]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_tx.c
c3cc03a691a7776e0249c63c5798a830905bfae5
[mirror_zfs.git] / module / zfs / dmu_tx.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/varargs.h>
41 #include <sys/trace_dmu.h>
42
43 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44 uint64_t arg1, uint64_t arg2);
45
46 dmu_tx_stats_t dmu_tx_stats = {
47 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
48 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
49 { "dmu_tx_error", KSTAT_DATA_UINT64 },
50 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
51 { "dmu_tx_group", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
53 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
54 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
56 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
57 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
58 };
59
60 static kstat_t *dmu_tx_ksp;
61
62 dmu_tx_t *
63 dmu_tx_create_dd(dsl_dir_t *dd)
64 {
65 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
66 tx->tx_dir = dd;
67 if (dd != NULL)
68 tx->tx_pool = dd->dd_pool;
69 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
70 offsetof(dmu_tx_hold_t, txh_node));
71 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
72 offsetof(dmu_tx_callback_t, dcb_node));
73 tx->tx_start = gethrtime();
74 return (tx);
75 }
76
77 dmu_tx_t *
78 dmu_tx_create(objset_t *os)
79 {
80 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
81 tx->tx_objset = os;
82 return (tx);
83 }
84
85 dmu_tx_t *
86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
87 {
88 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
89
90 txg_verify(dp->dp_spa, txg);
91 tx->tx_pool = dp;
92 tx->tx_txg = txg;
93 tx->tx_anyobj = TRUE;
94
95 return (tx);
96 }
97
98 int
99 dmu_tx_is_syncing(dmu_tx_t *tx)
100 {
101 return (tx->tx_anyobj);
102 }
103
104 int
105 dmu_tx_private_ok(dmu_tx_t *tx)
106 {
107 return (tx->tx_anyobj);
108 }
109
110 static dmu_tx_hold_t *
111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
112 uint64_t arg1, uint64_t arg2)
113 {
114 dmu_tx_hold_t *txh;
115
116 if (dn != NULL) {
117 (void) refcount_add(&dn->dn_holds, tx);
118 if (tx->tx_txg != 0) {
119 mutex_enter(&dn->dn_mtx);
120 /*
121 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
122 * problem, but there's no way for it to happen (for
123 * now, at least).
124 */
125 ASSERT(dn->dn_assigned_txg == 0);
126 dn->dn_assigned_txg = tx->tx_txg;
127 (void) refcount_add(&dn->dn_tx_holds, tx);
128 mutex_exit(&dn->dn_mtx);
129 }
130 }
131
132 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
133 txh->txh_tx = tx;
134 txh->txh_dnode = dn;
135 refcount_create(&txh->txh_space_towrite);
136 refcount_create(&txh->txh_memory_tohold);
137 txh->txh_type = type;
138 txh->txh_arg1 = arg1;
139 txh->txh_arg2 = arg2;
140 list_insert_tail(&tx->tx_holds, txh);
141
142 return (txh);
143 }
144
145 static dmu_tx_hold_t *
146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
147 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
148 {
149 dnode_t *dn = NULL;
150 dmu_tx_hold_t *txh;
151 int err;
152
153 if (object != DMU_NEW_OBJECT) {
154 err = dnode_hold(os, object, FTAG, &dn);
155 if (err != 0) {
156 tx->tx_err = err;
157 return (NULL);
158 }
159 }
160 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
161 if (dn != NULL)
162 dnode_rele(dn, FTAG);
163 return (txh);
164 }
165
166 void
167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
168 {
169 /*
170 * If we're syncing, they can manipulate any object anyhow, and
171 * the hold on the dnode_t can cause problems.
172 */
173 if (!dmu_tx_is_syncing(tx))
174 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
175 }
176
177 /*
178 * This function reads specified data from disk. The specified data will
179 * be needed to perform the transaction -- i.e, it will be read after
180 * we do dmu_tx_assign(). There are two reasons that we read the data now
181 * (before dmu_tx_assign()):
182 *
183 * 1. Reading it now has potentially better performance. The transaction
184 * has not yet been assigned, so the TXG is not held open, and also the
185 * caller typically has less locks held when calling dmu_tx_hold_*() than
186 * after the transaction has been assigned. This reduces the lock (and txg)
187 * hold times, thus reducing lock contention.
188 *
189 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
190 * that are detected before they start making changes to the DMU state
191 * (i.e. now). Once the transaction has been assigned, and some DMU
192 * state has been changed, it can be difficult to recover from an i/o
193 * error (e.g. to undo the changes already made in memory at the DMU
194 * layer). Typically code to do so does not exist in the caller -- it
195 * assumes that the data has already been cached and thus i/o errors are
196 * not possible.
197 *
198 * It has been observed that the i/o initiated here can be a performance
199 * problem, and it appears to be optional, because we don't look at the
200 * data which is read. However, removing this read would only serve to
201 * move the work elsewhere (after the dmu_tx_assign()), where it may
202 * have a greater impact on performance (in addition to the impact on
203 * fault tolerance noted above).
