]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/freebsd/zfs/zfs_vfsops.c
f2d5391037c4fd9d5b14fdafa097183584ab24ee
[mirror_zfs.git] / module / os / freebsd / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 /* Portions Copyright 2010 Robert Milkowski */
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sysmacros.h>
37 #include <sys/kmem.h>
38 #include <sys/acl.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/mntent.h>
42 #include <sys/mount.h>
43 #include <sys/cmn_err.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_vnops.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zil.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/dmu.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_dataset.h>
52 #include <sys/dsl_deleg.h>
53 #include <sys/spa.h>
54 #include <sys/zap.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/policy.h>
58 #include <sys/atomic.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/sunddi.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/dsl_dir.h>
65 #include <sys/jail.h>
66 #include <sys/osd.h>
67 #include <ufs/ufs/quota.h>
68 #include <sys/zfs_quota.h>
69
70 #include "zfs_comutil.h"
71
72 #ifndef MNTK_VMSETSIZE_BUG
73 #define MNTK_VMSETSIZE_BUG 0
74 #endif
75 #ifndef MNTK_NOMSYNC
76 #define MNTK_NOMSYNC 8
77 #endif
78
79 struct mtx zfs_debug_mtx;
80 MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
81
82 SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
83
84 int zfs_super_owner;
85 SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
86 "File system owners can perform privileged operation on file systems");
87
88 int zfs_debug_level;
89 SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
90 "Debug level");
91
92 int zfs_bclone_enabled = 1;
93 SYSCTL_INT(_vfs_zfs, OID_AUTO, bclone_enabled, CTLFLAG_RWTUN,
94 &zfs_bclone_enabled, 0, "Enable block cloning");
95
96 struct zfs_jailparam {
97 int mount_snapshot;
98 };
99
100 static struct zfs_jailparam zfs_jailparam0 = {
101 .mount_snapshot = 0,
102 };
103
104 static int zfs_jailparam_slot;
105
106 SYSCTL_JAIL_PARAM_SYS_NODE(zfs, CTLFLAG_RW, "Jail ZFS parameters");
107 SYSCTL_JAIL_PARAM(_zfs, mount_snapshot, CTLTYPE_INT | CTLFLAG_RW, "I",
108 "Allow mounting snapshots in the .zfs directory for unjailed datasets");
109
110 SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
111 static int zfs_version_acl = ZFS_ACL_VERSION;
112 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
113 "ZFS_ACL_VERSION");
114 static int zfs_version_spa = SPA_VERSION;
115 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
116 "SPA_VERSION");
117 static int zfs_version_zpl = ZPL_VERSION;
118 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
119 "ZPL_VERSION");
120
121 #if __FreeBSD_version >= 1400018
122 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg,
123 bool *mp_busy);
124 #else
125 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
126 #endif
127 static int zfs_mount(vfs_t *vfsp);
128 static int zfs_umount(vfs_t *vfsp, int fflag);
129 static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
130 static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
131 static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
132 static int zfs_sync(vfs_t *vfsp, int waitfor);
133 #if __FreeBSD_version >= 1300098
134 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
135 struct ucred **credanonp, int *numsecflavors, int *secflavors);
136 #else
137 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
138 struct ucred **credanonp, int *numsecflavors, int **secflavors);
139 #endif
140 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
141 static void zfs_freevfs(vfs_t *vfsp);
142
143 struct vfsops zfs_vfsops = {
144 .vfs_mount = zfs_mount,
145 .vfs_unmount = zfs_umount,
146 #if __FreeBSD_version >= 1300049
147 .vfs_root = vfs_cache_root,
148 .vfs_cachedroot = zfs_root,
149 #else
150 .vfs_root = zfs_root,
151 #endif
152 .vfs_statfs = zfs_statfs,
153 .vfs_vget = zfs_vget,
154 .vfs_sync = zfs_sync,
155 .vfs_checkexp = zfs_checkexp,
156 .vfs_fhtovp = zfs_fhtovp,
157 .vfs_quotactl = zfs_quotactl,
158 };
159
160 #ifdef VFCF_CROSS_COPY_FILE_RANGE
161 VFS_SET(zfs_vfsops, zfs,
162 VFCF_DELEGADMIN | VFCF_JAIL | VFCF_CROSS_COPY_FILE_RANGE);
163 #else
164 VFS_SET(zfs_vfsops, zfs, VFCF_DELEGADMIN | VFCF_JAIL);
165 #endif
166
167 /*
168 * We need to keep a count of active fs's.
169 * This is necessary to prevent our module
170 * from being unloaded after a umount -f
171 */
172 static uint32_t zfs_active_fs_count = 0;
173
174 int
175 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
176 char *setpoint)
177 {
178 int error;
179 zfsvfs_t *zfvp;
180 vfs_t *vfsp;
181 objset_t *os;
182 uint64_t tmp = *val;
183
184 error = dmu_objset_from_ds(ds, &os);
185 if (error != 0)
186 return (error);
187
188 error = getzfsvfs_impl(os, &zfvp);
189 if (error != 0)
190 return (error);
191 if (zfvp == NULL)
192 return (ENOENT);
193 vfsp = zfvp->z_vfs;
194 switch (zfs_prop) {
195 case ZFS_PROP_ATIME:
196 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
197 tmp = 0;
198 if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
199 tmp = 1;
200 break;
201 case ZFS_PROP_DEVICES:
202 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
203 tmp = 0;
204 if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
205 tmp = 1;
206 break;
207 case ZFS_PROP_EXEC:
208 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
209 tmp = 0;
210 if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
211 tmp = 1;
212 break;
213 case ZFS_PROP_SETUID:
214 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
215 tmp = 0;
216 if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
217 tmp = 1;
218 break;
219 case ZFS_PROP_READONLY:
220 if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
221 tmp = 0;
222 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
223 tmp = 1;
224 break;
225 case ZFS_PROP_XATTR:
226 if (zfvp->z_flags & ZSB_XATTR)
227 tmp = zfvp->z_xattr;
228 break;
229 case ZFS_PROP_NBMAND:
230 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
231 tmp = 0;
232 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
233 tmp = 1;
234 break;
235 default:
236 vfs_unbusy(vfsp);
237 return (ENOENT);
238 }
239
240 vfs_unbusy(vfsp);
241 if (tmp != *val) {
242 if (setpoint)
243 (void) strcpy(setpoint, "temporary");
244 *val = tmp;
245 }
246 return (0);
247 }
248
249 static int
250 zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
251 {
252 int error = 0;
253 char buf[32];
254 uint64_t usedobj, quotaobj;
255 uint64_t quota, used = 0;
256 timespec_t now;
257
258 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
259 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
260
261 if (quotaobj == 0 || zfsvfs->z_replay) {
262 error = ENOENT;
263 goto done;
264 }
265 (void) sprintf(buf, "%llx", (longlong_t)id);
266 if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
267 buf, sizeof (quota), 1, &quota)) != 0) {
268 dprintf("%s(%d): quotaobj lookup failed\n",
269 __FUNCTION__, __LINE__);
270 goto done;
271 }
272 /*
273 * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
274 * So we set them to be the same.
275 */
276 dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
277 error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
278 if (error && error != ENOENT) {
279 dprintf("%s(%d): usedobj failed; %d\n",
280 __FUNCTION__, __LINE__, error);
281 goto done;
282 }
283 dqp->dqb_curblocks = btodb(used);
284 dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
285 vfs_timestamp(&now);
286 /*
287 * Setting this to 0 causes FreeBSD quota(8) to print
288 * the number of days since the epoch, which isn't
289 * particularly useful.
290 */
291 dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
292 done:
293 return (error);
294 }
295
296 static int
297 #if __FreeBSD_version >= 1400018
298 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg, bool *mp_busy)
299 #else
300 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
301 #endif
302 {
303 zfsvfs_t *zfsvfs = vfsp->vfs_data;
304 struct thread *td;
305 int cmd, type, error = 0;
306 int bitsize;
307 zfs_userquota_prop_t quota_type;
308 struct dqblk64 dqblk = { 0 };
309
310 td = curthread;
311 cmd = cmds >> SUBCMDSHIFT;
312 type = cmds & SUBCMDMASK;
313
314 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
315 return (error);
316 if (id == -1) {
317 switch (type) {
318 case USRQUOTA:
319 id = td->td_ucred->cr_ruid;
320 break;
321 case GRPQUOTA:
322 id = td->td_ucred->cr_rgid;
323 break;
324 default:
325 error = EINVAL;
326 #if __FreeBSD_version < 1400018
327 if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
328 vfs_unbusy(vfsp);
329 #endif
330 goto done;
331 }
332 }
333 /*
334 * Map BSD type to:
335 * ZFS_PROP_USERUSED,
336 * ZFS_PROP_USERQUOTA,
337 * ZFS_PROP_GROUPUSED,
338 * ZFS_PROP_GROUPQUOTA
339 */
340 switch (cmd) {
341 case Q_SETQUOTA:
342 case Q_SETQUOTA32:
343 if (type == USRQUOTA)
344 quota_type = ZFS_PROP_USERQUOTA;
345 else if (type == GRPQUOTA)
346 quota_type = ZFS_PROP_GROUPQUOTA;
347 else
348 error = EINVAL;
349 break;
350 case Q_GETQUOTA:
351 case Q_GETQUOTA32:
352 if (type == USRQUOTA)
353 quota_type = ZFS_PROP_USERUSED;
354 else if (type == GRPQUOTA)
355 quota_type = ZFS_PROP_GROUPUSED;
356 else
357 error = EINVAL;
358 break;
359 }
360
361 /*
362 * Depending on the cmd, we may need to get
363 * the ruid and domain (see fuidstr_to_sid?),
364 * the fuid (how?), or other information.
