]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/ddt.c
de8640e58a2c9e6b2229c702903971c47ea13838
[mirror_zfs.git] / module / zfs / ddt.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2022 by Pawel Jakub Dawidek
26 * Copyright (c) 2023, Klara Inc.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/ddt.h>
34 #include <sys/ddt_impl.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dsl_scan.h>
41 #include <sys/abd.h>
42
43 /*
44 * # DDT: Deduplication tables
45 *
46 * The dedup subsystem provides block-level deduplication. When enabled, blocks
47 * to be written will have the dedup (D) bit set, which causes them to be
48 * tracked in a "dedup table", or DDT. If a block has been seen before (exists
49 * in the DDT), instead of being written, it will instead be made to reference
50 * the existing on-disk data, and a refcount bumped in the DDT instead.
51 *
52 * ## Dedup tables and entries
53 *
54 * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
55 * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
56 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
57 * time and refcount. Together these are enough to track references to a
58 * specific block, to build a valid block pointer to reference that block (for
59 * freeing, scrubbing, etc), and to fill a new block pointer with the missing
60 * pieces to make it seem like it was written.
61 *
62 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
63 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
64 * object data formats, each with their own implementations) and "classes"
65 * (ddt_class_t, instance of a storage type object, for entries with a specific
66 * characteristic). An entry (key) will only ever exist on one of these objects
67 * at any given time, but may be moved from one to another if their type or
68 * class changes.
69 *
70 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
71 * is to be written, before DVAs have been allocated, ddt_lookup() is called to
72 * see if the block has been seen before. If its not found, the write proceeds
73 * as normal, and after it succeeds, a new entry is created. If it is found, we
74 * fill the BP with the DVAs from the entry, increment the refcount and cause
75 * the write IO to return immediately.
76 *
77 * Each ddt_phys_t slot in the entry represents a separate dedup block for the
78 * same content/checksum. The slot is selected based on the zp_copies parameter
79 * the block is written with, that is, the number of DVAs in the block. The
80 * "ditto" slot (DDT_PHYS_DITTO) used to be used for now-removed "dedupditto"
81 * feature. These are no longer written, and will be freed if encountered on
82 * old pools.
83 *
84 * ## Lifetime of an entry
85 *
86 * A DDT can be enormous, and typically is not held in memory all at once.
87 * Instead, the changes to an entry are tracked in memory, and written down to
88 * disk at the end of each txg.
89 *
90 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
91 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is
92 * required for IO, ddt_lookup() is called. If an entry already exists on
93 * ddt_tree, it is returned. Otherwise, a new one is created, and the
94 * type/class objects for the DDT are searched for that key. If its found, its
95 * value is copied into the live entry. If not, an empty entry is created.
96 *
97 * The live entry will be modified during the txg, usually by modifying the
98 * refcount, but sometimes by adding or updating DVAs. At the end of the txg
99 * (during spa_sync()), type and class are recalculated for entry (see
100 * ddt_sync_entry()), and the entry is written to the appropriate storage
101 * object and (if necessary), removed from an old one. ddt_tree is cleared and
102 * the next txg can start.
103 *
104 * ## Repair IO
105 *
106 * If a read on a dedup block fails, but there are other copies of the block in
107 * the other ddt_phys_t slots, reads will be issued for those instead
108 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
109 * the caller, and a copy is stashed on the entry's dde_repair_abd.
110 *
111 * During the end-of-txg sync, any entries with a dde_repair_abd get a
112 * "rewrite" write issued for the original block pointer, with the data read
113 * from the alternate block. If the block is actually damaged, this will invoke
114 * the pool's "self-healing" mechanism, and repair the block.
115 *
116 * ## Scanning (scrub/resilver)
117 *
118 * If dedup is active, the scrub machinery will walk the dedup table first, and
119 * scrub all blocks with refcnt > 1 first. After that it will move on to the
120 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
121 * In this way, heavily deduplicated blocks are only scrubbed once. See the
122 * commentary on dsl_scan_ddt() for more details.
123 *
124 * Walking the DDT is done via ddt_walk(). The current position is stored in a
125 * ddt_bookmark_t, which represents a stable position in the storage object.
