]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_pool.c
e159a5d1b377a2d80a1c75be0d4aa1e0695c140b
[mirror_zfs.git] / module / zfs / dsl_pool.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/bptree.h>
49 #include <sys/zfeature.h>
50 #include <sys/zil_impl.h>
51 #include <sys/dsl_userhold.h>
52 #include <sys/trace_txg.h>
53 #include <sys/mmp.h>
54
55 /*
56 * ZFS Write Throttle
57 * ------------------
58 *
59 * ZFS must limit the rate of incoming writes to the rate at which it is able
60 * to sync data modifications to the backend storage. Throttling by too much
61 * creates an artificial limit; throttling by too little can only be sustained
62 * for short periods and would lead to highly lumpy performance. On a per-pool
63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
65 * of dirty data decreases. When the amount of dirty data exceeds a
66 * predetermined threshold further modifications are blocked until the amount
67 * of dirty data decreases (as data is synced out).
68 *
69 * The limit on dirty data is tunable, and should be adjusted according to
70 * both the IO capacity and available memory of the system. The larger the
71 * window, the more ZFS is able to aggregate and amortize metadata (and data)
72 * changes. However, memory is a limited resource, and allowing for more dirty
73 * data comes at the cost of keeping other useful data in memory (for example
74 * ZFS data cached by the ARC).
75 *
76 * Implementation
77 *
78 * As buffers are modified dsl_pool_willuse_space() increments both the per-
79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
80 * dirty space used; dsl_pool_dirty_space() decrements those values as data
81 * is synced out from dsl_pool_sync(). While only the poolwide value is
82 * relevant, the per-txg value is useful for debugging. The tunable
83 * zfs_dirty_data_max determines the dirty space limit. Once that value is
84 * exceeded, new writes are halted until space frees up.
85 *
86 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
87 * ensure that there is a txg syncing (see the comment in txg.c for a full
88 * description of transaction group stages).
89 *
90 * The IO scheduler uses both the dirty space limit and current amount of
91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
92 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 *
94 * The delay is also calculated based on the amount of dirty data. See the
95 * comment above dmu_tx_delay() for details.
96 */
97
98 /*
99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
100 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
101 * parameter.
102 */
103 unsigned long zfs_dirty_data_max = 0;
104 unsigned long zfs_dirty_data_max_max = 0;
105 int zfs_dirty_data_max_percent = 10;
106 int zfs_dirty_data_max_max_percent = 25;
107
108 /*
109 * If there's at least this much dirty data (as a percentage of
110 * zfs_dirty_data_max), push out a txg. This should be less than
111 * zfs_vdev_async_write_active_min_dirty_percent.
112 */
113 int zfs_dirty_data_sync_percent = 20;
114
115 /*
116 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
117 * and delay each transaction.
118 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
119 */
120 int zfs_delay_min_dirty_percent = 60;
121
122 /*
123 * This controls how quickly the delay approaches infinity.
124 * Larger values cause it to delay more for a given amount of dirty data.
125 * Therefore larger values will cause there to be less dirty data for a
126 * given throughput.
127 *
128 * For the smoothest delay, this value should be about 1 billion divided
129 * by the maximum number of operations per second. This will smoothly
130 * handle between 10x and 1/10th this number.
131 *
132 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
133 * multiply in dmu_tx_delay().
134 */
135 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
136
137 /*
138 * This determines the number of threads used by the dp_sync_taskq.
139 */
140 int zfs_sync_taskq_batch_pct = 75;
141
142 /*
143 * These tunables determine the behavior of how zil_itxg_clean() is
144 * called via zil_clean() in the context of spa_sync(). When an itxg
145 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
146 * If the dispatch fails, the call to zil_itxg_clean() will occur
147 * synchronously in the context of spa_sync(), which can negatively
148 * impact the performance of spa_sync() (e.g. in the case of the itxg
149 * list having a large number of itxs that needs to be cleaned).
150 *
151 * Thus, these tunables can be used to manipulate the behavior of the
152 * taskq used by zil_clean(); they determine the number of taskq entries
153 * that are pre-populated when the taskq is first created (via the
154 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
155 * taskq entries that are cached after an on-demand allocation (via the
156 * "zfs_zil_clean_taskq_maxalloc").
157 *
158 * The idea being, we want to try reasonably hard to ensure there will
159 * already be a taskq entry pre-allocated by the time that it is needed
160 * by zil_clean(). This way, we can avoid the possibility of an
161 * on-demand allocation of a new taskq entry from failing, which would
162 * result in zil_itxg_clean() being called synchronously from zil_clean()
163 * (which can adversely affect performance of spa_sync()).