365 * Create fuid using zfs_fuid_create(zfsvfs, id,
366 * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
367 * I think I can use just the id?
368 *
369 * Look at zfs_id_overquota() to look up a quota.
370 * zap_lookup(something, quotaobj, fuidstring,
371 * sizeof (long long), 1, &quota)
372 *
373 * See zfs_set_userquota() to set a quota.
374 */
375 if ((uint32_t)type >= MAXQUOTAS) {
376 error = EINVAL;
377 goto done;
378 }
379
380 switch (cmd) {
381 case Q_GETQUOTASIZE:
382 bitsize = 64;
383 error = copyout(&bitsize, arg, sizeof (int));
384 break;
385 case Q_QUOTAON:
386 // As far as I can tell, you can't turn quotas on or off on zfs
387 error = 0;
388 #if __FreeBSD_version < 1400018
389 vfs_unbusy(vfsp);
390 #endif
391 break;
392 case Q_QUOTAOFF:
393 error = ENOTSUP;
394 #if __FreeBSD_version < 1400018
395 vfs_unbusy(vfsp);
396 #endif
397 break;
398 case Q_SETQUOTA:
399 error = copyin(arg, &dqblk, sizeof (dqblk));
400 if (error == 0)
401 error = zfs_set_userquota(zfsvfs, quota_type,
402 "", id, dbtob(dqblk.dqb_bhardlimit));
403 break;
404 case Q_GETQUOTA:
405 error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
406 if (error == 0)
407 error = copyout(&dqblk, arg, sizeof (dqblk));
408 break;
409 default:
410 error = EINVAL;
411 break;
412 }
413 done:
414 zfs_exit(zfsvfs, FTAG);
415 return (error);
416 }
417
418
419 boolean_t
420 zfs_is_readonly(zfsvfs_t *zfsvfs)
421 {
422 return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
423 }
424
425 static int
426 zfs_sync(vfs_t *vfsp, int waitfor)
427 {
428
429 /*
430 * Data integrity is job one. We don't want a compromised kernel
431 * writing to the storage pool, so we never sync during panic.
432 */
433 if (panicstr)
434 return (0);
435
436 /*
437 * Ignore the system syncher. ZFS already commits async data
438 * at zfs_txg_timeout intervals.
439 */
440 if (waitfor == MNT_LAZY)
441 return (0);
442
443 if (vfsp != NULL) {
444 /*
445 * Sync a specific filesystem.
446 */
447 zfsvfs_t *zfsvfs = vfsp->vfs_data;
448 dsl_pool_t *dp;
449 int error;
450
451 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
452 return (error);
453 dp = dmu_objset_pool(zfsvfs->z_os);
454
455 /*
456 * If the system is shutting down, then skip any
457 * filesystems which may exist on a suspended pool.
458 */
459 if (rebooting && spa_suspended(dp->dp_spa)) {
460 zfs_exit(zfsvfs, FTAG);
461 return (0);
462 }
463
464 if (zfsvfs->z_log != NULL)
465 zil_commit(zfsvfs->z_log, 0);
466
467 zfs_exit(zfsvfs, FTAG);
468 } else {
469 /*
470 * Sync all ZFS filesystems. This is what happens when you
471 * run sync(8). Unlike other filesystems, ZFS honors the
472 * request by waiting for all pools to commit all dirty data.
473 */
474 spa_sync_allpools();
475 }
476
477 return (0);
478 }
479
480 static void
481 atime_changed_cb(void *arg, uint64_t newval)
482 {
483 zfsvfs_t *zfsvfs = arg;
484
485 if (newval == TRUE) {
486 zfsvfs->z_atime = TRUE;
487 zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
488 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
489 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
490 } else {
491 zfsvfs->z_atime = FALSE;
492 zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
493 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
494 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
495 }
496 }
497
498 static void
499 xattr_changed_cb(void *arg, uint64_t newval)
500 {
501 zfsvfs_t *zfsvfs = arg;
502
503 if (newval == ZFS_XATTR_OFF) {
504 zfsvfs->z_flags &= ~ZSB_XATTR;
505 } else {
506 zfsvfs->z_flags |= ZSB_XATTR;
507
508 if (newval == ZFS_XATTR_SA)
509 zfsvfs->z_xattr_sa = B_TRUE;
510 else
511 zfsvfs->z_xattr_sa = B_FALSE;
512 }
513 }
514
515 static void
516 blksz_changed_cb(void *arg, uint64_t newval)
517 {
518 zfsvfs_t *zfsvfs = arg;
519 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
520 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
521 ASSERT(ISP2(newval));
522
523 zfsvfs->z_max_blksz = newval;
524 zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
525 }
526
527 static void
528 readonly_changed_cb(void *arg, uint64_t newval)
529 {
530 zfsvfs_t *zfsvfs = arg;
531
532 if (newval) {
533 /* XXX locking on vfs_flag? */
534 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
535 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
536 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
537 } else {
538 /* XXX locking on vfs_flag? */
539 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
540 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
541 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
542 }
543 }
544
545 static void
546 setuid_changed_cb(void *arg, uint64_t newval)
547 {
548 zfsvfs_t *zfsvfs = arg;
549
550 if (newval == FALSE) {
551 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
552 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
553 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
554 } else {
555 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
556 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
557 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
558 }
559 }
560
561 static void
562 exec_changed_cb(void *arg, uint64_t newval)
563 {
564 zfsvfs_t *zfsvfs = arg;
565
566 if (newval == FALSE) {
567 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
568 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
569 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
570 } else {
571 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
572 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
573 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
574 }
575 }
576
577 /*
578 * The nbmand mount option can be changed at mount time.
579 * We can't allow it to be toggled on live file systems or incorrect
580 * behavior may be seen from cifs clients
581 *
582 * This property isn't registered via dsl_prop_register(), but this callback
583 * will be called when a file system is first mounted
584 */
585 static void
586 nbmand_changed_cb(void *arg, uint64_t newval)
587 {
588 zfsvfs_t *zfsvfs = arg;
589 if (newval == FALSE) {
590 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
591 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
592 } else {
593 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
594 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
595 }
596 }
597
598 static void
599 snapdir_changed_cb(void *arg, uint64_t newval)
600 {
601 zfsvfs_t *zfsvfs = arg;
602
603 zfsvfs->z_show_ctldir = newval;
604 }
605
606 static void
607 acl_mode_changed_cb(void *arg, uint64_t newval)
608 {
609 zfsvfs_t *zfsvfs = arg;
610
611 zfsvfs->z_acl_mode = newval;
612 }
613
614 static void
615 acl_inherit_changed_cb(void *arg, uint64_t newval)
616 {
617 zfsvfs_t *zfsvfs = arg;
618
619 zfsvfs->z_acl_inherit = newval;
620 }
621
622 static void
623 acl_type_changed_cb(void *arg, uint64_t newval)
624 {
625 zfsvfs_t *zfsvfs = arg;
626
627 zfsvfs->z_acl_type = newval;
628 }
629
630 static int
631 zfs_register_callbacks(vfs_t *vfsp)
632 {
633 struct dsl_dataset *ds = NULL;
634 objset_t *os = NULL;
635 zfsvfs_t *zfsvfs = NULL;
636 uint64_t nbmand;
637 boolean_t readonly = B_FALSE;
638 boolean_t do_readonly = B_FALSE;
639 boolean_t setuid = B_FALSE;
640 boolean_t do_setuid = B_FALSE;
641 boolean_t exec = B_FALSE;
642 boolean_t do_exec = B_FALSE;
643 boolean_t xattr = B_FALSE;
644 boolean_t atime = B_FALSE;
645 boolean_t do_atime = B_FALSE;
646 boolean_t do_xattr = B_FALSE;
647 int error = 0;
648
649 ASSERT3P(vfsp, !=, NULL);
650 zfsvfs = vfsp->vfs_data;
651 ASSERT3P(zfsvfs, !=, NULL);
652 os = zfsvfs->z_os;
653
654 /*
655 * This function can be called for a snapshot when we update snapshot's
656 * mount point, which isn't really supported.
657 */
658 if (dmu_objset_is_snapshot(os))
659 return (EOPNOTSUPP);
660
661 /*
662 * The act of registering our callbacks will destroy any mount
663 * options we may have. In order to enable temporary overrides
664 * of mount options, we stash away the current values and
665 * restore them after we register the callbacks.
666 */
667 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
668 !spa_writeable(dmu_objset_spa(os))) {
669 readonly = B_TRUE;
670 do_readonly = B_TRUE;
671 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
672 readonly = B_FALSE;
673 do_readonly = B_TRUE;
674 }
675 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
676 setuid = B_FALSE;
677 do_setuid = B_TRUE;
678 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
679 setuid = B_TRUE;
680 do_setuid = B_TRUE;
681 }
682 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
683 exec = B_FALSE;
684 do_exec = B_TRUE;
685 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
686 exec = B_TRUE;
687 do_exec = B_TRUE;
688 }
689 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
690 zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
691 do_xattr = B_TRUE;
692 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
693 zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
694 do_xattr = B_TRUE;
695 } else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
696 zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
697 do_xattr = B_TRUE;
698 } else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
699 zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
700 do_xattr = B_TRUE;
701 }
702 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
703 atime = B_FALSE;
704 do_atime = B_TRUE;
705 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
706 atime = B_TRUE;
707 do_atime = B_TRUE;
708 }
709
710 /*
711 * We need to enter pool configuration here, so that we can use
712 * dsl_prop_get_int_ds() to handle the special nbmand property below.
