]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
9f6f0048fcbad4e6688ed835e6a32c124069b504
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
39
40 #define WITH_DF_BLOCK_ALLOCATOR
41
42 #define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
44
45 /*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
51 unsigned long metaslab_aliquot = 512 << 10;
52
53 /*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
57
58 /*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64 int zfs_metaslab_sm_blksz = (1 << 12);
65
66 /*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
69 * space map representation must be before we compact it on-disk.
70 * Values should be greater than or equal to 100.
71 */
72 int zfs_condense_pct = 200;
73
74 /*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87 int zfs_metaslab_condense_block_threshold = 4;
88
89 /*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
92 * free space. Metaslab groups that have more free space than
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102 int zfs_mg_noalloc_threshold = 0;
103
104 /*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111 int zfs_mg_fragmentation_threshold = 85;
112
113 /*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119 int zfs_metaslab_fragmentation_threshold = 70;
120
121 /*
122 * When set will load all metaslabs when pool is first opened.
123 */
124 int metaslab_debug_load = 0;
125
126 /*
127 * When set will prevent metaslabs from being unloaded.
128 */
129 int metaslab_debug_unload = 0;
130
131 /*
132 * Minimum size which forces the dynamic allocator to change
133 * it's allocation strategy. Once the space map cannot satisfy
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
137 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
138
139 /*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
142 * Once the space map's free space drops below this level we dynamically
143 * switch to using best-fit allocations.
144 */
145 int metaslab_df_free_pct = 4;
146
147 /*
148 * Percentage of all cpus that can be used by the metaslab taskq.
149 */
150 int metaslab_load_pct = 50;
151
152 /*
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
156 */
157 int metaslab_unload_delay = TXG_SIZE * 2;
158
159 /*
160 * Max number of metaslabs per group to preload.
161 */
162 int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164 /*
165 * Enable/disable preloading of metaslab.
166 */
167 int metaslab_preload_enabled = B_TRUE;
168
169 /*
170 * Enable/disable fragmentation weighting on metaslabs.
171 */
172 int metaslab_fragmentation_factor_enabled = B_TRUE;
173
174 /*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177 int metaslab_lba_weighting_enabled = B_TRUE;
178
179 /*
180 * Enable/disable metaslab group biasing.
181 */
182 int metaslab_bias_enabled = B_TRUE;
183
184
185 /*
186 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
187 */
188 boolean_t zfs_remap_blkptr_enable = B_TRUE;
189
190 /*
191 * Enable/disable segment-based metaslab selection.
192 */
193 int zfs_metaslab_segment_weight_enabled = B_TRUE;
194
195 /*
196 * When using segment-based metaslab selection, we will continue
197 * allocating from the active metaslab until we have exhausted
198 * zfs_metaslab_switch_threshold of its buckets.
199 */
200 int zfs_metaslab_switch_threshold = 2;
201
202 /*
203 * Internal switch to enable/disable the metaslab allocation tracing
204 * facility.
205 */
206 #ifdef _METASLAB_TRACING
207 boolean_t metaslab_trace_enabled = B_TRUE;
208 #endif
209
210 /*
211 * Maximum entries that the metaslab allocation tracing facility will keep
212 * in a given list when running in non-debug mode. We limit the number
213 * of entries in non-debug mode to prevent us from using up too much memory.
214 * The limit should be sufficiently large that we don't expect any allocation
215 * to every exceed this value. In debug mode, the system will panic if this
216 * limit is ever reached allowing for further investigation.
217 */
218 #ifdef _METASLAB_TRACING
219 uint64_t metaslab_trace_max_entries = 5000;
220 #endif
221
222 static uint64_t metaslab_weight(metaslab_t *);
223 static void metaslab_set_fragmentation(metaslab_t *);
224 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
225 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
226
227 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
228 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
229 #ifdef _METASLAB_TRACING
230 kmem_cache_t *metaslab_alloc_trace_cache;
231 #endif
232
233 /*
234 * ==========================================================================
235 * Metaslab classes
236 * ==========================================================================
237 */
238 metaslab_class_t *
239 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
240 {
241 metaslab_class_t *mc;
242
243 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
244
245 mc->mc_spa = spa;
246 mc->mc_rotor = NULL;
247 mc->mc_ops = ops;
248 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
249 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
250 sizeof (zfs_refcount_t), KM_SLEEP);
251 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
252 sizeof (uint64_t), KM_SLEEP);
253 for (int i = 0; i < spa->spa_alloc_count; i++)
254 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
255
256 return (mc);
257 }
258
259 void
260 metaslab_class_destroy(metaslab_class_t *mc)
261 {
262 ASSERT(mc->mc_rotor == NULL);
263 ASSERT(mc->mc_alloc == 0);
264 ASSERT(mc->mc_deferred == 0);
265 ASSERT(mc->mc_space == 0);
266 ASSERT(mc->mc_dspace == 0);
267
268 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
269 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
270 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
271 sizeof (zfs_refcount_t));
272 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
273 sizeof (uint64_t));
274 mutex_destroy(&mc->mc_lock);
275 kmem_free(mc, sizeof (metaslab_class_t));
276 }
277
278 int
279 metaslab_class_validate(metaslab_class_t *mc)
280 {
281 metaslab_group_t *mg;
282 vdev_t *vd;
283
284 /*
285 * Must hold one of the spa_config locks.
286 */
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
288 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
289
290 if ((mg = mc->mc_rotor) == NULL)
291 return (0);
292
293 do {
294 vd = mg->mg_vd;
295 ASSERT(vd->vdev_mg != NULL);
296 ASSERT3P(vd->vdev_top, ==, vd);
297 ASSERT3P(mg->mg_class, ==, mc);
298 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
299 } while ((mg = mg->mg_next) != mc->mc_rotor);
300
301 return (0);
302 }
303
304 static void
305 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
306 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
307 {
308 atomic_add_64(&mc->mc_alloc, alloc_delta);
309 atomic_add_64(&mc->mc_deferred, defer_delta);
310 atomic_add_64(&mc->mc_space, space_delta);
311 atomic_add_64(&mc->mc_dspace, dspace_delta);
312 }
313
314 uint64_t
315 metaslab_class_get_alloc(metaslab_class_t *mc)
316 {
317 return (mc->mc_alloc);
318 }
319
320 uint64_t
321 metaslab_class_get_deferred(metaslab_class_t *mc)
322 {
323 return (mc->mc_deferred);
324 }
325
326 uint64_t
327 metaslab_class_get_space(metaslab_class_t *mc)
328 {
329 return (mc->mc_space);
330 }
331
332 uint64_t
333 metaslab_class_get_dspace(metaslab_class_t *mc)
334 {
335 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
336 }
337
338 void
339 metaslab_class_histogram_verify(metaslab_class_t *mc)
340 {
341 spa_t *spa = mc->mc_spa;
342 vdev_t *rvd = spa->spa_root_vdev;
343 uint64_t *mc_hist;
344 int i;
345
346 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
347 return;
348
349 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
350 KM_SLEEP);
351
352 for (int c = 0; c < rvd->vdev_children; c++) {
353 vdev_t *tvd = rvd->vdev_child[c];
354 metaslab_group_t *mg = tvd->vdev_mg;
355
356 /*
357 * Skip any holes, uninitialized top-levels, or
358 * vdevs that are not in this metalab class.
359 */
360 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
361 mg->mg_class != mc) {
362 continue;
363 }
364
365 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
366 mc_hist[i] += mg->mg_histogram[i];
367 }
368
369 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
370 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
371
372 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
373 }
374
375 /*
376 * Calculate the metaslab class's fragmentation metric. The metric
377 * is weighted based on the space contribution of each metaslab group.
378 * The return value will be a number between 0 and 100 (inclusive), or
379 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
380 * zfs_frag_table for more information about the metric.
381 */
382 uint64_t
383 metaslab_class_fragmentation(metaslab_class_t *mc)
384 {
385 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386 uint64_t fragmentation = 0;
387
388 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
389
390 for (int c = 0; c < rvd->vdev_children; c++) {
391 vdev_t *tvd = rvd->vdev_child[c];
392 metaslab_group_t *mg = tvd->vdev_mg;
393
394 /*
395 * Skip any holes, uninitialized top-levels,
396 * or vdevs that are not in this metalab class.
397 */
398 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
399 mg->mg_class != mc) {
400 continue;
401 }
402
403 /*
404 * If a metaslab group does not contain a fragmentation
405 * metric then just bail out.
406 */
407 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (ZFS_FRAG_INVALID);
410 }
411
412 /*
413 * Determine how much this metaslab_group is contributing
414 * to the overall pool fragmentation metric.
415 */
416 fragmentation += mg->mg_fragmentation *
417 metaslab_group_get_space(mg);
418 }
419 fragmentation /= metaslab_class_get_space(mc);
420
421 ASSERT3U(fragmentation, <=, 100);
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (fragmentation);
424 }
425
426 /*
427 * Calculate the amount of expandable space that is available in
428 * this metaslab class. If a device is expanded then its expandable
429 * space will be the amount of allocatable space that is currently not
430 * part of this metaslab class.
431 */
432 uint64_t
433 metaslab_class_expandable_space(metaslab_class_t *mc)
434 {
435 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
436 uint64_t space = 0;
437
438 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
439 for (int c = 0; c < rvd->vdev_children; c++) {
440 vdev_t *tvd = rvd->vdev_child[c];
441 metaslab_group_t *mg = tvd->vdev_mg;
442
443 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
444 mg->mg_class != mc) {
445 continue;
446 }
447
448 /*
449 * Calculate if we have enough space to add additional
450 * metaslabs. We report the expandable space in terms
451 * of the metaslab size since that's the unit of expansion.
452 */
453 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
454 1ULL << tvd->vdev_ms_shift);
455 }
456 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
457 return (space);
458 }
459
460 static int
461 metaslab_compare(const void *x1, const void *x2)
462 {
463 const metaslab_t *m1 = (const metaslab_t *)x1;
464 const metaslab_t *m2 = (const metaslab_t *)x2;
465
466 int sort1 = 0;
467 int sort2 = 0;
468 if (m1->ms_allocator != -1 && m1->ms_primary)
469 sort1 = 1;
470 else if (m1->ms_allocator != -1 && !m1->ms_primary)
471 sort1 = 2;
472 if (m2->ms_allocator != -1 && m2->ms_primary)
473 sort2 = 1;
474 else if (m2->ms_allocator != -1 && !m2->ms_primary)
475 sort2 = 2;
476
477 /*
478 * Sort inactive metaslabs first, then primaries, then secondaries. When
479 * selecting a metaslab to allocate from, an allocator first tries its
480 * primary, then secondary active metaslab. If it doesn't have active
481 * metaslabs, or can't allocate from them, it searches for an inactive
482 * metaslab to activate. If it can't find a suitable one, it will steal
483 * a primary or secondary metaslab from another allocator.
484 */
485 if (sort1 < sort2)
486 return (-1);
487 if (sort1 > sort2)
488 return (1);
489
490 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
491 if (likely(cmp))
492 return (cmp);
493
494 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
495
496 return (AVL_CMP(m1->ms_start, m2->ms_start));
497 }
498
499 uint64_t
500 metaslab_allocated_space(metaslab_t *msp)
501 {
502 return (msp->ms_allocated_space);
503 }
504
505 /*
506 * Verify that the space accounting on disk matches the in-core range_trees.
507 */
508 static void
509 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
510 {
511 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
512 uint64_t allocating = 0;
513 uint64_t sm_free_space, msp_free_space;
514
515 ASSERT(MUTEX_HELD(&msp->ms_lock));
516 ASSERT(!msp->ms_condensing);
517
518 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
519 return;
520
521 /*
522 * We can only verify the metaslab space when we're called
523 * from syncing context with a loaded metaslab that has an
524 * allocated space map. Calling this in non-syncing context
525 * does not provide a consistent view of the metaslab since
526 * we're performing allocations in the future.
527 */
528 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
529 !msp->ms_loaded)
530 return;
531
532 /*
533 * Even though the smp_alloc field can get negative (e.g.
534 * see vdev_checkpoint_sm), that should never be the case
535 * when it come's to a metaslab's space map.
536 */
537 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
538
539 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
540
541 /*
542 * Account for future allocations since we would have
543 * already deducted that space from the ms_allocatable.
544 */
545 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
546 allocating +=
547 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
548 }
549
550 ASSERT3U(msp->ms_deferspace, ==,
551 range_tree_space(msp->ms_defer[0]) +
552 range_tree_space(msp->ms_defer[1]));
553
554 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
555 msp->ms_deferspace + range_tree_space(msp->ms_freed);
556
557 VERIFY3U(sm_free_space, ==, msp_free_space);
558 }
559
560 /*
561 * ==========================================================================
562 * Metaslab groups
563 * ==========================================================================
564 */
565 /*
566 * Update the allocatable flag and the metaslab group's capacity.
567 * The allocatable flag is set to true if the capacity is below
568 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
569 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
570 * transitions from allocatable to non-allocatable or vice versa then the
571 * metaslab group's class is updated to reflect the transition.
572 */
573 static void
574 metaslab_group_alloc_update(metaslab_group_t *mg)
575 {
576 vdev_t *vd = mg->mg_vd;
577 metaslab_class_t *mc = mg->mg_class;
578 vdev_stat_t *vs = &vd->vdev_stat;
579 boolean_t was_allocatable;
580 boolean_t was_initialized;
581
582 ASSERT(vd == vd->vdev_top);
583 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
584 SCL_ALLOC);
585
586 mutex_enter(&mg->mg_lock);
587 was_allocatable = mg->mg_allocatable;
588 was_initialized = mg->mg_initialized;
589
590 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
591 (vs->vs_space + 1);
592
593 mutex_enter(&mc->mc_lock);
594
595 /*
596 * If the metaslab group was just added then it won't
597 * have any space until we finish syncing out this txg.
598 * At that point we will consider it initialized and available
599 * for allocations. We also don't consider non-activated
600 * metaslab groups (e.g. vdevs that are in the middle of being removed)
601 * to be initialized, because they can't be used for allocation.