164 *
165 * Additionally, the number of threads used by the taskq can be
166 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
167 */
168 int zfs_zil_clean_taskq_nthr_pct = 100;
169 int zfs_zil_clean_taskq_minalloc = 1024;
170 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
171
172 int
173 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
174 {
175 uint64_t obj;
176 int err;
177
178 err = zap_lookup(dp->dp_meta_objset,
179 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
180 name, sizeof (obj), 1, &obj);
181 if (err)
182 return (err);
183
184 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
185 }
186
187 static dsl_pool_t *
188 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
189 {
190 dsl_pool_t *dp;
191 blkptr_t *bp = spa_get_rootblkptr(spa);
192
193 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
194 dp->dp_spa = spa;
195 dp->dp_meta_rootbp = *bp;
196 rrw_init(&dp->dp_config_rwlock, B_TRUE);
197 txg_init(dp, txg);
198 mmp_init(spa);
199
200 txg_list_create(&dp->dp_dirty_datasets, spa,
201 offsetof(dsl_dataset_t, ds_dirty_link));
202 txg_list_create(&dp->dp_dirty_zilogs, spa,
203 offsetof(zilog_t, zl_dirty_link));
204 txg_list_create(&dp->dp_dirty_dirs, spa,
205 offsetof(dsl_dir_t, dd_dirty_link));
206 txg_list_create(&dp->dp_sync_tasks, spa,
207 offsetof(dsl_sync_task_t, dst_node));
208 txg_list_create(&dp->dp_early_sync_tasks, spa,
209 offsetof(dsl_sync_task_t, dst_node));
210
211 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
212 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
213 TASKQ_THREADS_CPU_PCT);
214
215 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
216 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
217 zfs_zil_clean_taskq_minalloc,
218 zfs_zil_clean_taskq_maxalloc,
219 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
220
221 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
222 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
223
224 dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
225 max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
226
227 return (dp);
228 }
229
230 int
231 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
232 {
233 int err;
234 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
235
236 /*
237 * Initialize the caller's dsl_pool_t structure before we actually open
238 * the meta objset. This is done because a self-healing write zio may
239 * be issued as part of dmu_objset_open_impl() and the spa needs its
240 * dsl_pool_t initialized in order to handle the write.
241 */
242 *dpp = dp;
243
244 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
245 &dp->dp_meta_objset);
246 if (err != 0) {
247 dsl_pool_close(dp);
248 *dpp = NULL;
249 }
250
251 return (err);
252 }
253
254 int
255 dsl_pool_open(dsl_pool_t *dp)
256 {
257 int err;
258 dsl_dir_t *dd;
259 dsl_dataset_t *ds;
260 uint64_t obj;
261
262 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
263 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
264 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
265 &dp->dp_root_dir_obj);
266 if (err)
267 goto out;
268
269 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
270 NULL, dp, &dp->dp_root_dir);
271 if (err)
272 goto out;
273
274 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
275 if (err)
276 goto out;
277
278 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
279 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
280 if (err)
281 goto out;
282 err = dsl_dataset_hold_obj(dp,
283 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
284 if (err == 0) {
285 err = dsl_dataset_hold_obj(dp,
286 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
287 &dp->dp_origin_snap);
288 dsl_dataset_rele(ds, FTAG);
289 }
290 dsl_dir_rele(dd, dp);
291 if (err)
292 goto out;
293 }
294
295 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
296 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
297 &dp->dp_free_dir);
298 if (err)
299 goto out;
300
301 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
302 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
303 if (err)
304 goto out;
305 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
306 dp->dp_meta_objset, obj));
307 }
308
309 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
310 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
311 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
312 if (err == 0) {
313 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
314 dp->dp_meta_objset, obj));
315 } else if (err == ENOENT) {
316 /*
317 * We might not have created the remap bpobj yet.
318 */
319 err = 0;
320 } else {
321 goto out;
322 }
323 }
324
325 /*
326 * Note: errors ignored, because the these special dirs, used for
327 * space accounting, are only created on demand.
328 */
329 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
330 &dp->dp_leak_dir);
331
332 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
333 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
334 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
335 &dp->dp_bptree_obj);
336 if (err != 0)
337 goto out;
338 }
339
340 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
341 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
342 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
343 &dp->dp_empty_bpobj);
344 if (err != 0)
345 goto out;
346 }
347
348 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
350 &dp->dp_tmp_userrefs_obj);
351 if (err == ENOENT)
352 err = 0;
353 if (err)
354 goto out;
355
356 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
357
358 out:
359 rrw_exit(&dp->dp_config_rwlock, FTAG);
360 return (err);
361 }
362
363 void
364 dsl_pool_close(dsl_pool_t *dp)
365 {
366 /*
367 * Drop our references from dsl_pool_open().
368 *
369 * Since we held the origin_snap from "syncing" context (which
370 * includes pool-opening context), it actually only got a "ref"
371 * and not a hold, so just drop that here.
