]> git.proxmox.com Git - mirror_zfs.git/blob - module/spl/spl-generic.c
a22e93e3634b194daeed6917ae1c50b7061d71ea
[mirror_zfs.git] / module / spl / spl-generic.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *
24 * Solaris Porting Layer (SPL) Generic Implementation.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/systeminfo.h>
29 #include <sys/vmsystm.h>
30 #include <sys/kobj.h>
31 #include <sys/kmem.h>
32 #include <sys/kmem_cache.h>
33 #include <sys/vmem.h>
34 #include <sys/mutex.h>
35 #include <sys/rwlock.h>
36 #include <sys/taskq.h>
37 #include <sys/tsd.h>
38 #include <sys/zmod.h>
39 #include <sys/debug.h>
40 #include <sys/proc.h>
41 #include <sys/kstat.h>
42 #include <sys/file.h>
43 #include <linux/ctype.h>
44 #include <sys/disp.h>
45 #include <sys/random.h>
46 #include <sys/strings.h>
47 #include <linux/kmod.h>
48 #include "zfs_gitrev.h"
49
50 char spl_gitrev[64] = ZFS_META_GITREV;
51
52 /* BEGIN CSTYLED */
53 unsigned long spl_hostid = 0;
54 EXPORT_SYMBOL(spl_hostid);
55 /* BEGIN CSTYLED */
56 module_param(spl_hostid, ulong, 0644);
57 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
58 /* END CSTYLED */
59
60 proc_t p0;
61 EXPORT_SYMBOL(p0);
62
63 /*
64 * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
65 *
66 * "Further scramblings of Marsaglia's xorshift generators"
67 * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
68 *
69 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
70 * is to provide bytes containing random numbers. It is mapped to /dev/urandom
71 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
72 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
73 * we can implement it using a fast PRNG that we seed using Linux' actual
74 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
75 * with an independent seed so that all calls to random_get_pseudo_bytes() are
76 * free of atomic instructions.
77 *
78 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
79 * to generate words larger than 128 bits will paradoxically be limited to
80 * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
81 * 128-bit words and selecting the first will implicitly select the second. If
82 * a caller finds this behavior undesireable, random_get_bytes() should be used
83 * instead.
84 *
85 * XXX: Linux interrupt handlers that trigger within the critical section
86 * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
87 * see the same numbers. Nothing in the code currently calls this in an
88 * interrupt handler, so this is considered to be okay. If that becomes a
89 * problem, we could create a set of per-cpu variables for interrupt handlers
90 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
91 * true.
92 */
93 static DEFINE_PER_CPU(uint64_t[2], spl_pseudo_entropy);
94
95 /*
96 * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
97 * file:
98 *
99 * http://xorshift.di.unimi.it/xorshift128plus.c
100 */
101
102 static inline uint64_t
103 spl_rand_next(uint64_t *s)
104 {
105 uint64_t s1 = s[0];
106 const uint64_t s0 = s[1];
107 s[0] = s0;
108 s1 ^= s1 << 23; // a
109 s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
110 return (s[1] + s0);
111 }
112
113 static inline void
114 spl_rand_jump(uint64_t *s)
115 {
116 static const uint64_t JUMP[] =
117 { 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
118
119 uint64_t s0 = 0;
120 uint64_t s1 = 0;
121 int i, b;
122 for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
123 for (b = 0; b < 64; b++) {
124 if (JUMP[i] & 1ULL << b) {
125 s0 ^= s[0];
126 s1 ^= s[1];
127 }
128 (void) spl_rand_next(s);
129 }
130
131 s[0] = s0;
132 s[1] = s1;
133 }
134
135 int
136 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
137 {
138 uint64_t *xp, s[2];
139
140 ASSERT(ptr);
141
142 xp = get_cpu_var(spl_pseudo_entropy);
143
144 s[0] = xp[0];
145 s[1] = xp[1];
146
147 while (len) {
148 union {
149 uint64_t ui64;
150 uint8_t byte[sizeof (uint64_t)];
151 }entropy;
152 int i = MIN(len, sizeof (uint64_t));
153
154 len -= i;
155 entropy.ui64 = spl_rand_next(s);
156
157 while (i--)
158 *ptr++ = entropy.byte[i];
159 }
160
161 xp[0] = s[0];
162 xp[1] = s[1];
163
164 put_cpu_var(spl_pseudo_entropy);
165
166 return (0);
167 }
168
169
170 EXPORT_SYMBOL(random_get_pseudo_bytes);
171
172 #if BITS_PER_LONG == 32
173 /*
174 * Support 64/64 => 64 division on a 32-bit platform. While the kernel
175 * provides a div64_u64() function for this we do not use it because the
176 * implementation is flawed. There are cases which return incorrect
177 * results as late as linux-2.6.35. Until this is fixed upstream the
178 * spl must provide its own implementation.