126 * This bookmark is stored by the scan machinery, and must reference the same
127 * position on the object even if the object changes, the pool is exported, or
128 * OpenZFS is upgraded.
129 *
130 * ## Interaction with block cloning
131 *
132 * If block cloning and dedup are both enabled on a pool, BRT will look for the
133 * dedup bit on an incoming block pointer. If set, it will call into the DDT
134 * (ddt_addref()) to add a reference to the block, instead of adding a
135 * reference to the BRT. See brt_pending_apply().
136 */
137
138 /*
139 * These are the only checksums valid for dedup. They must match the list
140 * from dedup_table in zfs_prop.c
141 */
142 #define DDT_CHECKSUM_VALID(c) \
143 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
144 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
145 c == ZIO_CHECKSUM_BLAKE3)
146
147 static kmem_cache_t *ddt_cache;
148 static kmem_cache_t *ddt_entry_cache;
149
150 /*
151 * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
152 */
153 int zfs_dedup_prefetch = 0;
154
155 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
156 &ddt_zap_ops,
157 };
158
159 static const char *const ddt_class_name[DDT_CLASSES] = {
160 "ditto",
161 "duplicate",
162 "unique",
163 };
164
165 static void
166 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
167 dmu_tx_t *tx)
168 {
169 spa_t *spa = ddt->ddt_spa;
170 objset_t *os = ddt->ddt_os;
171 uint64_t *objectp = &ddt->ddt_object[type][class];
172 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
173 ZCHECKSUM_FLAG_DEDUP;
174 char name[DDT_NAMELEN];
175
176 ddt_object_name(ddt, type, class, name);
177
178 ASSERT3U(*objectp, ==, 0);
179 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
180 ASSERT3U(*objectp, !=, 0);
181
182 VERIFY0(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name,
183 sizeof (uint64_t), 1, objectp, tx));
184
185 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
186 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
187 &ddt->ddt_histogram[type][class], tx));
188 }
189
190 static void
191 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
192 dmu_tx_t *tx)
193 {
194 spa_t *spa = ddt->ddt_spa;
195 objset_t *os = ddt->ddt_os;
196 uint64_t *objectp = &ddt->ddt_object[type][class];
197 uint64_t count;
198 char name[DDT_NAMELEN];
199
200 ddt_object_name(ddt, type, class, name);
201
202 ASSERT3U(*objectp, !=, 0);
203 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
204 VERIFY0(ddt_object_count(ddt, type, class, &count));
205 VERIFY0(count);
206 VERIFY0(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
207 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
208 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
209 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
210
211 *objectp = 0;
212 }
213
214 static int
215 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
216 {
217 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
218 dmu_object_info_t doi;
219 uint64_t count;
220 char name[DDT_NAMELEN];
221 int error;
222
223 ddt_object_name(ddt, type, class, name);
224
225 error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name,
226 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
227 if (error != 0)
228 return (error);
229
230 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
231 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
232 &ddt->ddt_histogram[type][class]);
233 if (error != 0)
234 return (error);
235
236 /*
237 * Seed the cached statistics.
238 */
239 error = ddt_object_info(ddt, type, class, &doi);
240 if (error)
241 return (error);
242
243 error = ddt_object_count(ddt, type, class, &count);
244 if (error)
245 return (error);
246
247 ddo->ddo_count = count;
248 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
249 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
250
251 return (0);
252 }
253
254 static void
255 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
256 dmu_tx_t *tx)
257 {
258 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
259 dmu_object_info_t doi;
260 uint64_t count;
261 char name[DDT_NAMELEN];
262
263 ddt_object_name(ddt, type, class, name);
264
265 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
266 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
267 &ddt->ddt_histogram[type][class], tx));
268
269 /*
270 * Cache DDT statistics; this is the only time they'll change.