372 */
373 if (dp->dp_origin_snap != NULL)
374 dsl_dataset_rele(dp->dp_origin_snap, dp);
375 if (dp->dp_mos_dir != NULL)
376 dsl_dir_rele(dp->dp_mos_dir, dp);
377 if (dp->dp_free_dir != NULL)
378 dsl_dir_rele(dp->dp_free_dir, dp);
379 if (dp->dp_leak_dir != NULL)
380 dsl_dir_rele(dp->dp_leak_dir, dp);
381 if (dp->dp_root_dir != NULL)
382 dsl_dir_rele(dp->dp_root_dir, dp);
383
384 bpobj_close(&dp->dp_free_bpobj);
385 bpobj_close(&dp->dp_obsolete_bpobj);
386
387 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
388 if (dp->dp_meta_objset != NULL)
389 dmu_objset_evict(dp->dp_meta_objset);
390
391 txg_list_destroy(&dp->dp_dirty_datasets);
392 txg_list_destroy(&dp->dp_dirty_zilogs);
393 txg_list_destroy(&dp->dp_sync_tasks);
394 txg_list_destroy(&dp->dp_early_sync_tasks);
395 txg_list_destroy(&dp->dp_dirty_dirs);
396
397 taskq_destroy(dp->dp_zil_clean_taskq);
398 taskq_destroy(dp->dp_sync_taskq);
399
400 /*
401 * We can't set retry to TRUE since we're explicitly specifying
402 * a spa to flush. This is good enough; any missed buffers for
403 * this spa won't cause trouble, and they'll eventually fall
404 * out of the ARC just like any other unused buffer.
405 */
406 arc_flush(dp->dp_spa, FALSE);
407
408 mmp_fini(dp->dp_spa);
409 txg_fini(dp);
410 dsl_scan_fini(dp);
411 dmu_buf_user_evict_wait();
412
413 rrw_destroy(&dp->dp_config_rwlock);
414 mutex_destroy(&dp->dp_lock);
415 cv_destroy(&dp->dp_spaceavail_cv);
416 taskq_destroy(dp->dp_iput_taskq);
417 if (dp->dp_blkstats != NULL) {
418 mutex_destroy(&dp->dp_blkstats->zab_lock);
419 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
420 }
421 kmem_free(dp, sizeof (dsl_pool_t));
422 }
423
424 void
425 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
426 {
427 uint64_t obj;
428 /*
429 * Currently, we only create the obsolete_bpobj where there are
430 * indirect vdevs with referenced mappings.
431 */
432 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
433 /* create and open the obsolete_bpobj */
434 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
435 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
436 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
437 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
438 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
439 }
440
441 void
442 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
443 {
444 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
445 VERIFY0(zap_remove(dp->dp_meta_objset,
446 DMU_POOL_DIRECTORY_OBJECT,
447 DMU_POOL_OBSOLETE_BPOBJ, tx));
448 bpobj_free(dp->dp_meta_objset,
449 dp->dp_obsolete_bpobj.bpo_object, tx);
450 bpobj_close(&dp->dp_obsolete_bpobj);
451 }
452
453 dsl_pool_t *
454 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
455 uint64_t txg)
456 {
457 int err;
458 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
459 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
460 dsl_dataset_t *ds;
461 uint64_t obj;
462
463 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
464
465 /* create and open the MOS (meta-objset) */
466 dp->dp_meta_objset = dmu_objset_create_impl(spa,
467 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
468 spa->spa_meta_objset = dp->dp_meta_objset;
469
470 /* create the pool directory */
471 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
472 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
473 ASSERT0(err);
474
475 /* Initialize scan structures */
476 VERIFY0(dsl_scan_init(dp, txg));
477
478 /* create and open the root dir */
479 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
480 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
481 NULL, dp, &dp->dp_root_dir));
482
483 /* create and open the meta-objset dir */
484 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
485 VERIFY0(dsl_pool_open_special_dir(dp,
486 MOS_DIR_NAME, &dp->dp_mos_dir));
487
488 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
489 /* create and open the free dir */
490 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
491 FREE_DIR_NAME, tx);
492 VERIFY0(dsl_pool_open_special_dir(dp,
493 FREE_DIR_NAME, &dp->dp_free_dir));
494
495 /* create and open the free_bplist */
496 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
497 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
498 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
499 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
500 dp->dp_meta_objset, obj));
501 }
502
503 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
504 dsl_pool_create_origin(dp, tx);
505
506 /*
507 * Some features may be needed when creating the root dataset, so we
508 * create the feature objects here.
509 */
510 if (spa_version(spa) >= SPA_VERSION_FEATURES)
511 spa_feature_create_zap_objects(spa, tx);
512
513 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
514 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
515 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
516
517 /* create the root dataset */
518 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
519
520 /* create the root objset */
521 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
522 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
523 #ifdef _KERNEL
524 {
525 objset_t *os;
526 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
527 os = dmu_objset_create_impl(dp->dp_spa, ds,
528 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
529 rrw_exit(&ds->ds_bp_rwlock, FTAG);
530 zfs_create_fs(os, kcred, zplprops, tx);
531 }
532 #endif
533 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
534
535 dmu_tx_commit(tx);
536
537 rrw_exit(&dp->dp_config_rwlock, FTAG);
538
539 return (dp);
540 }
541
542 /*
543 * Account for the meta-objset space in its placeholder dsl_dir.
