]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zvol_os.c
e2a6ba3a7f32e2b5329c1f044ab2e3b54220f581
[mirror_zfs.git] / module / os / linux / zfs / zvol_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23 */
24
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 #include <cityhash.h>
41
42 #include <linux/blkdev_compat.h>
43 #include <linux/task_io_accounting_ops.h>
44
45 #ifdef HAVE_BLK_MQ
46 #include <linux/blk-mq.h>
47 #endif
48
49 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
50 struct request *rq, boolean_t force_sync);
51
52 static unsigned int zvol_major = ZVOL_MAJOR;
53 static unsigned int zvol_request_sync = 0;
54 static unsigned int zvol_prefetch_bytes = (128 * 1024);
55 static unsigned long zvol_max_discard_blocks = 16384;
56
57 /*
58 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
59 * to utilize more threads for small files but may affect prefetch hits.
60 */
61 #define ZVOL_TASKQ_OFFSET_SHIFT 29
62
63 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
64 static unsigned int zvol_open_timeout_ms = 1000;
65 #endif
66
67 static unsigned int zvol_threads = 0;
68 #ifdef HAVE_BLK_MQ
69 static unsigned int zvol_blk_mq_threads = 0;
70 static unsigned int zvol_blk_mq_actual_threads;
71 static boolean_t zvol_use_blk_mq = B_FALSE;
72
73 /*
74 * The maximum number of volblocksize blocks to process per thread. Typically,
75 * write heavy workloads preform better with higher values here, and read
76 * heavy workloads preform better with lower values, but that's not a hard
77 * and fast rule. It's basically a knob to tune between "less overhead with
78 * less parallelism" and "more overhead, but more parallelism".
79 *
80 * '8' was chosen as a reasonable, balanced, default based off of sequential
81 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
82 */
83 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
84 #endif
85
86 static unsigned int zvol_num_taskqs = 0;
87
88 #ifndef BLKDEV_DEFAULT_RQ
89 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
90 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
91 #endif
92
93 /*
94 * Finalize our BIO or request.
95 */
96 #ifdef HAVE_BLK_MQ
97 #define END_IO(zv, bio, rq, error) do { \
98 if (bio) { \
99 BIO_END_IO(bio, error); \
100 } else { \
101 blk_mq_end_request(rq, errno_to_bi_status(error)); \
102 } \
103 } while (0)
104 #else
105 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
106 #endif
107
108 #ifdef HAVE_BLK_MQ
109 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
110 static unsigned int zvol_actual_blk_mq_queue_depth;
111 #endif
112
113 struct zvol_state_os {
114 struct gendisk *zvo_disk; /* generic disk */
115 struct request_queue *zvo_queue; /* request queue */
116 dev_t zvo_dev; /* device id */
117
118 #ifdef HAVE_BLK_MQ
119 struct blk_mq_tag_set tag_set;
120 #endif
121
122 /* Set from the global 'zvol_use_blk_mq' at zvol load */
123 boolean_t use_blk_mq;
124 };
125
126 typedef struct zv_taskq {
127 uint_t tqs_cnt;
128 taskq_t **tqs_taskq;
129 } zv_taskq_t;
130 static zv_taskq_t zvol_taskqs;
131 static struct ida zvol_ida;
132
133 typedef struct zv_request_stack {
134 zvol_state_t *zv;
135 struct bio *bio;
136 struct request *rq;
137 } zv_request_t;
138
139 typedef struct zv_work {
140 struct request *rq;
141 struct work_struct work;
142 } zv_work_t;
143
144 typedef struct zv_request_task {
145 zv_request_t zvr;
146 taskq_ent_t ent;
147 } zv_request_task_t;
148
149 static zv_request_task_t *
150 zv_request_task_create(zv_request_t zvr)
151 {
152 zv_request_task_t *task;
153 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
154 taskq_init_ent(&task->ent);
155 task->zvr = zvr;
156 return (task);
157 }
158
159 static void
160 zv_request_task_free(zv_request_task_t *task)
161 {
162 kmem_free(task, sizeof (*task));
163 }
164
165 #ifdef HAVE_BLK_MQ
166
167 /*
168 * This is called when a new block multiqueue request comes in. A request
169 * contains one or more BIOs.
170 */
171 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
172 const struct blk_mq_queue_data *bd)
173 {
174 struct request *rq = bd->rq;
175 zvol_state_t *zv = rq->q->queuedata;
176
177 /* Tell the kernel that we are starting to process this request */
178 blk_mq_start_request(rq);
179
180 if (blk_rq_is_passthrough(rq)) {
181 /* Skip non filesystem request */
182 blk_mq_end_request(rq, BLK_STS_IOERR);
183 return (BLK_STS_IOERR);
184 }
185
186 zvol_request_impl(zv, NULL, rq, 0);
187
188 /* Acknowledge to the kernel that we got this request */
189 return (BLK_STS_OK);
190 }
191
192 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
193 .queue_rq = zvol_mq_queue_rq,
194 };
195
196 /* Initialize our blk-mq struct */
197 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
198 {
199 struct zvol_state_os *zso = zv->zv_zso;
200
201 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
202
203 /* Initialize tag set. */
204 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
205 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
206 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
207 zso->tag_set.numa_node = NUMA_NO_NODE;
208 zso->tag_set.cmd_size = 0;
209
210 /*
211 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
212 * zvol_request_impl()
213 */
214 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
215 zso->tag_set.driver_data = zv;
216
217 return (blk_mq_alloc_tag_set(&zso->tag_set));
218 }
219 #endif /* HAVE_BLK_MQ */
220
221 /*
222 * Given a path, return TRUE if path is a ZVOL.
223 */
224 boolean_t
225 zvol_os_is_zvol(const char *path)
226 {
227 dev_t dev = 0;
228
229 if (vdev_lookup_bdev(path, &dev) != 0)
230 return (B_FALSE);
231
232 if (MAJOR(dev) == zvol_major)
233 return (B_TRUE);
234
235 return (B_FALSE);
236 }
237
238 static void
239 zvol_write(zv_request_t *zvr)
240 {
241 struct bio *bio = zvr->bio;
242 struct request *rq = zvr->rq;
243 int error = 0;
244 zfs_uio_t uio;
245 zvol_state_t *zv = zvr->zv;
246 struct request_queue *q;
247 struct gendisk *disk;
248 unsigned long start_time = 0;
249 boolean_t acct = B_FALSE;
250
251 ASSERT3P(zv, !=, NULL);
252 ASSERT3U(zv->zv_open_count, >, 0);
253 ASSERT3P(zv->zv_zilog, !=, NULL);
254
255 q = zv->zv_zso->zvo_queue;
256 disk = zv->zv_zso->zvo_disk;
257
258 /* bio marked as FLUSH need to flush before write */
259 if (io_is_flush(bio, rq))
260 zil_commit(zv->zv_zilog, ZVOL_OBJ);
261
262 /* Some requests are just for flush and nothing else. */
263 if (io_size(bio, rq) == 0) {
264 rw_exit(&zv->zv_suspend_lock);
265 END_IO(zv, bio, rq, 0);
266 return;
267 }
268
269 zfs_uio_bvec_init(&uio, bio, rq);
270
271 ssize_t start_resid = uio.uio_resid;
272
273 /*
274 * With use_blk_mq, accounting is done by blk_mq_start_request()
275 * and blk_mq_end_request(), so we can skip it here.