204 */
205 static int
206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
207 {
208 int err;
209 dmu_buf_impl_t *db;
210
211 rw_enter(&dn->dn_struct_rwlock, RW_READER);
212 db = dbuf_hold_level(dn, level, blkid, FTAG);
213 rw_exit(&dn->dn_struct_rwlock);
214 if (db == NULL)
215 return (SET_ERROR(EIO));
216 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
217 dbuf_rele(db, FTAG);
218 return (err);
219 }
220
221 /* ARGSUSED */
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
224 {
225 dnode_t *dn = txh->txh_dnode;
226 int err = 0;
227
228 if (len == 0)
229 return;
230
231 (void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);
232
233 if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
234 err = SET_ERROR(EFBIG);
235
236 if (dn == NULL)
237 return;
238
239 /*
240 * For i/o error checking, read the blocks that will be needed
241 * to perform the write: the first and last level-0 blocks (if
242 * they are not aligned, i.e. if they are partial-block writes),
243 * and all the level-1 blocks.
244 */
245 if (dn->dn_maxblkid == 0) {
246 if (off < dn->dn_datablksz &&
247 (off > 0 || len < dn->dn_datablksz)) {
248 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
249 if (err != 0) {
250 txh->txh_tx->tx_err = err;
251 }
252 }
253 } else {
254 zio_t *zio = zio_root(dn->dn_objset->os_spa,
255 NULL, NULL, ZIO_FLAG_CANFAIL);
256
257 /* first level-0 block */
258 uint64_t start = off >> dn->dn_datablkshift;
259 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
260 err = dmu_tx_check_ioerr(zio, dn, 0, start);
261 if (err != 0) {
262 txh->txh_tx->tx_err = err;
263 }
264 }
265
266 /* last level-0 block */
267 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
268 if (end != start && end <= dn->dn_maxblkid &&
269 P2PHASE(off + len, dn->dn_datablksz)) {
270 err = dmu_tx_check_ioerr(zio, dn, 0, end);
271 if (err != 0) {
272 txh->txh_tx->tx_err = err;
273 }
274 }
275
276 /* level-1 blocks */
277 if (dn->dn_nlevels > 1) {
278 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
279 for (uint64_t i = (start >> shft) + 1;
280 i < end >> shft; i++) {
281 err = dmu_tx_check_ioerr(zio, dn, 1, i);
282 if (err != 0) {
283 txh->txh_tx->tx_err = err;
284 }
285 }
286 }
287
288 err = zio_wait(zio);
289 if (err != 0) {
290 txh->txh_tx->tx_err = err;
291 }
292 }
293 }
294
295 static void
296 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
297 {
298 (void) refcount_add_many(&txh->txh_space_towrite, DNODE_MIN_SIZE, FTAG);
299 }
300
301 void
302 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
303 {
304 dmu_tx_hold_t *txh;
305
306 ASSERT0(tx->tx_txg);
307 ASSERT3U(len, <=, DMU_MAX_ACCESS);
308 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
309
310 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
311 object, THT_WRITE, off, len);
312 if (txh != NULL) {
313 dmu_tx_count_write(txh, off, len);
314 dmu_tx_count_dnode(txh);
315 }
316 }
317
318 void
319 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
320 {
321 dmu_tx_hold_t *txh;
322
323 ASSERT0(tx->tx_txg);
324 ASSERT3U(len, <=, DMU_MAX_ACCESS);
325 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
326
327 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
328 if (txh != NULL) {
329 dmu_tx_count_write(txh, off, len);
330 dmu_tx_count_dnode(txh);
331 }
332 }
333
334 /*
335 * This function marks the transaction as being a "net free". The end
336 * result is that refquotas will be disabled for this transaction, and
337 * this transaction will be able to use half of the pool space overhead
338 * (see dsl_pool_adjustedsize()). Therefore this function should only
339 * be called for transactions that we expect will not cause a net increase
340 * in the amount of space used (but it's OK if that is occasionally not true).
341 */
342 void
343 dmu_tx_mark_netfree(dmu_tx_t *tx)
344 {
345 tx->tx_netfree = B_TRUE;
346 }
347
348 static void
349 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
350 {
351 dmu_tx_t *tx = txh->txh_tx;
352 dnode_t *dn = txh->txh_dnode;
353 int err;
354
355 ASSERT(tx->tx_txg == 0);
356
357 dmu_tx_count_dnode(txh);
358
359 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
360 return;
361 if (len == DMU_OBJECT_END)
362 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
363
364 dmu_tx_count_dnode(txh);
365
366 /*
367 * For i/o error checking, we read the first and last level-0
368 * blocks if they are not aligned, and all the level-1 blocks.
369 *
370 * Note: dbuf_free_range() assumes that we have not instantiated
371 * any level-0 dbufs that will be completely freed. Therefore we must
372 * exercise care to not read or count the first and last blocks
373 * if they are blocksize-aligned.