713 * dsl_prop_get_integer() can not be used, because it has to acquire
714 * spa_namespace_lock and we can not do that because we already hold
715 * z_teardown_lock. The problem is that spa_write_cachefile() is called
716 * with spa_namespace_lock held and the function calls ZFS vnode
717 * operations to write the cache file and thus z_teardown_lock is
718 * acquired after spa_namespace_lock.
719 */
720 ds = dmu_objset_ds(os);
721 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
722
723 /*
724 * nbmand is a special property. It can only be changed at
725 * mount time.
726 *
727 * This is weird, but it is documented to only be changeable
728 * at mount time.
729 */
730 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
731 nbmand = B_FALSE;
732 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
733 nbmand = B_TRUE;
734 } else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand)) != 0) {
735 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
736 return (error);
737 }
738
739 /*
740 * Register property callbacks.
741 *
742 * It would probably be fine to just check for i/o error from
743 * the first prop_register(), but I guess I like to go
744 * overboard...
745 */
746 error = dsl_prop_register(ds,
747 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
748 error = error ? error : dsl_prop_register(ds,
749 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
750 error = error ? error : dsl_prop_register(ds,
751 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
752 error = error ? error : dsl_prop_register(ds,
753 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
754 error = error ? error : dsl_prop_register(ds,
755 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
756 error = error ? error : dsl_prop_register(ds,
757 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
758 error = error ? error : dsl_prop_register(ds,
759 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
760 error = error ? error : dsl_prop_register(ds,
761 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs);
762 error = error ? error : dsl_prop_register(ds,
763 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
764 error = error ? error : dsl_prop_register(ds,
765 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
766 zfsvfs);
767 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
768 if (error)
769 goto unregister;
770
771 /*
772 * Invoke our callbacks to restore temporary mount options.
773 */
774 if (do_readonly)
775 readonly_changed_cb(zfsvfs, readonly);
776 if (do_setuid)
777 setuid_changed_cb(zfsvfs, setuid);
778 if (do_exec)
779 exec_changed_cb(zfsvfs, exec);
780 if (do_xattr)
781 xattr_changed_cb(zfsvfs, xattr);
782 if (do_atime)
783 atime_changed_cb(zfsvfs, atime);
784
785 nbmand_changed_cb(zfsvfs, nbmand);
786
787 return (0);
788
789 unregister:
790 dsl_prop_unregister_all(ds, zfsvfs);
791 return (error);
792 }
793
794 /*
795 * Associate this zfsvfs with the given objset, which must be owned.
796 * This will cache a bunch of on-disk state from the objset in the
797 * zfsvfs.
798 */
799 static int
800 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
801 {
802 int error;
803 uint64_t val;
804
805 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
806 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
807 zfsvfs->z_os = os;
808
809 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
810 if (error != 0)
811 return (error);
812 if (zfsvfs->z_version >
813 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
814 (void) printf("Can't mount a version %lld file system "
815 "on a version %lld pool\n. Pool must be upgraded to mount "
816 "this file system.", (u_longlong_t)zfsvfs->z_version,
817 (u_longlong_t)spa_version(dmu_objset_spa(os)));
818 return (SET_ERROR(ENOTSUP));
819 }
820 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
821 if (error != 0)
822 return (error);
823 zfsvfs->z_norm = (int)val;
824
825 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
826 if (error != 0)
827 return (error);
828 zfsvfs->z_utf8 = (val != 0);
829
830 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
831 if (error != 0)
832 return (error);
833 zfsvfs->z_case = (uint_t)val;
834
835 error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val);
836 if (error != 0)
837 return (error);
838 zfsvfs->z_acl_type = (uint_t)val;
839
840 /*
841 * Fold case on file systems that are always or sometimes case
842 * insensitive.
843 */
844 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
845 zfsvfs->z_case == ZFS_CASE_MIXED)
846 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
847
848 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
849 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
850
851 uint64_t sa_obj = 0;
852 if (zfsvfs->z_use_sa) {
853 /* should either have both of these objects or none */
854 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
855 &sa_obj);
856 if (error != 0)
857 return (error);
858
859 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
860 if (error == 0 && val == ZFS_XATTR_SA)
861 zfsvfs->z_xattr_sa = B_TRUE;
862 }
863
864 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
865 &zfsvfs->z_attr_table);
866 if (error != 0)
867 return (error);
868
869 if (zfsvfs->z_version >= ZPL_VERSION_SA)
870 sa_register_update_callback(os, zfs_sa_upgrade);
871
872 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
873 &zfsvfs->z_root);
874 if (error != 0)
875 return (error);
876 ASSERT3U(zfsvfs->z_root, !=, 0);
877
878 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
879 &zfsvfs->z_unlinkedobj);
880 if (error != 0)
881 return (error);
882
883 error = zap_lookup(os, MASTER_NODE_OBJ,
884 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
885 8, 1, &zfsvfs->z_userquota_obj);
886 if (error == ENOENT)
887 zfsvfs->z_userquota_obj = 0;
888 else if (error != 0)
889 return (error);
890
891 error = zap_lookup(os, MASTER_NODE_OBJ,
892 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
893 8, 1, &zfsvfs->z_groupquota_obj);
894 if (error == ENOENT)
895 zfsvfs->z_groupquota_obj = 0;
896 else if (error != 0)
897 return (error);
898
899 error = zap_lookup(os, MASTER_NODE_OBJ,
900 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
901 8, 1, &zfsvfs->z_projectquota_obj);
902 if (error == ENOENT)
903 zfsvfs->z_projectquota_obj = 0;
904 else if (error != 0)
905 return (error);
906
907 error = zap_lookup(os, MASTER_NODE_OBJ,
908 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
909 8, 1, &zfsvfs->z_userobjquota_obj);
910 if (error == ENOENT)
911 zfsvfs->z_userobjquota_obj = 0;
912 else if (error != 0)
913 return (error);
914
915 error = zap_lookup(os, MASTER_NODE_OBJ,
916 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
917 8, 1, &zfsvfs->z_groupobjquota_obj);
918 if (error == ENOENT)
919 zfsvfs->z_groupobjquota_obj = 0;
920 else if (error != 0)
921 return (error);
922
923 error = zap_lookup(os, MASTER_NODE_OBJ,
924 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
925 8, 1, &zfsvfs->z_projectobjquota_obj);
926 if (error == ENOENT)
927 zfsvfs->z_projectobjquota_obj = 0;
928 else if (error != 0)
929 return (error);
930
931 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
932 &zfsvfs->z_fuid_obj);
933 if (error == ENOENT)
934 zfsvfs->z_fuid_obj = 0;
935 else if (error != 0)
936 return (error);
937
938 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
939 &zfsvfs->z_shares_dir);
940 if (error == ENOENT)
941 zfsvfs->z_shares_dir = 0;
942 else if (error != 0)
943 return (error);
944
945 /*
946 * Only use the name cache if we are looking for a
947 * name on a file system that does not require normalization
948 * or case folding. We can also look there if we happen to be
949 * on a non-normalizing, mixed sensitivity file system IF we
950 * are looking for the exact name (which is always the case on
951 * FreeBSD).
952 */
953 zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
954 ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
955 !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
956
957 return (0);
958 }
959
960 taskq_t *zfsvfs_taskq;
961
962 static void
963 zfsvfs_task_unlinked_drain(void *context, int pending __unused)
964 {
965
966 zfs_unlinked_drain((zfsvfs_t *)context);
967 }
968
969 int
970 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
971 {
972 objset_t *os;
973 zfsvfs_t *zfsvfs;
974 int error;
975 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
976
977 /*
978 * XXX: Fix struct statfs so this isn't necessary!
979 *
980 * The 'osname' is used as the filesystem's special node, which means
981 * it must fit in statfs.f_mntfromname, or else it can't be
982 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
983 * 'zfs unmount' to think it's not mounted when it is.
984 */
985 if (strlen(osname) >= MNAMELEN)
986 return (SET_ERROR(ENAMETOOLONG));
987
988 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
989
990 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
991 &os);
992 if (error != 0) {
993 kmem_free(zfsvfs, sizeof (zfsvfs_t));
994 return (error);
995 }
996
997 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
998
999 return (error);
1000 }
1001
1002
1003 int
1004 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1005 {
1006 int error;
1007
1008 zfsvfs->z_vfs = NULL;
1009 zfsvfs->z_parent = zfsvfs;
1010
1011 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1012 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1013 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1014 offsetof(znode_t, z_link_node));
1015 TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
1016 zfsvfs_task_unlinked_drain, zfsvfs);
1017 ZFS_TEARDOWN_INIT(zfsvfs);
1018 ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs);
1019 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1020 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1021 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1022
1023 error = zfsvfs_init(zfsvfs, os);
1024 if (error != 0) {
1025 dmu_objset_disown(os, B_TRUE, zfsvfs);
1026 *zfvp = NULL;
1027 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1028 return (error);
1029 }
1030
1031 *zfvp = zfsvfs;
1032 return (0);
1033 }
1034
1035 static int
1036 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1037 {
1038 int error;
1039
1040 /*
1041 * Check for a bad on-disk format version now since we
1042 * lied about owning the dataset readonly before.
1043 */
1044 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
1045 dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
1046 return (SET_ERROR(EROFS));
1047
1048 error = zfs_register_callbacks(zfsvfs->z_vfs);
1049 if (error)
1050 return (error);
1051
1052 /*
1053 * If we are not mounting (ie: online recv), then we don't
1054 * have to worry about replaying the log as we blocked all
1055 * operations out since we closed the ZIL.