276 */
277 if (bio) {
278 acct = blk_queue_io_stat(q);
279 if (acct) {
280 start_time = blk_generic_start_io_acct(q, disk, WRITE,
281 bio);
282 }
283 }
284
285 boolean_t sync =
286 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
287
288 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
289 uio.uio_loffset, uio.uio_resid, RL_WRITER);
290
291 uint64_t volsize = zv->zv_volsize;
292 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
293 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
294 uint64_t off = uio.uio_loffset;
295 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
296
297 if (bytes > volsize - off) /* don't write past the end */
298 bytes = volsize - off;
299
300 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
301
302 /* This will only fail for ENOSPC */
303 error = dmu_tx_assign(tx, TXG_WAIT);
304 if (error) {
305 dmu_tx_abort(tx);
306 break;
307 }
308 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
309 if (error == 0) {
310 zvol_log_write(zv, tx, off, bytes, sync);
311 }
312 dmu_tx_commit(tx);
313
314 if (error)
315 break;
316 }
317 zfs_rangelock_exit(lr);
318
319 int64_t nwritten = start_resid - uio.uio_resid;
320 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
321 task_io_account_write(nwritten);
322
323 if (sync)
324 zil_commit(zv->zv_zilog, ZVOL_OBJ);
325
326 rw_exit(&zv->zv_suspend_lock);
327
328 if (bio && acct) {
329 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
330 }
331
332 END_IO(zv, bio, rq, -error);
333 }
334
335 static void
336 zvol_write_task(void *arg)
337 {
338 zv_request_task_t *task = arg;
339 zvol_write(&task->zvr);
340 zv_request_task_free(task);
341 }
342
343 static void
344 zvol_discard(zv_request_t *zvr)
345 {
346 struct bio *bio = zvr->bio;
347 struct request *rq = zvr->rq;
348 zvol_state_t *zv = zvr->zv;
349 uint64_t start = io_offset(bio, rq);
350 uint64_t size = io_size(bio, rq);
351 uint64_t end = start + size;
352 boolean_t sync;
353 int error = 0;
354 dmu_tx_t *tx;
355 struct request_queue *q = zv->zv_zso->zvo_queue;
356 struct gendisk *disk = zv->zv_zso->zvo_disk;
357 unsigned long start_time = 0;
358 boolean_t acct = B_FALSE;
359
360 ASSERT3P(zv, !=, NULL);
361 ASSERT3U(zv->zv_open_count, >, 0);
362 ASSERT3P(zv->zv_zilog, !=, NULL);
363
364 if (bio) {
365 acct = blk_queue_io_stat(q);
366 if (acct) {
367 start_time = blk_generic_start_io_acct(q, disk, WRITE,
368 bio);
369 }
370 }
371
372 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
373
374 if (end > zv->zv_volsize) {
375 error = SET_ERROR(EIO);
376 goto unlock;
377 }
378
379 /*
380 * Align the request to volume block boundaries when a secure erase is
381 * not required. This will prevent dnode_free_range() from zeroing out
382 * the unaligned parts which is slow (read-modify-write) and useless
383 * since we are not freeing any space by doing so.
384 */
385 if (!io_is_secure_erase(bio, rq)) {
386 start = P2ROUNDUP(start, zv->zv_volblocksize);
387 end = P2ALIGN(end, zv->zv_volblocksize);
388 size = end - start;
389 }
390
391 if (start >= end)
392 goto unlock;
393
394 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
395 start, size, RL_WRITER);
396
397 tx = dmu_tx_create(zv->zv_objset);
398 dmu_tx_mark_netfree(tx);
399 error = dmu_tx_assign(tx, TXG_WAIT);
400 if (error != 0) {
401 dmu_tx_abort(tx);
402 } else {
403 zvol_log_truncate(zv, tx, start, size);
404 dmu_tx_commit(tx);
405 error = dmu_free_long_range(zv->zv_objset,
406 ZVOL_OBJ, start, size);
407 }
408 zfs_rangelock_exit(lr);
409
410 if (error == 0 && sync)
411 zil_commit(zv->zv_zilog, ZVOL_OBJ);
412
413 unlock:
414 rw_exit(&zv->zv_suspend_lock);
415
416 if (bio && acct) {
417 blk_generic_end_io_acct(q, disk, WRITE, bio,
418 start_time);
419 }
420
421 END_IO(zv, bio, rq, -error);
422 }
423
424 static void
425 zvol_discard_task(void *arg)
426 {
427 zv_request_task_t *task = arg;
428 zvol_discard(&task->zvr);
429 zv_request_task_free(task);
430 }
431
432 static void
433 zvol_read(zv_request_t *zvr)
434 {
435 struct bio *bio = zvr->bio;
436 struct request *rq = zvr->rq;
437 int error = 0;
438 zfs_uio_t uio;
439 boolean_t acct = B_FALSE;
440 zvol_state_t *zv = zvr->zv;
441 struct request_queue *q;
442 struct gendisk *disk;
443 unsigned long start_time = 0;
444
445 ASSERT3P(zv, !=, NULL);
446 ASSERT3U(zv->zv_open_count, >, 0);
447
448 zfs_uio_bvec_init(&uio, bio, rq);
449
450 q = zv->zv_zso->zvo_queue;
451 disk = zv->zv_zso->zvo_disk;
452
453 ssize_t start_resid = uio.uio_resid;
454
455 /*
456 * When blk-mq is being used, accounting is done by
457 * blk_mq_start_request() and blk_mq_end_request().