544 */
545 void
546 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
547 int64_t used, int64_t comp, int64_t uncomp)
548 {
549 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
550 mutex_enter(&dp->dp_lock);
551 dp->dp_mos_used_delta += used;
552 dp->dp_mos_compressed_delta += comp;
553 dp->dp_mos_uncompressed_delta += uncomp;
554 mutex_exit(&dp->dp_lock);
555 }
556
557 static void
558 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
559 {
560 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
561 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
562 VERIFY0(zio_wait(zio));
563 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
564 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
565 }
566
567 static void
568 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
569 {
570 ASSERT(MUTEX_HELD(&dp->dp_lock));
571
572 if (delta < 0)
573 ASSERT3U(-delta, <=, dp->dp_dirty_total);
574
575 dp->dp_dirty_total += delta;
576
577 /*
578 * Note: we signal even when increasing dp_dirty_total.
579 * This ensures forward progress -- each thread wakes the next waiter.
580 */
581 if (dp->dp_dirty_total < zfs_dirty_data_max)
582 cv_signal(&dp->dp_spaceavail_cv);
583 }
584
585 #ifdef ZFS_DEBUG
586 static boolean_t
587 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
588 {
589 spa_t *spa = dp->dp_spa;
590 vdev_t *rvd = spa->spa_root_vdev;
591
592 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
593 vdev_t *vd = rvd->vdev_child[c];
594 txg_list_t *tl = &vd->vdev_ms_list;
595 metaslab_t *ms;
596
597 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
598 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
599 VERIFY(range_tree_is_empty(ms->ms_freeing));
600 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
601 }
602 }
603
604 return (B_TRUE);
605 }
606 #endif
607
608 void
609 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
610 {
611 zio_t *zio;
612 dmu_tx_t *tx;
613 dsl_dir_t *dd;
614 dsl_dataset_t *ds;
615 objset_t *mos = dp->dp_meta_objset;
616 list_t synced_datasets;
617
618 list_create(&synced_datasets, sizeof (dsl_dataset_t),
619 offsetof(dsl_dataset_t, ds_synced_link));
620
621 tx = dmu_tx_create_assigned(dp, txg);
622
623 /*
624 * Run all early sync tasks before writing out any dirty blocks.
625 * For more info on early sync tasks see block comment in
626 * dsl_early_sync_task().
627 */
628 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
629 dsl_sync_task_t *dst;
630
631 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
632 while ((dst =
633 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
634 ASSERT(dsl_early_sync_task_verify(dp, txg));
635 dsl_sync_task_sync(dst, tx);
636 }
637 ASSERT(dsl_early_sync_task_verify(dp, txg));
638 }
639
640 /*
641 * Write out all dirty blocks of dirty datasets.
642 */
643 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
644 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
645 /*
646 * We must not sync any non-MOS datasets twice, because
647 * we may have taken a snapshot of them. However, we
648 * may sync newly-created datasets on pass 2.
649 */
650 ASSERT(!list_link_active(&ds->ds_synced_link));
651 list_insert_tail(&synced_datasets, ds);
652 dsl_dataset_sync(ds, zio, tx);
653 }
654 VERIFY0(zio_wait(zio));
655
656 /*
657 * We have written all of the accounted dirty data, so our
658 * dp_space_towrite should now be zero. However, some seldom-used
659 * code paths do not adhere to this (e.g. dbuf_undirty(), also
660 * rounding error in dbuf_write_physdone).
661 * Shore up the accounting of any dirtied space now.
662 */
663 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
664
665 /*
666 * Update the long range free counter after
667 * we're done syncing user data
668 */
669 mutex_enter(&dp->dp_lock);
670 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
671 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
672 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
673 mutex_exit(&dp->dp_lock);
674
675 /*
676 * After the data blocks have been written (ensured by the zio_wait()
677 * above), update the user/group/project space accounting. This happens
678 * in tasks dispatched to dp_sync_taskq, so wait for them before
679 * continuing.
680 */
681 for (ds = list_head(&synced_datasets); ds != NULL;
682 ds = list_next(&synced_datasets, ds)) {
683 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
684 }
685 taskq_wait(dp->dp_sync_taskq);
686
687 /*
688 * Sync the datasets again to push out the changes due to
689 * userspace updates. This must be done before we process the
690 * sync tasks, so that any snapshots will have the correct
691 * user accounting information (and we won't get confused
692 * about which blocks are part of the snapshot).