1056 */
1057 if (mounting) {
1058 boolean_t readonly;
1059
1060 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
1061 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
1062 if (error)
1063 return (error);
1064 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1065 &zfsvfs->z_kstat.dk_zil_sums);
1066
1067 /*
1068 * During replay we remove the read only flag to
1069 * allow replays to succeed.
1070 */
1071 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1072 if (readonly != 0) {
1073 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1074 } else {
1075 dsl_dir_t *dd;
1076 zap_stats_t zs;
1077
1078 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
1079 &zs) == 0) {
1080 dataset_kstats_update_nunlinks_kstat(
1081 &zfsvfs->z_kstat, zs.zs_num_entries);
1082 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1083 "num_entries in unlinked set: %llu",
1084 (u_longlong_t)zs.zs_num_entries);
1085 }
1086
1087 zfs_unlinked_drain(zfsvfs);
1088 dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1089 dd->dd_activity_cancelled = B_FALSE;
1090 }
1091
1092 /*
1093 * Parse and replay the intent log.
1094 *
1095 * Because of ziltest, this must be done after
1096 * zfs_unlinked_drain(). (Further note: ziltest
1097 * doesn't use readonly mounts, where
1098 * zfs_unlinked_drain() isn't called.) This is because
1099 * ziltest causes spa_sync() to think it's committed,
1100 * but actually it is not, so the intent log contains
1101 * many txg's worth of changes.
1102 *
1103 * In particular, if object N is in the unlinked set in
1104 * the last txg to actually sync, then it could be
1105 * actually freed in a later txg and then reallocated
1106 * in a yet later txg. This would write a "create
1107 * object N" record to the intent log. Normally, this
1108 * would be fine because the spa_sync() would have
1109 * written out the fact that object N is free, before
1110 * we could write the "create object N" intent log
1111 * record.
1112 *
1113 * But when we are in ziltest mode, we advance the "open
1114 * txg" without actually spa_sync()-ing the changes to
1115 * disk. So we would see that object N is still
1116 * allocated and in the unlinked set, and there is an
1117 * intent log record saying to allocate it.
1118 */
1119 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1120 if (zil_replay_disable) {
1121 zil_destroy(zfsvfs->z_log, B_FALSE);
1122 } else {
1123 boolean_t use_nc = zfsvfs->z_use_namecache;
1124 zfsvfs->z_use_namecache = B_FALSE;
1125 zfsvfs->z_replay = B_TRUE;
1126 zil_replay(zfsvfs->z_os, zfsvfs,
1127 zfs_replay_vector);
1128 zfsvfs->z_replay = B_FALSE;
1129 zfsvfs->z_use_namecache = use_nc;
1130 }
1131 }
1132
1133 /* restore readonly bit */
1134 if (readonly != 0)
1135 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1136 } else {
1137 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
1138 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
1139 &zfsvfs->z_kstat.dk_zil_sums);
1140 }
1141
1142 /*
1143 * Set the objset user_ptr to track its zfsvfs.
1144 */
1145 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1146 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1147 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1148
1149 return (0);
1150 }
1151
1152 void
1153 zfsvfs_free(zfsvfs_t *zfsvfs)
1154 {
1155 int i;
1156
1157 zfs_fuid_destroy(zfsvfs);
1158
1159 mutex_destroy(&zfsvfs->z_znodes_lock);
1160 mutex_destroy(&zfsvfs->z_lock);
1161 list_destroy(&zfsvfs->z_all_znodes);
1162 ZFS_TEARDOWN_DESTROY(zfsvfs);
1163 ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs);
1164 rw_destroy(&zfsvfs->z_fuid_lock);
1165 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1166 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1167 dataset_kstats_destroy(&zfsvfs->z_kstat);
1168 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1169 }
1170
1171 static void
1172 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1173 {
1174 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1175 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1176 }
1177
1178 static int
1179 zfs_domount(vfs_t *vfsp, char *osname)
1180 {
1181 uint64_t recordsize, fsid_guid;
1182 int error = 0;
1183 zfsvfs_t *zfsvfs;
1184
1185 ASSERT3P(vfsp, !=, NULL);
1186 ASSERT3P(osname, !=, NULL);
1187
1188 error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
1189 if (error)
1190 return (error);
1191 zfsvfs->z_vfs = vfsp;
1192
1193 if ((error = dsl_prop_get_integer(osname,
1194 "recordsize", &recordsize, NULL)))
1195 goto out;
1196 zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1197 zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1198
1199 vfsp->vfs_data = zfsvfs;
1200 vfsp->mnt_flag |= MNT_LOCAL;
1201 vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1202 vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1203 vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1204 /*
1205 * This can cause a loss of coherence between ARC and page cache
1206 * on ZoF - unclear if the problem is in FreeBSD or ZoF
1207 */
1208 vfsp->mnt_kern_flag |= MNTK_NO_IOPF; /* vn_io_fault can be used */
1209 vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
1210 vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
1211
1212 #if defined(_KERNEL) && !defined(KMEM_DEBUG)
1213 vfsp->mnt_kern_flag |= MNTK_FPLOOKUP;
1214 #endif
1215 /*
1216 * The fsid is 64 bits, composed of an 8-bit fs type, which
1217 * separates our fsid from any other filesystem types, and a
1218 * 56-bit objset unique ID. The objset unique ID is unique to
1219 * all objsets open on this system, provided by unique_create().
1220 * The 8-bit fs type must be put in the low bits of fsid[1]
1221 * because that's where other Solaris filesystems put it.
1222 */
1223 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1224 ASSERT3U((fsid_guid & ~((1ULL << 56) - 1)), ==, 0);
1225 vfsp->vfs_fsid.val[0] = fsid_guid;
1226 vfsp->vfs_fsid.val[1] = ((fsid_guid >> 32) << 8) |
1227 (vfsp->mnt_vfc->vfc_typenum & 0xFF);
1228
1229 /*
1230 * Set features for file system.
1231 */
1232 zfs_set_fuid_feature(zfsvfs);
1233
1234 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1235 uint64_t pval;
1236
1237 atime_changed_cb(zfsvfs, B_FALSE);
1238 readonly_changed_cb(zfsvfs, B_TRUE);
1239 if ((error = dsl_prop_get_integer(osname,
1240 "xattr", &pval, NULL)))
1241 goto out;
1242 xattr_changed_cb(zfsvfs, pval);
1243 if ((error = dsl_prop_get_integer(osname,
1244 "acltype", &pval, NULL)))
1245 goto out;
1246 acl_type_changed_cb(zfsvfs, pval);
1247 zfsvfs->z_issnap = B_TRUE;
1248 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1249
1250 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1251 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1252 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1253 } else {
1254 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1255 goto out;
1256 }
1257
1258 vfs_mountedfrom(vfsp, osname);
1259
1260 if (!zfsvfs->z_issnap)
1261 zfsctl_create(zfsvfs);
1262 out:
1263 if (error) {
1264 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1265 zfsvfs_free(zfsvfs);
1266 } else {
1267 atomic_inc_32(&zfs_active_fs_count);
1268 }
1269
1270 return (error);
1271 }
1272
1273 static void
1274 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1275 {
1276 objset_t *os = zfsvfs->z_os;
1277
1278 if (!dmu_objset_is_snapshot(os))
1279 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1280 }
1281
1282 static int
1283 getpoolname(const char *osname, char *poolname)
1284 {
1285 char *p;
1286
1287 p = strchr(osname, '/');
1288 if (p == NULL) {
1289 if (strlen(osname) >= MAXNAMELEN)
1290 return (ENAMETOOLONG);
1291 (void) strcpy(poolname, osname);
1292 } else {
1293 if (p - osname >= MAXNAMELEN)
1294 return (ENAMETOOLONG);
1295 (void) strlcpy(poolname, osname, p - osname + 1);
1296 }
1297 return (0);
1298 }
1299
1300 static void
1301 fetch_osname_options(char *name, bool *checkpointrewind)
1302 {
1303
1304 if (name[0] == '!') {
1305 *checkpointrewind = true;
1306 memmove(name, name + 1, strlen(name));
1307 } else {
1308 *checkpointrewind = false;
1309 }
1310 }
1311
1312 static int
1313 zfs_mount(vfs_t *vfsp)
1314 {
1315 kthread_t *td = curthread;
1316 vnode_t *mvp = vfsp->mnt_vnodecovered;
1317 cred_t *cr = td->td_ucred;
1318 char *osname;
1319 int error = 0;
1320 int canwrite;
1321 bool checkpointrewind, isctlsnap = false;
1322
1323 if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1324 return (SET_ERROR(EINVAL));
1325
1326 /*
1327 * If full-owner-access is enabled and delegated administration is
1328 * turned on, we must set nosuid.
1329 */
1330 if (zfs_super_owner &&
1331 dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1332 secpolicy_fs_mount_clearopts(cr, vfsp);
1333 }
1334
1335 fetch_osname_options(osname, &checkpointrewind);
1336 isctlsnap = (mvp != NULL && zfsctl_is_node(mvp) &&
1337 strchr(osname, '@') != NULL);
1338
1339 /*
1340 * Check for mount privilege?
1341 *
1342 * If we don't have privilege then see if
1343 * we have local permission to allow it
1344 */
1345 error = secpolicy_fs_mount(cr, mvp, vfsp);
1346 if (error && isctlsnap) {
1347 secpolicy_fs_mount_clearopts(cr, vfsp);
1348 } else if (error) {
1349 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1350 goto out;
1351
1352 if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1353 vattr_t vattr;
1354
1355 /*
1356 * Make sure user is the owner of the mount point
1357 * or has sufficient privileges.