458 */
459 if (bio) {
460 acct = blk_queue_io_stat(q);
461 if (acct)
462 start_time = blk_generic_start_io_acct(q, disk, READ,
463 bio);
464 }
465
466 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
467 uio.uio_loffset, uio.uio_resid, RL_READER);
468
469 uint64_t volsize = zv->zv_volsize;
470
471 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
472 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
473
474 /* don't read past the end */
475 if (bytes > volsize - uio.uio_loffset)
476 bytes = volsize - uio.uio_loffset;
477
478 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
479 if (error) {
480 /* convert checksum errors into IO errors */
481 if (error == ECKSUM)
482 error = SET_ERROR(EIO);
483 break;
484 }
485 }
486 zfs_rangelock_exit(lr);
487
488 int64_t nread = start_resid - uio.uio_resid;
489 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
490 task_io_account_read(nread);
491
492 rw_exit(&zv->zv_suspend_lock);
493
494 if (bio && acct) {
495 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
496 }
497
498 END_IO(zv, bio, rq, -error);
499 }
500
501 static void
502 zvol_read_task(void *arg)
503 {
504 zv_request_task_t *task = arg;
505 zvol_read(&task->zvr);
506 zv_request_task_free(task);
507 }
508
509
510 /*
511 * Process a BIO or request
512 *
513 * Either 'bio' or 'rq' should be set depending on if we are processing a
514 * bio or a request (both should not be set).
515 *
516 * force_sync: Set to 0 to defer processing to a background taskq
517 * Set to 1 to process data synchronously
518 */
519 static void
520 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
521 boolean_t force_sync)
522 {
523 fstrans_cookie_t cookie = spl_fstrans_mark();
524 uint64_t offset = io_offset(bio, rq);
525 uint64_t size = io_size(bio, rq);
526 int rw = io_data_dir(bio, rq);
527
528 if (zvol_request_sync || zv->zv_threading == B_FALSE)
529 force_sync = 1;
530
531 zv_request_t zvr = {
532 .zv = zv,
533 .bio = bio,
534 .rq = rq,
535 };
536
537 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
538 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
539 zv->zv_zso->zvo_disk->disk_name,
540 (long long unsigned)offset,
541 (long unsigned)size);
542
543 END_IO(zv, bio, rq, -SET_ERROR(EIO));
544 goto out;
545 }
546
547 zv_request_task_t *task;
548 zv_taskq_t *ztqs = &zvol_taskqs;
549 uint_t blk_mq_hw_queue = 0;
550 uint_t tq_idx;
551 uint_t taskq_hash;
552 #ifdef HAVE_BLK_MQ
553 if (rq)
554 blk_mq_hw_queue = rq->mq_hctx->queue_num;
555 #endif
556 taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
557 blk_mq_hw_queue, 0);
558 tq_idx = taskq_hash % ztqs->tqs_cnt;
559
560 if (rw == WRITE) {
561 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
562 END_IO(zv, bio, rq, -SET_ERROR(EROFS));
563 goto out;
564 }
565
566 /*
567 * Prevents the zvol from being suspended, or the ZIL being
568 * concurrently opened. Will be released after the i/o
569 * completes.
570 */
571 rw_enter(&zv->zv_suspend_lock, RW_READER);
572
573 /*
574 * Open a ZIL if this is the first time we have written to this
575 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
576 * than zv_state_lock so that we don't need to acquire an
577 * additional lock in this path.
578 */
579 if (zv->zv_zilog == NULL) {
580 rw_exit(&zv->zv_suspend_lock);
581 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
582 if (zv->zv_zilog == NULL) {
583 zv->zv_zilog = zil_open(zv->zv_objset,
584 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
585 zv->zv_flags |= ZVOL_WRITTEN_TO;
586 /* replay / destroy done in zvol_create_minor */
587 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
588 ZIL_REPLAY_NEEDED));
589 }
590 rw_downgrade(&zv->zv_suspend_lock);
591 }
592
593 /*
594 * We don't want this thread to be blocked waiting for i/o to
595 * complete, so we instead wait from a taskq callback. The
596 * i/o may be a ZIL write (via zil_commit()), or a read of an
597 * indirect block, or a read of a data block (if this is a
598 * partial-block write). We will indicate that the i/o is
599 * complete by calling END_IO() from the taskq callback.
600 *
601 * This design allows the calling thread to continue and
602 * initiate more concurrent operations by calling
603 * zvol_request() again. There are typically only a small
604 * number of threads available to call zvol_request() (e.g.
605 * one per iSCSI target), so keeping the latency of
606 * zvol_request() low is important for performance.
607 *
608 * The zvol_request_sync module parameter allows this
609 * behavior to be altered, for performance evaluation
610 * purposes. If the callback blocks, setting
611 * zvol_request_sync=1 will result in much worse performance.
612 *
613 * We can have up to zvol_threads concurrent i/o's being
614 * processed for all zvols on the system. This is typically
615 * a vast improvement over the zvol_request_sync=1 behavior
616 * of one i/o at a time per zvol. However, an even better
617 * design would be for zvol_request() to initiate the zio
618 * directly, and then be notified by the zio_done callback,
619 * which would call END_IO(). Unfortunately, the DMU/ZIL
620 * interfaces lack this functionality (they block waiting for
621 * the i/o to complete).
622 */
623 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
624 if (force_sync) {
625 zvol_discard(&zvr);
626 } else {
627 task = zv_request_task_create(zvr);
628 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
629 zvol_discard_task, task, 0, &task->ent);
630 }
631 } else {
632 if (force_sync) {
633 zvol_write(&zvr);
634 } else {
635 task = zv_request_task_create(zvr);
636 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
637 zvol_write_task, task, 0, &task->ent);
638 }
639 }
640 } else {
641 /*
642 * The SCST driver, and possibly others, may issue READ I/Os
643 * with a length of zero bytes. These empty I/Os contain no
644 * data and require no additional handling.
645 */
646 if (size == 0) {
647 END_IO(zv, bio, rq, 0);
648 goto out;
649 }
650
651 rw_enter(&zv->zv_suspend_lock, RW_READER);
652
653 /* See comment in WRITE case above. */
654 if (force_sync) {
655 zvol_read(&zvr);
656 } else {
657 task = zv_request_task_create(zvr);
658 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
659 zvol_read_task, task, 0, &task->ent);
660 }
661 }
662
663 out:
664 spl_fstrans_unmark(cookie);
665 }
666
667 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
668 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
669 static void
670 zvol_submit_bio(struct bio *bio)
671 #else
672 static blk_qc_t
673 zvol_submit_bio(struct bio *bio)
674 #endif
675 #else
676 static MAKE_REQUEST_FN_RET
677 zvol_request(struct request_queue *q, struct bio *bio)
678 #endif
679 {
680 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
681 #if defined(HAVE_BIO_BDEV_DISK)
682 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
683 #else
684 struct request_queue *q = bio->bi_disk->queue;
685 #endif
686 #endif
687 zvol_state_t *zv = q->queuedata;
688
689 zvol_request_impl(zv, bio, NULL, 0);
690 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
691 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
692 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
693 return (BLK_QC_T_NONE);
694 #endif
695 }
696
697 static int
698 #ifdef HAVE_BLK_MODE_T
699 zvol_open(struct gendisk *disk, blk_mode_t flag)
700 #else
701 zvol_open(struct block_device *bdev, fmode_t flag)
702 #endif
703 {
704 zvol_state_t *zv;
705 int error = 0;
706 boolean_t drop_suspend = B_FALSE;
707 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
708 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
709 hrtime_t start = gethrtime();
710
711 retry:
712 #endif
713 rw_enter(&zvol_state_lock, RW_READER);
714 /*
715 * Obtain a copy of private_data under the zvol_state_lock to make
716 * sure that either the result of zvol free code path setting
717 * disk->private_data to NULL is observed, or zvol_os_free()
718 * is not called on this zv because of the positive zv_open_count.