693 */
694 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
695 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
696 objset_t *os = ds->ds_objset;
697
698 ASSERT(list_link_active(&ds->ds_synced_link));
699 dmu_buf_rele(ds->ds_dbuf, ds);
700 dsl_dataset_sync(ds, zio, tx);
701
702 /*
703 * Release any key mappings created by calls to
704 * dsl_dataset_dirty() from the userquota accounting
705 * code paths.
706 */
707 if (os->os_encrypted && !os->os_raw_receive &&
708 !os->os_next_write_raw[txg & TXG_MASK]) {
709 ASSERT3P(ds->ds_key_mapping, !=, NULL);
710 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
711 }
712 }
713 VERIFY0(zio_wait(zio));
714
715 /*
716 * Now that the datasets have been completely synced, we can
717 * clean up our in-memory structures accumulated while syncing:
718 *
719 * - move dead blocks from the pending deadlist to the on-disk deadlist
720 * - release hold from dsl_dataset_dirty()
721 * - release key mapping hold from dsl_dataset_dirty()
722 */
723 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
724 objset_t *os = ds->ds_objset;
725
726 if (os->os_encrypted && !os->os_raw_receive &&
727 !os->os_next_write_raw[txg & TXG_MASK]) {
728 ASSERT3P(ds->ds_key_mapping, !=, NULL);
729 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
730 }
731
732 dsl_dataset_sync_done(ds, tx);
733 }
734
735 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
736 dsl_dir_sync(dd, tx);
737 }
738
739 /*
740 * The MOS's space is accounted for in the pool/$MOS
741 * (dp_mos_dir). We can't modify the mos while we're syncing
742 * it, so we remember the deltas and apply them here.
743 */
744 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
745 dp->dp_mos_uncompressed_delta != 0) {
746 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
747 dp->dp_mos_used_delta,
748 dp->dp_mos_compressed_delta,
749 dp->dp_mos_uncompressed_delta, tx);
750 dp->dp_mos_used_delta = 0;
751 dp->dp_mos_compressed_delta = 0;
752 dp->dp_mos_uncompressed_delta = 0;
753 }
754
755 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
756 dsl_pool_sync_mos(dp, tx);
757 }
758
759 /*
760 * If we modify a dataset in the same txg that we want to destroy it,
761 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
762 * dsl_dir_destroy_check() will fail if there are unexpected holds.
763 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
764 * and clearing the hold on it) before we process the sync_tasks.
765 * The MOS data dirtied by the sync_tasks will be synced on the next
766 * pass.
767 */
768 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
769 dsl_sync_task_t *dst;
770 /*
771 * No more sync tasks should have been added while we
772 * were syncing.
773 */
774 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
775 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
776 dsl_sync_task_sync(dst, tx);
777 }
778
779 dmu_tx_commit(tx);
780
781 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
782 }
783
784 void
785 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
786 {
787 zilog_t *zilog;
788
789 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
790 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
791 /*
792 * We don't remove the zilog from the dp_dirty_zilogs
793 * list until after we've cleaned it. This ensures that
794 * callers of zilog_is_dirty() receive an accurate
795 * answer when they are racing with the spa sync thread.
796 */
797 zil_clean(zilog, txg);
798 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
799 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
800 dmu_buf_rele(ds->ds_dbuf, zilog);
801 }
802 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
803 }
804
805 /*
806 * TRUE if the current thread is the tx_sync_thread or if we
807 * are being called from SPA context during pool initialization.
808 */
809 int
810 dsl_pool_sync_context(dsl_pool_t *dp)
811 {
812 return (curthread == dp->dp_tx.tx_sync_thread ||
813 spa_is_initializing(dp->dp_spa) ||
814 taskq_member(dp->dp_sync_taskq, curthread));
815 }
816
817 /*
818 * This function returns the amount of allocatable space in the pool
819 * minus whatever space is currently reserved by ZFS for specific
820 * purposes. Specifically:
821 *
822 * 1] Any reserved SLOP space
823 * 2] Any space used by the checkpoint
824 * 3] Any space used for deferred frees
825 *
826 * The latter 2 are especially important because they are needed to
827 * rectify the SPA's and DMU's different understanding of how much space
828 * is used. Now the DMU is aware of that extra space tracked by the SPA
829 * without having to maintain a separate special dir (e.g similar to
830 * $MOS, $FREEING, and $LEAKED).
831 *
832 * Note: By deferred frees here, we mean the frees that were deferred
833 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
834 * segments placed in ms_defer trees during metaslab_sync_done().