271 */
272 VERIFY0(ddt_object_info(ddt, type, class, &doi));
273 VERIFY0(ddt_object_count(ddt, type, class, &count));
274
275 ddo->ddo_count = count;
276 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
277 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
278 }
279
280 static boolean_t
281 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
282 {
283 return (!!ddt->ddt_object[type][class]);
284 }
285
286 static int
287 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
288 ddt_entry_t *dde)
289 {
290 if (!ddt_object_exists(ddt, type, class))
291 return (SET_ERROR(ENOENT));
292
293 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
294 ddt->ddt_object[type][class], &dde->dde_key,
295 dde->dde_phys, sizeof (dde->dde_phys)));
296 }
297
298 static int
299 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
300 const ddt_key_t *ddk)
301 {
302 if (!ddt_object_exists(ddt, type, class))
303 return (SET_ERROR(ENOENT));
304
305 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
306 ddt->ddt_object[type][class], ddk));
307 }
308
309 static void
310 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
311 const ddt_key_t *ddk)
312 {
313 if (!ddt_object_exists(ddt, type, class))
314 return;
315
316 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
317 ddt->ddt_object[type][class], ddk);
318 }
319
320 static int
321 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
322 ddt_entry_t *dde, dmu_tx_t *tx)
323 {
324 ASSERT(ddt_object_exists(ddt, type, class));
325
326 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
327 ddt->ddt_object[type][class], &dde->dde_key, dde->dde_phys,
328 sizeof (dde->dde_phys), tx));
329 }
330
331 static int
332 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
333 const ddt_key_t *ddk, dmu_tx_t *tx)
334 {
335 ASSERT(ddt_object_exists(ddt, type, class));
336
337 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
338 ddt->ddt_object[type][class], ddk, tx));
339 }
340
341 int
342 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
343 uint64_t *walk, ddt_entry_t *dde)
344 {
345 ASSERT(ddt_object_exists(ddt, type, class));
346
347 return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
348 ddt->ddt_object[type][class], walk, &dde->dde_key,
349 dde->dde_phys, sizeof (dde->dde_phys)));
350 }
351
352 int
353 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
354 uint64_t *count)
355 {
356 ASSERT(ddt_object_exists(ddt, type, class));
357
358 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
359 ddt->ddt_object[type][class], count));
360 }
361
362 int
363 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
364 dmu_object_info_t *doi)
365 {
366 if (!ddt_object_exists(ddt, type, class))
367 return (SET_ERROR(ENOENT));
368
369 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
370 doi));
371 }
372
373 void
374 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
375 char *name)
376 {
377 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
378 zio_checksum_table[ddt->ddt_checksum].ci_name,
379 ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
380 }
381
382 void
383 ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg)
384 {
385 ASSERT3U(txg, !=, 0);
386
387 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
388 bp->blk_dva[d] = ddp->ddp_dva[d];
389 BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth);
390 }
391
392 /*
393 * The bp created via this function may be used for repairs and scrub, but it
394 * will be missing the salt / IV required to do a full decrypting read.
395 */
396 void
397 ddt_bp_create(enum zio_checksum checksum,
398 const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp)
399 {
400 BP_ZERO(bp);
401
402 if (ddp != NULL)
403 ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth);
404
405 bp->blk_cksum = ddk->ddk_cksum;
406
407 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
408 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
409 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
410 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
411 BP_SET_FILL(bp, 1);
412 BP_SET_CHECKSUM(bp, checksum);
413 BP_SET_TYPE(bp, DMU_OT_DEDUP);
414 BP_SET_LEVEL(bp, 0);
415 BP_SET_DEDUP(bp, 1);
416 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
417 }
418
419 void
420 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
421 {
422 ddk->ddk_cksum = bp->blk_cksum;
423 ddk->ddk_prop = 0;
424
425 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
426
427 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
428 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
429 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
430 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
431 }
432
433 void
434 ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp)
435 {
436 ASSERT0(ddp->ddp_phys_birth);
437
438 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
439 ddp->ddp_dva[d] = bp->blk_dva[d];
440 ddp->ddp_phys_birth = BP_PHYSICAL_BIRTH(bp);
441 }
442
443 void
444 ddt_phys_clear(ddt_phys_t *ddp)
445 {
446 memset(ddp, 0, sizeof (*ddp));
447 }
448
449 void
450 ddt_phys_addref(ddt_phys_t *ddp)
451 {
452 ddp->ddp_refcnt++;
453 }
454
455 void
456 ddt_phys_decref(ddt_phys_t *ddp)
457 {
458 if (ddp) {
459 ASSERT3U(ddp->ddp_refcnt, >, 0);
460 ddp->ddp_refcnt--;
461 }
462 }
463
464 static void
465 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg)
466 {
467 blkptr_t blk;
468
469 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
470
471 /*
472 * We clear the dedup bit so that zio_free() will actually free the
473 * space, rather than just decrementing the refcount in the DDT.