179 *
180 * This implementation is a slightly modified version of the algorithm
181 * proposed by the book 'Hacker's Delight'. The original source can be
182 * found here and is available for use without restriction.
183 *
184 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
185 */
186
187 /*
188 * Calculate number of leading of zeros for a 64-bit value.
189 */
190 static int
191 nlz64(uint64_t x)
192 {
193 register int n = 0;
194
195 if (x == 0)
196 return (64);
197
198 if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
199 if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
200 if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
201 if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
202 if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
203 if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
204
205 return (n);
206 }
207
208 /*
209 * Newer kernels have a div_u64() function but we define our own
210 * to simplify portibility between kernel versions.
211 */
212 static inline uint64_t
213 __div_u64(uint64_t u, uint32_t v)
214 {
215 (void) do_div(u, v);
216 return (u);
217 }
218
219 /*
220 * Implementation of 64-bit unsigned division for 32-bit machines.
221 *
222 * First the procedure takes care of the case in which the divisor is a
223 * 32-bit quantity. There are two subcases: (1) If the left half of the
224 * dividend is less than the divisor, one execution of do_div() is all that
225 * is required (overflow is not possible). (2) Otherwise it does two
226 * divisions, using the grade school method.
227 */
228 uint64_t
229 __udivdi3(uint64_t u, uint64_t v)
230 {
231 uint64_t u0, u1, v1, q0, q1, k;
232 int n;
233
234 if (v >> 32 == 0) { // If v < 2**32:
235 if (u >> 32 < v) { // If u/v cannot overflow,
236 return (__div_u64(u, v)); // just do one division.
237 } else { // If u/v would overflow:
238 u1 = u >> 32; // Break u into two halves.
239 u0 = u & 0xFFFFFFFF;
240 q1 = __div_u64(u1, v); // First quotient digit.
241 k = u1 - q1 * v; // First remainder, < v.
242 u0 += (k << 32);
243 q0 = __div_u64(u0, v); // Seconds quotient digit.
244 return ((q1 << 32) + q0);
245 }
246 } else { // If v >= 2**32:
247 n = nlz64(v); // 0 <= n <= 31.
248 v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
249 u1 = u >> 1; // To ensure no overflow.
250 q1 = __div_u64(u1, v1); // Get quotient from
251 q0 = (q1 << n) >> 31; // Undo normalization and
252 // division of u by 2.
253 if (q0 != 0) // Make q0 correct or
254 q0 = q0 - 1; // too small by 1.
255 if ((u - q0 * v) >= v)
256 q0 = q0 + 1; // Now q0 is correct.
257
258 return (q0);
259 }
260 }
261 EXPORT_SYMBOL(__udivdi3);
262
263 /* BEGIN CSTYLED */
264 #ifndef abs64
265 #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
266 #endif
267 /* END CSTYLED */
268
269 /*
270 * Implementation of 64-bit signed division for 32-bit machines.
271 */
272 int64_t
273 __divdi3(int64_t u, int64_t v)
274 {
275 int64_t q, t;
276 q = __udivdi3(abs64(u), abs64(v));
277 t = (u ^ v) >> 63; // If u, v have different
278 return ((q ^ t) - t); // signs, negate q.
279 }
280 EXPORT_SYMBOL(__divdi3);
281
282 /*
283 * Implementation of 64-bit unsigned modulo for 32-bit machines.
284 */
285 uint64_t
286 __umoddi3(uint64_t dividend, uint64_t divisor)
287 {
288 return (dividend - (divisor * __udivdi3(dividend, divisor)));
289 }
290 EXPORT_SYMBOL(__umoddi3);
291
292 /*
293 * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
294 */
295 uint64_t
296 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
297 {
298 uint64_t q = __udivdi3(n, d);
299 if (r)
300 *r = n - d * q;
301 return (q);
302 }
303 EXPORT_SYMBOL(__udivmoddi4);
304
305 /*
306 * Implementation of 64-bit signed division/modulo for 32-bit machines.