835 */
836 uint64_t
837 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
838 {
839 spa_t *spa = dp->dp_spa;
840 uint64_t space, resv, adjustedsize;
841 uint64_t spa_deferred_frees =
842 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
843
844 space = spa_get_dspace(spa)
845 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
846 resv = spa_get_slop_space(spa);
847
848 switch (slop_policy) {
849 case ZFS_SPACE_CHECK_NORMAL:
850 break;
851 case ZFS_SPACE_CHECK_RESERVED:
852 resv >>= 1;
853 break;
854 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
855 resv >>= 2;
856 break;
857 case ZFS_SPACE_CHECK_NONE:
858 resv = 0;
859 break;
860 default:
861 panic("invalid slop policy value: %d", slop_policy);
862 break;
863 }
864 adjustedsize = (space >= resv) ? (space - resv) : 0;
865
866 return (adjustedsize);
867 }
868
869 uint64_t
870 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
871 {
872 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
873 uint64_t deferred =
874 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
875 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
876 return (quota);
877 }
878
879 boolean_t
880 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
881 {
882 uint64_t delay_min_bytes =
883 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
884 uint64_t dirty_min_bytes =
885 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
886 boolean_t rv;
887
888 mutex_enter(&dp->dp_lock);
889 if (dp->dp_dirty_total > dirty_min_bytes)
890 txg_kick(dp);
891 rv = (dp->dp_dirty_total > delay_min_bytes);
892 mutex_exit(&dp->dp_lock);
893 return (rv);
894 }
895
896 void
897 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
898 {
899 if (space > 0) {
900 mutex_enter(&dp->dp_lock);
901 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
902 dsl_pool_dirty_delta(dp, space);
903 mutex_exit(&dp->dp_lock);
904 }
905 }
906
907 void
908 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
909 {
910 ASSERT3S(space, >=, 0);
911 if (space == 0)
912 return;
913
914 mutex_enter(&dp->dp_lock);
915 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
916 /* XXX writing something we didn't dirty? */
917 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
918 }
919 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
920 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
921 ASSERT3U(dp->dp_dirty_total, >=, space);
922 dsl_pool_dirty_delta(dp, -space);
923 mutex_exit(&dp->dp_lock);
924 }
925
926 /* ARGSUSED */
927 static int
928 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
929 {
930 dmu_tx_t *tx = arg;
931 dsl_dataset_t *ds, *prev = NULL;
932 int err;
933
934 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
935 if (err)
936 return (err);
937
938 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
939 err = dsl_dataset_hold_obj(dp,
940 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
941 if (err) {
942 dsl_dataset_rele(ds, FTAG);
943 return (err);
944 }
945
946 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
947 break;
948 dsl_dataset_rele(ds, FTAG);
949 ds = prev;
950 prev = NULL;
951 }
952
953 if (prev == NULL) {
954 prev = dp->dp_origin_snap;
955
956 /*
957 * The $ORIGIN can't have any data, or the accounting
958 * will be wrong.
959 */
960 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
961 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
962 rrw_exit(&ds->ds_bp_rwlock, FTAG);
963
964 /* The origin doesn't get attached to itself */
965 if (ds->ds_object == prev->ds_object) {
966 dsl_dataset_rele(ds, FTAG);
967 return (0);
968 }
969
970 dmu_buf_will_dirty(ds->ds_dbuf, tx);
971 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
972 dsl_dataset_phys(ds)->ds_prev_snap_txg =
973 dsl_dataset_phys(prev)->ds_creation_txg;
974
975 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
976 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
977
978 dmu_buf_will_dirty(prev->ds_dbuf, tx);
979 dsl_dataset_phys(prev)->ds_num_children++;
980
981 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
982 ASSERT(ds->ds_prev == NULL);
983 VERIFY0(dsl_dataset_hold_obj(dp,
984 dsl_dataset_phys(ds)->ds_prev_snap_obj,
985 ds, &ds->ds_prev));
986 }
987 }
988
989 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
990 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
991
992 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
993 dmu_buf_will_dirty(prev->ds_dbuf, tx);
994 dsl_dataset_phys(prev)->ds_next_clones_obj =
995 zap_create(dp->dp_meta_objset,
996 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
997 }
998 VERIFY0(zap_add_int(dp->dp_meta_objset,
999 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1000
1001 dsl_dataset_rele(ds, FTAG);
1002 if (prev != dp->dp_origin_snap)
1003 dsl_dataset_rele(prev, FTAG);
1004 return (0);
1005 }
1006
1007 void
1008 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1009 {
1010 ASSERT(dmu_tx_is_syncing(tx));
1011 ASSERT(dp->dp_origin_snap != NULL);
1012
1013 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1014 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1015 }
1016
1017 /* ARGSUSED */
1018 static int
1019 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1020 {
1021 dmu_tx_t *tx = arg;
1022 objset_t *mos = dp->dp_meta_objset;
1023
1024 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1025 dsl_dataset_t *origin;
1026
1027 VERIFY0(dsl_dataset_hold_obj(dp,
1028 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1029
1030 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1031 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1032 dsl_dir_phys(origin->ds_dir)->dd_clones =
1033 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1034 0, tx);
1035 }
1036
1037 VERIFY0(zap_add_int(dp->dp_meta_objset,
1038 dsl_dir_phys(origin->ds_dir)->dd_clones,
1039 ds->ds_object, tx));
1040
1041 dsl_dataset_rele(origin, FTAG);
1042 }
1043 return (0);
1044 }
1045
1046 void
1047 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1048 {
1049 uint64_t obj;
1050
1051 ASSERT(dmu_tx_is_syncing(tx));
1052
1053 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1054 VERIFY0(dsl_pool_open_special_dir(dp,
1055 FREE_DIR_NAME, &dp->dp_free_dir));
1056
1057 /*
1058 * We can't use bpobj_alloc(), because spa_version() still
1059 * returns the old version, and we need a new-version bpobj with
1060 * subobj support. So call dmu_object_alloc() directly.
