLUME(zhp))
763 return (B_FALSE);
764
765 if (!zfs_is_mounted(zhp, &mountpoint))
766 return (B_FALSE);
767
768 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
769 if (sa_is_shared(mountpoint, *p)) {
770 if (where != NULL)
771 *where = mountpoint;
772 else
773 free(mountpoint);
774 return (B_TRUE);
775 }
776
777 free(mountpoint);
778 return (B_FALSE);
779 }
780
781 void
782 zfs_commit_shares(const enum sa_protocol *proto)
783 {
784 if (proto == NULL)
785 proto = share_all_proto;
786
787 for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
788 sa_commit_shares(*p);
789 }
790
791 /*
792 * Unshare the given filesystem.
793 */
794 int
795 zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
796 const enum sa_protocol *proto)
797 {
798 libzfs_handle_t *hdl = zhp->zfs_hdl;
799 struct mnttab entry;
800
801 if (proto == NULL)
802 proto = share_all_proto;
803
804 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
805 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
806
807 /* check to see if need to unmount the filesystem */
808 const char *mntpt = mountpoint ?: entry.mnt_mountp;
809
810 for (const enum sa_protocol *curr_proto = proto;
811 *curr_proto != SA_NO_PROTOCOL; curr_proto++)
812 if (sa_is_shared(mntpt, *curr_proto) &&
813 unshare_one(hdl, zhp->zfs_name,
814 mntpt, *curr_proto) != 0)
815 return (-1);
816 }
817
818 return (0);
819 }
820
821 /*
822 * Same as zfs_unmountall(), but for NFS and SMB unshares.
823 */
824 int
825 zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
826 {
827 prop_changelist_t *clp;
828 int ret;
829
830 if (proto == NULL)
831 proto = share_all_proto;
832
833 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
834 if (clp == NULL)
835 return (-1);
836
837 ret = changelist_unshare(clp, proto);
838 changelist_free(clp);
839
840 return (ret);
841 }
842
843 /*
844 * Remove the mountpoint associated with the current dataset, if necessary.
845 * We only remove the underlying directory if:
846 *
847 * - The mountpoint is not 'none' or 'legacy'
848 * - The mountpoint is non-empty
849 * - The mountpoint is the default or inherited
850 * - The 'zoned' property is set, or we're in a local zone
851 *
852 * Any other directories we leave alone.
853 */
854 void
855 remove_mountpoint(zfs_handle_t *zhp)
856 {
857 char mountpoint[ZFS_MAXPROPLEN];
858 zprop_source_t source;
859
860 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
861 &source, 0))
862 return;
863
864 if (source == ZPROP_SRC_DEFAULT ||
865 source == ZPROP_SRC_INHERITED) {
866 /*
867 * Try to remove the directory, silently ignoring any errors.
868 * The filesystem may have since been removed or moved around,
869 * and this error isn't really useful to the administrator in
870 * any way.
871 */
872 (void) rmdir(mountpoint);
873 }
874 }
875
876 /*
877 * Add the given zfs handle to the cb_handles array, dynamically reallocating
878 * the array if it is out of space.
879 */
880 void
881 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
882 {
883 if (cbp->cb_alloc == cbp->cb_used) {
884 size_t newsz;
885 zfs_handle_t **newhandles;
886
887 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
888 newhandles = zfs_realloc(zhp->zfs_hdl,
889 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
890 newsz * sizeof (zfs_handle_t *));
891 cbp->cb_handles = newhandles;
892 cbp->cb_alloc = newsz;
893 }
894 cbp->cb_handles[cbp->cb_used++] = zhp;
895 }
896
897 /*
898 * Recursive helper function used during file system enumeration
899 */
900 static int
901 zfs_iter_cb(zfs_handle_t *zhp, void *data)
902 {
903 get_all_cb_t *cbp = data;
904
905 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
906 zfs_close(zhp);
907 return (0);
908 }
909
910 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
911 zfs_close(zhp);
912 return (0);
913 }
914
915 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
916 ZFS_KEYSTATUS_UNAVAILABLE) {
917 zfs_close(zhp);
918 return (0);
919 }
920
921 /*
922 * If this filesystem is inconsistent and has a receive resume
923 * token, we can not mount it.