374 */
375 if (dn->dn_datablkshift == 0) {
376 if (off != 0 || len < dn->dn_datablksz)
377 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
378 } else {
379 /* first block will be modified if it is not aligned */
380 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
381 dmu_tx_count_write(txh, off, 1);
382 /* last block will be modified if it is not aligned */
383 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
384 dmu_tx_count_write(txh, off + len, 1);
385 }
386
387 /*
388 * Check level-1 blocks.
389 */
390 if (dn->dn_nlevels > 1) {
391 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
392 SPA_BLKPTRSHIFT;
393 uint64_t start = off >> shift;
394 uint64_t end = (off + len) >> shift;
395 uint64_t i;
396
397 ASSERT(dn->dn_indblkshift != 0);
398
399 /*
400 * dnode_reallocate() can result in an object with indirect
401 * blocks having an odd data block size. In this case,
402 * just check the single block.
403 */
404 if (dn->dn_datablkshift == 0)
405 start = end = 0;
406
407 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
408 NULL, NULL, ZIO_FLAG_CANFAIL);
409 for (i = start; i <= end; i++) {
410 uint64_t ibyte = i << shift;
411 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
412 i = ibyte >> shift;
413 if (err == ESRCH || i > end)
414 break;
415 if (err != 0) {
416 tx->tx_err = err;
417 (void) zio_wait(zio);
418 return;
419 }
420
421 (void) refcount_add_many(&txh->txh_memory_tohold,
422 1 << dn->dn_indblkshift, FTAG);
423
424 err = dmu_tx_check_ioerr(zio, dn, 1, i);
425 if (err != 0) {
426 tx->tx_err = err;
427 (void) zio_wait(zio);
428 return;
429 }
430 }
431 err = zio_wait(zio);
432 if (err != 0) {
433 tx->tx_err = err;
434 return;
435 }
436 }
437 }
438
439 void
440 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
441 {
442 dmu_tx_hold_t *txh;
443
444 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
445 object, THT_FREE, off, len);
446 if (txh != NULL)
447 (void) dmu_tx_hold_free_impl(txh, off, len);
448 }
449
450 void
451 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
452 {
453 dmu_tx_hold_t *txh;
454
455 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
456 if (txh != NULL)
457 (void) dmu_tx_hold_free_impl(txh, off, len);
458 }
459
460 static void
461 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
462 {
463 dmu_tx_t *tx = txh->txh_tx;
464 dnode_t *dn = txh->txh_dnode;
465 int err;
466
467 ASSERT(tx->tx_txg == 0);
468
469 dmu_tx_count_dnode(txh);
470
471 /*
472 * Modifying a almost-full microzap is around the worst case (128KB)
473 *
474 * If it is a fat zap, the worst case would be 7*16KB=112KB:
475 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
476 * - 4 new blocks written if adding:
477 * - 2 blocks for possibly split leaves,
478 * - 2 grown ptrtbl blocks
479 */
480 (void) refcount_add_many(&txh->txh_space_towrite,
481 MZAP_MAX_BLKSZ, FTAG);
482
483 if (dn == NULL)
484 return;
485
486 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
487
488 if (dn->dn_maxblkid == 0 || name == NULL) {
489 /*
490 * This is a microzap (only one block), or we don't know
491 * the name. Check the first block for i/o errors.
492 */
493 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
494 if (err != 0) {
495 tx->tx_err = err;
496 }
497 } else {
498 /*
499 * Access the name so that we'll check for i/o errors to
500 * the leaf blocks, etc. We ignore ENOENT, as this name
501 * may not yet exist.
502 */
503 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
504 if (err == EIO || err == ECKSUM || err == ENXIO) {
505 tx->tx_err = err;
506 }
507 }
508 }
509
510 void
511 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
512 {
513 dmu_tx_hold_t *txh;
514
515 ASSERT0(tx->tx_txg);
516
517 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
518 object, THT_ZAP, add, (uintptr_t)name);
519 if (txh != NULL)
520 dmu_tx_hold_zap_impl(txh, name);
521 }
522
523 void
524 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
525 {
526 dmu_tx_hold_t *txh;
527
528 ASSERT0(tx->tx_txg);
529 ASSERT(dn != NULL);
530
531 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
532 if (txh != NULL)
533 dmu_tx_hold_zap_impl(txh, name);
534 }
535
536 void
537 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
538 {
539 dmu_tx_hold_t *txh;
540
541 ASSERT(tx->tx_txg == 0);
542
543 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
544 object, THT_BONUS, 0, 0);
545 if (txh)
546 dmu_tx_count_dnode(txh);
547 }
548
549 void
550 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
551 {
552 dmu_tx_hold_t *txh;
553
554 ASSERT0(tx->tx_txg);
555
556 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
557 if (txh)
558 dmu_tx_count_dnode(txh);
559 }
560
561 void
562 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
563 {
564 dmu_tx_hold_t *txh;
565
566 ASSERT(tx->tx_txg == 0);
567
568 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
569 DMU_NEW_OBJECT, THT_SPACE, space, 0);
570 if (txh)
571 (void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
572 }
573
574 #ifdef ZFS_DEBUG
575 void
576 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
577 {
578 boolean_t match_object = B_FALSE;
579 boolean_t match_offset = B_FALSE;
580
581 DB_DNODE_ENTER(db);
582 dnode_t *dn = DB_DNODE(db);
583 ASSERT(tx->tx_txg != 0);
584 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
585 ASSERT3U(dn->dn_object, ==, db->db.db_object);
586
587 if (tx->tx_anyobj) {
588 DB_DNODE_EXIT(db);
589 return;
590 }
591
592 /* XXX No checking on the meta dnode for now */
593 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
594 DB_DNODE_EXIT(db);
595 return;
596 }
597
598 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
599 txh = list_next(&tx->tx_holds, txh)) {
600 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
601 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
602 match_object = TRUE;
603 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
604 int datablkshift = dn->dn_datablkshift ?