307 */
308 int64_t
309 __divmoddi4(int64_t n, int64_t d, int64_t *r)
310 {
311 int64_t q, rr;
312 boolean_t nn = B_FALSE;
313 boolean_t nd = B_FALSE;
314 if (n < 0) {
315 nn = B_TRUE;
316 n = -n;
317 }
318 if (d < 0) {
319 nd = B_TRUE;
320 d = -d;
321 }
322
323 q = __udivmoddi4(n, d, (uint64_t *)&rr);
324
325 if (nn != nd)
326 q = -q;
327 if (nn)
328 rr = -rr;
329 if (r)
330 *r = rr;
331 return (q);
332 }
333 EXPORT_SYMBOL(__divmoddi4);
334
335 #if defined(__arm) || defined(__arm__)
336 /*
337 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
338 *
339 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
340 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
341 * and the remainder in {r2, r3}. The return type is specifically left
342 * set to 'void' to ensure the compiler does not overwrite these registers
343 * during the return. All results are in registers as per ABI
344 */
345 void
346 __aeabi_uldivmod(uint64_t u, uint64_t v)
347 {
348 uint64_t res;
349 uint64_t mod;
350
351 res = __udivdi3(u, v);
352 mod = __umoddi3(u, v);
353 {
354 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
355 register uint32_t r1 asm("r1") = (res >> 32);
356 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
357 register uint32_t r3 asm("r3") = (mod >> 32);
358
359 /* BEGIN CSTYLED */
360 asm volatile(""
361 : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
362 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
363 /* END CSTYLED */
364
365 return; /* r0; */
366 }
367 }
368 EXPORT_SYMBOL(__aeabi_uldivmod);
369
370 void
371 __aeabi_ldivmod(int64_t u, int64_t v)
372 {
373 int64_t res;
374 uint64_t mod;
375
376 res = __divdi3(u, v);
377 mod = __umoddi3(u, v);
378 {
379 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
380 register uint32_t r1 asm("r1") = (res >> 32);
381 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
382 register uint32_t r3 asm("r3") = (mod >> 32);
383
384 /* BEGIN CSTYLED */
385 asm volatile(""
386 : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
387 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
388 /* END CSTYLED */
389
390 return; /* r0; */
391 }
392 }
393 EXPORT_SYMBOL(__aeabi_ldivmod);
394 #endif /* __arm || __arm__ */
395 #endif /* BITS_PER_LONG */
396
397 /*
398 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
399 * ddi_strtol(9F) man page. I have not verified the behavior of these
400 * functions against their Solaris counterparts. It is possible that I
401 * may have misinterpreted the man page or the man page is incorrect.
402 */
403 int ddi_strtoul(const char *, char **, int, unsigned long *);
404 int ddi_strtol(const char *, char **, int, long *);
405 int ddi_strtoull(const char *, char **, int, unsigned long long *);
406 int ddi_strtoll(const char *, char **, int, long long *);
407
408 #define define_ddi_strtoux(type, valtype) \
409 int ddi_strtou##type(const char *str, char **endptr, \
410 int base, valtype *result) \
411 { \
412 valtype last_value, value = 0; \
413 char *ptr = (char *)str; \
414 int flag = 1, digit; \
415 \
416 if (strlen(ptr) == 0) \
417 return (EINVAL); \
418 \
419 /* Auto-detect base based on prefix */ \
420 if (!base) { \
421 if (str[0] == '0') { \
422 if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
423 base = 16; /* hex */ \
424 ptr += 2; \
425 } else if (str[1] >= '0' && str[1] < 8) { \
426 base = 8; /* octal */ \
427 ptr += 1; \
428 } else { \
429 return (EINVAL); \
430 } \
431 } else { \
432 base = 10; /* decimal */ \
433 } \
434 } \
435 \
436 while (1) { \
437 if (isdigit(*ptr)) \
438 digit = *ptr - '0'; \
439 else if (isalpha(*ptr)) \
440 digit = tolower(*ptr) - 'a' + 10; \
441 else \
442 break; \
443 \
444 if (digit >= base) \
445 break; \
446 \
447 last_value = value; \
448 value = value * base + digit; \
449 if (last_value > value) /* Overflow */ \