602 */
603 mg->mg_initialized = metaslab_group_initialized(mg);
604 if (!was_initialized && mg->mg_initialized) {
605 mc->mc_groups++;
606 } else if (was_initialized && !mg->mg_initialized) {
607 ASSERT3U(mc->mc_groups, >, 0);
608 mc->mc_groups--;
609 }
610 if (mg->mg_initialized)
611 mg->mg_no_free_space = B_FALSE;
612
613 /*
614 * A metaslab group is considered allocatable if it has plenty
615 * of free space or is not heavily fragmented. We only take
616 * fragmentation into account if the metaslab group has a valid
617 * fragmentation metric (i.e. a value between 0 and 100).
618 */
619 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
620 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
621 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
622 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
623
624 /*
625 * The mc_alloc_groups maintains a count of the number of
626 * groups in this metaslab class that are still above the
627 * zfs_mg_noalloc_threshold. This is used by the allocating
628 * threads to determine if they should avoid allocations to
629 * a given group. The allocator will avoid allocations to a group
630 * if that group has reached or is below the zfs_mg_noalloc_threshold
631 * and there are still other groups that are above the threshold.
632 * When a group transitions from allocatable to non-allocatable or
633 * vice versa we update the metaslab class to reflect that change.
634 * When the mc_alloc_groups value drops to 0 that means that all
635 * groups have reached the zfs_mg_noalloc_threshold making all groups
636 * eligible for allocations. This effectively means that all devices
637 * are balanced again.
638 */
639 if (was_allocatable && !mg->mg_allocatable)
640 mc->mc_alloc_groups--;
641 else if (!was_allocatable && mg->mg_allocatable)
642 mc->mc_alloc_groups++;
643 mutex_exit(&mc->mc_lock);
644
645 mutex_exit(&mg->mg_lock);
646 }
647
648 metaslab_group_t *
649 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
650 {
651 metaslab_group_t *mg;
652
653 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
654 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
656 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
657 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
658 KM_SLEEP);
659 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
660 KM_SLEEP);
661 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
662 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
663 mg->mg_vd = vd;
664 mg->mg_class = mc;
665 mg->mg_activation_count = 0;
666 mg->mg_initialized = B_FALSE;
667 mg->mg_no_free_space = B_TRUE;
668 mg->mg_allocators = allocators;
669
670 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
671 sizeof (zfs_refcount_t), KM_SLEEP);
672 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
673 sizeof (uint64_t), KM_SLEEP);
674 for (int i = 0; i < allocators; i++) {
675 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
676 mg->mg_cur_max_alloc_queue_depth[i] = 0;
677 }
678
679 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
680 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
681
682 return (mg);
683 }
684
685 void
686 metaslab_group_destroy(metaslab_group_t *mg)
687 {
688 ASSERT(mg->mg_prev == NULL);
689 ASSERT(mg->mg_next == NULL);
690 /*
691 * We may have gone below zero with the activation count
692 * either because we never activated in the first place or
693 * because we're done, and possibly removing the vdev.
694 */
695 ASSERT(mg->mg_activation_count <= 0);
696
697 taskq_destroy(mg->mg_taskq);
698 avl_destroy(&mg->mg_metaslab_tree);
699 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
700 kmem_free(mg->mg_secondaries, mg->mg_allocators *
701 sizeof (metaslab_t *));
702 mutex_destroy(&mg->mg_lock);
703 mutex_destroy(&mg->mg_ms_initialize_lock);
704 cv_destroy(&mg->mg_ms_initialize_cv);
705
706 for (int i = 0; i < mg->mg_allocators; i++) {
707 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
708 mg->mg_cur_max_alloc_queue_depth[i] = 0;
709 }
710 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
711 sizeof (zfs_refcount_t));
712 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
713 sizeof (uint64_t));
714
715 kmem_free(mg, sizeof (metaslab_group_t));
716 }
717
718 void
719 metaslab_group_activate(metaslab_group_t *mg)
720 {
721 metaslab_class_t *mc = mg->mg_class;
722 metaslab_group_t *mgprev, *mgnext;
723
724 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
725
726 ASSERT(mc->mc_rotor != mg);
727 ASSERT(mg->mg_prev == NULL);
728 ASSERT(mg->mg_next == NULL);
729 ASSERT(mg->mg_activation_count <= 0);
730
731 if (++mg->mg_activation_count <= 0)
732 return;
733
734 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
735 metaslab_group_alloc_update(mg);
736
737 if ((mgprev = mc->mc_rotor) == NULL) {
738 mg->mg_prev = mg;
739 mg->mg_next = mg;
740 } else {
741 mgnext = mgprev->mg_next;
742 mg->mg_prev = mgprev;
743 mg->mg_next = mgnext;
744 mgprev->mg_next = mg;
745 mgnext->mg_prev = mg;
746 }
747 mc->mc_rotor = mg;
748 }
749
750 /*
751 * Passivate a metaslab group and remove it from the allocation rotor.
752 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
753 * a metaslab group. This function will momentarily drop spa_config_locks
754 * that are lower than the SCL_ALLOC lock (see comment below).
755 */
756 void
757 metaslab_group_passivate(metaslab_group_t *mg)
758 {
759 metaslab_class_t *mc = mg->mg_class;
760 spa_t *spa = mc->mc_spa;
761 metaslab_group_t *mgprev, *mgnext;
762 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
763
764 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
765 (SCL_ALLOC | SCL_ZIO));
766
767 if (--mg->mg_activation_count != 0) {
768 ASSERT(mc->mc_rotor != mg);
769 ASSERT(mg->mg_prev == NULL);
770 ASSERT(mg->mg_next == NULL);
771 ASSERT(mg->mg_activation_count < 0);
772 return;
773 }
774
775 /*
776 * The spa_config_lock is an array of rwlocks, ordered as
777 * follows (from highest to lowest):
778 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
779 * SCL_ZIO > SCL_FREE > SCL_VDEV
780 * (For more information about the spa_config_lock see spa_misc.c)
781 * The higher the lock, the broader its coverage. When we passivate
782 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
783 * config locks. However, the metaslab group's taskq might be trying
784 * to preload metaslabs so we must drop the SCL_ZIO lock and any
785 * lower locks to allow the I/O to complete. At a minimum,
786 * we continue to hold the SCL_ALLOC lock, which prevents any future
787 * allocations from taking place and any changes to the vdev tree.
788 */
789 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
790 taskq_wait_outstanding(mg->mg_taskq, 0);
791 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
792 metaslab_group_alloc_update(mg);
793 for (int i = 0; i < mg->mg_allocators; i++) {
794 metaslab_t *msp = mg->mg_primaries[i];
795 if (msp != NULL) {
796 mutex_enter(&msp->ms_lock);
797 metaslab_passivate(msp,
798 metaslab_weight_from_range_tree(msp));
799 mutex_exit(&msp->ms_lock);
800 }
801 msp = mg->mg_secondaries[i];
802 if (msp != NULL) {
803 mutex_enter(&msp->ms_lock);
804 metaslab_passivate(msp,
805 metaslab_weight_from_range_tree(msp));
806 mutex_exit(&msp->ms_lock);
807 }
808 }
809
810 mgprev = mg->mg_prev;
811 mgnext = mg->mg_next;
812
813 if (mg == mgnext) {
814 mc->mc_rotor = NULL;
815 } else {
816 mc->mc_rotor = mgnext;
817 mgprev->mg_next = mgnext;
818 mgnext->mg_prev = mgprev;
819 }
820
821 mg->mg_prev = NULL;
822 mg->mg_next = NULL;
823 }
824
825 boolean_t
826 metaslab_group_initialized(metaslab_group_t *mg)
827 {
828 vdev_t *vd = mg->mg_vd;
829 vdev_stat_t *vs = &vd->vdev_stat;
830
831 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
832 }
833
834 uint64_t
835 metaslab_group_get_space(metaslab_group_t *mg)
836 {
837 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
838 }
839
840 void
841 metaslab_group_histogram_verify(metaslab_group_t *mg)
842 {
843 uint64_t *mg_hist;
844 vdev_t *vd = mg->mg_vd;
845 uint64_t ashift = vd->vdev_ashift;
846 int i;
847
848 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
849 return;
850
851 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
852 KM_SLEEP);
853
854 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
855 SPACE_MAP_HISTOGRAM_SIZE + ashift);
856
857 for (int m = 0; m < vd->vdev_ms_count; m++) {
858 metaslab_t *msp = vd->vdev_ms[m];
859 ASSERT(msp != NULL);
860
861 /* skip if not active or not a member */
862 if (msp->ms_sm == NULL || msp->ms_group != mg)
863 continue;
864
865 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
866 mg_hist[i + ashift] +=
867 msp->ms_sm->sm_phys->smp_histogram[i];
868 }
869
870 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
871 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
872
873 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
874 }
875
876 static void
877 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
878 {
879 metaslab_class_t *mc = mg->mg_class;
880 uint64_t ashift = mg->mg_vd->vdev_ashift;
881
882 ASSERT(MUTEX_HELD(&msp->ms_lock));
883 if (msp->ms_sm == NULL)
884 return;
885
886 mutex_enter(&mg->mg_lock);
887 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
888 mg->mg_histogram[i + ashift] +=
889 msp->ms_sm->sm_phys->smp_histogram[i];
890 mc->mc_histogram[i + ashift] +=
891 msp->ms_sm->sm_phys->smp_histogram[i];
892 }
893 mutex_exit(&mg->mg_lock);
894 }
895
896 void
897 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
898 {
899 metaslab_class_t *mc = mg->mg_class;
900 uint64_t ashift = mg->mg_vd->vdev_ashift;
901
902 ASSERT(MUTEX_HELD(&msp->ms_lock));
903 if (msp->ms_sm == NULL)
904 return;
905
906 mutex_enter(&mg->mg_lock);
907 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
908 ASSERT3U(mg->mg_histogram[i + ashift], >=,
909 msp->ms_sm->sm_phys->smp_histogram[i]);
910 ASSERT3U(mc->mc_histogram[i + ashift], >=,
911 msp->ms_sm->sm_phys->smp_histogram[i]);
912
913 mg->mg_histogram[i + ashift] -=
914 msp->ms_sm->sm_phys->smp_histogram[i];
915 mc->mc_histogram[i + ashift] -=
916 msp->ms_sm->sm_phys->smp_histogram[i];
917 }
918 mutex_exit(&mg->mg_lock);
919 }
920
921 static void
922 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
923 {
924 ASSERT(msp->ms_group == NULL);
925 mutex_enter(&mg->mg_lock);
926 msp->ms_group = mg;
927 msp->ms_weight = 0;
928 avl_add(&mg->mg_metaslab_tree, msp);
929 mutex_exit(&mg->mg_lock);
930
931 mutex_enter(&msp->ms_lock);
932 metaslab_group_histogram_add(mg, msp);
933 mutex_exit(&msp->ms_lock);
934 }
935
936 static void
937 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
938 {
939 mutex_enter(&msp->ms_lock);
940 metaslab_group_histogram_remove(mg, msp);
941 mutex_exit(&msp->ms_lock);
942
943 mutex_enter(&mg->mg_lock);
944 ASSERT(msp->ms_group == mg);
945 avl_remove(&mg->mg_metaslab_tree, msp);
946 msp->ms_group = NULL;
947 mutex_exit(&mg->mg_lock);
948 }
949
950 static void
951 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
952 {
953 ASSERT(MUTEX_HELD(&mg->mg_lock));
954 ASSERT(msp->ms_group == mg);
955 avl_remove(&mg->mg_metaslab_tree, msp);
956 msp->ms_weight = weight;
957 avl_add(&mg->mg_metaslab_tree, msp);
958
959 }
960
961 static void
962 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
963 {
964 /*
965 * Although in principle the weight can be any value, in
966 * practice we do not use values in the range [1, 511].
967 */
968 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
969 ASSERT(MUTEX_HELD(&msp->ms_lock));
970
971 mutex_enter(&mg->mg_lock);
972 metaslab_group_sort_impl(mg, msp, weight);
973 mutex_exit(&mg->mg_lock);
974 }
975
976 /*
977 * Calculate the fragmentation for a given metaslab group. We can use
978 * a simple average here since all metaslabs within the group must have
979 * the same size. The return value will be a value between 0 and 100
980 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
981 * group have a fragmentation metric.
982 */
983 uint64_t
984 metaslab_group_fragmentation(metaslab_group_t *mg)
985 {
986 vdev_t *vd = mg->mg_vd;
987 uint64_t fragmentation = 0;
988 uint64_t valid_ms = 0;
989
990 for (int m = 0; m < vd->vdev_ms_count; m++) {
991 metaslab_t *msp = vd->vdev_ms[m];
992
993 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
994 continue;
995 if (msp->ms_group != mg)
996 continue;
997
998 valid_ms++;
999 fragmentation += msp->ms_fragmentation;
1000 }
1001
1002 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1003 return (ZFS_FRAG_INVALID);
1004
1005 fragmentation /= valid_ms;
1006 ASSERT3U(fragmentation, <=, 100);
1007 return (fragmentation);
1008 }
1009
1010 /*
1011 * Determine if a given metaslab group should skip allocations. A metaslab
1012 * group should avoid allocations if its free capacity is less than the
1013 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1014 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1015 * that can still handle allocations. If the allocation throttle is enabled
1016 * then we skip allocations to devices that have reached their maximum
1017 * allocation queue depth unless the selected metaslab group is the only
1018 * eligible group remaining.
1019 */
1020 static boolean_t
1021 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1022 uint64_t psize, int allocator, int d)
1023 {
1024 spa_t *spa = mg->mg_vd->vdev_spa;
1025 metaslab_class_t *mc = mg->mg_class;
1026
1027 /*
1028 * We can only consider skipping this metaslab group if it's
1029 * in the normal metaslab class and there are other metaslab
1030 * groups to select from. Otherwise, we always consider it eligible
1031 * for allocations.
1032 */
1033 if ((mc != spa_normal_class(spa) &&
1034 mc != spa_special_class(spa) &&
1035 mc != spa_dedup_class(spa)) ||
1036 mc->mc_groups <= 1)
1037 return (B_TRUE);
1038
1039 /*
1040 * If the metaslab group's mg_allocatable flag is set (see comments
1041 * in metaslab_group_alloc_update() for more information) and
1042 * the allocation throttle is disabled then allow allocations to this
1043 * device. However, if the allocation throttle is enabled then
1044 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1045 * to determine if we should allow allocations to this metaslab group.