1358 */
1359
1360 vattr.va_mask = AT_UID;
1361
1362 vn_lock(mvp, LK_SHARED | LK_RETRY);
1363 if (VOP_GETATTR(mvp, &vattr, cr)) {
1364 VOP_UNLOCK1(mvp);
1365 goto out;
1366 }
1367
1368 if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1369 VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1370 VOP_UNLOCK1(mvp);
1371 goto out;
1372 }
1373 VOP_UNLOCK1(mvp);
1374 }
1375
1376 secpolicy_fs_mount_clearopts(cr, vfsp);
1377 }
1378
1379 /*
1380 * Refuse to mount a filesystem if we are in a local zone and the
1381 * dataset is not visible.
1382 */
1383 if (!INGLOBALZONE(curproc) &&
1384 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1385 boolean_t mount_snapshot = B_FALSE;
1386
1387 /*
1388 * Snapshots may be mounted in .zfs for unjailed datasets
1389 * if allowed by the jail param zfs.mount_snapshot.
1390 */
1391 if (isctlsnap) {
1392 struct prison *pr;
1393 struct zfs_jailparam *zjp;
1394
1395 pr = curthread->td_ucred->cr_prison;
1396 mtx_lock(&pr->pr_mtx);
1397 zjp = osd_jail_get(pr, zfs_jailparam_slot);
1398 mtx_unlock(&pr->pr_mtx);
1399 if (zjp && zjp->mount_snapshot)
1400 mount_snapshot = B_TRUE;
1401 }
1402 if (!mount_snapshot) {
1403 error = SET_ERROR(EPERM);
1404 goto out;
1405 }
1406 }
1407
1408 vfsp->vfs_flag |= MNT_NFS4ACLS;
1409
1410 /*
1411 * When doing a remount, we simply refresh our temporary properties
1412 * according to those options set in the current VFS options.
1413 */
1414 if (vfsp->vfs_flag & MS_REMOUNT) {
1415 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1416
1417 /*
1418 * Refresh mount options with z_teardown_lock blocking I/O while
1419 * the filesystem is in an inconsistent state.
1420 * The lock also serializes this code with filesystem
1421 * manipulations between entry to zfs_suspend_fs() and return
1422 * from zfs_resume_fs().
1423 */
1424 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1425 zfs_unregister_callbacks(zfsvfs);
1426 error = zfs_register_callbacks(vfsp);
1427 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1428 goto out;
1429 }
1430
1431 /* Initial root mount: try hard to import the requested root pool. */
1432 if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1433 (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1434 char pname[MAXNAMELEN];
1435
1436 error = getpoolname(osname, pname);
1437 if (error == 0)
1438 error = spa_import_rootpool(pname, checkpointrewind);
1439 if (error)
1440 goto out;
1441 }
1442 DROP_GIANT();
1443 error = zfs_domount(vfsp, osname);
1444 PICKUP_GIANT();
1445
1446 out:
1447 return (error);
1448 }
1449
1450 static int
1451 zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1452 {
1453 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1454 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1455 int error;
1456
1457 statp->f_version = STATFS_VERSION;
1458
1459 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1460 return (error);
1461
1462 dmu_objset_space(zfsvfs->z_os,
1463 &refdbytes, &availbytes, &usedobjs, &availobjs);
1464
1465 /*
1466 * The underlying storage pool actually uses multiple block sizes.
1467 * We report the fragsize as the smallest block size we support,
1468 * and we report our blocksize as the filesystem's maximum blocksize.
1469 */
1470 statp->f_bsize = SPA_MINBLOCKSIZE;
1471 statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1472
1473 /*
1474 * The following report "total" blocks of various kinds in the
1475 * file system, but reported in terms of f_frsize - the
1476 * "fragment" size.
1477 */
1478
1479 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1480 statp->f_bfree = availbytes / statp->f_bsize;
1481 statp->f_bavail = statp->f_bfree; /* no root reservation */
1482
1483 /*
1484 * statvfs() should really be called statufs(), because it assumes
1485 * static metadata. ZFS doesn't preallocate files, so the best
1486 * we can do is report the max that could possibly fit in f_files,
1487 * and that minus the number actually used in f_ffree.
1488 * For f_ffree, report the smaller of the number of object available
1489 * and the number of blocks (each object will take at least a block).
1490 */
1491 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1492 statp->f_files = statp->f_ffree + usedobjs;
1493
1494 /*
1495 * We're a zfs filesystem.
1496 */
1497 strlcpy(statp->f_fstypename, "zfs",
1498 sizeof (statp->f_fstypename));
1499
1500 strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1501 sizeof (statp->f_mntfromname));
1502 strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1503 sizeof (statp->f_mntonname));
1504
1505 statp->f_namemax = MAXNAMELEN - 1;
1506
1507 zfs_exit(zfsvfs, FTAG);
1508 return (0);
1509 }
1510
1511 static int
1512 zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1513 {
1514 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1515 znode_t *rootzp;
1516 int error;
1517
1518 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1519 return (error);
1520
1521 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1522 if (error == 0)
1523 *vpp = ZTOV(rootzp);
1524
1525 zfs_exit(zfsvfs, FTAG);
1526
1527 if (error == 0) {
1528 error = vn_lock(*vpp, flags);
1529 if (error != 0) {
1530 VN_RELE(*vpp);
1531 *vpp = NULL;
1532 }
1533 }
1534 return (error);
1535 }
1536
1537 /*
1538 * Teardown the zfsvfs::z_os.
1539 *
1540 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1541 * and 'z_teardown_inactive_lock' held.
1542 */
1543 static int
1544 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1545 {
1546 znode_t *zp;
1547 dsl_dir_t *dd;
1548
1549 /*
1550 * If someone has not already unmounted this file system,
1551 * drain the zrele_taskq to ensure all active references to the
1552 * zfsvfs_t have been handled only then can it be safely destroyed.
1553 */
1554 if (zfsvfs->z_os) {
1555 /*
1556 * If we're unmounting we have to wait for the list to
1557 * drain completely.
1558 *
1559 * If we're not unmounting there's no guarantee the list
1560 * will drain completely, but zreles run from the taskq
1561 * may add the parents of dir-based xattrs to the taskq
1562 * so we want to wait for these.
1563 *
1564 * We can safely check z_all_znodes for being empty because the
1565 * VFS has already blocked operations which add to it.
1566 */
1567 int round = 0;
1568 while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1569 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1570 dmu_objset_pool(zfsvfs->z_os)), 0);
1571 if (++round > 1 && !unmounting)
1572 break;
1573 }
1574 }
1575 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1576
1577 if (!unmounting) {
1578 /*
1579 * We purge the parent filesystem's vfsp as the parent
1580 * filesystem and all of its snapshots have their vnode's
1581 * v_vfsp set to the parent's filesystem's vfsp. Note,
1582 * 'z_parent' is self referential for non-snapshots.
1583 */
1584 #ifdef FREEBSD_NAMECACHE
1585 #if __FreeBSD_version >= 1300117
1586 cache_purgevfs(zfsvfs->z_parent->z_vfs);
1587 #else
1588 cache_purgevfs(zfsvfs->z_parent->z_vfs, true);
1589 #endif
1590 #endif
1591 }
1592
1593 /*
1594 * Close the zil. NB: Can't close the zil while zfs_inactive
1595 * threads are blocked as zil_close can call zfs_inactive.
1596 */
1597 if (zfsvfs->z_log) {
1598 zil_close(zfsvfs->z_log);
1599 zfsvfs->z_log = NULL;
1600 }
1601
1602 ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs);
1603
1604 /*
1605 * If we are not unmounting (ie: online recv) and someone already
1606 * unmounted this file system while we were doing the switcheroo,
1607 * or a reopen of z_os failed then just bail out now.
1608 */
1609 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1610 ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1611 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1612 return (SET_ERROR(EIO));
1613 }
1614
1615 /*
1616 * At this point there are no vops active, and any new vops will
1617 * fail with EIO since we have z_teardown_lock for writer (only
1618 * relevant for forced unmount).
1619 *
1620 * Release all holds on dbufs.
1621 */
1622 mutex_enter(&zfsvfs->z_znodes_lock);
1623 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1624 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1625 if (zp->z_sa_hdl != NULL) {
1626 zfs_znode_dmu_fini(zp);
1627 }
1628 }
1629 mutex_exit(&zfsvfs->z_znodes_lock);
1630
1631 /*
1632 * If we are unmounting, set the unmounted flag and let new vops
1633 * unblock. zfs_inactive will have the unmounted behavior, and all
1634 * other vops will fail with EIO.
1635 */
1636 if (unmounting) {
1637 zfsvfs->z_unmounted = B_TRUE;
1638 ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1639 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1640 }
1641
1642 /*
1643 * z_os will be NULL if there was an error in attempting to reopen
1644 * zfsvfs, so just return as the properties had already been
1645 * unregistered and cached data had been evicted before.
1646 */
1647 if (zfsvfs->z_os == NULL)
1648 return (0);
1649
1650 /*
1651 * Unregister properties.
