]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_zfetch.c
2b2d72671001661391c7636337c205d436297fd3
[mirror_zfs.git] / module / zfs / dmu_zfetch.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/arc_impl.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_zfetch.h>
35 #include <sys/dmu.h>
36 #include <sys/dbuf.h>
37 #include <sys/kstat.h>
38 #include <sys/wmsum.h>
39
40 /*
41 * This tunable disables predictive prefetch. Note that it leaves "prescient"
42 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
43 * prescient prefetch never issues i/os that end up not being needed,
44 * so it can't hurt performance.
45 */
46
47 static int zfs_prefetch_disable = B_FALSE;
48
49 /* max # of streams per zfetch */
50 static unsigned int zfetch_max_streams = 8;
51 /* min time before stream reclaim */
52 static unsigned int zfetch_min_sec_reap = 1;
53 /* max time before stream delete */
54 static unsigned int zfetch_max_sec_reap = 2;
55 #ifdef _ILP32
56 /* min bytes to prefetch per stream (default 2MB) */
57 static unsigned int zfetch_min_distance = 2 * 1024 * 1024;
58 /* max bytes to prefetch per stream (default 8MB) */
59 unsigned int zfetch_max_distance = 8 * 1024 * 1024;
60 #else
61 /* min bytes to prefetch per stream (default 4MB) */
62 static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
63 /* max bytes to prefetch per stream (default 64MB) */
64 unsigned int zfetch_max_distance = 64 * 1024 * 1024;
65 #endif
66 /* max bytes to prefetch indirects for per stream (default 64MB) */
67 unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
68
69 typedef struct zfetch_stats {
70 kstat_named_t zfetchstat_hits;
71 kstat_named_t zfetchstat_misses;
72 kstat_named_t zfetchstat_max_streams;
73 kstat_named_t zfetchstat_io_issued;
74 kstat_named_t zfetchstat_io_active;
75 } zfetch_stats_t;
76
77 static zfetch_stats_t zfetch_stats = {
78 { "hits", KSTAT_DATA_UINT64 },
79 { "misses", KSTAT_DATA_UINT64 },
80 { "max_streams", KSTAT_DATA_UINT64 },
81 { "io_issued", KSTAT_DATA_UINT64 },
82 { "io_active", KSTAT_DATA_UINT64 },
83 };
84
85 struct {
86 wmsum_t zfetchstat_hits;
87 wmsum_t zfetchstat_misses;
88 wmsum_t zfetchstat_max_streams;
89 wmsum_t zfetchstat_io_issued;
90 aggsum_t zfetchstat_io_active;
91 } zfetch_sums;
92
93 #define ZFETCHSTAT_BUMP(stat) \
94 wmsum_add(&zfetch_sums.stat, 1)
95 #define ZFETCHSTAT_ADD(stat, val) \
96 wmsum_add(&zfetch_sums.stat, val)
97
98
99 static kstat_t *zfetch_ksp;
100
101 static int
102 zfetch_kstats_update(kstat_t *ksp, int rw)
103 {
104 zfetch_stats_t *zs = ksp->ks_data;
105
106 if (rw == KSTAT_WRITE)
107 return (EACCES);
108 zs->zfetchstat_hits.value.ui64 =
109 wmsum_value(&zfetch_sums.zfetchstat_hits);
110 zs->zfetchstat_misses.value.ui64 =
111 wmsum_value(&zfetch_sums.zfetchstat_misses);
112 zs->zfetchstat_max_streams.value.ui64 =
113 wmsum_value(&zfetch_sums.zfetchstat_max_streams);
114 zs->zfetchstat_io_issued.value.ui64 =
115 wmsum_value(&zfetch_sums.zfetchstat_io_issued);
116 zs->zfetchstat_io_active.value.ui64 =
117 aggsum_value(&zfetch_sums.zfetchstat_io_active);
118 return (0);
119 }
120
121 void
122 zfetch_init(void)
123 {
124 wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
125 wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
126 wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
127 wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
128 aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
129
130 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
131 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
132 KSTAT_FLAG_VIRTUAL);
133
134 if (zfetch_ksp != NULL) {
135 zfetch_ksp->ks_data = &zfetch_stats;
136 zfetch_ksp->ks_update = zfetch_kstats_update;
137 kstat_install(zfetch_ksp);
138 }
139 }
140
141 void
142 zfetch_fini(void)
143 {
144 if (zfetch_ksp != NULL) {
145 kstat_delete(zfetch_ksp);
146 zfetch_ksp = NULL;
147 }
148
149 wmsum_fini(&zfetch_sums.zfetchstat_hits);
150 wmsum_fini(&zfetch_sums.zfetchstat_misses);
151 wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
152 wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
153 ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
154 aggsum_fini(&zfetch_sums.zfetchstat_io_active);
155 }
156
157 /*
158 * This takes a pointer to a zfetch structure and a dnode. It performs the
159 * necessary setup for the zfetch structure, grokking data from the
160 * associated dnode.