605 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
606 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
607 int shift = datablkshift + epbs * db->db_level;
608 uint64_t beginblk = shift >= 64 ? 0 :
609 (txh->txh_arg1 >> shift);
610 uint64_t endblk = shift >= 64 ? 0 :
611 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
612 uint64_t blkid = db->db_blkid;
613
614 /* XXX txh_arg2 better not be zero... */
615
616 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
617 txh->txh_type, beginblk, endblk);
618
619 switch (txh->txh_type) {
620 case THT_WRITE:
621 if (blkid >= beginblk && blkid <= endblk)
622 match_offset = TRUE;
623 /*
624 * We will let this hold work for the bonus
625 * or spill buffer so that we don't need to
626 * hold it when creating a new object.
627 */
628 if (blkid == DMU_BONUS_BLKID ||
629 blkid == DMU_SPILL_BLKID)
630 match_offset = TRUE;
631 /*
632 * They might have to increase nlevels,
633 * thus dirtying the new TLIBs. Or the
634 * might have to change the block size,
635 * thus dirying the new lvl=0 blk=0.
636 */
637 if (blkid == 0)
638 match_offset = TRUE;
639 break;
640 case THT_FREE:
641 /*
642 * We will dirty all the level 1 blocks in
643 * the free range and perhaps the first and
644 * last level 0 block.
645 */
646 if (blkid >= beginblk && (blkid <= endblk ||
647 txh->txh_arg2 == DMU_OBJECT_END))
648 match_offset = TRUE;
649 break;
650 case THT_SPILL:
651 if (blkid == DMU_SPILL_BLKID)
652 match_offset = TRUE;
653 break;
654 case THT_BONUS:
655 if (blkid == DMU_BONUS_BLKID)
656 match_offset = TRUE;
657 break;
658 case THT_ZAP:
659 match_offset = TRUE;
660 break;
661 case THT_NEWOBJECT:
662 match_object = TRUE;
663 break;
664 default:
665 cmn_err(CE_PANIC, "bad txh_type %d",
666 txh->txh_type);
667 }
668 }
669 if (match_object && match_offset) {
670 DB_DNODE_EXIT(db);
671 return;
672 }
673 }
674 DB_DNODE_EXIT(db);
675 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
676 (u_longlong_t)db->db.db_object, db->db_level,
677 (u_longlong_t)db->db_blkid);
678 }
679 #endif
680
681 /*
682 * If we can't do 10 iops, something is wrong. Let us go ahead
683 * and hit zfs_dirty_data_max.
684 */
685 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
686 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
687
688 /*
689 * We delay transactions when we've determined that the backend storage
690 * isn't able to accommodate the rate of incoming writes.
691 *
692 * If there is already a transaction waiting, we delay relative to when
693 * that transaction finishes waiting. This way the calculated min_time
694 * is independent of the number of threads concurrently executing
695 * transactions.
696 *
697 * If we are the only waiter, wait relative to when the transaction
698 * started, rather than the current time. This credits the transaction for
699 * "time already served", e.g. reading indirect blocks.
700 *
701 * The minimum time for a transaction to take is calculated as:
702 * min_time = scale * (dirty - min) / (max - dirty)
703 * min_time is then capped at zfs_delay_max_ns.
704 *
705 * The delay has two degrees of freedom that can be adjusted via tunables.
706 * The percentage of dirty data at which we start to delay is defined by
707 * zfs_delay_min_dirty_percent. This should typically be at or above
708 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
709 * delay after writing at full speed has failed to keep up with the incoming
710 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
711 * speaking, this variable determines the amount of delay at the midpoint of
712 * the curve.
713 *
714 * delay
715 * 10ms +-------------------------------------------------------------*+
716 * | *|
717 * 9ms + *+
718 * | *|
719 * 8ms + *+
720 * | * |
721 * 7ms + * +
722 * | * |
723 * 6ms + * +
724 * | * |
725 * 5ms + * +
726 * | * |
727 * 4ms + * +
728 * | * |
729 * 3ms + * +
730 * | * |
731 * 2ms + (midpoint) * +
732 * | | ** |
733 * 1ms + v *** +
734 * | zfs_delay_scale ----------> ******** |
735 * 0 +-------------------------------------*********----------------+
736 * 0% <- zfs_dirty_data_max -> 100%
737 *
738 * Note that since the delay is added to the outstanding time remaining on the
739 * most recent transaction, the delay is effectively the inverse of IOPS.