1046 * If all metaslab groups are no longer considered allocatable
1047 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1048 * gang block size then we allow allocations on this metaslab group
1049 * regardless of the mg_allocatable or throttle settings.
1050 */
1051 if (mg->mg_allocatable) {
1052 metaslab_group_t *mgp;
1053 int64_t qdepth;
1054 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1055
1056 if (!mc->mc_alloc_throttle_enabled)
1057 return (B_TRUE);
1058
1059 /*
1060 * If this metaslab group does not have any free space, then
1061 * there is no point in looking further.
1062 */
1063 if (mg->mg_no_free_space)
1064 return (B_FALSE);
1065
1066 /*
1067 * Relax allocation throttling for ditto blocks. Due to
1068 * random imbalances in allocation it tends to push copies
1069 * to one vdev, that looks a bit better at the moment.
1070 */
1071 qmax = qmax * (4 + d) / 4;
1072
1073 qdepth = zfs_refcount_count(
1074 &mg->mg_alloc_queue_depth[allocator]);
1075
1076 /*
1077 * If this metaslab group is below its qmax or it's
1078 * the only allocatable metasable group, then attempt
1079 * to allocate from it.
1080 */
1081 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1082 return (B_TRUE);
1083 ASSERT3U(mc->mc_alloc_groups, >, 1);
1084
1085 /*
1086 * Since this metaslab group is at or over its qmax, we
1087 * need to determine if there are metaslab groups after this
1088 * one that might be able to handle this allocation. This is
1089 * racy since we can't hold the locks for all metaslab
1090 * groups at the same time when we make this check.
1091 */
1092 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1093 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1094 qmax = qmax * (4 + d) / 4;
1095 qdepth = zfs_refcount_count(
1096 &mgp->mg_alloc_queue_depth[allocator]);
1097
1098 /*
1099 * If there is another metaslab group that
1100 * might be able to handle the allocation, then
1101 * we return false so that we skip this group.
1102 */
1103 if (qdepth < qmax && !mgp->mg_no_free_space)
1104 return (B_FALSE);
1105 }
1106
1107 /*
1108 * We didn't find another group to handle the allocation
1109 * so we can't skip this metaslab group even though
1110 * we are at or over our qmax.
1111 */
1112 return (B_TRUE);
1113
1114 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1115 return (B_TRUE);
1116 }
1117 return (B_FALSE);
1118 }
1119
1120 /*
1121 * ==========================================================================
1122 * Range tree callbacks
1123 * ==========================================================================
1124 */
1125
1126 /*
1127 * Comparison function for the private size-ordered tree. Tree is sorted
1128 * by size, larger sizes at the end of the tree.
1129 */
1130 static int
1131 metaslab_rangesize_compare(const void *x1, const void *x2)
1132 {
1133 const range_seg_t *r1 = x1;
1134 const range_seg_t *r2 = x2;
1135 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1136 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1137
1138 int cmp = AVL_CMP(rs_size1, rs_size2);
1139 if (likely(cmp))
1140 return (cmp);
1141
1142 return (AVL_CMP(r1->rs_start, r2->rs_start));
1143 }
1144
1145 /*
1146 * ==========================================================================
1147 * Common allocator routines
1148 * ==========================================================================
1149 */
1150
1151 /*
1152 * Return the maximum contiguous segment within the metaslab.
1153 */
1154 uint64_t
1155 metaslab_block_maxsize(metaslab_t *msp)
1156 {
1157 avl_tree_t *t = &msp->ms_allocatable_by_size;
1158 range_seg_t *rs;
1159
1160 if (t == NULL || (rs = avl_last(t)) == NULL)
1161 return (0ULL);
1162
1163 return (rs->rs_end - rs->rs_start);
1164 }
1165
1166 static range_seg_t *
1167 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1168 {
1169 range_seg_t *rs, rsearch;
1170 avl_index_t where;
1171
1172 rsearch.rs_start = start;
1173 rsearch.rs_end = start + size;
1174
1175 rs = avl_find(t, &rsearch, &where);
1176 if (rs == NULL) {
1177 rs = avl_nearest(t, where, AVL_AFTER);
1178 }
1179
1180 return (rs);
1181 }
1182
1183 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1184 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1185 defined(WITH_CF_BLOCK_ALLOCATOR)
1186 /*
1187 * This is a helper function that can be used by the allocator to find
1188 * a suitable block to allocate. This will search the specified AVL
1189 * tree looking for a block that matches the specified criteria.
1190 */
1191 static uint64_t
1192 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1193 uint64_t align)
1194 {
1195 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1196
1197 while (rs != NULL) {
1198 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1199
1200 if (offset + size <= rs->rs_end) {
1201 *cursor = offset + size;
1202 return (offset);
1203 }
1204 rs = AVL_NEXT(t, rs);
1205 }
1206
1207 /*
1208 * If we know we've searched the whole map (*cursor == 0), give up.
1209 * Otherwise, reset the cursor to the beginning and try again.
1210 */
1211 if (*cursor == 0)
1212 return (-1ULL);
1213
1214 *cursor = 0;
1215 return (metaslab_block_picker(t, cursor, size, align));
1216 }
1217 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1218
1219 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1220 /*
1221 * ==========================================================================
1222 * The first-fit block allocator
1223 * ==========================================================================
1224 */
1225 static uint64_t
1226 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1227 {
1228 /*
1229 * Find the largest power of 2 block size that evenly divides the
1230 * requested size. This is used to try to allocate blocks with similar
1231 * alignment from the same area of the metaslab (i.e. same cursor
1232 * bucket) but it does not guarantee that other allocations sizes
1233 * may exist in the same region.
1234 */
1235 uint64_t align = size & -size;
1236 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1237 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1238
1239 return (metaslab_block_picker(t, cursor, size, align));
1240 }
1241
1242 static metaslab_ops_t metaslab_ff_ops = {
1243 metaslab_ff_alloc
1244 };
1245
1246 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1247 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1248
1249 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1250 /*
1251 * ==========================================================================
1252 * Dynamic block allocator -
1253 * Uses the first fit allocation scheme until space get low and then
1254 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1255 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1256 * ==========================================================================
1257 */
1258 static uint64_t
1259 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1260 {
1261 /*
1262 * Find the largest power of 2 block size that evenly divides the
1263 * requested size. This is used to try to allocate blocks with similar
1264 * alignment from the same area of the metaslab (i.e. same cursor
1265 * bucket) but it does not guarantee that other allocations sizes
1266 * may exist in the same region.
1267 */
1268 uint64_t align = size & -size;
1269 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1270 range_tree_t *rt = msp->ms_allocatable;
1271 avl_tree_t *t = &rt->rt_root;
1272 uint64_t max_size = metaslab_block_maxsize(msp);
1273 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1274
1275 ASSERT(MUTEX_HELD(&msp->ms_lock));
1276 ASSERT3U(avl_numnodes(t), ==,
1277 avl_numnodes(&msp->ms_allocatable_by_size));
1278
1279 if (max_size < size)
1280 return (-1ULL);
1281
1282 /*
1283 * If we're running low on space switch to using the size
1284 * sorted AVL tree (best-fit).
1285 */
1286 if (max_size < metaslab_df_alloc_threshold ||
1287 free_pct < metaslab_df_free_pct) {
1288 t = &msp->ms_allocatable_by_size;
1289 *cursor = 0;
1290 }
1291
1292 return (metaslab_block_picker(t, cursor, size, 1ULL));
1293 }
1294
1295 static metaslab_ops_t metaslab_df_ops = {
1296 metaslab_df_alloc
1297 };
1298
1299 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1300 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1301
1302 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1303 /*
1304 * ==========================================================================
1305 * Cursor fit block allocator -
1306 * Select the largest region in the metaslab, set the cursor to the beginning
1307 * of the range and the cursor_end to the end of the range. As allocations
1308 * are made advance the cursor. Continue allocating from the cursor until
1309 * the range is exhausted and then find a new range.
1310 * ==========================================================================
1311 */
1312 static uint64_t
1313 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1314 {
1315 range_tree_t *rt = msp->ms_allocatable;
1316 avl_tree_t *t = &msp->ms_allocatable_by_size;
1317 uint64_t *cursor = &msp->ms_lbas[0];
1318 uint64_t *cursor_end = &msp->ms_lbas[1];
1319 uint64_t offset = 0;
1320
1321 ASSERT(MUTEX_HELD(&msp->ms_lock));
1322 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1323
1324 ASSERT3U(*cursor_end, >=, *cursor);
1325
1326 if ((*cursor + size) > *cursor_end) {
1327 range_seg_t *rs;
1328
1329 rs = avl_last(&msp->ms_allocatable_by_size);
1330 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1331 return (-1ULL);
1332
1333 *cursor = rs->rs_start;
1334 *cursor_end = rs->rs_end;
1335 }
1336
1337 offset = *cursor;
1338 *cursor += size;
1339
1340 return (offset);
1341 }
1342
1343 static metaslab_ops_t metaslab_cf_ops = {
1344 metaslab_cf_alloc
1345 };
1346
1347 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1348 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1349
1350 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1351 /*
1352 * ==========================================================================
1353 * New dynamic fit allocator -
1354 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1355 * contiguous blocks. If no region is found then just use the largest segment
1356 * that remains.
1357 * ==========================================================================
1358 */
1359
1360 /*
1361 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1362 * to request from the allocator.
1363 */
1364 uint64_t metaslab_ndf_clump_shift = 4;
1365
1366 static uint64_t
1367 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1368 {
1369 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1370 avl_index_t where;
1371 range_seg_t *rs, rsearch;
1372 uint64_t hbit = highbit64(size);
1373 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1374 uint64_t max_size = metaslab_block_maxsize(msp);
1375
1376 ASSERT(MUTEX_HELD(&msp->ms_lock));
1377 ASSERT3U(avl_numnodes(t), ==,
1378 avl_numnodes(&msp->ms_allocatable_by_size));
1379
1380 if (max_size < size)
1381 return (-1ULL);
1382
1383 rsearch.rs_start = *cursor;
1384 rsearch.rs_end = *cursor + size;
1385
1386 rs = avl_find(t, &rsearch, &where);
1387 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1388 t = &msp->ms_allocatable_by_size;
1389
1390 rsearch.rs_start = 0;
1391 rsearch.rs_end = MIN(max_size,
1392 1ULL << (hbit + metaslab_ndf_clump_shift));
1393 rs = avl_find(t, &rsearch, &where);
1394 if (rs == NULL)
1395 rs = avl_nearest(t, where, AVL_AFTER);
1396 ASSERT(rs != NULL);
1397 }
1398
1399 if ((rs->rs_end - rs->rs_start) >= size) {
1400 *cursor = rs->rs_start + size;
1401 return (rs->rs_start);
1402 }
1403 return (-1ULL);
1404 }
1405
1406 static metaslab_ops_t metaslab_ndf_ops = {
1407 metaslab_ndf_alloc
1408 };
1409
1410 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1411 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1412
1413
1414 /*
1415 * ==========================================================================
1416 * Metaslabs
1417 * ==========================================================================
1418 */
1419
1420 static void
1421 metaslab_aux_histograms_clear(metaslab_t *msp)
1422 {
1423 /*
1424 * Auxiliary histograms are only cleared when resetting them,
1425 * which can only happen while the metaslab is loaded.
1426 */
1427 ASSERT(msp->ms_loaded);
1428
1429 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1430 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1431 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1432 }
1433
1434 static void
1435 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1436 range_tree_t *rt)
1437 {
1438 /*
1439 * This is modeled after space_map_histogram_add(), so refer to that
1440 * function for implementation details. We want this to work like
1441 * the space map histogram, and not the range tree histogram, as we
1442 * are essentially constructing a delta that will be later subtracted
1443 * from the space map histogram.
1444 */
1445 int idx = 0;
1446 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1447 ASSERT3U(i, >=, idx + shift);
1448 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1449
1450 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1451 ASSERT3U(idx + shift, ==, i);
1452 idx++;
1453 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1454 }
1455 }
1456 }
1457
1458 /*
1459 * Called at every sync pass that the metaslab gets synced.
1460 *
1461 * The reason is that we want our auxiliary histograms to be updated
1462 * wherever the metaslab's space map histogram is updated. This way
1463 * we stay consistent on which parts of the metaslab space map's
1464 * histogram are currently not available for allocations (e.g because
1465 * they are in the defer, freed, and freeing trees).
1466 */
1467 static void
1468 metaslab_aux_histograms_update(metaslab_t *msp)
1469 {
1470 space_map_t *sm = msp->ms_sm;
1471 ASSERT(sm != NULL);
1472
1473 /*
1474 * This is similar to the metaslab's space map histogram updates
1475 * that take place in metaslab_sync(). The only difference is that
1476 * we only care about segments that haven't made it into the
1477 * ms_allocatable tree yet.
1478 */
1479 if (msp->ms_loaded) {
1480 metaslab_aux_histograms_clear(msp);
1481
1482 metaslab_aux_histogram_add(msp->ms_synchist,
1483 sm->sm_shift, msp->ms_freed);
1484
1485 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1486 metaslab_aux_histogram_add(msp->ms_deferhist[t],
1487 sm->sm_shift, msp->ms_defer[t]);
1488 }
1489 }
1490
1491 metaslab_aux_histogram_add(msp->ms_synchist,
1492 sm->sm_shift, msp->ms_freeing);
1493 }
1494
1495 /*
1496 * Called every time we are done syncing (writing to) the metaslab,
1497 * i.e. at the end of each sync pass.
1498 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1499 */
1500 static void
1501 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1502 {
1503 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1504 space_map_t *sm = msp->ms_sm;
1505
1506 if (sm == NULL) {
1507 /*
1508 * We came here from metaslab_init() when creating/opening a
1509 * pool, looking at a metaslab that hasn't had any allocations
1510 * yet.