474 */
475 BP_SET_DEDUP(&blk, 0);
476
477 ddt_phys_clear(ddp);
478 zio_free(ddt->ddt_spa, txg, &blk);
479 }
480
481 ddt_phys_t *
482 ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp)
483 {
484 ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys;
485
486 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
487 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) &&
488 BP_PHYSICAL_BIRTH(bp) == ddp->ddp_phys_birth)
489 return (ddp);
490 }
491 return (NULL);
492 }
493
494 uint64_t
495 ddt_phys_total_refcnt(const ddt_entry_t *dde)
496 {
497 uint64_t refcnt = 0;
498
499 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++)
500 refcnt += dde->dde_phys[p].ddp_refcnt;
501
502 return (refcnt);
503 }
504
505 ddt_t *
506 ddt_select(spa_t *spa, const blkptr_t *bp)
507 {
508 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
509 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
510 }
511
512 void
513 ddt_enter(ddt_t *ddt)
514 {
515 mutex_enter(&ddt->ddt_lock);
516 }
517
518 void
519 ddt_exit(ddt_t *ddt)
520 {
521 mutex_exit(&ddt->ddt_lock);
522 }
523
524 void
525 ddt_init(void)
526 {
527 ddt_cache = kmem_cache_create("ddt_cache",
528 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
529 ddt_entry_cache = kmem_cache_create("ddt_entry_cache",
530 sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
531 }
532
533 void
534 ddt_fini(void)
535 {
536 kmem_cache_destroy(ddt_entry_cache);
537 kmem_cache_destroy(ddt_cache);
538 }
539
540 static ddt_entry_t *
541 ddt_alloc(const ddt_key_t *ddk)
542 {
543 ddt_entry_t *dde;
544
545 dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP);
546 memset(dde, 0, sizeof (ddt_entry_t));
547 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
548
549 dde->dde_key = *ddk;
550
551 return (dde);
552 }
553
554 static void
555 ddt_free(ddt_entry_t *dde)
556 {
557 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
558
559 for (int p = 0; p < DDT_PHYS_TYPES; p++)
560 ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
561
562 if (dde->dde_repair_abd != NULL)
563 abd_free(dde->dde_repair_abd);
564
565 cv_destroy(&dde->dde_cv);
566 kmem_cache_free(ddt_entry_cache, dde);
567 }
568
569 void
570 ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
571 {
572 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
573
574 avl_remove(&ddt->ddt_tree, dde);
575 ddt_free(dde);
576 }
577
578 ddt_entry_t *
579 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
580 {
581 ddt_key_t search;
582 ddt_entry_t *dde;
583 ddt_type_t type;
584 ddt_class_t class;
585 avl_index_t where;
586 int error;
587
588 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
589
590 ddt_key_fill(&search, bp);
591
592 /* Find an existing live entry */
593 dde = avl_find(&ddt->ddt_tree, &search, &where);
594 if (dde != NULL) {
595 /* Found it. If it's already loaded, we can just return it. */
596 if (dde->dde_flags & DDE_FLAG_LOADED)
597 return (dde);
598
599 /* Someone else is loading it, wait for it. */
600 while (!(dde->dde_flags & DDE_FLAG_LOADED))
601 cv_wait(&dde->dde_cv, &ddt->ddt_lock);
602
603 return (dde);
604 }
605
606 /* Not found. */
607 if (!add)
608 return (NULL);
609
610 /* Time to make a new entry. */
611 dde = ddt_alloc(&search);
612 avl_insert(&ddt->ddt_tree, dde, where);
613
614 /*
615 * ddt_tree is now stable, so unlock and let everyone else keep moving.
616 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
617 * and go to sleep waiting for it above.