1652 */
1653 zfs_unregister_callbacks(zfsvfs);
1654
1655 /*
1656 * Evict cached data
1657 */
1658 if (!zfs_is_readonly(zfsvfs))
1659 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1660 dmu_objset_evict_dbufs(zfsvfs->z_os);
1661 dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1662 dsl_dir_cancel_waiters(dd);
1663
1664 return (0);
1665 }
1666
1667 static int
1668 zfs_umount(vfs_t *vfsp, int fflag)
1669 {
1670 kthread_t *td = curthread;
1671 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1672 objset_t *os;
1673 cred_t *cr = td->td_ucred;
1674 int ret;
1675
1676 ret = secpolicy_fs_unmount(cr, vfsp);
1677 if (ret) {
1678 if (dsl_deleg_access((char *)vfsp->vfs_resource,
1679 ZFS_DELEG_PERM_MOUNT, cr))
1680 return (ret);
1681 }
1682
1683 /*
1684 * Unmount any snapshots mounted under .zfs before unmounting the
1685 * dataset itself.
1686 */
1687 if (zfsvfs->z_ctldir != NULL) {
1688 if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1689 return (ret);
1690 }
1691
1692 if (fflag & MS_FORCE) {
1693 /*
1694 * Mark file system as unmounted before calling
1695 * vflush(FORCECLOSE). This way we ensure no future vnops
1696 * will be called and risk operating on DOOMED vnodes.
1697 */
1698 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1699 zfsvfs->z_unmounted = B_TRUE;
1700 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1701 }
1702
1703 /*
1704 * Flush all the files.
1705 */
1706 ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1707 if (ret != 0)
1708 return (ret);
1709 while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
1710 &zfsvfs->z_unlinked_drain_task, NULL) != 0)
1711 taskqueue_drain(zfsvfs_taskq->tq_queue,
1712 &zfsvfs->z_unlinked_drain_task);
1713
1714 VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE));
1715 os = zfsvfs->z_os;
1716
1717 /*
1718 * z_os will be NULL if there was an error in
1719 * attempting to reopen zfsvfs.
1720 */
1721 if (os != NULL) {
1722 /*
1723 * Unset the objset user_ptr.
1724 */
1725 mutex_enter(&os->os_user_ptr_lock);
1726 dmu_objset_set_user(os, NULL);
1727 mutex_exit(&os->os_user_ptr_lock);
1728
1729 /*
1730 * Finally release the objset
1731 */
1732 dmu_objset_disown(os, B_TRUE, zfsvfs);
1733 }
1734
1735 /*
1736 * We can now safely destroy the '.zfs' directory node.
1737 */
1738 if (zfsvfs->z_ctldir != NULL)
1739 zfsctl_destroy(zfsvfs);
1740 zfs_freevfs(vfsp);
1741
1742 return (0);
1743 }
1744
1745 static int
1746 zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1747 {
1748 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1749 znode_t *zp;
1750 int err;
1751
1752 /*
1753 * zfs_zget() can't operate on virtual entries like .zfs/ or
1754 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1755 * This will make NFS to switch to LOOKUP instead of using VGET.
1756 */
1757 if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
1758 (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
1759 return (EOPNOTSUPP);
1760
1761 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1762 return (err);
1763 err = zfs_zget(zfsvfs, ino, &zp);
1764 if (err == 0 && zp->z_unlinked) {
1765 vrele(ZTOV(zp));
1766 err = EINVAL;
1767 }
1768 if (err == 0)
1769 *vpp = ZTOV(zp);
1770 zfs_exit(zfsvfs, FTAG);
1771 if (err == 0) {
1772 err = vn_lock(*vpp, flags);
1773 if (err != 0)
1774 vrele(*vpp);
1775 }
1776 if (err != 0)
1777 *vpp = NULL;
1778 return (err);
1779 }
1780
1781 static int
1782 #if __FreeBSD_version >= 1300098
1783 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
1784 struct ucred **credanonp, int *numsecflavors, int *secflavors)
1785 #else
1786 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1787 struct ucred **credanonp, int *numsecflavors, int **secflavors)
1788 #endif
1789 {
1790 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1791
1792 /*
1793 * If this is regular file system vfsp is the same as
1794 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1795 * zfsvfs->z_parent->z_vfs represents parent file system
1796 * which we have to use here, because only this file system
1797 * has mnt_export configured.
1798 */
1799 return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1800 credanonp, numsecflavors, secflavors));
1801 }
1802
1803 _Static_assert(sizeof (struct fid) >= SHORT_FID_LEN,
1804 "struct fid bigger than SHORT_FID_LEN");
1805 _Static_assert(sizeof (struct fid) >= LONG_FID_LEN,
1806 "struct fid bigger than LONG_FID_LEN");
1807
1808 static int
1809 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
1810 {
1811 struct componentname cn;
1812 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1813 znode_t *zp;
1814 vnode_t *dvp;
1815 uint64_t object = 0;
1816 uint64_t fid_gen = 0;
1817 uint64_t setgen = 0;
1818 uint64_t gen_mask;
1819 uint64_t zp_gen;
1820 int i, err;
1821
1822 *vpp = NULL;
1823
1824 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1825 return (err);
1826
1827 /*
1828 * On FreeBSD we can get snapshot's mount point or its parent file
1829 * system mount point depending if snapshot is already mounted or not.
1830 */
1831 if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1832 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1833 uint64_t objsetid = 0;
1834
1835 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1836 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1837
1838 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1839 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1840
1841 zfs_exit(zfsvfs, FTAG);
1842
1843 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1844 if (err)
1845 return (SET_ERROR(EINVAL));
1846 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1847 return (err);
1848 }
1849
1850 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1851 zfid_short_t *zfid = (zfid_short_t *)fidp;
1852
1853 for (i = 0; i < sizeof (zfid->zf_object); i++)
1854 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1855
1856 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1857 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1858 } else {
1859 zfs_exit(zfsvfs, FTAG);
1860 return (SET_ERROR(EINVAL));
1861 }
1862
1863 if (fidp->fid_len == LONG_FID_LEN && setgen != 0) {
1864 zfs_exit(zfsvfs, FTAG);
1865 dprintf("snapdir fid: fid_gen (%llu) and setgen (%llu)\n",
1866 (u_longlong_t)fid_gen, (u_longlong_t)setgen);
1867 return (SET_ERROR(EINVAL));
1868 }
1869
1870 /*
1871 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
1872 * directory tree. If the object == zfsvfs->z_shares_dir, then
1873 * we are in the .zfs/shares directory tree.
1874 */
1875 if ((fid_gen == 0 &&
1876 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
1877 (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
1878 zfs_exit(zfsvfs, FTAG);
1879 VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
1880 if (object == ZFSCTL_INO_SNAPDIR) {
1881 cn.cn_nameptr = "snapshot";
1882 cn.cn_namelen = strlen(cn.cn_nameptr);
1883 cn.cn_nameiop = LOOKUP;
1884 cn.cn_flags = ISLASTCN | LOCKLEAF;
1885 cn.cn_lkflags = flags;
1886 VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1887 vput(dvp);
1888 } else if (object == zfsvfs->z_shares_dir) {
1889 /*
1890 * XXX This branch must not be taken,
1891 * if it is, then the lookup below will
1892 * explode.
1893 */
1894 cn.cn_nameptr = "shares";
1895 cn.cn_namelen = strlen(cn.cn_nameptr);
1896 cn.cn_nameiop = LOOKUP;
1897 cn.cn_flags = ISLASTCN;
1898 cn.cn_lkflags = flags;
1899 VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1900 vput(dvp);
1901 } else {
1902 *vpp = dvp;
1903 }
1904 return (err);
1905 }
1906
1907 gen_mask = -1ULL >> (64 - 8 * i);
1908
1909 dprintf("getting %llu [%llu mask %llx]\n", (u_longlong_t)object,
1910 (u_longlong_t)fid_gen,
1911 (u_longlong_t)gen_mask);
1912 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1913 zfs_exit(zfsvfs, FTAG);
1914 return (err);
1915 }
1916 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1917 sizeof (uint64_t));
1918 zp_gen = zp_gen & gen_mask;
1919 if (zp_gen == 0)
1920 zp_gen = 1;
1921 if (zp->z_unlinked || zp_gen != fid_gen) {
1922 dprintf("znode gen (%llu) != fid gen (%llu)\n",
1923 (u_longlong_t)zp_gen, (u_longlong_t)fid_gen);
1924 vrele(ZTOV(zp));
1925 zfs_exit(zfsvfs, FTAG);
1926 return (SET_ERROR(EINVAL));
1927 }
1928
1929 *vpp = ZTOV(zp);
1930 zfs_exit(zfsvfs, FTAG);
1931 err = vn_lock(*vpp, flags);
1932 if (err == 0)
1933 vnode_create_vobject(*vpp, zp->z_size, curthread);
1934 else
1935 *vpp = NULL;
1936 return (err);
1937 }
1938
1939 /*
1940 * Block out VOPs and close zfsvfs_t::z_os
1941 *
1942 * Note, if successful, then we return with the 'z_teardown_lock' and
1943 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1944 * dataset and objset intact so that they can be atomically handed off during
1945 * a subsequent rollback or recv operation and the resume thereafter.
1946 */
1947 int
1948 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1949 {
1950 int error;
1951
1952 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1953 return (error);
1954
1955 return (0);
1956 }
1957
1958 /*
1959 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1960 * is an invariant across any of the operations that can be performed while the
1961 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1962 * are the same: the relevant objset and associated dataset are owned by
1963 * zfsvfs, held, and long held on entry.
1964 */
1965 int
1966 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1967 {
1968 int err;
1969 znode_t *zp;
1970
1971 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1972 ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
1973
1974 /*
1975 * We already own this, so just update the objset_t, as the one we
1976 * had before may have been evicted.