740 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
741 * was chosen such that small changes in the amount of accumulated dirty data
742 * in the first 3/4 of the curve yield relatively small differences in the
743 * amount of delay.
744 *
745 * The effects can be easier to understand when the amount of delay is
746 * represented on a log scale:
747 *
748 * delay
749 * 100ms +-------------------------------------------------------------++
750 * + +
751 * | |
752 * + *+
753 * 10ms + *+
754 * + ** +
755 * | (midpoint) ** |
756 * + | ** +
757 * 1ms + v **** +
758 * + zfs_delay_scale ----------> ***** +
759 * | **** |
760 * + **** +
761 * 100us + ** +
762 * + * +
763 * | * |
764 * + * +
765 * 10us + * +
766 * + +
767 * | |
768 * + +
769 * +--------------------------------------------------------------+
770 * 0% <- zfs_dirty_data_max -> 100%
771 *
772 * Note here that only as the amount of dirty data approaches its limit does
773 * the delay start to increase rapidly. The goal of a properly tuned system
774 * should be to keep the amount of dirty data out of that range by first
775 * ensuring that the appropriate limits are set for the I/O scheduler to reach
776 * optimal throughput on the backend storage, and then by changing the value
777 * of zfs_delay_scale to increase the steepness of the curve.
778 */
779 static void
780 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
781 {
782 dsl_pool_t *dp = tx->tx_pool;
783 uint64_t delay_min_bytes =
784 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
785 hrtime_t wakeup, min_tx_time, now;
786
787 if (dirty <= delay_min_bytes)
788 return;
789
790 /*
791 * The caller has already waited until we are under the max.
792 * We make them pass us the amount of dirty data so we don't
793 * have to handle the case of it being >= the max, which could
794 * cause a divide-by-zero if it's == the max.
795 */
796 ASSERT3U(dirty, <, zfs_dirty_data_max);
797
798 now = gethrtime();
799 min_tx_time = zfs_delay_scale *
800 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
801 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
802 if (now > tx->tx_start + min_tx_time)
803 return;
804
805 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
806 uint64_t, min_tx_time);
807
808 mutex_enter(&dp->dp_lock);
809 wakeup = MAX(tx->tx_start + min_tx_time,
810 dp->dp_last_wakeup + min_tx_time);
811 dp->dp_last_wakeup = wakeup;
812 mutex_exit(&dp->dp_lock);
813
814 zfs_sleep_until(wakeup);
815 }
816
817 /*
818 * This routine attempts to assign the transaction to a transaction group.
819 * To do so, we must determine if there is sufficient free space on disk.
820 *
821 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
822 * on it), then it is assumed that there is sufficient free space,
823 * unless there's insufficient slop space in the pool (see the comment
824 * above spa_slop_shift in spa_misc.c).
825 *
826 * If it is not a "netfree" transaction, then if the data already on disk
827 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
828 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
829 * plus the rough estimate of this transaction's changes, may exceed the
830 * allowed usage, then this will fail with ERESTART, which will cause the
831 * caller to wait for the pending changes to be written to disk (by waiting
832 * for the next TXG to open), and then check the space usage again.
833 *
834 * The rough estimate of pending changes is comprised of the sum of:
835 *
836 * - this transaction's holds' txh_space_towrite
837 *
838 * - dd_tempreserved[], which is the sum of in-flight transactions'
839 * holds' txh_space_towrite (i.e. those transactions that have called
840 * dmu_tx_assign() but not yet called dmu_tx_commit()).
841 *
842 * - dd_space_towrite[], which is the amount of dirtied dbufs.
843 *
844 * Note that all of these values are inflated by spa_get_worst_case_asize(),
845 * which means that we may get ERESTART well before we are actually in danger
846 * of running out of space, but this also mitigates any small inaccuracies
847 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
848 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
849 * to the MOS).
850 *
851 * Note that due to this algorithm, it is possible to exceed the allowed
852 * usage by one transaction. Also, as we approach the allowed usage,
853 * we will allow a very limited amount of changes into each TXG, thus
854 * decreasing performance.
855 */
856 static int
857 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
858 {
859 spa_t *spa = tx->tx_pool->dp_spa;
860
861 ASSERT0(tx->tx_txg);
862
863 if (tx->tx_err) {
864 DMU_TX_STAT_BUMP(dmu_tx_error);
865 return (tx->tx_err);
866 }
867
868 if (spa_suspended(spa)) {
869 DMU_TX_STAT_BUMP(dmu_tx_suspended);
870
871 /*
872 * If the user has indicated a blocking failure mode
873 * then return ERESTART which will block in dmu_tx_wait().