618 */
619 ddt_exit(ddt);
620
621 /* Search all store objects for the entry. */
622 error = ENOENT;
623 for (type = 0; type < DDT_TYPES; type++) {
624 for (class = 0; class < DDT_CLASSES; class++) {
625 error = ddt_object_lookup(ddt, type, class, dde);
626 if (error != ENOENT) {
627 ASSERT0(error);
628 break;
629 }
630 }
631 if (error != ENOENT)
632 break;
633 }
634
635 ddt_enter(ddt);
636
637 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
638
639 dde->dde_type = type; /* will be DDT_TYPES if no entry found */
640 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */
641
642 if (error == 0)
643 ddt_stat_update(ddt, dde, -1ULL);
644
645 /* Entry loaded, everyone can proceed now */
646 dde->dde_flags |= DDE_FLAG_LOADED;
647 cv_broadcast(&dde->dde_cv);
648
649 return (dde);
650 }
651
652 void
653 ddt_prefetch(spa_t *spa, const blkptr_t *bp)
654 {
655 ddt_t *ddt;
656 ddt_key_t ddk;
657
658 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
659 return;
660
661 /*
662 * We only remove the DDT once all tables are empty and only
663 * prefetch dedup blocks when there are entries in the DDT.
664 * Thus no locking is required as the DDT can't disappear on us.
665 */
666 ddt = ddt_select(spa, bp);
667 ddt_key_fill(&ddk, bp);
668
669 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
670 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
671 ddt_object_prefetch(ddt, type, class, &ddk);
672 }
673 }
674 }
675
676 /*
677 * Key comparison. Any struct wanting to make use of this function must have
678 * the key as the first element.
679 */
680 #define DDT_KEY_CMP_LEN (sizeof (ddt_key_t) / sizeof (uint16_t))
681
682 typedef struct ddt_key_cmp {
683 uint16_t u16[DDT_KEY_CMP_LEN];
684 } ddt_key_cmp_t;
685
686 int
687 ddt_key_compare(const void *x1, const void *x2)
688 {
689 const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)x1;
690 const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)x2;
691 int32_t cmp = 0;
692
693 for (int i = 0; i < DDT_KEY_CMP_LEN; i++) {
694 cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i];
695 if (likely(cmp))
696 break;
697 }
698
699 return (TREE_ISIGN(cmp));
700 }
701
702 static ddt_t *
703 ddt_table_alloc(spa_t *spa, enum zio_checksum c)
704 {
705 ddt_t *ddt;
706
707 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
708 memset(ddt, 0, sizeof (ddt_t));
709
710 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
711 avl_create(&ddt->ddt_tree, ddt_key_compare,
712 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
713 avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
714 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
715 ddt->ddt_checksum = c;
716 ddt->ddt_spa = spa;
717 ddt->ddt_os = spa->spa_meta_objset;
718
719 return (ddt);
720 }
721
722 static void
723 ddt_table_free(ddt_t *ddt)
724 {
725 ASSERT0(avl_numnodes(&ddt->ddt_tree));
726 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
727 avl_destroy(&ddt->ddt_tree);
728 avl_destroy(&ddt->ddt_repair_tree);
729 mutex_destroy(&ddt->ddt_lock);
730 kmem_cache_free(ddt_cache, ddt);
731 }
732
733 void
734 ddt_create(spa_t *spa)
735 {
736 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
737
738 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
739 if (DDT_CHECKSUM_VALID(c))
740 spa->spa_ddt[c] = ddt_table_alloc(spa, c);
741 }
742 }
743
744 int
745 ddt_load(spa_t *spa)
746 {
747 int error;
748
749 ddt_create(spa);
750
751 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
752 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
753 &spa->spa_ddt_stat_object);
754
755 if (error)
756 return (error == ENOENT ? 0 : error);
757
758 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
759 if (!DDT_CHECKSUM_VALID(c))
760 continue;
761
762 ddt_t *ddt = spa->spa_ddt[c];
763 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
764 for (ddt_class_t class = 0; class < DDT_CLASSES;
765 class++) {
766 error = ddt_object_load(ddt, type, class);
767 if (error != 0 && error != ENOENT)
768 return (error);
769 }
770 }
771
772 /*
773 * Seed the cached histograms.