1977 */
1978 objset_t *os;
1979 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1980 VERIFY(dsl_dataset_long_held(ds));
1981 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1982 dsl_pool_config_enter(dp, FTAG);
1983 VERIFY0(dmu_objset_from_ds(ds, &os));
1984 dsl_pool_config_exit(dp, FTAG);
1985
1986 err = zfsvfs_init(zfsvfs, os);
1987 if (err != 0)
1988 goto bail;
1989
1990 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1991 VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE));
1992
1993 zfs_set_fuid_feature(zfsvfs);
1994
1995 /*
1996 * Attempt to re-establish all the active znodes with
1997 * their dbufs. If a zfs_rezget() fails, then we'll let
1998 * any potential callers discover that via zfs_enter_verify_zp
1999 * when they try to use their znode.
2000 */
2001 mutex_enter(&zfsvfs->z_znodes_lock);
2002 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2003 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2004 (void) zfs_rezget(zp);
2005 }
2006 mutex_exit(&zfsvfs->z_znodes_lock);
2007
2008 bail:
2009 /* release the VOPs */
2010 ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2011 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2012
2013 if (err) {
2014 /*
2015 * Since we couldn't setup the sa framework, try to force
2016 * unmount this file system.
2017 */
2018 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2019 vfs_ref(zfsvfs->z_vfs);
2020 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2021 }
2022 }
2023 return (err);
2024 }
2025
2026 static void
2027 zfs_freevfs(vfs_t *vfsp)
2028 {
2029 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2030
2031 zfsvfs_free(zfsvfs);
2032
2033 atomic_dec_32(&zfs_active_fs_count);
2034 }
2035
2036 #ifdef __i386__
2037 static int desiredvnodes_backup;
2038 #include <sys/vmmeter.h>
2039
2040
2041 #include <vm/vm_page.h>
2042 #include <vm/vm_object.h>
2043 #include <vm/vm_kern.h>
2044 #include <vm/vm_map.h>
2045 #endif
2046
2047 static void
2048 zfs_vnodes_adjust(void)
2049 {
2050 #ifdef __i386__
2051 int newdesiredvnodes;
2052
2053 desiredvnodes_backup = desiredvnodes;
2054
2055 /*
2056 * We calculate newdesiredvnodes the same way it is done in
2057 * vntblinit(). If it is equal to desiredvnodes, it means that
2058 * it wasn't tuned by the administrator and we can tune it down.
2059 */
2060 newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
2061 vm_kmem_size / (5 * (sizeof (struct vm_object) +
2062 sizeof (struct vnode))));
2063 if (newdesiredvnodes == desiredvnodes)
2064 desiredvnodes = (3 * newdesiredvnodes) / 4;
2065 #endif
2066 }
2067
2068 static void
2069 zfs_vnodes_adjust_back(void)
2070 {
2071
2072 #ifdef __i386__
2073 desiredvnodes = desiredvnodes_backup;
2074 #endif
2075 }
2076
2077 #if __FreeBSD_version >= 1300139
2078 static struct sx zfs_vnlru_lock;
2079 static struct vnode *zfs_vnlru_marker;
2080 #endif
2081 static arc_prune_t *zfs_prune;
2082
2083 static void
2084 zfs_prune_task(uint64_t nr_to_scan, void *arg __unused)
2085 {
2086 if (nr_to_scan > INT_MAX)
2087 nr_to_scan = INT_MAX;
2088 #if __FreeBSD_version >= 1300139
2089 sx_xlock(&zfs_vnlru_lock);
2090 vnlru_free_vfsops(nr_to_scan, &zfs_vfsops, zfs_vnlru_marker);
2091 sx_xunlock(&zfs_vnlru_lock);
2092 #else
2093 vnlru_free(nr_to_scan, &zfs_vfsops);
2094 #endif
2095 }
2096
2097 void
2098 zfs_init(void)
2099 {
2100
2101 printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2102
2103 /*
2104 * Initialize .zfs directory structures
2105 */
2106 zfsctl_init();
2107
2108 /*
2109 * Initialize znode cache, vnode ops, etc...
2110 */
2111 zfs_znode_init();
2112
2113 /*
2114 * Reduce number of vnodes. Originally number of vnodes is calculated
2115 * with UFS inode in mind. We reduce it here, because it's too big for
2116 * ZFS/i386.
2117 */
2118 zfs_vnodes_adjust();
2119
2120 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2121
2122 zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
2123
2124 #if __FreeBSD_version >= 1300139
2125 zfs_vnlru_marker = vnlru_alloc_marker();
2126 sx_init(&zfs_vnlru_lock, "zfs vnlru lock");
2127 #endif
2128 zfs_prune = arc_add_prune_callback(zfs_prune_task, NULL);
2129 }
2130
2131 void
2132 zfs_fini(void)
2133 {
2134 arc_remove_prune_callback(zfs_prune);
2135 #if __FreeBSD_version >= 1300139
2136 vnlru_free_marker(zfs_vnlru_marker);
2137 sx_destroy(&zfs_vnlru_lock);
2138 #endif
2139
2140 taskq_destroy(zfsvfs_taskq);
2141 zfsctl_fini();
2142 zfs_znode_fini();
2143 zfs_vnodes_adjust_back();
2144 }
2145
2146 int
2147 zfs_busy(void)
2148 {
2149 return (zfs_active_fs_count != 0);
2150 }
2151
2152 /*
2153 * Release VOPs and unmount a suspended filesystem.
2154 */
2155 int
2156 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2157 {
2158 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
2159 ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
2160
2161 /*
2162 * We already own this, so just hold and rele it to update the
2163 * objset_t, as the one we had before may have been evicted.
2164 */
2165 objset_t *os;
2166 VERIFY3P(ds->ds_owner, ==, zfsvfs);
2167 VERIFY(dsl_dataset_long_held(ds));
2168 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
2169 dsl_pool_config_enter(dp, FTAG);
2170 VERIFY0(dmu_objset_from_ds(ds, &os));
2171 dsl_pool_config_exit(dp, FTAG);
2172 zfsvfs->z_os = os;
2173
2174 /* release the VOPs */
2175 ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2176 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2177
2178 /*
2179 * Try to force unmount this file system.
2180 */
2181 (void) zfs_umount(zfsvfs->z_vfs, 0);
2182 zfsvfs->z_unmounted = B_TRUE;
2183 return (0);
2184 }
2185
2186 int
2187 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2188 {
2189 int error;
2190 objset_t *os = zfsvfs->z_os;
2191 dmu_tx_t *tx;
2192
2193 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2194 return (SET_ERROR(EINVAL));
2195
2196 if (newvers < zfsvfs->z_version)
2197 return (SET_ERROR(EINVAL));
2198
2199 if (zfs_spa_version_map(newvers) >
2200 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2201 return (SET_ERROR(ENOTSUP));
2202
2203 tx = dmu_tx_create(os);
2204 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2205 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2206 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2207 ZFS_SA_ATTRS);
2208 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2209 }
2210 error = dmu_tx_assign(tx, TXG_WAIT);
2211 if (error) {
2212 dmu_tx_abort(tx);
2213 return (error);
2214 }
2215
2216 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2217 8, 1, &newvers, tx);
2218
2219 if (error) {
2220 dmu_tx_commit(tx);
2221 return (error);
2222 }
2223
2224 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2225 uint64_t sa_obj;
2226
2227 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2228 SPA_VERSION_SA);
2229 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2230 DMU_OT_NONE, 0, tx);
2231
2232 error = zap_add(os, MASTER_NODE_OBJ,
2233 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2234 ASSERT0(error);
2235
2236 VERIFY0(sa_set_sa_object(os, sa_obj));
2237 sa_register_update_callback(os, zfs_sa_upgrade);
2238 }
2239
2240 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2241 "from %ju to %ju", (uintmax_t)zfsvfs->z_version,
2242 (uintmax_t)newvers);
2243 dmu_tx_commit(tx);
2244
2245 zfsvfs->z_version = newvers;
2246 os->os_version = newvers;
2247
2248 zfs_set_fuid_feature(zfsvfs);
2249
2250 return (0);
2251 }
2252
2253 /*
2254 * Return true if the corresponding vfs's unmounted flag is set.
2255 * Otherwise return false.
2256 * If this function returns true we know VFS unmount has been initiated.
2257 */
2258 boolean_t
2259 zfs_get_vfs_flag_unmounted(objset_t *os)
2260 {
2261 zfsvfs_t *zfvp;
2262 boolean_t unmounted = B_FALSE;
2263
2264 ASSERT3U(dmu_objset_type(os), ==, DMU_OST_ZFS);
2265
2266 mutex_enter(&os->os_user_ptr_lock);
2267 zfvp = dmu_objset_get_user(os);
2268 if (zfvp != NULL && zfvp->z_vfs != NULL &&
2269 (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
2270 unmounted = B_TRUE;
2271 mutex_exit(&os->os_user_ptr_lock);
2272
2273 return (unmounted);
2274 }
2275
2276 #ifdef _KERNEL
2277 void
2278 zfsvfs_update_fromname(const char *oldname, const char *newname)
2279 {
2280 char tmpbuf[MAXPATHLEN];
2281 struct mount *mp;
2282 char *fromname;
2283 size_t oldlen;
2284
2285 oldlen = strlen(oldname);
2286
2287 mtx_lock(&mountlist_mtx);
2288 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2289 fromname = mp->mnt_stat.f_mntfromname;
2290 if (strcmp(fromname, oldname) == 0) {
2291 (void) strlcpy(fromname, newname,
2292 sizeof (mp->mnt_stat.f_mntfromname));
2293 continue;
2294 }
2295 if (strncmp(fromname, oldname, oldlen) == 0 &&
2296 (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2297 (void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
2298 newname, fromname + oldlen);
2299 (void) strlcpy(fromname, tmpbuf,
2300 sizeof (mp->mnt_stat.f_mntfromname));
2301 continue;
2302 }
2303 }
2304 mtx_unlock(&mountlist_mtx);
2305 }
2306 #endif
2307
2308 /*
2309 * Find a prison with ZFS info.