1511 */
1512 return;
1513 }
1514
1515 /*
1516 * This is similar to the actions that we take for the ms_freed
1517 * and ms_defer trees in metaslab_sync_done().
1518 */
1519 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
1520 if (defer_allowed) {
1521 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
1522 sizeof (msp->ms_synchist));
1523 } else {
1524 bzero(msp->ms_deferhist[hist_index],
1525 sizeof (msp->ms_deferhist[hist_index]));
1526 }
1527 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1528 }
1529
1530 /*
1531 * Ensure that the metaslab's weight and fragmentation are consistent
1532 * with the contents of the histogram (either the range tree's histogram
1533 * or the space map's depending whether the metaslab is loaded).
1534 */
1535 static void
1536 metaslab_verify_weight_and_frag(metaslab_t *msp)
1537 {
1538 ASSERT(MUTEX_HELD(&msp->ms_lock));
1539
1540 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1541 return;
1542
1543 /* see comment in metaslab_verify_unflushed_changes() */
1544 if (msp->ms_group == NULL)
1545 return;
1546
1547 /*
1548 * Devices being removed always return a weight of 0 and leave
1549 * fragmentation and ms_max_size as is - there is nothing for
1550 * us to verify here.
1551 */
1552 vdev_t *vd = msp->ms_group->mg_vd;
1553 if (vd->vdev_removing)
1554 return;
1555
1556 /*
1557 * If the metaslab is dirty it probably means that we've done
1558 * some allocations or frees that have changed our histograms
1559 * and thus the weight.
1560 */
1561 for (int t = 0; t < TXG_SIZE; t++) {
1562 if (txg_list_member(&vd->vdev_ms_list, msp, t))
1563 return;
1564 }
1565
1566 /*
1567 * This verification checks that our in-memory state is consistent
1568 * with what's on disk. If the pool is read-only then there aren't
1569 * any changes and we just have the initially-loaded state.
1570 */
1571 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
1572 return;
1573
1574 /* some extra verification for in-core tree if you can */
1575 if (msp->ms_loaded) {
1576 range_tree_stat_verify(msp->ms_allocatable);
1577 VERIFY(space_map_histogram_verify(msp->ms_sm,
1578 msp->ms_allocatable));
1579 }
1580
1581 uint64_t weight = msp->ms_weight;
1582 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1583 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
1584 uint64_t frag = msp->ms_fragmentation;
1585 uint64_t max_segsize = msp->ms_max_size;
1586
1587 msp->ms_weight = 0;
1588 msp->ms_fragmentation = 0;
1589 msp->ms_max_size = 0;
1590
1591 /*
1592 * This function is used for verification purposes. Regardless of
1593 * whether metaslab_weight() thinks this metaslab should be active or
1594 * not, we want to ensure that the actual weight (and therefore the
1595 * value of ms_weight) would be the same if it was to be recalculated
1596 * at this point.
1597 */
1598 msp->ms_weight = metaslab_weight(msp) | was_active;
1599
1600 VERIFY3U(max_segsize, ==, msp->ms_max_size);
1601
1602 /*
1603 * If the weight type changed then there is no point in doing
1604 * verification. Revert fields to their original values.
1605 */
1606 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
1607 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
1608 msp->ms_fragmentation = frag;
1609 msp->ms_weight = weight;
1610 return;
1611 }
1612
1613 VERIFY3U(msp->ms_fragmentation, ==, frag);
1614 VERIFY3U(msp->ms_weight, ==, weight);
1615 }
1616
1617 /*
1618 * Wait for any in-progress metaslab loads to complete.
1619 */
1620 static void
1621 metaslab_load_wait(metaslab_t *msp)
1622 {
1623 ASSERT(MUTEX_HELD(&msp->ms_lock));
1624
1625 while (msp->ms_loading) {
1626 ASSERT(!msp->ms_loaded);
1627 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1628 }
1629 }
1630
1631 static int
1632 metaslab_load_impl(metaslab_t *msp)
1633 {
1634 int error = 0;
1635
1636 ASSERT(MUTEX_HELD(&msp->ms_lock));
1637 ASSERT(msp->ms_loading);
1638 ASSERT(!msp->ms_condensing);
1639
1640 /*
1641 * We temporarily drop the lock to unblock other operations while we
1642 * are reading the space map. Therefore, metaslab_sync() and
1643 * metaslab_sync_done() can run at the same time as we do.
1644 *
1645 * metaslab_sync() can append to the space map while we are loading.
1646 * Therefore we load only entries that existed when we started the
1647 * load. Additionally, metaslab_sync_done() has to wait for the load
1648 * to complete because there are potential races like metaslab_load()
1649 * loading parts of the space map that are currently being appended
1650 * by metaslab_sync(). If we didn't, the ms_allocatable would have
1651 * entries that metaslab_sync_done() would try to re-add later.
1652 *
1653 * That's why before dropping the lock we remember the synced length
1654 * of the metaslab and read up to that point of the space map,
1655 * ignoring entries appended by metaslab_sync() that happen after we
1656 * drop the lock.
1657 */
1658 uint64_t length = msp->ms_synced_length;
1659 mutex_exit(&msp->ms_lock);
1660
1661 if (msp->ms_sm != NULL) {
1662 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1663 SM_FREE, length);
1664 } else {
1665 /*
1666 * The space map has not been allocated yet, so treat
1667 * all the space in the metaslab as free and add it to the
1668 * ms_allocatable tree.
1669 */
1670 range_tree_add(msp->ms_allocatable,
1671 msp->ms_start, msp->ms_size);
1672 }
1673
1674 /*
1675 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
1676 * changing the ms_sm and the metaslab's range trees while we are
1677 * about to use them and populate the ms_allocatable. The ms_lock
1678 * is insufficient for this because metaslab_sync() doesn't hold
1679 * the ms_lock while writing the ms_checkpointing tree to disk.
1680 */
1681 mutex_enter(&msp->ms_sync_lock);
1682 mutex_enter(&msp->ms_lock);
1683 ASSERT(!msp->ms_condensing);
1684
1685 if (error != 0)
1686 return (error);
1687
1688 ASSERT3P(msp->ms_group, !=, NULL);
1689 msp->ms_loaded = B_TRUE;
1690
1691 /*
1692 * The ms_allocatable contains the segments that exist in the
1693 * ms_defer trees [see ms_synced_length]. Thus we need to remove
1694 * them from ms_allocatable as they will be added again in
1695 * metaslab_sync_done().
1696 */
1697 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1698 range_tree_walk(msp->ms_defer[t],
1699 range_tree_remove, msp->ms_allocatable);
1700 }
1701
1702 /*
1703 * Call metaslab_recalculate_weight_and_sort() now that the
1704 * metaslab is loaded so we get the metaslab's real weight.
1705 *
1706 * Unless this metaslab was created with older software and
1707 * has not yet been converted to use segment-based weight, we
1708 * expect the new weight to be better or equal to the weight
1709 * that the metaslab had while it was not loaded. This is
1710 * because the old weight does not take into account the
1711 * consolidation of adjacent segments between TXGs. [see
1712 * comment for ms_synchist and ms_deferhist[] for more info]
1713 */
1714 uint64_t weight = msp->ms_weight;
1715 metaslab_recalculate_weight_and_sort(msp);
1716 if (!WEIGHT_IS_SPACEBASED(weight))
1717 ASSERT3U(weight, <=, msp->ms_weight);
1718 msp->ms_max_size = metaslab_block_maxsize(msp);
1719
1720 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1721 metaslab_verify_space(msp, spa_syncing_txg(spa));
1722 mutex_exit(&msp->ms_sync_lock);
1723
1724 return (0);
1725 }
1726
1727 int
1728 metaslab_load(metaslab_t *msp)
1729 {
1730 ASSERT(MUTEX_HELD(&msp->ms_lock));
1731
1732 /*
1733 * There may be another thread loading the same metaslab, if that's
1734 * the case just wait until the other thread is done and return.
1735 */
1736 metaslab_load_wait(msp);
1737 if (msp->ms_loaded)
1738 return (0);
1739 VERIFY(!msp->ms_loading);
1740 ASSERT(!msp->ms_condensing);
1741
1742 msp->ms_loading = B_TRUE;
1743 int error = metaslab_load_impl(msp);
1744 msp->ms_loading = B_FALSE;
1745 cv_broadcast(&msp->ms_load_cv);
1746
1747 return (error);
1748 }
1749
1750 void
1751 metaslab_unload(metaslab_t *msp)
1752 {
1753 ASSERT(MUTEX_HELD(&msp->ms_lock));
1754
1755 metaslab_verify_weight_and_frag(msp);
1756
1757 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1758 msp->ms_loaded = B_FALSE;
1759
1760 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1761 msp->ms_max_size = 0;
1762
1763 /*
1764 * We explicitly recalculate the metaslab's weight based on its space
1765 * map (as it is now not loaded). We want unload metaslabs to always
1766 * have their weights calculated from the space map histograms, while
1767 * loaded ones have it calculated from their in-core range tree
1768 * [see metaslab_load()]. This way, the weight reflects the information
1769 * available in-core, whether it is loaded or not
1770 *
1771 * If ms_group == NULL means that we came here from metaslab_fini(),
1772 * at which point it doesn't make sense for us to do the recalculation
1773 * and the sorting.
1774 */
1775 if (msp->ms_group != NULL)
1776 metaslab_recalculate_weight_and_sort(msp);
1777 }
1778
1779 static void
1780 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1781 int64_t defer_delta, int64_t space_delta)
1782 {
1783 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1784
1785 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1786 ASSERT(vd->vdev_ms_count != 0);
1787
1788 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1789 vdev_deflated_space(vd, space_delta));
1790 }
1791
1792 int
1793 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1794 metaslab_t **msp)
1795 {
1796 vdev_t *vd = mg->mg_vd;
1797 spa_t *spa = vd->vdev_spa;
1798 objset_t *mos = spa->spa_meta_objset;
1799 metaslab_t *ms;
1800 int error;
1801
1802 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1803 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1804 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1805 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1806
1807 ms->ms_id = id;
1808 ms->ms_start = id << vd->vdev_ms_shift;
1809 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1810 ms->ms_allocator = -1;
1811 ms->ms_new = B_TRUE;
1812
1813 /*
1814 * We only open space map objects that already exist. All others
1815 * will be opened when we finally allocate an object for it.
1816 *
1817 * Note:
1818 * When called from vdev_expand(), we can't call into the DMU as
1819 * we are holding the spa_config_lock as a writer and we would
1820 * deadlock [see relevant comment in vdev_metaslab_init()]. in
1821 * that case, the object parameter is zero though, so we won't
1822 * call into the DMU.
1823 */
1824 if (object != 0) {
1825 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1826 ms->ms_size, vd->vdev_ashift);
1827
1828 if (error != 0) {
1829 kmem_free(ms, sizeof (metaslab_t));
1830 return (error);
1831 }
1832
1833 ASSERT(ms->ms_sm != NULL);
1834 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
1835 }
1836
1837 /*
1838 * We create the ms_allocatable here, but we don't create the
1839 * other range trees until metaslab_sync_done(). This serves
1840 * two purposes: it allows metaslab_sync_done() to detect the
1841 * addition of new space; and for debugging, it ensures that
1842 * we'd data fault on any attempt to use this metaslab before
1843 * it's ready.
1844 */
1845 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1846 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
1847 metaslab_group_add(mg, ms);
1848
1849 metaslab_set_fragmentation(ms);
1850
1851 /*
1852 * If we're opening an existing pool (txg == 0) or creating
1853 * a new one (txg == TXG_INITIAL), all space is available now.
1854 * If we're adding space to an existing pool, the new space
1855 * does not become available until after this txg has synced.
1856 * The metaslab's weight will also be initialized when we sync
1857 * out this txg. This ensures that we don't attempt to allocate
1858 * from it before we have initialized it completely.
1859 */
1860 if (txg <= TXG_INITIAL) {
1861 metaslab_sync_done(ms, 0);
1862 metaslab_space_update(vd, mg->mg_class,
1863 metaslab_allocated_space(ms), 0, 0);
1864 }
1865
1866 /*
1867 * If metaslab_debug_load is set and we're initializing a metaslab
1868 * that has an allocated space map object then load the space map
1869 * so that we can verify frees.
1870 */
1871 if (metaslab_debug_load && ms->ms_sm != NULL) {
1872 mutex_enter(&ms->ms_lock);
1873 VERIFY0(metaslab_load(ms));
1874 mutex_exit(&ms->ms_lock);
1875 }
1876
1877 if (txg != 0) {
1878 vdev_dirty(vd, 0, NULL, txg);
1879 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1880 }
1881
1882 *msp = ms;
1883
1884 return (0);
1885 }
1886
1887 void
1888 metaslab_fini(metaslab_t *msp)
1889 {
1890 metaslab_group_t *mg = msp->ms_group;
1891 vdev_t *vd = mg->mg_vd;
1892
1893 metaslab_group_remove(mg, msp);
1894
1895 mutex_enter(&msp->ms_lock);
1896 VERIFY(msp->ms_group == NULL);
1897 metaslab_space_update(vd, mg->mg_class,
1898 -metaslab_allocated_space(msp), 0, -msp->ms_size);
1899
1900 space_map_close(msp->ms_sm);
1901
1902 metaslab_unload(msp);
1903
1904 range_tree_destroy(msp->ms_allocatable);
1905 range_tree_destroy(msp->ms_freeing);
1906 range_tree_destroy(msp->ms_freed);
1907
1908 for (int t = 0; t < TXG_SIZE; t++) {
1909 range_tree_destroy(msp->ms_allocating[t]);
1910 }
1911
1912 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1913 range_tree_destroy(msp->ms_defer[t]);
1914 }
1915 ASSERT0(msp->ms_deferspace);
1916
1917 range_tree_destroy(msp->ms_checkpointing);
1918
1919 for (int t = 0; t < TXG_SIZE; t++)
1920 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
1921
1922 mutex_exit(&msp->ms_lock);
1923 cv_destroy(&msp->ms_load_cv);
1924 mutex_destroy(&msp->ms_lock);
1925 mutex_destroy(&msp->ms_sync_lock);
1926 ASSERT3U(msp->ms_allocator, ==, -1);
1927
1928 kmem_free(msp, sizeof (metaslab_t));
1929 }
1930
1931 #define FRAGMENTATION_TABLE_SIZE 17
1932
1933 /*
1934 * This table defines a segment size based fragmentation metric that will
1935 * allow each metaslab to derive its own fragmentation value. This is done
1936 * by calculating the space in each bucket of the spacemap histogram and
1937 * multiplying that by the fragmentation metric in this table. Doing
1938 * this for all buckets and dividing it by the total amount of free
1939 * space in this metaslab (i.e. the total free space in all buckets) gives
1940 * us the fragmentation metric. This means that a high fragmentation metric
1941 * equates to most of the free space being comprised of small segments.