874 * Otherwise, return EIO so that an error can get
875 * propagated back to the VOP calls.
876 *
877 * Note that we always honor the txg_how flag regardless
878 * of the failuremode setting.
879 */
880 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
881 txg_how != TXG_WAIT)
882 return (SET_ERROR(EIO));
883
884 return (SET_ERROR(ERESTART));
885 }
886
887 if (!tx->tx_waited &&
888 dsl_pool_need_dirty_delay(tx->tx_pool)) {
889 tx->tx_wait_dirty = B_TRUE;
890 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
891 return (ERESTART);
892 }
893
894 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
895 tx->tx_needassign_txh = NULL;
896
897 /*
898 * NB: No error returns are allowed after txg_hold_open, but
899 * before processing the dnode holds, due to the
900 * dmu_tx_unassign() logic.
901 */
902
903 uint64_t towrite = 0;
904 uint64_t tohold = 0;
905 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
906 txh = list_next(&tx->tx_holds, txh)) {
907 dnode_t *dn = txh->txh_dnode;
908 if (dn != NULL) {
909 mutex_enter(&dn->dn_mtx);
910 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
911 mutex_exit(&dn->dn_mtx);
912 tx->tx_needassign_txh = txh;
913 DMU_TX_STAT_BUMP(dmu_tx_group);
914 return (SET_ERROR(ERESTART));
915 }
916 if (dn->dn_assigned_txg == 0)
917 dn->dn_assigned_txg = tx->tx_txg;
918 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
919 (void) refcount_add(&dn->dn_tx_holds, tx);
920 mutex_exit(&dn->dn_mtx);
921 }
922 towrite += refcount_count(&txh->txh_space_towrite);
923 tohold += refcount_count(&txh->txh_memory_tohold);
924 }
925
926 /* needed allocation: worst-case estimate of write space */
927 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
928 /* calculate memory footprint estimate */
929 uint64_t memory = towrite + tohold;
930
931 if (tx->tx_dir != NULL && asize != 0) {
932 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
933 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
934 if (err != 0)
935 return (err);
936 }
937
938 DMU_TX_STAT_BUMP(dmu_tx_assigned);
939
940 return (0);
941 }
942
943 static void
944 dmu_tx_unassign(dmu_tx_t *tx)
945 {
946 if (tx->tx_txg == 0)
947 return;
948
949 txg_rele_to_quiesce(&tx->tx_txgh);
950
951 /*
952 * Walk the transaction's hold list, removing the hold on the
953 * associated dnode, and notifying waiters if the refcount drops to 0.
954 */
955 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
956 txh && txh != tx->tx_needassign_txh;
957 txh = list_next(&tx->tx_holds, txh)) {
958 dnode_t *dn = txh->txh_dnode;
959
960 if (dn == NULL)
961 continue;
962 mutex_enter(&dn->dn_mtx);
963 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
964
965 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
966 dn->dn_assigned_txg = 0;
967 cv_broadcast(&dn->dn_notxholds);
968 }
969 mutex_exit(&dn->dn_mtx);
970 }
971
972 txg_rele_to_sync(&tx->tx_txgh);
973
974 tx->tx_lasttried_txg = tx->tx_txg;
975 tx->tx_txg = 0;
976 }
977
978 /*
979 * Assign tx to a transaction group. txg_how can be one of:
980 *
981 * (1) TXG_WAIT. If the current open txg is full, waits until there's
982 * a new one. This should be used when you're not holding locks.
983 * It will only fail if we're truly out of space (or over quota).
984 *
985 * (2) TXG_NOWAIT. If we can't assign into the current open txg without
986 * blocking, returns immediately with ERESTART. This should be used
987 * whenever you're holding locks. On an ERESTART error, the caller
988 * should drop locks, do a dmu_tx_wait(tx), and try again.
989 *
990 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait()
991 * has already been called on behalf of this operation (though
992 * most likely on a different tx).
993 */
994 int
995 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
996 {
997 int err;
998
999 ASSERT(tx->tx_txg == 0);
1000 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1001 txg_how == TXG_WAITED);
1002 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1003
1004 if (txg_how == TXG_WAITED)
1005 tx->tx_waited = B_TRUE;
1006
1007 /* If we might wait, we must not hold the config lock. */
1008 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1009
1010 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1011 dmu_tx_unassign(tx);
1012
1013 if (err != ERESTART || txg_how != TXG_WAIT)
1014 return (err);
1015
1016 dmu_tx_wait(tx);
1017 }
1018
1019 txg_rele_to_quiesce(&tx->tx_txgh);
1020
1021 return (0);
1022 }
1023
1024 void
1025 dmu_tx_wait(dmu_tx_t *tx)
1026 {
1027 spa_t *spa = tx->tx_pool->dp_spa;
1028 dsl_pool_t *dp = tx->tx_pool;
1029 hrtime_t before;
1030
1031 ASSERT(tx->tx_txg == 0);
1032 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1033
1034 before = gethrtime();
1035
1036 if (tx->tx_wait_dirty) {
1037 uint64_t dirty;
1038
1039 /*
1040 * dmu_tx_try_assign() has determined that we need to wait
1041 * because we've consumed much or all of the dirty buffer
1042 * space.