161 */
162 void
163 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
164 {
165 if (zf == NULL)
166 return;
167 zf->zf_dnode = dno;
168 zf->zf_numstreams = 0;
169
170 list_create(&zf->zf_stream, sizeof (zstream_t),
171 offsetof(zstream_t, zs_node));
172
173 mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
174 }
175
176 static void
177 dmu_zfetch_stream_fini(zstream_t *zs)
178 {
179 ASSERT(!list_link_active(&zs->zs_node));
180 zfs_refcount_destroy(&zs->zs_callers);
181 zfs_refcount_destroy(&zs->zs_refs);
182 kmem_free(zs, sizeof (*zs));
183 }
184
185 static void
186 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
187 {
188 ASSERT(MUTEX_HELD(&zf->zf_lock));
189 list_remove(&zf->zf_stream, zs);
190 zf->zf_numstreams--;
191 membar_producer();
192 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
193 dmu_zfetch_stream_fini(zs);
194 }
195
196 /*
197 * Clean-up state associated with a zfetch structure (e.g. destroy the
198 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
199 */
200 void
201 dmu_zfetch_fini(zfetch_t *zf)
202 {
203 zstream_t *zs;
204
205 mutex_enter(&zf->zf_lock);
206 while ((zs = list_head(&zf->zf_stream)) != NULL)
207 dmu_zfetch_stream_remove(zf, zs);
208 mutex_exit(&zf->zf_lock);
209 list_destroy(&zf->zf_stream);
210 mutex_destroy(&zf->zf_lock);
211
212 zf->zf_dnode = NULL;
213 }
214
215 /*
216 * If there aren't too many active streams already, create one more.
217 * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
218 * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
219 * The "blkid" argument is the next block that we expect this stream to access.
220 */
221 static void
222 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
223 {
224 zstream_t *zs, *zs_next, *zs_old = NULL;
225 hrtime_t now = gethrtime(), t;
226
227 ASSERT(MUTEX_HELD(&zf->zf_lock));
228
229 /*
230 * Delete too old streams, reusing the first found one.
231 */
232 t = now - SEC2NSEC(zfetch_max_sec_reap);
233 for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
234 zs_next = list_next(&zf->zf_stream, zs);
235 /*
236 * Skip if still active. 1 -- zf_stream reference.
237 */
238 if (zfs_refcount_count(&zs->zs_refs) != 1)
239 continue;
240 if (zs->zs_atime > t)
241 continue;
242 if (zs_old)
243 dmu_zfetch_stream_remove(zf, zs);
244 else
245 zs_old = zs;
246 }
247 if (zs_old) {
248 zs = zs_old;
249 goto reuse;
250 }
251
252 /*
253 * The maximum number of streams is normally zfetch_max_streams,
254 * but for small files we lower it such that it's at least possible
255 * for all the streams to be non-overlapping.
256 */
257 uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
258 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
259 zfetch_max_distance));
260 if (zf->zf_numstreams >= max_streams) {
261 t = now - SEC2NSEC(zfetch_min_sec_reap);
262 for (zs = list_head(&zf->zf_stream); zs != NULL;
263 zs = list_next(&zf->zf_stream, zs)) {
264 if (zfs_refcount_count(&zs->zs_refs) != 1)
265 continue;
266 if (zs->zs_atime > t)
267 continue;
268 if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
269 zs_old = zs;
270 }
271 if (zs_old) {
272 zs = zs_old;
273 goto reuse;
274 }
275 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
276 return;
277 }
278
279 zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
280 zs->zs_fetch = zf;
281 zfs_refcount_create(&zs->zs_callers);
282 zfs_refcount_create(&zs->zs_refs);
283 /* One reference for zf_stream. */
284 zfs_refcount_add(&zs->zs_refs, NULL);
285 zf->zf_numstreams++;
286 list_insert_head(&zf->zf_stream, zs);
287
288 reuse:
289 zs->zs_blkid = blkid;
290 zs->zs_pf_dist = 0;
291 zs->zs_pf_start = blkid;
292 zs->zs_pf_end = blkid;
293 zs->zs_ipf_dist = 0;
294 zs->zs_ipf_start = blkid;
295 zs->zs_ipf_end = blkid;
296 /* Allow immediate stream reuse until first hit. */
297 zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
298 zs->zs_missed = B_FALSE;
299 zs->zs_more = B_FALSE;
300 }
301
302 static void
303 dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
304 {
305 zstream_t *zs = arg;
306
307 if (io_issued && level == 0 && blkid < zs->zs_blkid)
308 zs->zs_more = B_TRUE;
309 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
310 dmu_zfetch_stream_fini(zs);
311 aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
312 }
313
314 /*
315 * This is the predictive prefetch entry point. dmu_zfetch_prepare()
316 * associates dnode access specified with blkid and nblks arguments with
317 * prefetch stream, predicts further accesses based on that stats and returns
318 * the stream pointer on success. That pointer must later be passed to
319 * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
320 * release it. dmu_zfetch() is a wrapper for simple cases when window between
321 * prediction and prefetch initiation is not needed.