450 return (ERANGE); \
451 \
452 flag = 1; \
453 ptr++; \
454 } \
455 \
456 if (flag) \
457 *result = value; \
458 \
459 if (endptr) \
460 *endptr = (char *)(flag ? ptr : str); \
461 \
462 return (0); \
463 } \
464
465 #define define_ddi_strtox(type, valtype) \
466 int ddi_strto##type(const char *str, char **endptr, \
467 int base, valtype *result) \
468 { \
469 int rc; \
470 \
471 if (*str == '-') { \
472 rc = ddi_strtou##type(str + 1, endptr, base, result); \
473 if (!rc) { \
474 if (*endptr == str + 1) \
475 *endptr = (char *)str; \
476 else \
477 *result = -*result; \
478 } \
479 } else { \
480 rc = ddi_strtou##type(str, endptr, base, result); \
481 } \
482 \
483 return (rc); \
484 }
485
486 define_ddi_strtoux(l, unsigned long)
487 define_ddi_strtox(l, long)
488 define_ddi_strtoux(ll, unsigned long long)
489 define_ddi_strtox(ll, long long)
490
491 EXPORT_SYMBOL(ddi_strtoul);
492 EXPORT_SYMBOL(ddi_strtol);
493 EXPORT_SYMBOL(ddi_strtoll);
494 EXPORT_SYMBOL(ddi_strtoull);
495
496 int
497 ddi_copyin(const void *from, void *to, size_t len, int flags)
498 {
499 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
500 if (flags & FKIOCTL) {
501 memcpy(to, from, len);
502 return (0);
503 }
504
505 return (copyin(from, to, len));
506 }
507 EXPORT_SYMBOL(ddi_copyin);
508
509 int
510 ddi_copyout(const void *from, void *to, size_t len, int flags)
511 {
512 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
513 if (flags & FKIOCTL) {
514 memcpy(to, from, len);
515 return (0);
516 }
517
518 return (copyout(from, to, len));
519 }
520 EXPORT_SYMBOL(ddi_copyout);
521
522 /*
523 * Read the unique system identifier from the /etc/hostid file.
524 *
525 * The behavior of /usr/bin/hostid on Linux systems with the
526 * regular eglibc and coreutils is:
527 *
528 * 1. Generate the value if the /etc/hostid file does not exist
529 * or if the /etc/hostid file is less than four bytes in size.
530 *
531 * 2. If the /etc/hostid file is at least 4 bytes, then return
532 * the first four bytes [0..3] in native endian order.
533 *
534 * 3. Always ignore bytes [4..] if they exist in the file.
535 *
536 * Only the first four bytes are significant, even on systems that
537 * have a 64-bit word size.
538 *
539 * See:
540 *
541 * eglibc: sysdeps/unix/sysv/linux/gethostid.c
542 * coreutils: src/hostid.c
543 *
544 * Notes:
545 *
546 * The /etc/hostid file on Solaris is a text file that often reads:
547 *
548 * # DO NOT EDIT
549 * "0123456789"
550 *
551 * Directly copying this file to Linux results in a constant
552 * hostid of 4f442023 because the default comment constitutes
553 * the first four bytes of the file.
554 *
555 */
556
557 char *spl_hostid_path = HW_HOSTID_PATH;
558 module_param(spl_hostid_path, charp, 0444);
559 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
560
561 static int
562 hostid_read(uint32_t *hostid)
563 {
564 uint64_t size;
565 struct _buf *file;
566 uint32_t value = 0;
567 int error;
568
569 file = kobj_open_file(spl_hostid_path);
570 if (file == (struct _buf *)-1)
571 return (ENOENT);
572
573 error = kobj_get_filesize(file, &size);
574 if (error) {
575 kobj_close_file(file);
576 return (error);
577 }
578
579 if (size < sizeof (HW_HOSTID_MASK)) {
580 kobj_close_file(file);
581 return (EINVAL);
582 }
583
584 /*
585 * Read directly into the variable like eglibc does.
586 * Short reads are okay; native behavior is preserved.
587 */
588 error = kobj_read_file(file, (char *)&value, sizeof (value), 0);
589 if (error < 0) {
590 kobj_close_file(file);
591 return (EIO);
592 }
593
594 /* Mask down to 32 bits like coreutils does. */
595 *hostid = (value & HW_HOSTID_MASK);
596 kobj_close_file(file);
597
598 return (0);
599 }
600
601 /*
602 * Return the system hostid. Preferentially use the spl_hostid module option
603 * when set, otherwise use the value in the /etc/hostid file.