1043 */
1044 mutex_enter(&dp->dp_lock);
1045 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1046 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1047 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1048 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1049 dirty = dp->dp_dirty_total;
1050 mutex_exit(&dp->dp_lock);
1051
1052 dmu_tx_delay(tx, dirty);
1053
1054 tx->tx_wait_dirty = B_FALSE;
1055
1056 /*
1057 * Note: setting tx_waited only has effect if the caller
1058 * used TX_WAIT. Otherwise they are going to destroy
1059 * this tx and try again. The common case, zfs_write(),
1060 * uses TX_WAIT.
1061 */
1062 tx->tx_waited = B_TRUE;
1063 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1064 /*
1065 * If the pool is suspended we need to wait until it
1066 * is resumed. Note that it's possible that the pool
1067 * has become active after this thread has tried to
1068 * obtain a tx. If that's the case then tx_lasttried_txg
1069 * would not have been set.
1070 */
1071 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1072 } else if (tx->tx_needassign_txh) {
1073 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1074
1075 mutex_enter(&dn->dn_mtx);
1076 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1077 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1078 mutex_exit(&dn->dn_mtx);
1079 tx->tx_needassign_txh = NULL;
1080 } else {
1081 /*
1082 * A dnode is assigned to the quiescing txg. Wait for its
1083 * transaction to complete.
1084 */
1085 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1086 }
1087
1088 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1089 }
1090
1091 static void
1092 dmu_tx_destroy(dmu_tx_t *tx)
1093 {
1094 dmu_tx_hold_t *txh;
1095
1096 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1097 dnode_t *dn = txh->txh_dnode;
1098
1099 list_remove(&tx->tx_holds, txh);
1100 refcount_destroy_many(&txh->txh_space_towrite,
1101 refcount_count(&txh->txh_space_towrite));
1102 refcount_destroy_many(&txh->txh_memory_tohold,
1103 refcount_count(&txh->txh_memory_tohold));
1104 kmem_free(txh, sizeof (dmu_tx_hold_t));
1105 if (dn != NULL)
1106 dnode_rele(dn, tx);
1107 }
1108
1109 list_destroy(&tx->tx_callbacks);
1110 list_destroy(&tx->tx_holds);
1111 kmem_free(tx, sizeof (dmu_tx_t));
1112 }
1113
1114 void
1115 dmu_tx_commit(dmu_tx_t *tx)
1116 {
1117 dmu_tx_hold_t *txh;
1118
1119 ASSERT(tx->tx_txg != 0);
1120
1121 /*
1122 * Go through the transaction's hold list and remove holds on
1123 * associated dnodes, notifying waiters if no holds remain.
1124 */
1125 for (txh = list_head(&tx->tx_holds); txh != NULL;
1126 txh = list_next(&tx->tx_holds, txh)) {
1127 dnode_t *dn = txh->txh_dnode;
1128
1129 if (dn == NULL)
1130 continue;
1131
1132 mutex_enter(&dn->dn_mtx);
1133 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1134
1135 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1136 dn->dn_assigned_txg = 0;
1137 cv_broadcast(&dn->dn_notxholds);
1138 }
1139 mutex_exit(&dn->dn_mtx);
1140 }
1141
1142 if (tx->tx_tempreserve_cookie)
1143 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1144
1145 if (!list_is_empty(&tx->tx_callbacks))
1146 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1147
1148 if (tx->tx_anyobj == FALSE)
1149 txg_rele_to_sync(&tx->tx_txgh);
1150
1151 dmu_tx_destroy(tx);
1152 }
1153
1154 void
1155 dmu_tx_abort(dmu_tx_t *tx)
1156 {
1157 ASSERT(tx->tx_txg == 0);
1158
1159 /*
1160 * Call any registered callbacks with an error code.
1161 */
1162 if (!list_is_empty(&tx->tx_callbacks))
1163 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1164
1165 dmu_tx_destroy(tx);
1166 }
1167
1168 uint64_t
1169 dmu_tx_get_txg(dmu_tx_t *tx)
1170 {
1171 ASSERT(tx->tx_txg != 0);
1172 return (tx->tx_txg);
1173 }
1174
1175 dsl_pool_t *
1176 dmu_tx_pool(dmu_tx_t *tx)
1177 {
1178 ASSERT(tx->tx_pool != NULL);
1179 return (tx->tx_pool);
1180 }
1181
1182 void
1183 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1184 {
1185 dmu_tx_callback_t *dcb;
1186
1187 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1188
1189 dcb->dcb_func = func;
1190 dcb->dcb_data = data;
1191
1192 list_insert_tail(&tx->tx_callbacks, dcb);
1193 }
1194
1195 /*
1196 * Call all the commit callbacks on a list, with a given error code.