719 */
720 #ifdef HAVE_BLK_MODE_T
721 zv = disk->private_data;
722 #else
723 zv = bdev->bd_disk->private_data;
724 #endif
725 if (zv == NULL) {
726 rw_exit(&zvol_state_lock);
727 return (SET_ERROR(-ENXIO));
728 }
729
730 mutex_enter(&zv->zv_state_lock);
731 /*
732 * Make sure zvol is not suspended during first open
733 * (hold zv_suspend_lock) and respect proper lock acquisition
734 * ordering - zv_suspend_lock before zv_state_lock
735 */
736 if (zv->zv_open_count == 0) {
737 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
738 mutex_exit(&zv->zv_state_lock);
739 rw_enter(&zv->zv_suspend_lock, RW_READER);
740 mutex_enter(&zv->zv_state_lock);
741 /* check to see if zv_suspend_lock is needed */
742 if (zv->zv_open_count != 0) {
743 rw_exit(&zv->zv_suspend_lock);
744 } else {
745 drop_suspend = B_TRUE;
746 }
747 } else {
748 drop_suspend = B_TRUE;
749 }
750 }
751 rw_exit(&zvol_state_lock);
752
753 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
754
755 if (zv->zv_open_count == 0) {
756 boolean_t drop_namespace = B_FALSE;
757
758 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
759
760 /*
761 * In all other call paths the spa_namespace_lock is taken
762 * before the bdev->bd_mutex lock. However, on open(2)
763 * the __blkdev_get() function calls fops->open() with the
764 * bdev->bd_mutex lock held. This can result in a deadlock
765 * when zvols from one pool are used as vdevs in another.
766 *
767 * To prevent a lock inversion deadlock we preemptively
768 * take the spa_namespace_lock. Normally the lock will not
769 * be contended and this is safe because spa_open_common()
770 * handles the case where the caller already holds the
771 * spa_namespace_lock.
772 *
773 * When the lock cannot be aquired after multiple retries
774 * this must be the vdev on zvol deadlock case and we have
775 * no choice but to return an error. For 5.12 and older
776 * kernels returning -ERESTARTSYS will result in the
777 * bdev->bd_mutex being dropped, then reacquired, and
778 * fops->open() being called again. This process can be
779 * repeated safely until both locks are acquired. For 5.13
780 * and newer the -ERESTARTSYS retry logic was removed from
781 * the kernel so the only option is to return the error for
782 * the caller to handle it.
783 */
784 if (!mutex_owned(&spa_namespace_lock)) {
785 if (!mutex_tryenter(&spa_namespace_lock)) {
786 mutex_exit(&zv->zv_state_lock);
787 rw_exit(&zv->zv_suspend_lock);
788
789 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
790 schedule();
791 return (SET_ERROR(-ERESTARTSYS));
792 #else
793 if ((gethrtime() - start) > timeout)
794 return (SET_ERROR(-ERESTARTSYS));
795
796 schedule_timeout(MSEC_TO_TICK(10));
797 goto retry;
798 #endif
799 } else {
800 drop_namespace = B_TRUE;
801 }
802 }
803
804 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
805
806 if (drop_namespace)
807 mutex_exit(&spa_namespace_lock);
808 }
809
810 if (error == 0) {
811 if ((blk_mode_is_open_write(flag)) &&
812 (zv->zv_flags & ZVOL_RDONLY)) {
813 if (zv->zv_open_count == 0)
814 zvol_last_close(zv);
815
816 error = SET_ERROR(-EROFS);
817 } else {
818 zv->zv_open_count++;
819 }
820 }
821
822 mutex_exit(&zv->zv_state_lock);
823 if (drop_suspend)
824 rw_exit(&zv->zv_suspend_lock);
825
826 if (error == 0)
827 #ifdef HAVE_BLK_MODE_T
828 disk_check_media_change(disk);
829 #else
830 zfs_check_media_change(bdev);
831 #endif
832
833 return (error);
834 }
835
836 static void
837 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
838 zvol_release(struct gendisk *disk)
839 #else
840 zvol_release(struct gendisk *disk, fmode_t unused)
841 #endif
842 {
843 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
844 (void) unused;
845 #endif
846 zvol_state_t *zv;
847 boolean_t drop_suspend = B_TRUE;
848
849 rw_enter(&zvol_state_lock, RW_READER);
850 zv = disk->private_data;
851
852 mutex_enter(&zv->zv_state_lock);
853 ASSERT3U(zv->zv_open_count, >, 0);
854 /*
855 * make sure zvol is not suspended during last close
856 * (hold zv_suspend_lock) and respect proper lock acquisition
857 * ordering - zv_suspend_lock before zv_state_lock
858 */
859 if (zv->zv_open_count == 1) {
860 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
861 mutex_exit(&zv->zv_state_lock);
862 rw_enter(&zv->zv_suspend_lock, RW_READER);
863 mutex_enter(&zv->zv_state_lock);
864 /* check to see if zv_suspend_lock is needed */
865 if (zv->zv_open_count != 1) {
866 rw_exit(&zv->zv_suspend_lock);
867 drop_suspend = B_FALSE;
868 }
869 }
870 } else {
871 drop_suspend = B_FALSE;
872 }
873 rw_exit(&zvol_state_lock);
874
875 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
876
877 zv->zv_open_count--;
878 if (zv->zv_open_count == 0) {
879 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
880 zvol_last_close(zv);
881 }
882
883 mutex_exit(&zv->zv_state_lock);
884
885 if (drop_suspend)
886 rw_exit(&zv->zv_suspend_lock);
887 }
888
889 static int
890 zvol_ioctl(struct block_device *bdev, fmode_t mode,
891 unsigned int cmd, unsigned long arg)
892 {
893 zvol_state_t *zv = bdev->bd_disk->private_data;
894 int error = 0;
895
896 ASSERT3U(zv->zv_open_count, >, 0);
897
898 switch (cmd) {
899 case BLKFLSBUF:
900 #ifdef HAVE_FSYNC_BDEV
901 fsync_bdev(bdev);
902 #elif defined(HAVE_SYNC_BLOCKDEV)
903 sync_blockdev(bdev);
904 #else
905 #error "Neither fsync_bdev() nor sync_blockdev() found"
906 #endif
907 invalidate_bdev(bdev);
908 rw_enter(&zv->zv_suspend_lock, RW_READER);
909
910 if (!(zv->zv_flags & ZVOL_RDONLY))
911 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
912
913 rw_exit(&zv->zv_suspend_lock);
914 break;
915
916 case BLKZNAME:
917 mutex_enter(&zv->zv_state_lock);
918 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
919 mutex_exit(&zv->zv_state_lock);
920 break;
921
922 default:
923 error = -ENOTTY;
924 break;
925 }
926
927 return (SET_ERROR(error));
928 }
929
930 #ifdef CONFIG_COMPAT
931 static int
932 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
933 unsigned cmd, unsigned long arg)