1942 * Conversely, if the metric is low, then most of the free space is in
1943 * large segments. A 10% change in fragmentation equates to approximately
1944 * double the number of segments.
1945 *
1946 * This table defines 0% fragmented space using 16MB segments. Testing has
1947 * shown that segments that are greater than or equal to 16MB do not suffer
1948 * from drastic performance problems. Using this value, we derive the rest
1949 * of the table. Since the fragmentation value is never stored on disk, it
1950 * is possible to change these calculations in the future.
1951 */
1952 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1953 100, /* 512B */
1954 100, /* 1K */
1955 98, /* 2K */
1956 95, /* 4K */
1957 90, /* 8K */
1958 80, /* 16K */
1959 70, /* 32K */
1960 60, /* 64K */
1961 50, /* 128K */
1962 40, /* 256K */
1963 30, /* 512K */
1964 20, /* 1M */
1965 15, /* 2M */
1966 10, /* 4M */
1967 5, /* 8M */
1968 0 /* 16M */
1969 };
1970
1971 /*
1972 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
1973 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
1974 * been upgraded and does not support this metric. Otherwise, the return
1975 * value should be in the range [0, 100].
1976 */
1977 static void
1978 metaslab_set_fragmentation(metaslab_t *msp)
1979 {
1980 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1981 uint64_t fragmentation = 0;
1982 uint64_t total = 0;
1983 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1984 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1985
1986 if (!feature_enabled) {
1987 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1988 return;
1989 }
1990
1991 /*
1992 * A null space map means that the entire metaslab is free
1993 * and thus is not fragmented.
1994 */
1995 if (msp->ms_sm == NULL) {
1996 msp->ms_fragmentation = 0;
1997 return;
1998 }
1999
2000 /*
2001 * If this metaslab's space map has not been upgraded, flag it
2002 * so that we upgrade next time we encounter it.
2003 */
2004 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2005 uint64_t txg = spa_syncing_txg(spa);
2006 vdev_t *vd = msp->ms_group->mg_vd;
2007
2008 /*
2009 * If we've reached the final dirty txg, then we must
2010 * be shutting down the pool. We don't want to dirty
2011 * any data past this point so skip setting the condense
2012 * flag. We can retry this action the next time the pool
2013 * is imported.
2014 */
2015 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2016 msp->ms_condense_wanted = B_TRUE;
2017 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2018 zfs_dbgmsg("txg %llu, requesting force condense: "
2019 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2020 vd->vdev_id);
2021 }
2022 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2023 return;
2024 }
2025
2026 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2027 uint64_t space = 0;
2028 uint8_t shift = msp->ms_sm->sm_shift;
2029
2030 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2031 FRAGMENTATION_TABLE_SIZE - 1);
2032
2033 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2034 continue;
2035
2036 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2037 total += space;
2038
2039 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2040 fragmentation += space * zfs_frag_table[idx];
2041 }
2042
2043 if (total > 0)
2044 fragmentation /= total;
2045 ASSERT3U(fragmentation, <=, 100);
2046
2047 msp->ms_fragmentation = fragmentation;
2048 }
2049
2050 /*
2051 * Compute a weight -- a selection preference value -- for the given metaslab.
2052 * This is based on the amount of free space, the level of fragmentation,
2053 * the LBA range, and whether the metaslab is loaded.
2054 */
2055 static uint64_t
2056 metaslab_space_weight(metaslab_t *msp)
2057 {
2058 metaslab_group_t *mg = msp->ms_group;
2059 vdev_t *vd = mg->mg_vd;
2060 uint64_t weight, space;
2061
2062 ASSERT(MUTEX_HELD(&msp->ms_lock));
2063 ASSERT(!vd->vdev_removing);
2064
2065 /*
2066 * The baseline weight is the metaslab's free space.
2067 */
2068 space = msp->ms_size - metaslab_allocated_space(msp);
2069
2070 if (metaslab_fragmentation_factor_enabled &&
2071 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2072 /*
2073 * Use the fragmentation information to inversely scale
2074 * down the baseline weight. We need to ensure that we
2075 * don't exclude this metaslab completely when it's 100%
2076 * fragmented. To avoid this we reduce the fragmented value
2077 * by 1.
2078 */
2079 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2080
2081 /*
2082 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2083 * this metaslab again. The fragmentation metric may have
2084 * decreased the space to something smaller than
2085 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2086 * so that we can consume any remaining space.
2087 */
2088 if (space > 0 && space < SPA_MINBLOCKSIZE)
2089 space = SPA_MINBLOCKSIZE;
2090 }
2091 weight = space;
2092
2093 /*
2094 * Modern disks have uniform bit density and constant angular velocity.
2095 * Therefore, the outer recording zones are faster (higher bandwidth)
2096 * than the inner zones by the ratio of outer to inner track diameter,
2097 * which is typically around 2:1. We account for this by assigning
2098 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2099 * In effect, this means that we'll select the metaslab with the most
2100 * free bandwidth rather than simply the one with the most free space.
2101 */
2102 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2103 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2104 ASSERT(weight >= space && weight <= 2 * space);
2105 }
2106
2107 /*
2108 * If this metaslab is one we're actively using, adjust its
2109 * weight to make it preferable to any inactive metaslab so
2110 * we'll polish it off. If the fragmentation on this metaslab
2111 * has exceed our threshold, then don't mark it active.
2112 */
2113 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2114 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2115 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2116 }
2117
2118 WEIGHT_SET_SPACEBASED(weight);
2119 return (weight);
2120 }
2121
2122 /*
2123 * Return the weight of the specified metaslab, according to the segment-based
2124 * weighting algorithm. The metaslab must be loaded. This function can
2125 * be called within a sync pass since it relies only on the metaslab's
2126 * range tree which is always accurate when the metaslab is loaded.
2127 */
2128 static uint64_t
2129 metaslab_weight_from_range_tree(metaslab_t *msp)
2130 {
2131 uint64_t weight = 0;
2132 uint32_t segments = 0;
2133
2134 ASSERT(msp->ms_loaded);
2135
2136 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2137 i--) {
2138 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2139 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2140
2141 segments <<= 1;
2142 segments += msp->ms_allocatable->rt_histogram[i];
2143
2144 /*
2145 * The range tree provides more precision than the space map
2146 * and must be downgraded so that all values fit within the
2147 * space map's histogram. This allows us to compare loaded
2148 * vs. unloaded metaslabs to determine which metaslab is
2149 * considered "best".
2150 */
2151 if (i > max_idx)
2152 continue;
2153
2154 if (segments != 0) {
2155 WEIGHT_SET_COUNT(weight, segments);
2156 WEIGHT_SET_INDEX(weight, i);
2157 WEIGHT_SET_ACTIVE(weight, 0);
2158 break;
2159 }
2160 }
2161 return (weight);
2162 }
2163
2164 /*
2165 * Calculate the weight based on the on-disk histogram. This should only
2166 * be called after a sync pass has completely finished since the on-disk
2167 * information is updated in metaslab_sync().
2168 */
2169 static uint64_t
2170 metaslab_weight_from_spacemap(metaslab_t *msp)
2171 {
2172 space_map_t *sm = msp->ms_sm;
2173 ASSERT(!msp->ms_loaded);
2174 ASSERT(sm != NULL);
2175 ASSERT3U(space_map_object(sm), !=, 0);
2176 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2177
2178 /*
2179 * Create a joint histogram from all the segments that have made
2180 * it to the metaslab's space map histogram, that are not yet
2181 * available for allocation because they are still in the freeing
2182 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
2183 * these segments from the space map's histogram to get a more
2184 * accurate weight.
2185 */
2186 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
2187 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
2188 deferspace_histogram[i] += msp->ms_synchist[i];
2189 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2190 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2191 deferspace_histogram[i] += msp->ms_deferhist[t][i];
2192 }
2193 }
2194
2195 uint64_t weight = 0;
2196 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
2197 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
2198 deferspace_histogram[i]);
2199 uint64_t count =
2200 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
2201 if (count != 0) {
2202 WEIGHT_SET_COUNT(weight, count);
2203 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
2204 WEIGHT_SET_ACTIVE(weight, 0);
2205 break;
2206 }
2207 }
2208 return (weight);
2209 }
2210
2211 /*
2212 * Compute a segment-based weight for the specified metaslab. The weight
2213 * is determined by highest bucket in the histogram. The information
2214 * for the highest bucket is encoded into the weight value.
2215 */
2216 static uint64_t
2217 metaslab_segment_weight(metaslab_t *msp)
2218 {
2219 metaslab_group_t *mg = msp->ms_group;
2220 uint64_t weight = 0;
2221 uint8_t shift = mg->mg_vd->vdev_ashift;
2222
2223 ASSERT(MUTEX_HELD(&msp->ms_lock));
2224
2225 /*
2226 * The metaslab is completely free.
2227 */
2228 if (metaslab_allocated_space(msp) == 0) {
2229 int idx = highbit64(msp->ms_size) - 1;
2230 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2231
2232 if (idx < max_idx) {
2233 WEIGHT_SET_COUNT(weight, 1ULL);
2234 WEIGHT_SET_INDEX(weight, idx);
2235 } else {
2236 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
2237 WEIGHT_SET_INDEX(weight, max_idx);
2238 }
2239 WEIGHT_SET_ACTIVE(weight, 0);
2240 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
2241
2242 return (weight);
2243 }
2244
2245 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2246
2247 /*
2248 * If the metaslab is fully allocated then just make the weight 0.
2249 */
2250 if (metaslab_allocated_space(msp) == msp->ms_size)
2251 return (0);
2252 /*
2253 * If the metaslab is already loaded, then use the range tree to
2254 * determine the weight. Otherwise, we rely on the space map information
2255 * to generate the weight.
2256 */
2257 if (msp->ms_loaded) {
2258 weight = metaslab_weight_from_range_tree(msp);
2259 } else {
2260 weight = metaslab_weight_from_spacemap(msp);
2261 }
2262
2263 /*
2264 * If the metaslab was active the last time we calculated its weight
2265 * then keep it active. We want to consume the entire region that
2266 * is associated with this weight.
2267 */
2268 if (msp->ms_activation_weight != 0 && weight != 0)
2269 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2270 return (weight);
2271 }
2272
2273 /*
2274 * Determine if we should attempt to allocate from this metaslab. If the
2275 * metaslab has a maximum size then we can quickly determine if the desired
2276 * allocation size can be satisfied. Otherwise, if we're using segment-based
2277 * weighting then we can determine the maximum allocation that this metaslab
2278 * can accommodate based on the index encoded in the weight. If we're using
2279 * space-based weights then rely on the entire weight (excluding the weight
2280 * type bit).
2281 */
2282 boolean_t
2283 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2284 {
2285 boolean_t should_allocate;
2286
2287 if (msp->ms_max_size != 0)
2288 return (msp->ms_max_size >= asize);
2289
2290 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2291 /*
2292 * The metaslab segment weight indicates segments in the
2293 * range [2^i, 2^(i+1)), where i is the index in the weight.
2294 * Since the asize might be in the middle of the range, we
2295 * should attempt the allocation if asize < 2^(i+1).
2296 */
2297 should_allocate = (asize <
2298 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2299 } else {
2300 should_allocate = (asize <=
2301 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2302 }
2303 return (should_allocate);
2304 }
2305 static uint64_t
2306 metaslab_weight(metaslab_t *msp)
2307 {
2308 vdev_t *vd = msp->ms_group->mg_vd;
2309 spa_t *spa = vd->vdev_spa;
2310 uint64_t weight;
2311
2312 ASSERT(MUTEX_HELD(&msp->ms_lock));
2313
2314 /*
2315 * If this vdev is in the process of being removed, there is nothing
2316 * for us to do here.
2317 */
2318 if (vd->vdev_removing)
2319 return (0);
2320
2321 metaslab_set_fragmentation(msp);
2322
2323 /*
2324 * Update the maximum size if the metaslab is loaded. This will
2325 * ensure that we get an accurate maximum size if newly freed space
2326 * has been added back into the free tree.
2327 */
2328 if (msp->ms_loaded)
2329 msp->ms_max_size = metaslab_block_maxsize(msp);
2330 else
2331 ASSERT0(msp->ms_max_size);
2332
2333 /*
2334 * Segment-based weighting requires space map histogram support.
2335 */
2336 if (zfs_metaslab_segment_weight_enabled &&
2337 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2338 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2339 sizeof (space_map_phys_t))) {
2340 weight = metaslab_segment_weight(msp);
2341 } else {
2342 weight = metaslab_space_weight(msp);
2343 }
2344 return (weight);
2345 }
2346
2347 void
2348 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
2349 {
2350 /* note: we preserve the mask (e.g. indication of primary, etc..) */
2351 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2352 metaslab_group_sort(msp->ms_group, msp,
2353 metaslab_weight(msp) | was_active);
2354 }
2355
2356 static int
2357 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2358 int allocator, uint64_t activation_weight)
2359 {
2360 /*
2361 * If we're activating for the claim code, we don't want to actually
2362 * set the metaslab up for a specific allocator.