2310 * Return the ZFS info and the (locked) prison.
2311 */
2312 static struct zfs_jailparam *
2313 zfs_jailparam_find(struct prison *spr, struct prison **prp)
2314 {
2315 struct prison *pr;
2316 struct zfs_jailparam *zjp;
2317
2318 for (pr = spr; ; pr = pr->pr_parent) {
2319 mtx_lock(&pr->pr_mtx);
2320 if (pr == &prison0) {
2321 zjp = &zfs_jailparam0;
2322 break;
2323 }
2324 zjp = osd_jail_get(pr, zfs_jailparam_slot);
2325 if (zjp != NULL)
2326 break;
2327 mtx_unlock(&pr->pr_mtx);
2328 }
2329 *prp = pr;
2330
2331 return (zjp);
2332 }
2333
2334 /*
2335 * Ensure a prison has its own ZFS info. If zjpp is non-null, point it to the
2336 * ZFS info and lock the prison.
2337 */
2338 static void
2339 zfs_jailparam_alloc(struct prison *pr, struct zfs_jailparam **zjpp)
2340 {
2341 struct prison *ppr;
2342 struct zfs_jailparam *zjp, *nzjp;
2343 void **rsv;
2344
2345 /* If this prison already has ZFS info, return that. */
2346 zjp = zfs_jailparam_find(pr, &ppr);
2347 if (ppr == pr)
2348 goto done;
2349
2350 /*
2351 * Allocate a new info record. Then check again, in case something
2352 * changed during the allocation.
2353 */
2354 mtx_unlock(&ppr->pr_mtx);
2355 nzjp = malloc(sizeof (struct zfs_jailparam), M_PRISON, M_WAITOK);
2356 rsv = osd_reserve(zfs_jailparam_slot);
2357 zjp = zfs_jailparam_find(pr, &ppr);
2358 if (ppr == pr) {
2359 free(nzjp, M_PRISON);
2360 osd_free_reserved(rsv);
2361 goto done;
2362 }
2363 /* Inherit the initial values from the ancestor. */
2364 mtx_lock(&pr->pr_mtx);
2365 (void) osd_jail_set_reserved(pr, zfs_jailparam_slot, rsv, nzjp);
2366 (void) memcpy(nzjp, zjp, sizeof (*zjp));
2367 zjp = nzjp;
2368 mtx_unlock(&ppr->pr_mtx);
2369 done:
2370 if (zjpp != NULL)
2371 *zjpp = zjp;
2372 else
2373 mtx_unlock(&pr->pr_mtx);
2374 }
2375
2376 /*
2377 * Jail OSD methods for ZFS VFS info.
2378 */
2379 static int
2380 zfs_jailparam_create(void *obj, void *data)
2381 {
2382 struct prison *pr = obj;
2383 struct vfsoptlist *opts = data;
2384 int jsys;
2385
2386 if (vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys)) == 0 &&
2387 jsys == JAIL_SYS_INHERIT)
2388 return (0);
2389 /*
2390 * Inherit a prison's initial values from its parent
2391 * (different from JAIL_SYS_INHERIT which also inherits changes).
2392 */
2393 zfs_jailparam_alloc(pr, NULL);
2394 return (0);
2395 }
2396
2397 static int
2398 zfs_jailparam_get(void *obj, void *data)
2399 {
2400 struct prison *ppr, *pr = obj;
2401 struct vfsoptlist *opts = data;
2402 struct zfs_jailparam *zjp;
2403 int jsys, error;
2404
2405 zjp = zfs_jailparam_find(pr, &ppr);
2406 jsys = (ppr == pr) ? JAIL_SYS_NEW : JAIL_SYS_INHERIT;
2407 error = vfs_setopt(opts, "zfs", &jsys, sizeof (jsys));
2408 if (error != 0 && error != ENOENT)
2409 goto done;
2410 if (jsys == JAIL_SYS_NEW) {
2411 error = vfs_setopt(opts, "zfs.mount_snapshot",
2412 &zjp->mount_snapshot, sizeof (zjp->mount_snapshot));
2413 if (error != 0 && error != ENOENT)
2414 goto done;
2415 } else {
2416 /*
2417 * If this prison is inheriting its ZFS info, report
2418 * empty/zero parameters.
2419 */
2420 static int mount_snapshot = 0;
2421
2422 error = vfs_setopt(opts, "zfs.mount_snapshot",
2423 &mount_snapshot, sizeof (mount_snapshot));
2424 if (error != 0 && error != ENOENT)
2425 goto done;
2426 }
2427 error = 0;
2428 done:
2429 mtx_unlock(&ppr->pr_mtx);
2430 return (error);
2431 }
2432
2433 static int
2434 zfs_jailparam_set(void *obj, void *data)
2435 {
2436 struct prison *pr = obj;
2437 struct prison *ppr;
2438 struct vfsoptlist *opts = data;
2439 int error, jsys, mount_snapshot;
2440
2441 /* Set the parameters, which should be correct. */
2442 error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2443 if (error == ENOENT)
2444 jsys = -1;
2445 error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2446 sizeof (mount_snapshot));
2447 if (error == ENOENT)
2448 mount_snapshot = -1;
2449 else
2450 jsys = JAIL_SYS_NEW;
2451 switch (jsys) {
2452 case JAIL_SYS_NEW:
2453 {
2454 /* "zfs=new" or "zfs.*": the prison gets its own ZFS info. */
2455 struct zfs_jailparam *zjp;
2456
2457 /*
2458 * A child jail cannot have more permissions than its parent
2459 */
2460 if (pr->pr_parent != &prison0) {
2461 zjp = zfs_jailparam_find(pr->pr_parent, &ppr);
2462 mtx_unlock(&ppr->pr_mtx);
2463 if (zjp->mount_snapshot < mount_snapshot) {
2464 return (EPERM);
2465 }
2466 }
2467 zfs_jailparam_alloc(pr, &zjp);
2468 if (mount_snapshot != -1)
2469 zjp->mount_snapshot = mount_snapshot;
2470 mtx_unlock(&pr->pr_mtx);
2471 break;
2472 }
2473 case JAIL_SYS_INHERIT:
2474 /* "zfs=inherit": inherit the parent's ZFS info. */
2475 mtx_lock(&pr->pr_mtx);
2476 osd_jail_del(pr, zfs_jailparam_slot);
2477 mtx_unlock(&pr->pr_mtx);
2478 break;
2479 case -1:
2480 /*
2481 * If the setting being changed is not ZFS related
2482 * then do nothing.
2483 */
2484 break;
2485 }
2486
2487 return (0);
2488 }
2489
2490 static int
2491 zfs_jailparam_check(void *obj __unused, void *data)
2492 {
2493 struct vfsoptlist *opts = data;
2494 int error, jsys, mount_snapshot;
2495
2496 /* Check that the parameters are correct. */
2497 error = vfs_copyopt(opts, "zfs", &jsys, sizeof (jsys));
2498 if (error != ENOENT) {
2499 if (error != 0)
2500 return (error);
2501 if (jsys != JAIL_SYS_NEW && jsys != JAIL_SYS_INHERIT)
2502 return (EINVAL);
2503 }
2504 error = vfs_copyopt(opts, "zfs.mount_snapshot", &mount_snapshot,
2505 sizeof (mount_snapshot));
2506 if (error != ENOENT) {
2507 if (error != 0)
2508 return (error);
2509 if (mount_snapshot != 0 && mount_snapshot != 1)
2510 return (EINVAL);
2511 }
2512 return (0);
2513 }
2514
2515 static void
2516 zfs_jailparam_destroy(void *data)
2517 {
2518
2519 free(data, M_PRISON);
2520 }
2521
2522 static void
2523 zfs_jailparam_sysinit(void *arg __unused)
2524 {
2525 struct prison *pr;
2526 osd_method_t methods[PR_MAXMETHOD] = {
2527 [PR_METHOD_CREATE] = zfs_jailparam_create,
2528 [PR_METHOD_GET] = zfs_jailparam_get,
2529 [PR_METHOD_SET] = zfs_jailparam_set,
2530 [PR_METHOD_CHECK] = zfs_jailparam_check,
2531 };
2532
2533 zfs_jailparam_slot = osd_jail_register(zfs_jailparam_destroy, methods);
2534 /* Copy the defaults to any existing prisons. */
2535 sx_slock(&allprison_lock);
2536 TAILQ_FOREACH(pr, &allprison, pr_list)
2537 zfs_jailparam_alloc(pr, NULL);
2538 sx_sunlock(&allprison_lock);
2539 }
2540
2541 static void
2542 zfs_jailparam_sysuninit(void *arg __unused)
2543 {
2544
2545 osd_jail_deregister(zfs_jailparam_slot);
2546 }
2547
2548 SYSINIT(zfs_jailparam_sysinit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2549 zfs_jailparam_sysinit, NULL);
2550 SYSUNINIT(zfs_jailparam_sysuninit, SI_SUB_DRIVERS, SI_ORDER_ANY,
2551 zfs_jailparam_sysuninit, NULL);