934 {
935 return (zvol_ioctl(bdev, mode, cmd, arg));
936 }
937 #else
938 #define zvol_compat_ioctl NULL
939 #endif
940
941 static unsigned int
942 zvol_check_events(struct gendisk *disk, unsigned int clearing)
943 {
944 unsigned int mask = 0;
945
946 rw_enter(&zvol_state_lock, RW_READER);
947
948 zvol_state_t *zv = disk->private_data;
949 if (zv != NULL) {
950 mutex_enter(&zv->zv_state_lock);
951 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
952 zv->zv_changed = 0;
953 mutex_exit(&zv->zv_state_lock);
954 }
955
956 rw_exit(&zvol_state_lock);
957
958 return (mask);
959 }
960
961 static int
962 zvol_revalidate_disk(struct gendisk *disk)
963 {
964 rw_enter(&zvol_state_lock, RW_READER);
965
966 zvol_state_t *zv = disk->private_data;
967 if (zv != NULL) {
968 mutex_enter(&zv->zv_state_lock);
969 set_capacity(zv->zv_zso->zvo_disk,
970 zv->zv_volsize >> SECTOR_BITS);
971 mutex_exit(&zv->zv_state_lock);
972 }
973
974 rw_exit(&zvol_state_lock);
975
976 return (0);
977 }
978
979 int
980 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
981 {
982 struct gendisk *disk = zv->zv_zso->zvo_disk;
983
984 #if defined(HAVE_REVALIDATE_DISK_SIZE)
985 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
986 #elif defined(HAVE_REVALIDATE_DISK)
987 revalidate_disk(disk);
988 #else
989 zvol_revalidate_disk(disk);
990 #endif
991 return (0);
992 }
993
994 void
995 zvol_os_clear_private(zvol_state_t *zv)
996 {
997 /*
998 * Cleared while holding zvol_state_lock as a writer
999 * which will prevent zvol_open() from opening it.
1000 */
1001 zv->zv_zso->zvo_disk->private_data = NULL;
1002 }
1003
1004 /*
1005 * Provide a simple virtual geometry for legacy compatibility. For devices
1006 * smaller than 1 MiB a small head and sector count is used to allow very
1007 * tiny devices. For devices over 1 Mib a standard head and sector count
1008 * is used to keep the cylinders count reasonable.
1009 */
1010 static int
1011 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1012 {
1013 zvol_state_t *zv = bdev->bd_disk->private_data;
1014 sector_t sectors;
1015
1016 ASSERT3U(zv->zv_open_count, >, 0);
1017
1018 sectors = get_capacity(zv->zv_zso->zvo_disk);
1019
1020 if (sectors > 2048) {
1021 geo->heads = 16;
1022 geo->sectors = 63;
1023 } else {
1024 geo->heads = 2;
1025 geo->sectors = 4;
1026 }
1027
1028 geo->start = 0;
1029 geo->cylinders = sectors / (geo->heads * geo->sectors);
1030
1031 return (0);
1032 }
1033
1034 /*
1035 * Why have two separate block_device_operations structs?
1036 *
1037 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
1038 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1039 * can't just change submit_bio dynamically at runtime. So just create two
1040 * separate structs to get around this.
1041 */
1042 static const struct block_device_operations zvol_ops_blk_mq = {
1043 .open = zvol_open,
1044 .release = zvol_release,
1045 .ioctl = zvol_ioctl,
1046 .compat_ioctl = zvol_compat_ioctl,
1047 .check_events = zvol_check_events,
1048 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1049 .revalidate_disk = zvol_revalidate_disk,
1050 #endif
1051 .getgeo = zvol_getgeo,
1052 .owner = THIS_MODULE,
1053 };
1054
1055 static const struct block_device_operations zvol_ops = {
1056 .open = zvol_open,
1057 .release = zvol_release,
1058 .ioctl = zvol_ioctl,
1059 .compat_ioctl = zvol_compat_ioctl,
1060 .check_events = zvol_check_events,
1061 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1062 .revalidate_disk = zvol_revalidate_disk,
1063 #endif
1064 .getgeo = zvol_getgeo,
1065 .owner = THIS_MODULE,
1066 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1067 .submit_bio = zvol_submit_bio,
1068 #endif
1069 };
1070
1071 static int
1072 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1073 {
1074 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1075 #if defined(HAVE_BLK_ALLOC_DISK)
1076 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1077 if (zso->zvo_disk == NULL)
1078 return (1);
1079
1080 zso->zvo_disk->minors = ZVOL_MINORS;
1081 zso->zvo_queue = zso->zvo_disk->queue;
1082 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1083 struct gendisk *disk = blk_alloc_disk(NULL, NUMA_NO_NODE);
1084 if (IS_ERR(disk)) {
1085 zso->zvo_disk = NULL;
1086 return (1);
1087 }
1088
1089 zso->zvo_disk = disk;
1090 zso->zvo_disk->minors = ZVOL_MINORS;
1091 zso->zvo_queue = zso->zvo_disk->queue;
1092 #else
1093 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1094 if (zso->zvo_queue == NULL)
1095 return (1);
1096
1097 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1098 if (zso->zvo_disk == NULL) {
1099 blk_cleanup_queue(zso->zvo_queue);
1100 return (1);
1101 }
1102
1103 zso->zvo_disk->queue = zso->zvo_queue;
1104 #endif /* HAVE_BLK_ALLOC_DISK */
1105 #else
1106 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1107 if (zso->zvo_queue == NULL)
1108 return (1);
1109
1110 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1111 if (zso->zvo_disk == NULL) {
1112 blk_cleanup_queue(zso->zvo_queue);
1113 return (1);
1114 }
1115
1116 zso->zvo_disk->queue = zso->zvo_queue;
1117 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1118 return (0);
1119
1120 }
1121
1122 static int
1123 zvol_alloc_blk_mq(zvol_state_t *zv)
1124 {
1125 #ifdef HAVE_BLK_MQ
1126 struct zvol_state_os *zso = zv->zv_zso;
1127
1128 /* Allocate our blk-mq tag_set */
1129 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1130 return (1);
1131
1132 #if defined(HAVE_BLK_ALLOC_DISK)
1133 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1134 if (zso->zvo_disk == NULL) {
1135 blk_mq_free_tag_set(&zso->tag_set);
1136 return (1);
1137 }
1138 zso->zvo_queue = zso->zvo_disk->queue;
1139 zso->zvo_disk->minors = ZVOL_MINORS;
1140 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1141 struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, NULL, zv);
1142 if (IS_ERR(disk)) {
1143 zso->zvo_disk = NULL;
1144 blk_mq_free_tag_set(&zso->tag_set);
1145 return (1);
1146 }
1147