774 */
775 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
776 sizeof (ddt->ddt_histogram));
777 spa->spa_dedup_dspace = ~0ULL;
778 }
779
780 return (0);
781 }
782
783 void
784 ddt_unload(spa_t *spa)
785 {
786 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
787 if (spa->spa_ddt[c]) {
788 ddt_table_free(spa->spa_ddt[c]);
789 spa->spa_ddt[c] = NULL;
790 }
791 }
792 }
793
794 boolean_t
795 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
796 {
797 ddt_t *ddt;
798 ddt_key_t ddk;
799
800 if (!BP_GET_DEDUP(bp))
801 return (B_FALSE);
802
803 if (max_class == DDT_CLASS_UNIQUE)
804 return (B_TRUE);
805
806 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
807
808 ddt_key_fill(&ddk, bp);
809
810 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
811 for (ddt_class_t class = 0; class <= max_class; class++) {
812 if (ddt_object_contains(ddt, type, class, &ddk) == 0)
813 return (B_TRUE);
814 }
815 }
816
817 return (B_FALSE);
818 }
819
820 ddt_entry_t *
821 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
822 {
823 ddt_key_t ddk;
824 ddt_entry_t *dde;
825
826 ddt_key_fill(&ddk, bp);
827
828 dde = ddt_alloc(&ddk);
829
830 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
831 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
832 /*
833 * We can only do repair if there are multiple copies
834 * of the block. For anything in the UNIQUE class,
835 * there's definitely only one copy, so don't even try.
836 */
837 if (class != DDT_CLASS_UNIQUE &&
838 ddt_object_lookup(ddt, type, class, dde) == 0)
839 return (dde);
840 }
841 }
842
843 memset(dde->dde_phys, 0, sizeof (dde->dde_phys));
844
845 return (dde);
846 }
847
848 void
849 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
850 {
851 avl_index_t where;
852
853 ddt_enter(ddt);
854
855 if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) &&
856 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
857 avl_insert(&ddt->ddt_repair_tree, dde, where);
858 else
859 ddt_free(dde);
860
861 ddt_exit(ddt);
862 }
863
864 static void
865 ddt_repair_entry_done(zio_t *zio)
866 {
867 ddt_entry_t *rdde = zio->io_private;
868
869 ddt_free(rdde);
870 }
871
872 static void
873 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
874 {
875 ddt_phys_t *ddp = dde->dde_phys;
876 ddt_phys_t *rddp = rdde->dde_phys;
877 ddt_key_t *ddk = &dde->dde_key;
878 ddt_key_t *rddk = &rdde->dde_key;
879 zio_t *zio;
880 blkptr_t blk;
881
882 zio = zio_null(rio, rio->io_spa, NULL,
883 ddt_repair_entry_done, rdde, rio->io_flags);
884
885 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) {
886 if (ddp->ddp_phys_birth == 0 ||
887 ddp->ddp_phys_birth != rddp->ddp_phys_birth ||
888 memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva)))
889 continue;
890 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
891 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
892 rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL,
893 ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL));
894 }
895
896 zio_nowait(zio);
897 }
898
899 static void
900 ddt_repair_table(ddt_t *ddt, zio_t *rio)
901 {
902 spa_t *spa = ddt->ddt_spa;
903 ddt_entry_t *dde, *rdde_next, *rdde;
904 avl_tree_t *t = &ddt->ddt_repair_tree;
905 blkptr_t blk;
906
907 if (spa_sync_pass(spa) > 1)
908 return;
909
910 ddt_enter(ddt);
911 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
912 rdde_next = AVL_NEXT(t, rdde);
913 avl_remove(&ddt->ddt_repair_tree, rdde);
914 ddt_exit(ddt);
915 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk);
916 dde = ddt_repair_start(ddt, &blk);
917 ddt_repair_entry(ddt, dde, rdde, rio);
918 ddt_repair_done(ddt, dde);
919 ddt_enter(ddt);
920 }
921 ddt_exit(ddt);
922 }
923
924 static void
925 ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg)
926 {
927 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
928 ddt_phys_t *ddp = dde->dde_phys;
929 ddt_key_t *ddk = &dde->dde_key;
930 ddt_type_t otype = dde->dde_type;
931 ddt_type_t ntype = DDT_TYPE_DEFAULT;
932 ddt_class_t oclass = dde->dde_class;
933 ddt_class_t nclass;
934 uint64_t total_refcnt = 0;
935
936 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
937
938 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
939 ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
940 if (ddp->ddp_phys_birth == 0) {
941 ASSERT0(ddp->ddp_refcnt);
942 continue;
943 }
944 if (p == DDT_PHYS_DITTO) {
945 /*
946 * Note, we no longer create DDT-DITTO blocks, but we
947 * don't want to leak any written by older software.