322 * fetch_data argument specifies whether actual data blocks should be fetched:
323 * FALSE -- prefetch only indirect blocks for predicted data blocks;
324 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
325 */
326 zstream_t *
327 dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
328 boolean_t fetch_data, boolean_t have_lock)
329 {
330 zstream_t *zs;
331 spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
332 zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
333
334 if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
335 return (NULL);
336
337 if (os_prefetch == ZFS_PREFETCH_METADATA)
338 fetch_data = B_FALSE;
339
340 /*
341 * If we haven't yet loaded the indirect vdevs' mappings, we
342 * can only read from blocks that we carefully ensure are on
343 * concrete vdevs (or previously-loaded indirect vdevs). So we
344 * can't allow the predictive prefetcher to attempt reads of other
345 * blocks (e.g. of the MOS's dnode object).
346 */
347 if (!spa_indirect_vdevs_loaded(spa))
348 return (NULL);
349
350 /*
351 * As a fast path for small (single-block) files, ignore access
352 * to the first block.
353 */
354 if (!have_lock && blkid == 0)
355 return (NULL);
356
357 if (!have_lock)
358 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
359
360 /*
361 * A fast path for small files for which no prefetch will
362 * happen.
363 */
364 uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
365 if (maxblkid < 2) {
366 if (!have_lock)
367 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
368 return (NULL);
369 }
370 mutex_enter(&zf->zf_lock);
371
372 /*
373 * Find matching prefetch stream. Depending on whether the accesses
374 * are block-aligned, first block of the new access may either follow
375 * the last block of the previous access, or be equal to it.
376 */
377 for (zs = list_head(&zf->zf_stream); zs != NULL;
378 zs = list_next(&zf->zf_stream, zs)) {
379 if (blkid == zs->zs_blkid) {
380 break;
381 } else if (blkid + 1 == zs->zs_blkid) {
382 blkid++;
383 nblks--;
384 break;
385 }
386 }
387
388 /*
389 * If the file is ending, remove the matching stream if found.
390 * If not found then it is too late to create a new one now.
391 */
392 uint64_t end_of_access_blkid = blkid + nblks;
393 if (end_of_access_blkid >= maxblkid) {
394 if (zs != NULL)
395 dmu_zfetch_stream_remove(zf, zs);
396 mutex_exit(&zf->zf_lock);
397 if (!have_lock)
398 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
399 return (NULL);
400 }
401
402 /* Exit if we already prefetched this block before. */
403 if (nblks == 0) {
404 mutex_exit(&zf->zf_lock);
405 if (!have_lock)
406 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
407 return (NULL);
408 }
409
410 if (zs == NULL) {
411 /*
412 * This access is not part of any existing stream. Create
413 * a new stream for it.
414 */
415 dmu_zfetch_stream_create(zf, end_of_access_blkid);
416 mutex_exit(&zf->zf_lock);
417 if (!have_lock)
418 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
419 ZFETCHSTAT_BUMP(zfetchstat_misses);
420 return (NULL);
421 }
422
423 /*
424 * This access was to a block that we issued a prefetch for on
425 * behalf of this stream. Calculate further prefetch distances.
426 *
427 * Start prefetch from the demand access size (nblks). Double the
428 * distance every access up to zfetch_min_distance. After that only
429 * if needed increase the distance by 1/8 up to zfetch_max_distance.
430 *
431 * Don't double the distance beyond single block if we have more
432 * than ~6% of ARC held by active prefetches. It should help with
433 * getting out of RAM on some badly mispredicted read patterns.