924 */
925 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
926 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
927 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
928 zfs_close(zhp);
929 return (0);
930 }
931
932 libzfs_add_handle(cbp, zhp);
933 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
934 zfs_close(zhp);
935 return (-1);
936 }
937 return (0);
938 }
939
940 /*
941 * Sort comparator that compares two mountpoint paths. We sort these paths so
942 * that subdirectories immediately follow their parents. This means that we
943 * effectively treat the '/' character as the lowest value non-nul char.
944 * Since filesystems from non-global zones can have the same mountpoint
945 * as other filesystems, the comparator sorts global zone filesystems to
946 * the top of the list. This means that the global zone will traverse the
947 * filesystem list in the correct order and can stop when it sees the
948 * first zoned filesystem. In a non-global zone, only the delegated
949 * filesystems are seen.
950 *
951 * An example sorted list using this comparator would look like:
952 *
953 * /foo
954 * /foo/bar
955 * /foo/bar/baz
956 * /foo/baz
957 * /foo.bar
958 * /foo (NGZ1)
959 * /foo (NGZ2)
960 *
961 * The mounting code depends on this ordering to deterministically iterate
962 * over filesystems in order to spawn parallel mount tasks.
963 */
964 static int
965 mountpoint_cmp(const void *arga, const void *argb)
966 {
967 zfs_handle_t *const *zap = arga;
968 zfs_handle_t *za = *zap;
969 zfs_handle_t *const *zbp = argb;
970 zfs_handle_t *zb = *zbp;
971 char mounta[MAXPATHLEN];
972 char mountb[MAXPATHLEN];
973 const char *a = mounta;
974 const char *b = mountb;
975 boolean_t gota, gotb;
976 uint64_t zoneda, zonedb;
977
978 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
979 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
980 if (zoneda && !zonedb)
981 return (1);
982 if (!zoneda && zonedb)
983 return (-1);
984
985 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
986 if (gota) {
987 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
988 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
989 }
990 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
991 if (gotb) {
992 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
993 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
994 }
995
996 if (gota && gotb) {
997 while (*a != '\0' && (*a == *b)) {
998 a++;
999 b++;
1000 }
1001 if (*a == *b)
1002 return (0);
1003 if (*a == '\0')
1004 return (-1);
1005 if (*b == '\0')
1006 return (1);
1007 if (*a == '/')
1008 return (-1);
1009 if (*b == '/')
1010 return (1);
1011 return (*a < *b ? -1 : *a > *b);
1012 }
1013
1014 if (gota)
1015 return (-1);
1016 if (gotb)
1017 return (1);
1018
1019 /*
1020 * If neither filesystem has a mountpoint, revert to sorting by
1021 * dataset name.
1022 */
1023 return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1024 }
1025
1026 /*
1027 * Return true if path2 is a child of path1 or path2 equals path1 or
1028 * path1 is "/" (path2 is always a child of "/").
1029 */
1030 static boolean_t
1031 libzfs_path_contains(const char *path1, const char *path2)
1032 {
1033 return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1034 (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1035 }
1036
1037 /*
1038 * Given a mountpoint specified by idx in the handles array, find the first
1039 * non-descendent of that mountpoint and return its index. Descendant paths
1040 * start with the parent's path. This function relies on the ordering
1041 * enforced by mountpoint_cmp().
1042 */
1043 static int
1044 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1045 {
1046 char parent[ZFS_MAXPROPLEN];
1047 char child[ZFS_MAXPROPLEN];
1048 int i;
1049
1050 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1051 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1052
1053 for (i = idx + 1; i < num_handles; i++) {
1054 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1055 sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1056 if (!libzfs_path_contains(parent, child))
1057 break;
1058 }
1059 return (i);
1060 }
1061
1062 typedef struct mnt_param {
1063 libzfs_handle_t *mnt_hdl;
1064 tpool_t *mnt_tp;
1065 zfs_handle_t **mnt_zhps; /* filesystems to mount */
1066 size_t mnt_num_handles;
1067 int mnt_idx; /* Index of selected entry to mount */
1068 zfs_iter_f mnt_func;
1069 void *mnt_data;
1070 } mnt_param_t;
1071
1072 /*
1073 * Allocate and populate the parameter struct for mount function, and
1074 * schedule mounting of the entry selected by idx.