948 */
949 ddt_phys_free(ddt, ddk, ddp, txg);
950 continue;
951 }
952 if (ddp->ddp_refcnt == 0)
953 ddt_phys_free(ddt, ddk, ddp, txg);
954 total_refcnt += ddp->ddp_refcnt;
955 }
956
957 /* We do not create new DDT-DITTO blocks. */
958 ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth);
959 if (total_refcnt > 1)
960 nclass = DDT_CLASS_DUPLICATE;
961 else
962 nclass = DDT_CLASS_UNIQUE;
963
964 if (otype != DDT_TYPES &&
965 (otype != ntype || oclass != nclass || total_refcnt == 0)) {
966 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
967 ASSERT3U(
968 ddt_object_contains(ddt, otype, oclass, ddk), ==, ENOENT);
969 }
970
971 if (total_refcnt != 0) {
972 dde->dde_type = ntype;
973 dde->dde_class = nclass;
974 ddt_stat_update(ddt, dde, 0);
975 if (!ddt_object_exists(ddt, ntype, nclass))
976 ddt_object_create(ddt, ntype, nclass, tx);
977 VERIFY0(ddt_object_update(ddt, ntype, nclass, dde, tx));
978
979 /*
980 * If the class changes, the order that we scan this bp
981 * changes. If it decreases, we could miss it, so
982 * scan it right now. (This covers both class changing
983 * while we are doing ddt_walk(), and when we are
984 * traversing.)
985 */
986 if (nclass < oclass) {
987 dsl_scan_ddt_entry(dp->dp_scan,
988 ddt->ddt_checksum, dde, tx);
989 }
990 }
991 }
992
993 static void
994 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg)
995 {
996 spa_t *spa = ddt->ddt_spa;
997 ddt_entry_t *dde;
998 void *cookie = NULL;
999
1000 if (avl_numnodes(&ddt->ddt_tree) == 0)
1001 return;
1002
1003 ASSERT3U(spa->spa_uberblock.ub_version, >=, SPA_VERSION_DEDUP);
1004
1005 if (spa->spa_ddt_stat_object == 0) {
1006 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
1007 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
1008 DMU_POOL_DDT_STATS, tx);
1009 }
1010
1011 while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
1012 ddt_sync_entry(ddt, dde, tx, txg);
1013 ddt_free(dde);
1014 }
1015
1016 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1017 uint64_t add, count = 0;
1018 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1019 if (ddt_object_exists(ddt, type, class)) {
1020 ddt_object_sync(ddt, type, class, tx);
1021 VERIFY0(ddt_object_count(ddt, type, class,
1022 &add));
1023 count += add;
1024 }
1025 }
1026 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1027 if (count == 0 && ddt_object_exists(ddt, type, class))
1028 ddt_object_destroy(ddt, type, class, tx);
1029 }
1030 }
1031
1032 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1033 sizeof (ddt->ddt_histogram));
1034 spa->spa_dedup_dspace = ~0ULL;
1035 }
1036
1037 void
1038 ddt_sync(spa_t *spa, uint64_t txg)
1039 {
1040 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1041 dmu_tx_t *tx;
1042 zio_t *rio;
1043
1044 ASSERT3U(spa_syncing_txg(spa), ==, txg);
1045
1046 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1047
1048 rio = zio_root(spa, NULL, NULL,
1049 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
1050
1051 /*
1052 * This function may cause an immediate scan of ddt blocks (see
1053 * the comment above dsl_scan_ddt() for details). We set the
1054 * scan's root zio here so that we can wait for any scan IOs in
1055 * addition to the regular ddt IOs.