1061 */
1062 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1063 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1064 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1065 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1066 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1067
1068 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1069 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1070 }
1071
1072 void
1073 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1074 {
1075 uint64_t dsobj;
1076 dsl_dataset_t *ds;
1077
1078 ASSERT(dmu_tx_is_syncing(tx));
1079 ASSERT(dp->dp_origin_snap == NULL);
1080 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1081
1082 /* create the origin dir, ds, & snap-ds */
1083 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1084 NULL, 0, kcred, NULL, tx);
1085 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1086 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1087 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1088 dp, &dp->dp_origin_snap));
1089 dsl_dataset_rele(ds, FTAG);
1090 }
1091
1092 taskq_t *
1093 dsl_pool_iput_taskq(dsl_pool_t *dp)
1094 {
1095 return (dp->dp_iput_taskq);
1096 }
1097
1098 /*
1099 * Walk through the pool-wide zap object of temporary snapshot user holds
1100 * and release them.
1101 */
1102 void
1103 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1104 {
1105 zap_attribute_t za;
1106 zap_cursor_t zc;
1107 objset_t *mos = dp->dp_meta_objset;
1108 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1109 nvlist_t *holds;
1110
1111 if (zapobj == 0)
1112 return;
1113 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1114
1115 holds = fnvlist_alloc();
1116
1117 for (zap_cursor_init(&zc, mos, zapobj);
1118 zap_cursor_retrieve(&zc, &za) == 0;
1119 zap_cursor_advance(&zc)) {
1120 char *htag;
1121 nvlist_t *tags;
1122
1123 htag = strchr(za.za_name, '-');
1124 *htag = '\0';
1125 ++htag;
1126 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1127 tags = fnvlist_alloc();
1128 fnvlist_add_boolean(tags, htag);
1129 fnvlist_add_nvlist(holds, za.za_name, tags);
1130 fnvlist_free(tags);
1131 } else {
1132 fnvlist_add_boolean(tags, htag);
1133 }
1134 }
1135 dsl_dataset_user_release_tmp(dp, holds);
1136 fnvlist_free(holds);
1137 zap_cursor_fini(&zc);
1138 }
1139
1140 /*
1141 * Create the pool-wide zap object for storing temporary snapshot holds.
1142 */
1143 void
1144 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1145 {
1146 objset_t *mos = dp->dp_meta_objset;
1147
1148 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1149 ASSERT(dmu_tx_is_syncing(tx));
1150
1151 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1152 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1153 }
1154
1155 static int
1156 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1157 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1158 {
1159 objset_t *mos = dp->dp_meta_objset;
1160 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1161 char *name;
1162 int error;
1163
1164 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1165 ASSERT(dmu_tx_is_syncing(tx));
1166
1167 /*
1168 * If the pool was created prior to SPA_VERSION_USERREFS, the
1169 * zap object for temporary holds might not exist yet.
1170 */
1171 if (zapobj == 0) {
1172 if (holding) {
1173 dsl_pool_user_hold_create_obj(dp, tx);
1174 zapobj = dp->dp_tmp_userrefs_obj;
1175 } else {
1176 return (SET_ERROR(ENOENT));
1177 }
1178 }
1179
1180 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1181 if (holding)
1182 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1183 else
1184 error = zap_remove(mos, zapobj, name, tx);
1185 strfree(name);
1186
1187 return (error);
1188 }
1189
1190 /*
1191 * Add a temporary hold for the given dataset object and tag.
1192 */
1193 int
1194 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1195 uint64_t now, dmu_tx_t *tx)
1196 {
1197 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1198 }
1199
1200 /*
1201 * Release a temporary hold for the given dataset object and tag.
1202 */
1203 int
1204 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1205 dmu_tx_t *tx)
1206 {
1207 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1208 tx, B_FALSE));
1209 }
1210
1211 /*
1212 * DSL Pool Configuration Lock
1213 *
1214 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1215 * creation / destruction / rename / property setting). It must be held for
1216 * read to hold a dataset or dsl_dir. I.e. you must call
1217 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1218 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1219 * must be held continuously until all datasets and dsl_dirs are released.