434 */
435 unsigned int dbs = zf->zf_dnode->dn_datablkshift;
436 unsigned int nbytes = nblks << dbs;
437 unsigned int pf_nblks;
438 if (fetch_data) {
439 if (unlikely(zs->zs_pf_dist < nbytes))
440 zs->zs_pf_dist = nbytes;
441 else if (zs->zs_pf_dist < zfetch_min_distance &&
442 (zs->zs_pf_dist < (1 << dbs) ||
443 aggsum_compare(&zfetch_sums.zfetchstat_io_active,
444 arc_c_max >> (4 + dbs)) < 0))
445 zs->zs_pf_dist *= 2;
446 else if (zs->zs_more)
447 zs->zs_pf_dist += zs->zs_pf_dist / 8;
448 zs->zs_more = B_FALSE;
449 if (zs->zs_pf_dist > zfetch_max_distance)
450 zs->zs_pf_dist = zfetch_max_distance;
451 pf_nblks = zs->zs_pf_dist >> dbs;
452 } else {
453 pf_nblks = 0;
454 }
455 if (zs->zs_pf_start < end_of_access_blkid)
456 zs->zs_pf_start = end_of_access_blkid;
457 if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
458 zs->zs_pf_end = end_of_access_blkid + pf_nblks;
459
460 /*
461 * Do the same for indirects, starting where we will stop reading
462 * data blocks (and the indirects that point to them).
463 */
464 if (unlikely(zs->zs_ipf_dist < nbytes))
465 zs->zs_ipf_dist = nbytes;
466 else
467 zs->zs_ipf_dist *= 2;
468 if (zs->zs_ipf_dist > zfetch_max_idistance)
469 zs->zs_ipf_dist = zfetch_max_idistance;
470 pf_nblks = zs->zs_ipf_dist >> dbs;
471 if (zs->zs_ipf_start < zs->zs_pf_end)
472 zs->zs_ipf_start = zs->zs_pf_end;
473 if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
474 zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
475
476 zs->zs_blkid = end_of_access_blkid;
477 /* Protect the stream from reclamation. */
478 zs->zs_atime = gethrtime();
479 zfs_refcount_add(&zs->zs_refs, NULL);
480 /* Count concurrent callers. */
481 zfs_refcount_add(&zs->zs_callers, NULL);
482 mutex_exit(&zf->zf_lock);
483
484 if (!have_lock)
485 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
486
487 ZFETCHSTAT_BUMP(zfetchstat_hits);
488 return (zs);
489 }
490
491 void
492 dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
493 {
494 zfetch_t *zf = zs->zs_fetch;
495 int64_t pf_start, pf_end, ipf_start, ipf_end;
496 int epbs, issued;
497
498 if (missed)
499 zs->zs_missed = missed;
500
501 /*
502 * Postpone the prefetch if there are more concurrent callers.
503 * It happens when multiple requests are waiting for the same
504 * indirect block. The last one will run the prefetch for all.
505 */
506 if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
507 /* Drop reference taken in dmu_zfetch_prepare(). */
508 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
509 dmu_zfetch_stream_fini(zs);
510 return;
511 }
512
513 mutex_enter(&zf->zf_lock);
514 if (zs->zs_missed) {
515 pf_start = zs->zs_pf_start;
516 pf_end = zs->zs_pf_start = zs->zs_pf_end;
517 } else {
518 pf_start = pf_end = 0;
519 }
520 ipf_start = zs->zs_ipf_start;
521 ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
522 mutex_exit(&zf->zf_lock);
523 ASSERT3S(pf_start, <=, pf_end);
524 ASSERT3S(ipf_start, <=, ipf_end);
525
526 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
527 ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
528 ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
529 ASSERT3S(ipf_start, <=, ipf_end);
530 issued = pf_end - pf_start + ipf_end - ipf_start;
531 if (issued > 1) {
532 /* More references on top of taken in dmu_zfetch_prepare(). */
533 zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
534 } else if (issued == 0) {
535 /* Some other thread has done our work, so drop the ref. */
536 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
537 dmu_zfetch_stream_fini(zs);
538 return;
539 }
540 aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
541
542 if (!have_lock)
543 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
544
545 issued = 0;
546 for (int64_t blk = pf_start; blk < pf_end; blk++) {
547 issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
548 ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
549 }
550 for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
551 issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
552 ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
553 }
554
555 if (!have_lock)
556 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
557
558 if (issued)
559 ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
560 }
561
562 void
563 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
564 boolean_t missed, boolean_t have_lock)
565 {
566 zstream_t *zs;
567
568 zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
569 if (zs)
570 dmu_zfetch_run(zs, missed, have_lock);
571 }
572
573 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
574 "Disable all ZFS prefetching");
575
576 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
577 "Max number of streams per zfetch");
578
579 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
580 "Min time before stream reclaim");
581
582 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
583 "Max time before stream delete");
584
585 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
586 "Min bytes to prefetch per stream");
587
588 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
589 "Max bytes to prefetch per stream");
590
591 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
592 "Max bytes to prefetch indirects for per stream");