1056 */
1057 ASSERT3P(scn->scn_zio_root, ==, NULL);
1058 scn->scn_zio_root = rio;
1059
1060 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1061 ddt_t *ddt = spa->spa_ddt[c];
1062 if (ddt == NULL)
1063 continue;
1064 ddt_sync_table(ddt, tx, txg);
1065 ddt_repair_table(ddt, rio);
1066 }
1067
1068 (void) zio_wait(rio);
1069 scn->scn_zio_root = NULL;
1070
1071 dmu_tx_commit(tx);
1072 }
1073
1074 int
1075 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde)
1076 {
1077 do {
1078 do {
1079 do {
1080 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
1081 if (ddt == NULL)
1082 continue;
1083 int error = ENOENT;
1084 if (ddt_object_exists(ddt, ddb->ddb_type,
1085 ddb->ddb_class)) {
1086 error = ddt_object_walk(ddt,
1087 ddb->ddb_type, ddb->ddb_class,
1088 &ddb->ddb_cursor, dde);
1089 }
1090 dde->dde_type = ddb->ddb_type;
1091 dde->dde_class = ddb->ddb_class;
1092 if (error == 0)
1093 return (0);
1094 if (error != ENOENT)
1095 return (error);
1096 ddb->ddb_cursor = 0;
1097 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
1098 ddb->ddb_checksum = 0;
1099 } while (++ddb->ddb_type < DDT_TYPES);
1100 ddb->ddb_type = 0;
1101 } while (++ddb->ddb_class < DDT_CLASSES);
1102
1103 return (SET_ERROR(ENOENT));
1104 }
1105
1106 /*
1107 * This function is used by Block Cloning (brt.c) to increase reference
1108 * counter for the DDT entry if the block is already in DDT.
1109 *
1110 * Return false if the block, despite having the D bit set, is not present
1111 * in the DDT. Currently this is not possible but might be in the future.
1112 * See the comment below.
1113 */
1114 boolean_t
1115 ddt_addref(spa_t *spa, const blkptr_t *bp)
1116 {
1117 ddt_t *ddt;
1118 ddt_entry_t *dde;
1119 boolean_t result;
1120
1121 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1122 ddt = ddt_select(spa, bp);
1123 ddt_enter(ddt);
1124
1125 dde = ddt_lookup(ddt, bp, B_TRUE);
1126 ASSERT3P(dde, !=, NULL);
1127
1128 if (dde->dde_type < DDT_TYPES) {
1129 ddt_phys_t *ddp;
1130
1131 ASSERT3S(dde->dde_class, <, DDT_CLASSES);
1132
1133 ddp = &dde->dde_phys[BP_GET_NDVAS(bp)];
1134
1135 /*
1136 * This entry already existed (dde_type is real), so it must
1137 * have refcnt >0 at the start of this txg. We are called from
1138 * brt_pending_apply(), before frees are issued, so the refcnt
1139 * can't be lowered yet. Therefore, it must be >0. We assert
1140 * this because if the order of BRT and DDT interactions were
1141 * ever to change and the refcnt was ever zero here, then
1142 * likely further action is required to fill out the DDT entry,
1143 * and this is a place that is likely to be missed in testing.
1144 */
1145 ASSERT3U(ddp->ddp_refcnt, >, 0);
1146
1147 ddt_phys_addref(ddp);
1148 result = B_TRUE;
1149 } else {
1150 /*
1151 * At the time of implementating this if the block has the
1152 * DEDUP flag set it must exist in the DEDUP table, but
1153 * there are many advocates that want ability to remove
1154 * entries from DDT with refcnt=1. If this will happen,
1155 * we may have a block with the DEDUP set, but which doesn't
1156 * have a corresponding entry in the DDT. Be ready.
1157 */
1158 ASSERT3S(dde->dde_class, ==, DDT_CLASSES);
1159 ddt_remove(ddt, dde);
1160 result = B_FALSE;
1161 }
1162
1163 ddt_exit(ddt);
1164 spa_config_exit(spa, SCL_ZIO, FTAG);
1165
1166 return (result);
1167 }
1168
1169 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
1170 "Enable prefetching dedup-ed blks");