2363 */
2364 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2365 return (0);
2366 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2367 mg->mg_primaries : mg->mg_secondaries);
2368
2369 ASSERT(MUTEX_HELD(&msp->ms_lock));
2370 mutex_enter(&mg->mg_lock);
2371 if (arr[allocator] != NULL) {
2372 mutex_exit(&mg->mg_lock);
2373 return (EEXIST);
2374 }
2375
2376 arr[allocator] = msp;
2377 ASSERT3S(msp->ms_allocator, ==, -1);
2378 msp->ms_allocator = allocator;
2379 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2380 mutex_exit(&mg->mg_lock);
2381
2382 return (0);
2383 }
2384
2385 static int
2386 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2387 {
2388 ASSERT(MUTEX_HELD(&msp->ms_lock));
2389
2390 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2391 int error = metaslab_load(msp);
2392 if (error != 0) {
2393 metaslab_group_sort(msp->ms_group, msp, 0);
2394 return (error);
2395 }
2396 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2397 /*
2398 * The metaslab was activated for another allocator
2399 * while we were waiting, we should reselect.
2400 */
2401 return (SET_ERROR(EBUSY));
2402 }
2403 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2404 allocator, activation_weight)) != 0) {
2405 return (error);
2406 }
2407
2408 msp->ms_activation_weight = msp->ms_weight;
2409 metaslab_group_sort(msp->ms_group, msp,
2410 msp->ms_weight | activation_weight);
2411 }
2412 ASSERT(msp->ms_loaded);
2413 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2414
2415 return (0);
2416 }
2417
2418 static void
2419 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2420 uint64_t weight)
2421 {
2422 ASSERT(MUTEX_HELD(&msp->ms_lock));
2423 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2424 metaslab_group_sort(mg, msp, weight);
2425 return;
2426 }
2427
2428 mutex_enter(&mg->mg_lock);
2429 ASSERT3P(msp->ms_group, ==, mg);
2430 if (msp->ms_primary) {
2431 ASSERT3U(0, <=, msp->ms_allocator);
2432 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2433 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2434 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2435 mg->mg_primaries[msp->ms_allocator] = NULL;
2436 } else {
2437 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2438 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2439 mg->mg_secondaries[msp->ms_allocator] = NULL;
2440 }
2441 msp->ms_allocator = -1;
2442 metaslab_group_sort_impl(mg, msp, weight);
2443 mutex_exit(&mg->mg_lock);
2444 }
2445
2446 static void
2447 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2448 {
2449 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2450
2451 /*
2452 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2453 * this metaslab again. In that case, it had better be empty,
2454 * or we would be leaving space on the table.
2455 */
2456 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2457 size >= SPA_MINBLOCKSIZE ||
2458 range_tree_space(msp->ms_allocatable) == 0);
2459 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2460
2461 msp->ms_activation_weight = 0;
2462 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2463 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2464 }
2465
2466 /*
2467 * Segment-based metaslabs are activated once and remain active until
2468 * we either fail an allocation attempt (similar to space-based metaslabs)
2469 * or have exhausted the free space in zfs_metaslab_switch_threshold
2470 * buckets since the metaslab was activated. This function checks to see
2471 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2472 * metaslab and passivates it proactively. This will allow us to select a
2473 * metaslab with a larger contiguous region, if any, remaining within this
2474 * metaslab group. If we're in sync pass > 1, then we continue using this
2475 * metaslab so that we don't dirty more block and cause more sync passes.
2476 */
2477 void
2478 metaslab_segment_may_passivate(metaslab_t *msp)
2479 {
2480 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2481
2482 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2483 return;
2484
2485 /*
2486 * Since we are in the middle of a sync pass, the most accurate
2487 * information that is accessible to us is the in-core range tree
2488 * histogram; calculate the new weight based on that information.
2489 */
2490 uint64_t weight = metaslab_weight_from_range_tree(msp);
2491 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2492 int current_idx = WEIGHT_GET_INDEX(weight);
2493
2494 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2495 metaslab_passivate(msp, weight);
2496 }
2497
2498 static void
2499 metaslab_preload(void *arg)
2500 {
2501 metaslab_t *msp = arg;
2502 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2503 fstrans_cookie_t cookie = spl_fstrans_mark();
2504
2505 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2506
2507 mutex_enter(&msp->ms_lock);
2508 (void) metaslab_load(msp);
2509 msp->ms_selected_txg = spa_syncing_txg(spa);
2510 mutex_exit(&msp->ms_lock);
2511 spl_fstrans_unmark(cookie);
2512 }
2513
2514 static void
2515 metaslab_group_preload(metaslab_group_t *mg)
2516 {
2517 spa_t *spa = mg->mg_vd->vdev_spa;
2518 metaslab_t *msp;
2519 avl_tree_t *t = &mg->mg_metaslab_tree;
2520 int m = 0;
2521
2522 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2523 taskq_wait_outstanding(mg->mg_taskq, 0);
2524 return;
2525 }
2526
2527 mutex_enter(&mg->mg_lock);
2528
2529 /*
2530 * Load the next potential metaslabs
2531 */
2532 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2533 ASSERT3P(msp->ms_group, ==, mg);
2534
2535 /*
2536 * We preload only the maximum number of metaslabs specified
2537 * by metaslab_preload_limit. If a metaslab is being forced
2538 * to condense then we preload it too. This will ensure
2539 * that force condensing happens in the next txg.
2540 */
2541 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2542 continue;
2543 }
2544
2545 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2546 msp, TQ_SLEEP) != TASKQID_INVALID);
2547 }
2548 mutex_exit(&mg->mg_lock);
2549 }
2550
2551 /*
2552 * Determine if the space map's on-disk footprint is past our tolerance
2553 * for inefficiency. We would like to use the following criteria to make
2554 * our decision:
2555 *
2556 * 1. The size of the space map object should not dramatically increase as a
2557 * result of writing out the free space range tree.
2558 *
2559 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2560 * times the size than the free space range tree representation
2561 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2562 *
2563 * 3. The on-disk size of the space map should actually decrease.
2564 *
2565 * Unfortunately, we cannot compute the on-disk size of the space map in this
2566 * context because we cannot accurately compute the effects of compression, etc.
2567 * Instead, we apply the heuristic described in the block comment for
2568 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2569 * is greater than a threshold number of blocks.
2570 */
2571 static boolean_t
2572 metaslab_should_condense(metaslab_t *msp)
2573 {
2574 space_map_t *sm = msp->ms_sm;
2575 vdev_t *vd = msp->ms_group->mg_vd;
2576 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2577 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2578
2579 ASSERT(MUTEX_HELD(&msp->ms_lock));
2580 ASSERT(msp->ms_loaded);
2581
2582 /*
2583 * Allocations and frees in early passes are generally more space
2584 * efficient (in terms of blocks described in space map entries)
2585 * than the ones in later passes (e.g. we don't compress after
2586 * sync pass 5) and condensing a metaslab multiple times in a txg
2587 * could degrade performance.
2588 *
2589 * Thus we prefer condensing each metaslab at most once every txg at
2590 * the earliest sync pass possible. If a metaslab is eligible for
2591 * condensing again after being considered for condensing within the
2592 * same txg, it will hopefully be dirty in the next txg where it will
2593 * be condensed at an earlier pass.
2594 */
2595 if (msp->ms_condense_checked_txg == current_txg)
2596 return (B_FALSE);
2597 msp->ms_condense_checked_txg = current_txg;
2598
2599 /*
2600 * We always condense metaslabs that are empty and metaslabs for
2601 * which a condense request has been made.
2602 */
2603 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2604 msp->ms_condense_wanted)
2605 return (B_TRUE);
2606
2607 uint64_t object_size = space_map_length(msp->ms_sm);
2608 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2609 msp->ms_allocatable, SM_NO_VDEVID);
2610
2611 dmu_object_info_t doi;
2612 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2613 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2614
2615 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2616 object_size > zfs_metaslab_condense_block_threshold * record_size);
2617 }
2618
2619 /*
2620 * Condense the on-disk space map representation to its minimized form.
2621 * The minimized form consists of a small number of allocations followed by
2622 * the entries of the free range tree.
2623 */
2624 static void
2625 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2626 {
2627 range_tree_t *condense_tree;
2628 space_map_t *sm = msp->ms_sm;
2629
2630 ASSERT(MUTEX_HELD(&msp->ms_lock));
2631 ASSERT(msp->ms_loaded);
2632
2633
2634 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2635 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2636 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2637 msp->ms_group->mg_vd->vdev_spa->spa_name,
2638 space_map_length(msp->ms_sm),
2639 avl_numnodes(&msp->ms_allocatable->rt_root),
2640 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2641
2642 msp->ms_condense_wanted = B_FALSE;
2643
2644 /*
2645 * Create an range tree that is 100% allocated. We remove segments
2646 * that have been freed in this txg, any deferred frees that exist,
2647 * and any allocation in the future. Removing segments should be
2648 * a relatively inexpensive operation since we expect these trees to
2649 * have a small number of nodes.
2650 */
2651 condense_tree = range_tree_create(NULL, NULL);
2652 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2653
2654 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2655 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2656
2657 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2658 range_tree_walk(msp->ms_defer[t],
2659 range_tree_remove, condense_tree);
2660 }
2661
2662 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2663 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2664 range_tree_remove, condense_tree);
2665 }
2666
2667 /*
2668 * We're about to drop the metaslab's lock thus allowing
2669 * other consumers to change it's content. Set the
2670 * metaslab's ms_condensing flag to ensure that
2671 * allocations on this metaslab do not occur while we're
2672 * in the middle of committing it to disk. This is only critical
2673 * for ms_allocatable as all other range trees use per txg
2674 * views of their content.
2675 */
2676 msp->ms_condensing = B_TRUE;
2677
2678 mutex_exit(&msp->ms_lock);
2679 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2680
2681 /*
2682 * While we would ideally like to create a space map representation
2683 * that consists only of allocation records, doing so can be
2684 * prohibitively expensive because the in-core free tree can be
2685 * large, and therefore computationally expensive to subtract
2686 * from the condense_tree. Instead we sync out two trees, a cheap
2687 * allocation only tree followed by the in-core free tree. While not
2688 * optimal, this is typically close to optimal, and much cheaper to
2689 * compute.
2690 */
2691 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2692 range_tree_vacate(condense_tree, NULL, NULL);
2693 range_tree_destroy(condense_tree);
2694
2695 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2696 mutex_enter(&msp->ms_lock);
2697 msp->ms_condensing = B_FALSE;
2698 }
2699
2700 /*
2701 * Write a metaslab to disk in the context of the specified transaction group.
2702 */
2703 void
2704 metaslab_sync(metaslab_t *msp, uint64_t txg)
2705 {
2706 metaslab_group_t *mg = msp->ms_group;
2707 vdev_t *vd = mg->mg_vd;
2708 spa_t *spa = vd->vdev_spa;
2709 objset_t *mos = spa_meta_objset(spa);
2710 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2711 dmu_tx_t *tx;
2712 uint64_t object = space_map_object(msp->ms_sm);
2713
2714 ASSERT(!vd->vdev_ishole);
2715
2716 /*
2717 * This metaslab has just been added so there's no work to do now.
2718 */
2719 if (msp->ms_freeing == NULL) {
2720 ASSERT3P(alloctree, ==, NULL);
2721 return;
2722 }
2723
2724 ASSERT3P(alloctree, !=, NULL);
2725 ASSERT3P(msp->ms_freeing, !=, NULL);
2726 ASSERT3P(msp->ms_freed, !=, NULL);
2727 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2728
2729 /*
2730 * Normally, we don't want to process a metaslab if there are no
2731 * allocations or frees to perform. However, if the metaslab is being
2732 * forced to condense and it's loaded, we need to let it through.
2733 */
2734 if (range_tree_is_empty(alloctree) &&
2735 range_tree_is_empty(msp->ms_freeing) &&
2736 range_tree_is_empty(msp->ms_checkpointing) &&
2737 !(msp->ms_loaded && msp->ms_condense_wanted))
2738 return;
2739
2740
2741 VERIFY(txg <= spa_final_dirty_txg(spa));
2742
2743 /*
2744 * The only state that can actually be changing concurrently
2745 * with metaslab_sync() is the metaslab's ms_allocatable. No
2746 * other thread can be modifying this txg's alloc, freeing,
2747 * freed, or space_map_phys_t. We drop ms_lock whenever we
2748 * could call into the DMU, because the DMU can call down to
2749 * us (e.g. via zio_free()) at any time.
2750 *
2751 * The spa_vdev_remove_thread() can be reading metaslab state
2752 * concurrently, and it is locked out by the ms_sync_lock.
2753 * Note that the ms_lock is insufficient for this, because it
2754 * is dropped by space_map_write().
2755 */
2756 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2757
2758 if (msp->ms_sm == NULL) {
2759 uint64_t new_object;
2760
2761 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2762 VERIFY3U(new_object, !=, 0);
2763
2764 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2765 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2766
2767 ASSERT(msp->ms_sm != NULL);
2768 ASSERT0(metaslab_allocated_space(msp));
2769 }
2770
2771 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2772 vd->vdev_checkpoint_sm == NULL) {
2773 ASSERT(spa_has_checkpoint(spa));
2774
2775 uint64_t new_object = space_map_alloc(mos,
2776 vdev_standard_sm_blksz, tx);
2777 VERIFY3U(new_object, !=, 0);
2778
2779 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2780 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2781 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2782
2783 /*
2784 * We save the space map object as an entry in vdev_top_zap
2785 * so it can be retrieved when the pool is reopened after an
2786 * export or through zdb.
2787 */
2788 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2789 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2790 sizeof (new_object), 1, &new_object, tx));
2791 }
2792
2793 mutex_enter(&msp->ms_sync_lock);
2794 mutex_enter(&msp->ms_lock);
2795
2796 /*
2797 * Note: metaslab_condense() clears the space map's histogram.
2798 * Therefore we must verify and remove this histogram before
2799 * condensing.
2800 */
2801 metaslab_group_histogram_verify(mg);
2802 metaslab_class_histogram_verify(mg->mg_class);
2803 metaslab_group_histogram_remove(mg, msp);
2804
2805 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2806 metaslab_condense(msp, txg, tx);
2807 } else {
2808 mutex_exit(&msp->ms_lock);
2809 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2810 SM_NO_VDEVID, tx);
2811 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2812 SM_NO_VDEVID, tx);
2813 mutex_enter(&msp->ms_lock);
2814 }
2815
2816 msp->ms_allocated_space += range_tree_space(alloctree);
2817 ASSERT3U(msp->ms_allocated_space, >=,
2818 range_tree_space(msp->ms_freeing));
2819 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
2820
2821 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2822 ASSERT(spa_has_checkpoint(spa));
2823 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2824
2825 /*
2826 * Since we are doing writes to disk and the ms_checkpointing
2827 * tree won't be changing during that time, we drop the
2828 * ms_lock while writing to the checkpoint space map.