1148 zso->zvo_disk = disk;
1149 zso->zvo_queue = zso->zvo_disk->queue;
1150 zso->zvo_disk->minors = ZVOL_MINORS;
1151 #else
1152 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1153 if (zso->zvo_disk == NULL) {
1154 blk_cleanup_queue(zso->zvo_queue);
1155 blk_mq_free_tag_set(&zso->tag_set);
1156 return (1);
1157 }
1158 /* Allocate queue */
1159 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1160 if (IS_ERR(zso->zvo_queue)) {
1161 blk_mq_free_tag_set(&zso->tag_set);
1162 return (1);
1163 }
1164
1165 /* Our queue is now created, assign it to our disk */
1166 zso->zvo_disk->queue = zso->zvo_queue;
1167
1168 #endif
1169 #endif
1170 return (0);
1171 }
1172
1173 /*
1174 * Allocate memory for a new zvol_state_t and setup the required
1175 * request queue and generic disk structures for the block device.
1176 */
1177 static zvol_state_t *
1178 zvol_alloc(dev_t dev, const char *name)
1179 {
1180 zvol_state_t *zv;
1181 struct zvol_state_os *zso;
1182 uint64_t volmode;
1183 int ret;
1184
1185 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1186 return (NULL);
1187
1188 if (volmode == ZFS_VOLMODE_DEFAULT)
1189 volmode = zvol_volmode;
1190
1191 if (volmode == ZFS_VOLMODE_NONE)
1192 return (NULL);
1193
1194 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1195 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1196 zv->zv_zso = zso;
1197 zv->zv_volmode = volmode;
1198
1199 list_link_init(&zv->zv_next);
1200 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1201
1202 #ifdef HAVE_BLK_MQ
1203 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1204 #endif
1205
1206 /*
1207 * The block layer has 3 interfaces for getting BIOs:
1208 *
1209 * 1. blk-mq request queues (new)
1210 * 2. submit_bio() (oldest)
1211 * 3. regular request queues (old).
1212 *
1213 * Each of those interfaces has two permutations:
1214 *
1215 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1216 * both the disk and its queue (5.14 kernel or newer)
1217 *
1218 * b) We don't have blk_*alloc_disk(), and have to allocate the
1219 * disk and the queue separately. (5.13 kernel or older)
1220 */
1221 if (zv->zv_zso->use_blk_mq) {
1222 ret = zvol_alloc_blk_mq(zv);
1223 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1224 } else {
1225 ret = zvol_alloc_non_blk_mq(zso);
1226 zso->zvo_disk->fops = &zvol_ops;
1227 }
1228 if (ret != 0)
1229 goto out_kmem;
1230
1231 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1232
1233 /* Limit read-ahead to a single page to prevent over-prefetching. */
1234 blk_queue_set_read_ahead(zso->zvo_queue, 1);
1235
1236 if (!zv->zv_zso->use_blk_mq) {
1237 /* Disable write merging in favor of the ZIO pipeline. */
1238 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1239 }
1240
1241 /* Enable /proc/diskstats */
1242 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1243
1244 zso->zvo_queue->queuedata = zv;
1245 zso->zvo_dev = dev;
1246 zv->zv_open_count = 0;
1247 strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
1248
1249 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1250 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1251
1252 zso->zvo_disk->major = zvol_major;
1253 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1254
1255 /*
1256 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1257 * This is accomplished by limiting the number of minors for the
1258 * device to one and explicitly disabling partition scanning.
1259 */
1260 if (volmode == ZFS_VOLMODE_DEV) {
1261 zso->zvo_disk->minors = 1;
1262 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1263 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1264 }
1265
1266 zso->zvo_disk->first_minor = (dev & MINORMASK);
1267 zso->zvo_disk->private_data = zv;
1268 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1269 ZVOL_DEV_NAME, (dev & MINORMASK));
1270
1271 return (zv);
1272
1273 out_kmem:
1274 kmem_free(zso, sizeof (struct zvol_state_os));
1275 kmem_free(zv, sizeof (zvol_state_t));
1276 return (NULL);
1277 }
1278
1279 /*
1280 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1281 * At this time, the structure is not opened by anyone, is taken off
1282 * the zvol_state_list, and has its private data set to NULL.
1283 * The zvol_state_lock is dropped.
1284 *
1285 * This function may take many milliseconds to complete (e.g. we've seen
1286 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1287 * "del_gendisk". Thus, consumers need to be careful to account for this
1288 * latency when calling this function.
1289 */
1290 void
1291 zvol_os_free(zvol_state_t *zv)
1292 {
1293
1294 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1295 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1296 ASSERT0(zv->zv_open_count);
1297 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1298
1299 rw_destroy(&zv->zv_suspend_lock);
1300 zfs_rangelock_fini(&zv->zv_rangelock);
1301
1302 del_gendisk(zv->zv_zso->zvo_disk);
1303 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1304 (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
1305 #if defined(HAVE_BLK_CLEANUP_DISK)
1306 blk_cleanup_disk(zv->zv_zso->zvo_disk);
1307 #else
1308 put_disk(zv->zv_zso->zvo_disk);
1309 #endif
1310 #else
1311 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1312 put_disk(zv->zv_zso->zvo_disk);
1313 #endif
1314
1315 #ifdef HAVE_BLK_MQ
1316 if (zv->zv_zso->use_blk_mq)
1317 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1318 #endif
1319
1320 ida_simple_remove(&zvol_ida,
1321 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1322
1323 mutex_destroy(&zv->zv_state_lock);
1324 dataset_kstats_destroy(&zv->zv_kstat);
1325
1326 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1327 kmem_free(zv, sizeof (zvol_state_t));
1328 }
1329
1330 void
1331 zvol_wait_close(zvol_state_t *zv)
1332 {
1333 }
1334
1335 /*
1336 * Create a block device minor node and setup the linkage between it
1337 * and the specified volume. Once this function returns the block
1338 * device is live and ready for use.