1075 */
1076 static void
1077 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1078 size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1079 {
1080 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1081
1082 mnt_param->mnt_hdl = hdl;
1083 mnt_param->mnt_tp = tp;
1084 mnt_param->mnt_zhps = handles;
1085 mnt_param->mnt_num_handles = num_handles;
1086 mnt_param->mnt_idx = idx;
1087 mnt_param->mnt_func = func;
1088 mnt_param->mnt_data = data;
1089
1090 (void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
1091 }
1092
1093 /*
1094 * This is the structure used to keep state of mounting or sharing operations
1095 * during a call to zpool_enable_datasets().
1096 */
1097 typedef struct mount_state {
1098 /*
1099 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1100 * could update this variable concurrently, no synchronization is
1101 * needed as it's only ever set to -1.
1102 */
1103 int ms_mntstatus;
1104 int ms_mntflags;
1105 const char *ms_mntopts;
1106 } mount_state_t;
1107
1108 static int
1109 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1110 {
1111 mount_state_t *ms = arg;
1112 int ret = 0;
1113
1114 /*
1115 * don't attempt to mount encrypted datasets with
1116 * unloaded keys
1117 */
1118 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1119 ZFS_KEYSTATUS_UNAVAILABLE)
1120 return (0);
1121
1122 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1123 ret = ms->ms_mntstatus = -1;
1124 return (ret);
1125 }
1126
1127 static int
1128 zfs_share_one(zfs_handle_t *zhp, void *arg)
1129 {
1130 mount_state_t *ms = arg;
1131 int ret = 0;
1132
1133 if (zfs_share(zhp, NULL) != 0)
1134 ret = ms->ms_mntstatus = -1;
1135 return (ret);
1136 }
1137
1138 /*
1139 * Thread pool function to mount one file system. On completion, it finds and
1140 * schedules its children to be mounted. This depends on the sorting done in
1141 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1142 * each descending from the previous) will have no parallelism since we always
1143 * have to wait for the parent to finish mounting before we can schedule
1144 * its children.
1145 */
1146 static void
1147 zfs_mount_task(void *arg)
1148 {
1149 mnt_param_t *mp = arg;
1150 int idx = mp->mnt_idx;
1151 zfs_handle_t **handles = mp->mnt_zhps;
1152 size_t num_handles = mp->mnt_num_handles;
1153 char mountpoint[ZFS_MAXPROPLEN];
1154
1155 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1156 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1157
1158 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1159 goto out;
1160
1161 /*
1162 * We dispatch tasks to mount filesystems with mountpoints underneath
1163 * this one. We do this by dispatching the next filesystem with a
1164 * descendant mountpoint of the one we just mounted, then skip all of
1165 * its descendants, dispatch the next descendant mountpoint, and so on.
1166 * The non_descendant_idx() function skips over filesystems that are
1167 * descendants of the filesystem we just dispatched.
1168 */
1169 for (int i = idx + 1; i < num_handles;
1170 i = non_descendant_idx(handles, num_handles, i)) {
1171 char child[ZFS_MAXPROPLEN];
1172 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1173 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1174
1175 if (!libzfs_path_contains(mountpoint, child))
1176 break; /* not a descendant, return */
1177 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1178 mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1179 }
1180
1181 out:
1182 free(mp);
1183 }
1184
1185 /*
1186 * Issue the func callback for each ZFS handle contained in the handles
1187 * array. This function is used to mount all datasets, and so this function
1188 * guarantees that filesystems for parent mountpoints are called before their
1189 * children. As such, before issuing any callbacks, we first sort the array
1190 * of handles by mountpoint.