604 */
605 uint32_t
606 zone_get_hostid(void *zone)
607 {
608 uint32_t hostid;
609
610 ASSERT3P(zone, ==, NULL);
611
612 if (spl_hostid != 0)
613 return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
614
615 if (hostid_read(&hostid) == 0)
616 return (hostid);
617
618 return (0);
619 }
620 EXPORT_SYMBOL(zone_get_hostid);
621
622 static int
623 spl_kvmem_init(void)
624 {
625 int rc = 0;
626
627 rc = spl_kmem_init();
628 if (rc)
629 return (rc);
630
631 rc = spl_vmem_init();
632 if (rc) {
633 spl_kmem_fini();
634 return (rc);
635 }
636
637 return (rc);
638 }
639
640 /*
641 * We initialize the random number generator with 128 bits of entropy from the
642 * system random number generator. In the improbable case that we have a zero
643 * seed, we fallback to the system jiffies, unless it is also zero, in which
644 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
645 * initialize each of the per-cpu seeds so that the sequences generated on each
646 * CPU are guaranteed to never overlap in practice.
647 */
648 static void __init
649 spl_random_init(void)
650 {
651 uint64_t s[2];
652 int i;
653
654 get_random_bytes(s, sizeof (s));
655
656 if (s[0] == 0 && s[1] == 0) {
657 if (jiffies != 0) {
658 s[0] = jiffies;
659 s[1] = ~0 - jiffies;
660 } else {
661 (void) memcpy(s, "improbable seed", sizeof (s));
662 }
663 printk("SPL: get_random_bytes() returned 0 "
664 "when generating random seed. Setting initial seed to "
665 "0x%016llx%016llx.", cpu_to_be64(s[0]), cpu_to_be64(s[1]));
666 }
667
668 for_each_possible_cpu(i) {
669 uint64_t *wordp = per_cpu(spl_pseudo_entropy, i);
670
671 spl_rand_jump(s);
672
673 wordp[0] = s[0];
674 wordp[1] = s[1];
675 }
676 }
677
678 static void
679 spl_kvmem_fini(void)
680 {
681 spl_vmem_fini();
682 spl_kmem_fini();
683 }
684
685 static int __init
686 spl_init(void)
687 {
688 int rc = 0;
689
690 bzero(&p0, sizeof (proc_t));
691 spl_random_init();
692
693 if ((rc = spl_kvmem_init()))
694 goto out1;
695
696 if ((rc = spl_mutex_init()))
697 goto out2;
698
699 if ((rc = spl_rw_init()))
700 goto out3;
701
702 if ((rc = spl_tsd_init()))
703 goto out4;
704
705 if ((rc = spl_taskq_init()))
706 goto out5;
707
708 if ((rc = spl_kmem_cache_init()))
709 goto out6;
710
711 if ((rc = spl_vn_init()))
712 goto out7;
713
714 if ((rc = spl_proc_init()))
715 goto out8;
716
717 if ((rc = spl_kstat_init()))
718 goto out9;
719
720 if ((rc = spl_zlib_init()))
721 goto out10;
722
723 return (rc);
724
725 out10:
726 spl_kstat_fini();
727 out9:
728 spl_proc_fini();
729 out8:
730 spl_vn_fini();
731 out7:
732 spl_kmem_cache_fini();
733 out6:
734 spl_taskq_fini();
735 out5:
736 spl_tsd_fini();
737 out4:
738 spl_rw_fini();
739 out3:
740 spl_mutex_fini();
741 out2:
742 spl_kvmem_fini();
743 out1:
744 return (rc);
745 }
746
747 static void __exit
748 spl_fini(void)
749 {
750 spl_zlib_fini();
751 spl_kstat_fini();
752 spl_proc_fini();
753 spl_vn_fini();
754 spl_kmem_cache_fini();
755 spl_taskq_fini();
756 spl_tsd_fini();
757 spl_rw_fini();
758 spl_mutex_fini();
759 spl_kvmem_fini();
760 }
761
762 module_init(spl_init);
763 module_exit(spl_fini);
764
765 MODULE_DESCRIPTION("Solaris Porting Layer");
766 MODULE_AUTHOR(ZFS_META_AUTHOR);
767 MODULE_LICENSE("GPL");
768 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);