1339 */
1340 int
1341 zvol_os_create_minor(const char *name)
1342 {
1343 zvol_state_t *zv;
1344 objset_t *os;
1345 dmu_object_info_t *doi;
1346 uint64_t volsize;
1347 uint64_t len;
1348 unsigned minor = 0;
1349 int error = 0;
1350 int idx;
1351 uint64_t hash = zvol_name_hash(name);
1352 uint64_t volthreading;
1353 bool replayed_zil = B_FALSE;
1354
1355 if (zvol_inhibit_dev)
1356 return (0);
1357
1358 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1359 if (idx < 0)
1360 return (SET_ERROR(-idx));
1361 minor = idx << ZVOL_MINOR_BITS;
1362 if (MINOR(minor) != minor) {
1363 /* too many partitions can cause an overflow */
1364 zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1365 name, minor, MINOR(minor));
1366 ida_simple_remove(&zvol_ida, idx);
1367 return (SET_ERROR(EINVAL));
1368 }
1369
1370 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1371 if (zv) {
1372 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1373 mutex_exit(&zv->zv_state_lock);
1374 ida_simple_remove(&zvol_ida, idx);
1375 return (SET_ERROR(EEXIST));
1376 }
1377
1378 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1379
1380 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1381 if (error)
1382 goto out_doi;
1383
1384 error = dmu_object_info(os, ZVOL_OBJ, doi);
1385 if (error)
1386 goto out_dmu_objset_disown;
1387
1388 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1389 if (error)
1390 goto out_dmu_objset_disown;
1391
1392 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1393 if (zv == NULL) {
1394 error = SET_ERROR(EAGAIN);
1395 goto out_dmu_objset_disown;
1396 }
1397 zv->zv_hash = hash;
1398
1399 if (dmu_objset_is_snapshot(os))
1400 zv->zv_flags |= ZVOL_RDONLY;
1401
1402 zv->zv_volblocksize = doi->doi_data_block_size;
1403 zv->zv_volsize = volsize;
1404 zv->zv_objset = os;
1405
1406 /* Default */
1407 zv->zv_threading = B_TRUE;
1408 if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1409 == 0)
1410 zv->zv_threading = volthreading;
1411
1412 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1413
1414 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1415 (DMU_MAX_ACCESS / 4) >> 9);
1416
1417 if (zv->zv_zso->use_blk_mq) {
1418 /*
1419 * IO requests can be really big (1MB). When an IO request
1420 * comes in, it is passed off to zvol_read() or zvol_write()
1421 * in a new thread, where it is chunked up into 'volblocksize'
1422 * sized pieces and processed. So for example, if the request
1423 * is a 1MB write and your volblocksize is 128k, one zvol_write
1424 * thread will take that request and sequentially do ten 128k
1425 * IOs. This is due to the fact that the thread needs to lock
1426 * each volblocksize sized block. So you might be wondering:
1427 * "instead of passing the whole 1MB request to one thread,
1428 * why not pass ten individual 128k chunks to ten threads and
1429 * process the whole write in parallel?" The short answer is
1430 * that there's a sweet spot number of chunks that balances
1431 * the greater parallelism with the added overhead of more
1432 * threads. The sweet spot can be different depending on if you
1433 * have a read or write heavy workload. Writes typically want
1434 * high chunk counts while reads typically want lower ones. On
1435 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1436 * configuration, with volblocksize=8k, the sweet spot for good
1437 * sequential reads and writes was at 8 chunks.
1438 */
1439
1440 /*
1441 * Below we tell the kernel how big we want our requests
1442 * to be. You would think that blk_queue_io_opt() would be
1443 * used to do this since it is used to "set optimal request
1444 * size for the queue", but that doesn't seem to do
1445 * anything - the kernel still gives you huge requests
1446 * with tons of little PAGE_SIZE segments contained within it.
1447 *
1448 * Knowing that the kernel will just give you PAGE_SIZE segments
1449 * no matter what, you can say "ok, I want PAGE_SIZE byte
1450 * segments, and I want 'N' of them per request", where N is
1451 * the correct number of segments for the volblocksize and
1452 * number of chunks you want.
1453 */
1454 #ifdef HAVE_BLK_MQ
1455 if (zvol_blk_mq_blocks_per_thread != 0) {
1456 unsigned int chunks;
1457 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1458
1459 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1460 PAGE_SIZE);
1461 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1462 (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1463 } else {
1464 /*
1465 * Special case: zvol_blk_mq_blocks_per_thread = 0
1466 * Max everything out.
1467 */
1468 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1469 UINT16_MAX);
1470 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1471 UINT_MAX);
1472 }
1473 #endif
1474 } else {
1475 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1476 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1477 }
1478
1479 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1480 zv->zv_volblocksize);
1481 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1482 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1483 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1484 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1485 zv->zv_volblocksize);
1486 #ifdef QUEUE_FLAG_DISCARD
1487 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1488 #endif
1489 #ifdef QUEUE_FLAG_NONROT
1490 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1491 #endif
1492 #ifdef QUEUE_FLAG_ADD_RANDOM
1493 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1494 #endif
1495 /* This flag was introduced in kernel version 4.12. */
1496 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1497 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1498 #endif
1499
1500 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1501 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1502 if (error)
1503 goto out_dmu_objset_disown;
1504 ASSERT3P(zv->zv_zilog, ==, NULL);
1505 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1506 if (spa_writeable(dmu_objset_spa(os))) {
1507 if (zil_replay_disable)
1508 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1509 else
1510 replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1511 }
1512 if (replayed_zil)
1513 zil_close(zv->zv_zilog);
1514 zv->zv_zilog = NULL;
1515
1516 /*
1517 * When udev detects the addition of the device it will immediately
1518 * invoke blkid(8) to determine the type of content on the device.
1519 * Prefetching the blocks commonly scanned by blkid(8) will speed
1520 * up this process.
1521 */
1522 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1523 if (len > 0) {
1524 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1525 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1526 ZIO_PRIORITY_SYNC_READ);
1527 }
1528
1529 zv->zv_objset = NULL;
1530 out_dmu_objset_disown:
1531 dmu_objset_disown(os, B_TRUE, FTAG);
1532 out_doi:
1533 kmem_free(doi, sizeof (dmu_object_info_t));
1534
1535 /*
1536 * Keep in mind that once add_disk() is called, the zvol is
1537 * announced to the world, and zvol_open()/zvol_release() can
1538 * be called at any time. Incidentally, add_disk() itself calls
1539 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1540 * directly as well.