1191 *
1192 * Callbacks are issued in one of two ways:
1193 *
1194 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1195 * environment variable is set, then we issue callbacks sequentially.
1196 *
1197 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1198 * environment variable is not set, then we use a tpool to dispatch threads
1199 * to mount filesystems in parallel. This function dispatches tasks to mount
1200 * the filesystems at the top-level mountpoints, and these tasks in turn
1201 * are responsible for recursively mounting filesystems in their children
1202 * mountpoints.
1203 */
1204 void
1205 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1206 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1207 {
1208 zoneid_t zoneid = getzoneid();
1209
1210 /*
1211 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1212 * variable that can be used as a convenience to do a/b comparison
1213 * of serial vs. parallel mounting.
1214 */
1215 boolean_t serial_mount = !parallel ||
1216 (getenv("ZFS_SERIAL_MOUNT") != NULL);
1217
1218 /*
1219 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1220 * of how these are sorted.
1221 */
1222 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1223
1224 if (serial_mount) {
1225 for (int i = 0; i < num_handles; i++) {
1226 func(handles[i], data);
1227 }
1228 return;
1229 }
1230
1231 /*
1232 * Issue the callback function for each dataset using a parallel
1233 * algorithm that uses a thread pool to manage threads.
1234 */
1235 tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
1236
1237 /*
1238 * There may be multiple "top level" mountpoints outside of the pool's
1239 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1240 * these.
1241 */
1242 for (int i = 0; i < num_handles;
1243 i = non_descendant_idx(handles, num_handles, i)) {
1244 /*
1245 * Since the mountpoints have been sorted so that the zoned
1246 * filesystems are at the end, a zoned filesystem seen from
1247 * the global zone means that we're done.
1248 */
1249 if (zoneid == GLOBAL_ZONEID &&
1250 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1251 break;
1252 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1253 tp);
1254 }
1255
1256 tpool_wait(tp); /* wait for all scheduled mounts to complete */
1257 tpool_destroy(tp);
1258 }
1259
1260 /*
1261 * Mount and share all datasets within the given pool. This assumes that no
1262 * datasets within the pool are currently mounted.
1263 */
1264 int
1265 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1266 {
1267 get_all_cb_t cb = { 0 };
1268 mount_state_t ms = { 0 };
1269 zfs_handle_t *zfsp;
1270 int ret = 0;
1271
1272 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1273 ZFS_TYPE_DATASET)) == NULL)
1274 goto out;
1275
1276 /*
1277 * Gather all non-snapshot datasets within the pool. Start by adding
1278 * the root filesystem for this pool to the list, and then iterate
1279 * over all child filesystems.
1280 */
1281 libzfs_add_handle(&cb, zfsp);
1282 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1283 goto out;
1284
1285 /*
1286 * Mount all filesystems
1287 */
1288 ms.ms_mntopts = mntopts;
1289 ms.ms_mntflags = flags;
1290 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1291 zfs_mount_one, &ms, B_TRUE);
1292 if (ms.ms_mntstatus != 0)
1293 ret = ms.ms_mntstatus;
1294
1295 /*
1296 * Share all filesystems that need to be shared. This needs to be
1297 * a separate pass because libshare is not mt-safe, and so we need
1298 * to share serially.
1299 */
1300 ms.ms_mntstatus = 0;
1301 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1302 zfs_share_one, &ms, B_FALSE);
1303 if (ms.ms_mntstatus != 0)
1304 ret = ms.ms_mntstatus;
1305 else
1306 zfs_commit_shares(NULL);
1307
1308 out:
1309 for (int i = 0; i < cb.cb_used; i++)
1310 zfs_close(cb.cb_handles[i]);
1311 free(cb.cb_handles);
1312
1313 return (ret);
1314 }
1315
1316 struct sets_s {
1317 char *mountpoint;
1318 zfs_handle_t *dataset;
1319 };
1320
1321 static int
1322 mountpoint_compare(const void *a, const void *b)
1323 {
1324 const struct sets_s *mounta = (struct sets_s *)a;
1325 const struct sets_s *mountb = (struct sets_s *)b;
1326
1327 return (strcmp(mountb->mountpoint, mounta->mountpoint));
1328 }
1329
1330 /*
1331 * Unshare and unmount all datasets within the given pool. We don't want to
1332 * rely on traversing the DSL to discover the filesystems within the pool,
1333 * because this may be expensive (if not all of them are mounted), and can fail
1334 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
1335 * and gather all the filesystems that are currently mounted.