2829 */
2830 mutex_exit(&msp->ms_lock);
2831 space_map_write(vd->vdev_checkpoint_sm,
2832 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2833 mutex_enter(&msp->ms_lock);
2834
2835 spa->spa_checkpoint_info.sci_dspace +=
2836 range_tree_space(msp->ms_checkpointing);
2837 vd->vdev_stat.vs_checkpoint_space +=
2838 range_tree_space(msp->ms_checkpointing);
2839 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2840 -space_map_allocated(vd->vdev_checkpoint_sm));
2841
2842 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2843 }
2844
2845 if (msp->ms_loaded) {
2846 /*
2847 * When the space map is loaded, we have an accurate
2848 * histogram in the range tree. This gives us an opportunity
2849 * to bring the space map's histogram up-to-date so we clear
2850 * it first before updating it.
2851 */
2852 space_map_histogram_clear(msp->ms_sm);
2853 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2854
2855 /*
2856 * Since we've cleared the histogram we need to add back
2857 * any free space that has already been processed, plus
2858 * any deferred space. This allows the on-disk histogram
2859 * to accurately reflect all free space even if some space
2860 * is not yet available for allocation (i.e. deferred).
2861 */
2862 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2863
2864 /*
2865 * Add back any deferred free space that has not been
2866 * added back into the in-core free tree yet. This will
2867 * ensure that we don't end up with a space map histogram
2868 * that is completely empty unless the metaslab is fully
2869 * allocated.
2870 */
2871 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2872 space_map_histogram_add(msp->ms_sm,
2873 msp->ms_defer[t], tx);
2874 }
2875 }
2876
2877 /*
2878 * Always add the free space from this sync pass to the space
2879 * map histogram. We want to make sure that the on-disk histogram
2880 * accounts for all free space. If the space map is not loaded,
2881 * then we will lose some accuracy but will correct it the next
2882 * time we load the space map.
2883 */
2884 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2885 metaslab_aux_histograms_update(msp);
2886
2887 metaslab_group_histogram_add(mg, msp);
2888 metaslab_group_histogram_verify(mg);
2889 metaslab_class_histogram_verify(mg->mg_class);
2890
2891 /*
2892 * For sync pass 1, we avoid traversing this txg's free range tree
2893 * and instead will just swap the pointers for freeing and freed.
2894 * We can safely do this since the freed_tree is guaranteed to be
2895 * empty on the initial pass.
2896 */
2897 if (spa_sync_pass(spa) == 1) {
2898 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2899 ASSERT0(msp->ms_allocated_this_txg);
2900 } else {
2901 range_tree_vacate(msp->ms_freeing,
2902 range_tree_add, msp->ms_freed);
2903 }
2904 msp->ms_allocated_this_txg += range_tree_space(alloctree);
2905 range_tree_vacate(alloctree, NULL, NULL);
2906
2907 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2908 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2909 & TXG_MASK]));
2910 ASSERT0(range_tree_space(msp->ms_freeing));
2911 ASSERT0(range_tree_space(msp->ms_checkpointing));
2912
2913 mutex_exit(&msp->ms_lock);
2914
2915 if (object != space_map_object(msp->ms_sm)) {
2916 object = space_map_object(msp->ms_sm);
2917 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2918 msp->ms_id, sizeof (uint64_t), &object, tx);
2919 }
2920 mutex_exit(&msp->ms_sync_lock);
2921 dmu_tx_commit(tx);
2922 }
2923
2924 /*
2925 * Called after a transaction group has completely synced to mark
2926 * all of the metaslab's free space as usable.
2927 */
2928 void
2929 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2930 {
2931 metaslab_group_t *mg = msp->ms_group;
2932 vdev_t *vd = mg->mg_vd;
2933 spa_t *spa = vd->vdev_spa;
2934 range_tree_t **defer_tree;
2935 int64_t alloc_delta, defer_delta;
2936 boolean_t defer_allowed = B_TRUE;
2937
2938 ASSERT(!vd->vdev_ishole);
2939
2940 mutex_enter(&msp->ms_lock);
2941
2942 /*
2943 * If this metaslab is just becoming available, initialize its
2944 * range trees and add its capacity to the vdev.
2945 */
2946 if (msp->ms_freed == NULL) {
2947 for (int t = 0; t < TXG_SIZE; t++) {
2948 ASSERT(msp->ms_allocating[t] == NULL);
2949
2950 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2951 }
2952
2953 ASSERT3P(msp->ms_freeing, ==, NULL);
2954 msp->ms_freeing = range_tree_create(NULL, NULL);
2955
2956 ASSERT3P(msp->ms_freed, ==, NULL);
2957 msp->ms_freed = range_tree_create(NULL, NULL);
2958
2959 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2960 ASSERT(msp->ms_defer[t] == NULL);
2961
2962 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2963 }
2964
2965 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2966 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2967
2968 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
2969 }
2970 ASSERT0(range_tree_space(msp->ms_freeing));
2971 ASSERT0(range_tree_space(msp->ms_checkpointing));
2972
2973 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2974
2975 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2976 metaslab_class_get_alloc(spa_normal_class(spa));
2977 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2978 defer_allowed = B_FALSE;
2979 }
2980
2981 defer_delta = 0;
2982 alloc_delta = msp->ms_allocated_this_txg -
2983 range_tree_space(msp->ms_freed);
2984 if (defer_allowed) {
2985 defer_delta = range_tree_space(msp->ms_freed) -
2986 range_tree_space(*defer_tree);
2987 } else {
2988 defer_delta -= range_tree_space(*defer_tree);
2989 }
2990
2991 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
2992 defer_delta, 0);
2993
2994 /*
2995 * If there's a metaslab_load() in progress, wait for it to complete
2996 * so that we have a consistent view of the in-core space map.
2997 */
2998 metaslab_load_wait(msp);
2999
3000 /*
3001 * Move the frees from the defer_tree back to the free
3002 * range tree (if it's loaded). Swap the freed_tree and
3003 * the defer_tree -- this is safe to do because we've
3004 * just emptied out the defer_tree.
3005 */
3006 range_tree_vacate(*defer_tree,
3007 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
3008 if (defer_allowed) {
3009 range_tree_swap(&msp->ms_freed, defer_tree);
3010 } else {
3011 range_tree_vacate(msp->ms_freed,
3012 msp->ms_loaded ? range_tree_add : NULL,
3013 msp->ms_allocatable);
3014 }
3015
3016 msp->ms_synced_length = space_map_length(msp->ms_sm);
3017
3018 msp->ms_deferspace += defer_delta;
3019 ASSERT3S(msp->ms_deferspace, >=, 0);
3020 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
3021 if (msp->ms_deferspace != 0) {
3022 /*
3023 * Keep syncing this metaslab until all deferred frees
3024 * are back in circulation.
3025 */
3026 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3027 }
3028 metaslab_aux_histograms_update_done(msp, defer_allowed);
3029
3030 if (msp->ms_new) {
3031 msp->ms_new = B_FALSE;
3032 mutex_enter(&mg->mg_lock);
3033 mg->mg_ms_ready++;
3034 mutex_exit(&mg->mg_lock);
3035 }
3036
3037 /*
3038 * Re-sort metaslab within its group now that we've adjusted
3039 * its allocatable space.
3040 */
3041 metaslab_recalculate_weight_and_sort(msp);
3042
3043 /*
3044 * If the metaslab is loaded and we've not tried to load or allocate
3045 * from it in 'metaslab_unload_delay' txgs, then unload it.
3046 */
3047 if (msp->ms_loaded &&
3048 msp->ms_initializing == 0 &&
3049 msp->ms_selected_txg + metaslab_unload_delay < txg) {
3050
3051 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3052 VERIFY0(range_tree_space(
3053 msp->ms_allocating[(txg + t) & TXG_MASK]));
3054 }
3055 if (msp->ms_allocator != -1) {
3056 metaslab_passivate(msp, msp->ms_weight &
3057 ~METASLAB_ACTIVE_MASK);
3058 }
3059
3060 if (!metaslab_debug_unload)
3061 metaslab_unload(msp);
3062 }
3063
3064 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3065 ASSERT0(range_tree_space(msp->ms_freeing));
3066 ASSERT0(range_tree_space(msp->ms_freed));
3067 ASSERT0(range_tree_space(msp->ms_checkpointing));
3068
3069 msp->ms_allocated_this_txg = 0;
3070 mutex_exit(&msp->ms_lock);
3071 }
3072
3073 void
3074 metaslab_sync_reassess(metaslab_group_t *mg)
3075 {
3076 spa_t *spa = mg->mg_class->mc_spa;
3077
3078 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3079 metaslab_group_alloc_update(mg);
3080 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
3081
3082 /*
3083 * Preload the next potential metaslabs but only on active
3084 * metaslab groups. We can get into a state where the metaslab
3085 * is no longer active since we dirty metaslabs as we remove a
3086 * a device, thus potentially making the metaslab group eligible
3087 * for preloading.
3088 */
3089 if (mg->mg_activation_count > 0) {
3090 metaslab_group_preload(mg);
3091 }
3092 spa_config_exit(spa, SCL_ALLOC, FTAG);
3093 }
3094
3095 /*
3096 * When writing a ditto block (i.e. more than one DVA for a given BP) on
3097 * the same vdev as an existing DVA of this BP, then try to allocate it
3098 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
3099 */
3100 static boolean_t
3101 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
3102 {
3103 uint64_t dva_ms_id;
3104
3105 if (DVA_GET_ASIZE(dva) == 0)
3106 return (B_TRUE);
3107
3108 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
3109 return (B_TRUE);
3110
3111 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
3112
3113 return (msp->ms_id != dva_ms_id);
3114 }
3115
3116 /*
3117 * ==========================================================================
3118 * Metaslab allocation tracing facility
3119 * ==========================================================================
3120 */
3121 #ifdef _METASLAB_TRACING
3122 kstat_t *metaslab_trace_ksp;
3123 kstat_named_t metaslab_trace_over_limit;
3124
3125 void
3126 metaslab_alloc_trace_init(void)
3127 {
3128 ASSERT(metaslab_alloc_trace_cache == NULL);
3129 metaslab_alloc_trace_cache = kmem_cache_create(
3130 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
3131 0, NULL, NULL, NULL, NULL, NULL, 0);
3132 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
3133 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
3134 if (metaslab_trace_ksp != NULL) {
3135 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
3136 kstat_named_init(&metaslab_trace_over_limit,
3137 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
3138 kstat_install(metaslab_trace_ksp);
3139 }
3140 }
3141
3142 void
3143 metaslab_alloc_trace_fini(void)
3144 {
3145 if (metaslab_trace_ksp != NULL) {
3146 kstat_delete(metaslab_trace_ksp);
3147 metaslab_trace_ksp = NULL;
3148 }
3149 kmem_cache_destroy(metaslab_alloc_trace_cache);
3150 metaslab_alloc_trace_cache = NULL;
3151 }
3152
3153 /*
3154 * Add an allocation trace element to the allocation tracing list.
3155 */
3156 static void
3157 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
3158 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
3159 int allocator)
3160 {
3161 metaslab_alloc_trace_t *mat;
3162
3163 if (!metaslab_trace_enabled)
3164 return;
3165
3166 /*
3167 * When the tracing list reaches its maximum we remove
3168 * the second element in the list before adding a new one.
3169 * By removing the second element we preserve the original
3170 * entry as a clue to what allocations steps have already been
3171 * performed.
3172 */
3173 if (zal->zal_size == metaslab_trace_max_entries) {
3174 metaslab_alloc_trace_t *mat_next;
3175 #ifdef DEBUG
3176 panic("too many entries in allocation list");
3177 #endif
3178 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
3179 zal->zal_size--;
3180 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
3181 list_remove(&zal->zal_list, mat_next);
3182 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
3183 }
3184
3185 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
3186 list_link_init(&mat->mat_list_node);
3187 mat->mat_mg = mg;
3188 mat->mat_msp = msp;
3189 mat->mat_size = psize;
3190 mat->mat_dva_id = dva_id;
3191 mat->mat_offset = offset;
3192 mat->mat_weight = 0;
3193 mat->mat_allocator = allocator;
3194
3195 if (msp != NULL)
3196 mat->mat_weight = msp->ms_weight;
3197
3198 /*
3199 * The list is part of the zio so locking is not required. Only
3200 * a single thread will perform allocations for a given zio.