1220 *
1221 * The only exception to this rule is that if a "long hold" is placed on
1222 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1223 * is still held. The long hold will prevent the dataset from being
1224 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1225 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1226 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1227 *
1228 * Legitimate long-holders (including owners) should be long-running, cancelable
1229 * tasks that should cause "zfs destroy" to fail. This includes DMU
1230 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1231 * "zfs send", and "zfs diff". There are several other long-holders whose
1232 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1233 *
1234 * The usual formula for long-holding would be:
1235 * dsl_pool_hold()
1236 * dsl_dataset_hold()
1237 * ... perform checks ...
1238 * dsl_dataset_long_hold()
1239 * dsl_pool_rele()
1240 * ... perform long-running task ...
1241 * dsl_dataset_long_rele()
1242 * dsl_dataset_rele()
1243 *
1244 * Note that when the long hold is released, the dataset is still held but
1245 * the pool is not held. The dataset may change arbitrarily during this time
1246 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1247 * dataset except release it.
1248 *
1249 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1250 * or modifying operations.
1251 *
1252 * Modifying operations should generally use dsl_sync_task(). The synctask
1253 * infrastructure enforces proper locking strategy with respect to the
1254 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1255 *
1256 * Read-only operations will manually hold the pool, then the dataset, obtain
1257 * information from the dataset, then release the pool and dataset.
1258 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1259 * hold/rele.
1260 */
1261
1262 int
1263 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1264 {
1265 spa_t *spa;
1266 int error;
1267
1268 error = spa_open(name, &spa, tag);
1269 if (error == 0) {
1270 *dp = spa_get_dsl(spa);
1271 dsl_pool_config_enter(*dp, tag);
1272 }
1273 return (error);
1274 }
1275
1276 void
1277 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1278 {
1279 dsl_pool_config_exit(dp, tag);
1280 spa_close(dp->dp_spa, tag);
1281 }
1282
1283 void
1284 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1285 {
1286 /*
1287 * We use a "reentrant" reader-writer lock, but not reentrantly.
1288 *
1289 * The rrwlock can (with the track_all flag) track all reading threads,
1290 * which is very useful for debugging which code path failed to release
1291 * the lock, and for verifying that the *current* thread does hold
1292 * the lock.
1293 *
1294 * (Unlike a rwlock, which knows that N threads hold it for
1295 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1296 * if any thread holds it for read, even if this thread doesn't).
1297 */
1298 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1299 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1300 }
1301
1302 void
1303 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1304 {
1305 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1306 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1307 }
1308
1309 void
1310 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1311 {
1312 rrw_exit(&dp->dp_config_rwlock, tag);
1313 }
1314
1315 boolean_t
1316 dsl_pool_config_held(dsl_pool_t *dp)
1317 {
1318 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1319 }
1320
1321 boolean_t
1322 dsl_pool_config_held_writer(dsl_pool_t *dp)
1323 {
1324 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1325 }
1326
1327 #if defined(_KERNEL)
1328 EXPORT_SYMBOL(dsl_pool_config_enter);
1329 EXPORT_SYMBOL(dsl_pool_config_exit);
1330
1331 /* BEGIN CSTYLED */
1332 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1333 module_param(zfs_dirty_data_max_percent, int, 0444);
1334 MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
1335
1336 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1337 module_param(zfs_dirty_data_max_max_percent, int, 0444);
1338 MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
1339 "zfs_dirty_data_max upper bound as % of RAM");
1340
1341 module_param(zfs_delay_min_dirty_percent, int, 0644);
1342 MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
1343
1344 module_param(zfs_dirty_data_max, ulong, 0644);
1345 MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
1346
1347 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1348 module_param(zfs_dirty_data_max_max, ulong, 0444);
1349 MODULE_PARM_DESC(zfs_dirty_data_max_max,
1350 "zfs_dirty_data_max upper bound in bytes");
1351
1352 module_param(zfs_dirty_data_sync_percent, int, 0644);
1353 MODULE_PARM_DESC(zfs_dirty_data_sync_percent,
1354 "dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1355
1356 module_param(zfs_delay_scale, ulong, 0644);
1357 MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
1358
1359 module_param(zfs_sync_taskq_batch_pct, int, 0644);
1360 MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
1361 "max percent of CPUs that are used to sync dirty data");
1362
1363 module_param(zfs_zil_clean_taskq_nthr_pct, int, 0644);
1364 MODULE_PARM_DESC(zfs_zil_clean_taskq_nthr_pct,
1365 "max percent of CPUs that are used per dp_sync_taskq");
1366
1367 module_param(zfs_zil_clean_taskq_minalloc, int, 0644);
1368 MODULE_PARM_DESC(zfs_zil_clean_taskq_minalloc,
1369 "number of taskq entries that are pre-populated");
1370
1371 module_param(zfs_zil_clean_taskq_maxalloc, int, 0644);
1372 MODULE_PARM_DESC(zfs_zil_clean_taskq_maxalloc,
1373 "max number of taskq entries that are cached");
1374
1375 /* END CSTYLED */
1376 #endif