1197 */
1198 void
1199 dmu_tx_do_callbacks(list_t *cb_list, int error)
1200 {
1201 dmu_tx_callback_t *dcb;
1202
1203 while ((dcb = list_tail(cb_list)) != NULL) {
1204 list_remove(cb_list, dcb);
1205 dcb->dcb_func(dcb->dcb_data, error);
1206 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1207 }
1208 }
1209
1210 /*
1211 * Interface to hold a bunch of attributes.
1212 * used for creating new files.
1213 * attrsize is the total size of all attributes
1214 * to be added during object creation
1215 *
1216 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1217 */
1218
1219 /*
1220 * hold necessary attribute name for attribute registration.
1221 * should be a very rare case where this is needed. If it does
1222 * happen it would only happen on the first write to the file system.
1223 */
1224 static void
1225 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1226 {
1227 if (!sa->sa_need_attr_registration)
1228 return;
1229
1230 for (int i = 0; i != sa->sa_num_attrs; i++) {
1231 if (!sa->sa_attr_table[i].sa_registered) {
1232 if (sa->sa_reg_attr_obj)
1233 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1234 B_TRUE, sa->sa_attr_table[i].sa_name);
1235 else
1236 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1237 B_TRUE, sa->sa_attr_table[i].sa_name);
1238 }
1239 }
1240 }
1241
1242 void
1243 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1244 {
1245 dmu_tx_hold_t *txh;
1246
1247 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1248 THT_SPILL, 0, 0);
1249 if (txh != NULL)
1250 (void) refcount_add_many(&txh->txh_space_towrite,
1251 SPA_OLD_MAXBLOCKSIZE, FTAG);
1252 }
1253
1254 void
1255 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1256 {
1257 sa_os_t *sa = tx->tx_objset->os_sa;
1258
1259 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1260
1261 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1262 return;
1263
1264 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1265 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1266 } else {
1267 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1268 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1269 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1270 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1271 }
1272
1273 dmu_tx_sa_registration_hold(sa, tx);
1274
1275 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1276 return;
1277
1278 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1279 THT_SPILL, 0, 0);
1280 }
1281
1282 /*
1283 * Hold SA attribute
1284 *
1285 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1286 *
1287 * variable_size is the total size of all variable sized attributes
1288 * passed to this function. It is not the total size of all
1289 * variable size attributes that *may* exist on this object.
1290 */
1291 void
1292 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1293 {
1294 uint64_t object;
1295 sa_os_t *sa = tx->tx_objset->os_sa;
1296
1297 ASSERT(hdl != NULL);
1298
1299 object = sa_handle_object(hdl);
1300
1301 dmu_tx_hold_bonus(tx, object);
1302
1303 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1304 return;
1305
1306 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1307 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1308 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1309 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1310 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1311 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1312 }
1313
1314 dmu_tx_sa_registration_hold(sa, tx);
1315
1316 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1317 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1318
1319 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1320 ASSERT(tx->tx_txg == 0);
1321 dmu_tx_hold_spill(tx, object);
1322 } else {
1323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1324 dnode_t *dn;
1325
1326 DB_DNODE_ENTER(db);
1327 dn = DB_DNODE(db);
1328 if (dn->dn_have_spill) {
1329 ASSERT(tx->tx_txg == 0);
1330 dmu_tx_hold_spill(tx, object);
1331 }
1332 DB_DNODE_EXIT(db);
1333 }
1334 }
1335
1336 void
1337 dmu_tx_init(void)
1338 {
1339 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1340 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1341 KSTAT_FLAG_VIRTUAL);
1342
1343 if (dmu_tx_ksp != NULL) {
1344 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1345 kstat_install(dmu_tx_ksp);
1346 }
1347 }
1348
1349 void
1350 dmu_tx_fini(void)
1351 {
1352 if (dmu_tx_ksp != NULL) {
1353 kstat_delete(dmu_tx_ksp);
1354 dmu_tx_ksp = NULL;
1355 }
1356 }
1357
1358 #if defined(_KERNEL) && defined(HAVE_SPL)
1359 EXPORT_SYMBOL(dmu_tx_create);
1360 EXPORT_SYMBOL(dmu_tx_hold_write);
1361 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1362 EXPORT_SYMBOL(dmu_tx_hold_free);
1363 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1364 EXPORT_SYMBOL(dmu_tx_hold_zap);
1365 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1366 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1367 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1368 EXPORT_SYMBOL(dmu_tx_abort);
1369 EXPORT_SYMBOL(dmu_tx_assign);
1370 EXPORT_SYMBOL(dmu_tx_wait);
1371 EXPORT_SYMBOL(dmu_tx_commit);
1372 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1373 EXPORT_SYMBOL(dmu_tx_get_txg);
1374 EXPORT_SYMBOL(dmu_tx_callback_register);
1375 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1376 EXPORT_SYMBOL(dmu_tx_hold_spill);
1377 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1378 EXPORT_SYMBOL(dmu_tx_hold_sa);
1379 #endif