1336 */
1337 int
1338 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1339 {
1340 int used, alloc;
1341 FILE *mnttab;
1342 struct mnttab entry;
1343 size_t namelen;
1344 struct sets_s *sets = NULL;
1345 libzfs_handle_t *hdl = zhp->zpool_hdl;
1346 int i;
1347 int ret = -1;
1348 int flags = (force ? MS_FORCE : 0);
1349
1350 namelen = strlen(zhp->zpool_name);
1351
1352 if ((mnttab = fopen(MNTTAB, "re")) == NULL)
1353 return (ENOENT);
1354
1355 used = alloc = 0;
1356 while (getmntent(mnttab, &entry) == 0) {
1357 /*
1358 * Ignore non-ZFS entries.
1359 */
1360 if (entry.mnt_fstype == NULL ||
1361 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1362 continue;
1363
1364 /*
1365 * Ignore filesystems not within this pool.
1366 */
1367 if (entry.mnt_mountp == NULL ||
1368 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1369 (entry.mnt_special[namelen] != '/' &&
1370 entry.mnt_special[namelen] != '\0'))
1371 continue;
1372
1373 /*
1374 * At this point we've found a filesystem within our pool. Add
1375 * it to our growing list.
1376 */
1377 if (used == alloc) {
1378 if (alloc == 0) {
1379 sets = zfs_alloc(hdl,
1380 8 * sizeof (struct sets_s));
1381 alloc = 8;
1382 } else {
1383 sets = zfs_realloc(hdl, sets,
1384 alloc * sizeof (struct sets_s),
1385 alloc * 2 * sizeof (struct sets_s));
1386
1387 alloc *= 2;
1388 }
1389 }
1390
1391 sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
1392
1393 /*
1394 * This is allowed to fail, in case there is some I/O error. It
1395 * is only used to determine if we need to remove the underlying
1396 * mountpoint, so failure is not fatal.
1397 */
1398 sets[used].dataset = make_dataset_handle(hdl,
1399 entry.mnt_special);
1400
1401 used++;
1402 }
1403
1404 /*
1405 * At this point, we have the entire list of filesystems, so sort it by
1406 * mountpoint.
1407 */
1408 if (used != 0)
1409 qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
1410
1411 /*
1412 * Walk through and first unshare everything.
1413 */
1414 for (i = 0; i < used; i++) {
1415 for (enum sa_protocol i = 0; i < SA_PROTOCOL_COUNT; ++i) {
1416 if (sa_is_shared(sets[i].mountpoint, i) &&
1417 unshare_one(hdl, sets[i].mountpoint,
1418 sets[i].mountpoint, i) != 0)
1419 goto out;
1420 }
1421 }
1422 zfs_commit_shares(NULL);
1423
1424 /*
1425 * Now unmount everything, removing the underlying directories as
1426 * appropriate.
1427 */
1428 for (i = 0; i < used; i++) {
1429 if (unmount_one(sets[i].dataset, sets[i].mountpoint,
1430 flags) != 0)
1431 goto out;
1432 }
1433
1434 for (i = 0; i < used; i++) {
1435 if (sets[i].dataset)
1436 remove_mountpoint(sets[i].dataset);
1437 }
1438
1439 zpool_disable_datasets_os(zhp, force);
1440
1441 ret = 0;
1442 out:
1443 (void) fclose(mnttab);
1444 for (i = 0; i < used; i++) {
1445 if (sets[i].dataset)
1446 zfs_close(sets[i].dataset);
1447 free(sets[i].mountpoint);
1448 }
1449 free(sets);
1450
1451 return (ret);
1452 }