1541 */
1542 if (error == 0) {
1543 rw_enter(&zvol_state_lock, RW_WRITER);
1544 zvol_insert(zv);
1545 rw_exit(&zvol_state_lock);
1546 #ifdef HAVE_ADD_DISK_RET
1547 error = add_disk(zv->zv_zso->zvo_disk);
1548 #else
1549 add_disk(zv->zv_zso->zvo_disk);
1550 #endif
1551 } else {
1552 ida_simple_remove(&zvol_ida, idx);
1553 }
1554
1555 return (error);
1556 }
1557
1558 void
1559 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1560 {
1561 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1562
1563 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1564 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1565
1566 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1567
1568 /* move to new hashtable entry */
1569 zv->zv_hash = zvol_name_hash(zv->zv_name);
1570 hlist_del(&zv->zv_hlink);
1571 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1572
1573 /*
1574 * The block device's read-only state is briefly changed causing
1575 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1576 * the name change and fixes the symlinks. This does not change
1577 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1578 * changes. This would normally be done using kobject_uevent() but
1579 * that is a GPL-only symbol which is why we need this workaround.
1580 */
1581 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1582 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1583
1584 dataset_kstats_rename(&zv->zv_kstat, newname);
1585 }
1586
1587 void
1588 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1589 {
1590
1591 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1592 }
1593
1594 void
1595 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1596 {
1597
1598 set_capacity(zv->zv_zso->zvo_disk, capacity);
1599 }
1600
1601 int
1602 zvol_init(void)
1603 {
1604 int error;
1605
1606 /*
1607 * zvol_threads is the module param the user passes in.
1608 *
1609 * zvol_actual_threads is what we use internally, since the user can
1610 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1611 */
1612 static unsigned int zvol_actual_threads;
1613
1614 if (zvol_threads == 0) {
1615 /*
1616 * See dde9380a1 for why 32 was chosen here. This should
1617 * probably be refined to be some multiple of the number
1618 * of CPUs.
1619 */
1620 zvol_actual_threads = MAX(num_online_cpus(), 32);
1621 } else {
1622 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1623 }
1624
1625 /*
1626 * Use atleast 32 zvol_threads but for many core system,
1627 * prefer 6 threads per taskq, but no more taskqs
1628 * than threads in them on large systems.
1629 *
1630 * taskq total
1631 * cpus taskqs threads threads
1632 * ------- ------- ------- -------
1633 * 1 1 32 32
1634 * 2 1 32 32
1635 * 4 1 32 32
1636 * 8 2 16 32
1637 * 16 3 11 33
1638 * 32 5 7 35
1639 * 64 8 8 64
1640 * 128 11 12 132
1641 * 256 16 16 256
1642 */
1643 zv_taskq_t *ztqs = &zvol_taskqs;
1644 uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
1645 if (num_tqs == 0) {
1646 num_tqs = 1 + num_online_cpus() / 6;
1647 while (num_tqs * num_tqs > zvol_actual_threads)
1648 num_tqs--;
1649 }
1650 uint_t per_tq_thread = zvol_actual_threads / num_tqs;
1651 if (per_tq_thread * num_tqs < zvol_actual_threads)
1652 per_tq_thread++;
1653 ztqs->tqs_cnt = num_tqs;
1654 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
1655 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1656 if (error) {
1657 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
1658 ztqs->tqs_taskq = NULL;
1659 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1660 return (error);
1661 }
1662
1663 #ifdef HAVE_BLK_MQ
1664 if (zvol_blk_mq_queue_depth == 0) {
1665 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1666 } else {
1667 zvol_actual_blk_mq_queue_depth =
1668 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1669 }
1670
1671 if (zvol_blk_mq_threads == 0) {
1672 zvol_blk_mq_actual_threads = num_online_cpus();
1673 } else {
1674 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1675 1024);
1676 }
1677 #endif
1678 for (uint_t i = 0; i < num_tqs; i++) {
1679 char name[32];
1680 (void) snprintf(name, sizeof (name), "%s_tq-%u",
1681 ZVOL_DRIVER, i);
1682 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
1683 maxclsyspri, per_tq_thread, INT_MAX,
1684 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1685 if (ztqs->tqs_taskq[i] == NULL) {
1686 for (int j = i - 1; j >= 0; j--)
1687 taskq_destroy(ztqs->tqs_taskq[j]);
1688 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1689 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1690 sizeof (taskq_t *));
1691 ztqs->tqs_taskq = NULL;
1692 return (-ENOMEM);
1693 }
1694 }
1695
1696 zvol_init_impl();
1697 ida_init(&zvol_ida);
1698 return (0);
1699 }
1700
1701 void
1702 zvol_fini(void)
1703 {
1704 zv_taskq_t *ztqs = &zvol_taskqs;
1705 zvol_fini_impl();
1706 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1707
1708 if (ztqs->tqs_taskq == NULL) {
1709 ASSERT3U(ztqs->tqs_cnt, ==, 0);
1710 } else {
1711 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
1712 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
1713 taskq_destroy(ztqs->tqs_taskq[i]);
1714 }
1715 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1716 sizeof (taskq_t *));
1717 ztqs->tqs_taskq = NULL;
1718 }
1719
1720 ida_destroy(&zvol_ida);
1721 }
1722
1723 /* BEGIN CSTYLED */
1724 module_param(zvol_inhibit_dev, uint, 0644);
1725 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1726
1727 module_param(zvol_major, uint, 0444);
1728 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1729
1730 module_param(zvol_threads, uint, 0444);
1731 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1732 "to 0 to use all active CPUs");
1733
1734 module_param(zvol_request_sync, uint, 0644);
1735 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1736
1737 module_param(zvol_max_discard_blocks, ulong, 0444);
1738 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1739
1740 module_param(zvol_num_taskqs, uint, 0444);
1741 MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
1742
1743 module_param(zvol_prefetch_bytes, uint, 0644);
1744 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1745
1746 module_param(zvol_volmode, uint, 0644);
1747 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1748
1749 #ifdef HAVE_BLK_MQ
1750 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1751 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1752
1753 module_param(zvol_use_blk_mq, uint, 0644);
1754 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1755
1756 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1757 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1758 "Process volblocksize blocks per thread");
1759 #endif
1760
1761 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1762 module_param(zvol_open_timeout_ms, uint, 0644);
1763 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1764 #endif
1765
1766 /* END CSTYLED */