3201 */
3202 list_insert_tail(&zal->zal_list, mat);
3203 zal->zal_size++;
3204
3205 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
3206 }
3207
3208 void
3209 metaslab_trace_init(zio_alloc_list_t *zal)
3210 {
3211 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
3212 offsetof(metaslab_alloc_trace_t, mat_list_node));
3213 zal->zal_size = 0;
3214 }
3215
3216 void
3217 metaslab_trace_fini(zio_alloc_list_t *zal)
3218 {
3219 metaslab_alloc_trace_t *mat;
3220
3221 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
3222 kmem_cache_free(metaslab_alloc_trace_cache, mat);
3223 list_destroy(&zal->zal_list);
3224 zal->zal_size = 0;
3225 }
3226 #else
3227
3228 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
3229
3230 void
3231 metaslab_alloc_trace_init(void)
3232 {
3233 }
3234
3235 void
3236 metaslab_alloc_trace_fini(void)
3237 {
3238 }
3239
3240 void
3241 metaslab_trace_init(zio_alloc_list_t *zal)
3242 {
3243 }
3244
3245 void
3246 metaslab_trace_fini(zio_alloc_list_t *zal)
3247 {
3248 }
3249
3250 #endif /* _METASLAB_TRACING */
3251
3252 /*
3253 * ==========================================================================
3254 * Metaslab block operations
3255 * ==========================================================================
3256 */
3257
3258 static void
3259 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
3260 int allocator)
3261 {
3262 if (!(flags & METASLAB_ASYNC_ALLOC) ||
3263 (flags & METASLAB_DONT_THROTTLE))
3264 return;
3265
3266 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3267 if (!mg->mg_class->mc_alloc_throttle_enabled)
3268 return;
3269
3270 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
3271 }
3272
3273 static void
3274 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
3275 {
3276 uint64_t max = mg->mg_max_alloc_queue_depth;
3277 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3278 while (cur < max) {
3279 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
3280 cur, cur + 1) == cur) {
3281 atomic_inc_64(
3282 &mg->mg_class->mc_alloc_max_slots[allocator]);
3283 return;
3284 }
3285 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3286 }
3287 }
3288
3289 void
3290 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
3291 int allocator, boolean_t io_complete)
3292 {
3293 if (!(flags & METASLAB_ASYNC_ALLOC) ||
3294 (flags & METASLAB_DONT_THROTTLE))
3295 return;
3296
3297 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3298 if (!mg->mg_class->mc_alloc_throttle_enabled)
3299 return;
3300
3301 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
3302 if (io_complete)
3303 metaslab_group_increment_qdepth(mg, allocator);
3304 }
3305
3306 void
3307 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
3308 int allocator)
3309 {
3310 #ifdef ZFS_DEBUG
3311 const dva_t *dva = bp->blk_dva;
3312 int ndvas = BP_GET_NDVAS(bp);
3313
3314 for (int d = 0; d < ndvas; d++) {
3315 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
3316 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3317 VERIFY(zfs_refcount_not_held(
3318 &mg->mg_alloc_queue_depth[allocator], tag));
3319 }
3320 #endif
3321 }
3322
3323 static uint64_t
3324 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
3325 {
3326 uint64_t start;
3327 range_tree_t *rt = msp->ms_allocatable;
3328 metaslab_class_t *mc = msp->ms_group->mg_class;
3329
3330 VERIFY(!msp->ms_condensing);
3331 VERIFY0(msp->ms_initializing);
3332
3333 start = mc->mc_ops->msop_alloc(msp, size);
3334 if (start != -1ULL) {
3335 metaslab_group_t *mg = msp->ms_group;
3336 vdev_t *vd = mg->mg_vd;
3337
3338 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
3339 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3340 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
3341 range_tree_remove(rt, start, size);
3342
3343 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3344 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3345
3346 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3347
3348 /* Track the last successful allocation */
3349 msp->ms_alloc_txg = txg;
3350 metaslab_verify_space(msp, txg);
3351 }
3352
3353 /*
3354 * Now that we've attempted the allocation we need to update the
3355 * metaslab's maximum block size since it may have changed.
3356 */
3357 msp->ms_max_size = metaslab_block_maxsize(msp);
3358 return (start);
3359 }
3360
3361 /*
3362 * Find the metaslab with the highest weight that is less than what we've
3363 * already tried. In the common case, this means that we will examine each
3364 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3365 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3366 * activated by another thread, and we fail to allocate from the metaslab we
3367 * have selected, we may not try the newly-activated metaslab, and instead
3368 * activate another metaslab. This is not optimal, but generally does not cause
3369 * any problems (a possible exception being if every metaslab is completely full
3370 * except for the the newly-activated metaslab which we fail to examine).
3371 */
3372 static metaslab_t *
3373 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3374 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
3375 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3376 {
3377 avl_index_t idx;
3378 avl_tree_t *t = &mg->mg_metaslab_tree;
3379 metaslab_t *msp = avl_find(t, search, &idx);
3380 if (msp == NULL)
3381 msp = avl_nearest(t, idx, AVL_AFTER);
3382
3383 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3384 int i;
3385 if (!metaslab_should_allocate(msp, asize)) {
3386 metaslab_trace_add(zal, mg, msp, asize, d,
3387 TRACE_TOO_SMALL, allocator);
3388 continue;
3389 }
3390
3391 /*
3392 * If the selected metaslab is condensing or being
3393 * initialized, skip it.
3394 */
3395 if (msp->ms_condensing || msp->ms_initializing > 0)
3396 continue;
3397
3398 *was_active = msp->ms_allocator != -1;
3399 /*
3400 * If we're activating as primary, this is our first allocation
3401 * from this disk, so we don't need to check how close we are.
3402 * If the metaslab under consideration was already active,
3403 * we're getting desperate enough to steal another allocator's
3404 * metaslab, so we still don't care about distances.
3405 */
3406 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3407 break;
3408
3409 for (i = 0; i < d; i++) {
3410 if (want_unique &&
3411 !metaslab_is_unique(msp, &dva[i]))
3412 break; /* try another metaslab */
3413 }
3414 if (i == d)
3415 break;
3416 }
3417
3418 if (msp != NULL) {
3419 search->ms_weight = msp->ms_weight;
3420 search->ms_start = msp->ms_start + 1;
3421 search->ms_allocator = msp->ms_allocator;
3422 search->ms_primary = msp->ms_primary;
3423 }
3424 return (msp);
3425 }
3426
3427 /* ARGSUSED */
3428 static uint64_t
3429 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3430 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3431 int d, int allocator)
3432 {
3433 metaslab_t *msp = NULL;
3434 uint64_t offset = -1ULL;
3435 uint64_t activation_weight;
3436
3437 activation_weight = METASLAB_WEIGHT_PRIMARY;
3438 for (int i = 0; i < d; i++) {
3439 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3440 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3441 activation_weight = METASLAB_WEIGHT_SECONDARY;
3442 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3443 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3444 activation_weight = METASLAB_WEIGHT_CLAIM;
3445 break;
3446 }
3447 }
3448
3449 /*
3450 * If we don't have enough metaslabs active to fill the entire array, we
3451 * just use the 0th slot.
3452 */
3453 if (mg->mg_ms_ready < mg->mg_allocators * 3)
3454 allocator = 0;
3455
3456 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3457
3458 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3459 search->ms_weight = UINT64_MAX;
3460 search->ms_start = 0;
3461 /*
3462 * At the end of the metaslab tree are the already-active metaslabs,
3463 * first the primaries, then the secondaries. When we resume searching
3464 * through the tree, we need to consider ms_allocator and ms_primary so
3465 * we start in the location right after where we left off, and don't
3466 * accidentally loop forever considering the same metaslabs.
3467 */
3468 search->ms_allocator = -1;
3469 search->ms_primary = B_TRUE;
3470 for (;;) {
3471 boolean_t was_active = B_FALSE;
3472
3473 mutex_enter(&mg->mg_lock);
3474
3475 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3476 mg->mg_primaries[allocator] != NULL) {
3477 msp = mg->mg_primaries[allocator];
3478 was_active = B_TRUE;
3479 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3480 mg->mg_secondaries[allocator] != NULL) {
3481 msp = mg->mg_secondaries[allocator];
3482 was_active = B_TRUE;
3483 } else {
3484 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3485 want_unique, asize, allocator, zal, search,
3486 &was_active);
3487 }
3488
3489 mutex_exit(&mg->mg_lock);
3490 if (msp == NULL) {
3491 kmem_free(search, sizeof (*search));
3492 return (-1ULL);
3493 }
3494
3495 mutex_enter(&msp->ms_lock);
3496 /*
3497 * Ensure that the metaslab we have selected is still
3498 * capable of handling our request. It's possible that
3499 * another thread may have changed the weight while we
3500 * were blocked on the metaslab lock. We check the
3501 * active status first to see if we need to reselect
3502 * a new metaslab.
3503 */
3504 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3505 mutex_exit(&msp->ms_lock);
3506 continue;
3507 }
3508
3509 /*
3510 * If the metaslab is freshly activated for an allocator that
3511 * isn't the one we're allocating from, or if it's a primary and
3512 * we're seeking a secondary (or vice versa), we go back and
3513 * select a new metaslab.
3514 */
3515 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3516 (msp->ms_allocator != -1) &&
3517 (msp->ms_allocator != allocator || ((activation_weight ==
3518 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3519 mutex_exit(&msp->ms_lock);
3520 continue;
3521 }
3522
3523 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3524 activation_weight != METASLAB_WEIGHT_CLAIM) {
3525 metaslab_passivate(msp, msp->ms_weight &
3526 ~METASLAB_WEIGHT_CLAIM);
3527 mutex_exit(&msp->ms_lock);
3528 continue;
3529 }
3530
3531 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3532 mutex_exit(&msp->ms_lock);
3533 continue;
3534 }
3535
3536 msp->ms_selected_txg = txg;
3537
3538 /*
3539 * Now that we have the lock, recheck to see if we should
3540 * continue to use this metaslab for this allocation. The
3541 * the metaslab is now loaded so metaslab_should_allocate() can
3542 * accurately determine if the allocation attempt should
3543 * proceed.
3544 */
3545 if (!metaslab_should_allocate(msp, asize)) {
3546 /* Passivate this metaslab and select a new one. */
3547 metaslab_trace_add(zal, mg, msp, asize, d,
3548 TRACE_TOO_SMALL, allocator);
3549 goto next;
3550 }
3551
3552
3553 /*
3554 * If this metaslab is currently condensing then pick again as
3555 * we can't manipulate this metaslab until it's committed
3556 * to disk. If this metaslab is being initialized, we shouldn't
3557 * allocate from it since the allocated region might be
3558 * overwritten after allocation.
3559 */
3560 if (msp->ms_condensing) {
3561 metaslab_trace_add(zal, mg, msp, asize, d,
3562 TRACE_CONDENSING, allocator);
3563 metaslab_passivate(msp, msp->ms_weight &
3564 ~METASLAB_ACTIVE_MASK);
3565 mutex_exit(&msp->ms_lock);
3566 continue;
3567 } else if (msp->ms_initializing > 0) {
3568 metaslab_trace_add(zal, mg, msp, asize, d,
3569 TRACE_INITIALIZING, allocator);
3570 metaslab_passivate(msp, msp->ms_weight &
3571 ~METASLAB_ACTIVE_MASK);
3572 mutex_exit(&msp->ms_lock);
3573 continue;
3574 }
3575
3576 offset = metaslab_block_alloc(msp, asize, txg);
3577 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3578
3579 if (offset != -1ULL) {
3580 /* Proactively passivate the metaslab, if needed */
3581 metaslab_segment_may_passivate(msp);
3582 break;
3583 }
3584 next:
3585 ASSERT(msp->ms_loaded);
3586
3587 /*
3588 * We were unable to allocate from this metaslab so determine
3589 * a new weight for this metaslab. Now that we have loaded
3590 * the metaslab we can provide a better hint to the metaslab
3591 * selector.
3592 *
3593 * For space-based metaslabs, we use the maximum block size.
3594 * This information is only available when the metaslab
3595 * is loaded and is more accurate than the generic free
3596 * space weight that was calculated by metaslab_weight().
3597 * This information allows us to quickly compare the maximum
3598 * available allocation in the metaslab to the allocation
3599 * size being requested.
3600 *
3601 * For segment-based metaslabs, determine the new weight
3602 * based on the highest bucket in the range tree. We
3603 * explicitly use the loaded segment weight (i.e. the range
3604 * tree histogram) since it contains the space that is
3605 * currently available for allocation and is accurate
3606 * even within a sync pass.
3607 */
3608 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3609 uint64_t weight = metaslab_block_maxsize(msp);
3610 WEIGHT_SET_SPACEBASED(weight);
3611 metaslab_passivate(msp, weight);
3612 } else {
3613 metaslab_passivate(msp,
3614 metaslab_weight_from_range_tree(msp));
3615 }
3616
3617 /*
3618 * We have just failed an allocation attempt, check
3619 * that metaslab_should_allocate() agrees. Otherwise,
3620 * we may end up in an infinite loop retrying the same
3621 * metaslab.
3622 */
3623 ASSERT(!metaslab_should_allocate(msp, asize));
3624
3625 mutex_exit(&msp->ms_lock);
3626 }
3627 mutex_exit(&msp->ms_lock);
3628 kmem_free(search, sizeof (*search));
3629 return (offset);
3630 }
3631
3632 static uint64_t
3633 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3634 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3635 int d, int allocator)
3636 {
3637 uint64_t offset;
3638 ASSERT(mg->mg_initialized);
3639
3640 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3641 dva, d, allocator);
3642
3643 mutex_enter(&mg->mg_lock);
3644 if (offset == -1ULL) {
3645 mg->mg_failed_allocations++;
3646 metaslab_trace_add(zal, mg, NULL, asize, d,
3647 TRACE_GROUP_FAILURE, allocator);
3648 if (asize == SPA_GANGBLOCKSIZE) {
3649 /*
3650 * This metaslab group was unable to allocate
3651 * the minimum gang block size so it must be out of
3652 * space. We must notify the allocation throttle
3653 * to start skipping allocation attempts to this
3654 * metaslab group until more space becomes available.
3655 * Note: this failure cannot be caused by the
3656 * allocation throttle since the allocation throttle
3657 * is only responsible for skipping devices and
3658 * not failing block allocations.
3659 */
3660 mg->mg_no_free_space = B_TRUE;
3661 }
3662 }
3663 mg->mg_allocations++;
3664 mutex_exit(&mg->mg_lock);
3665 return (offset);
3666 }
3667
3668 /*
3669 * Allocate a block for the specified i/o.
3670 */
3671 int
3672 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3673 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3674 zio_alloc_list_t *zal, int allocator)
3675 {
3676 metaslab_group_t *mg, *fast_mg, *rotor;
3677 vdev_t *vd;
3678 boolean_t try_hard = B_FALSE;
3679
3680 ASSERT(!DVA_IS_VALID(&dva[d]));
3681
3682 /*
3683 * For testing, make some blocks above a certain size be gang blocks.
3684 * This will result in more split blocks when using device removal,
3685 * and a large number of split blocks coupled with ztest-induced
3686 * damage can result in extremely long reconstruction times. This
3687 * will also test spilling from special to normal.
3688 */
3689 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
3690 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3691 allocator);
3692 return (SET_ERROR(ENOSPC));
3693 }
3694
3695 /*
3696 * Start at the rotor and loop through all mgs until we find something.
3697 * Note that there's no locking on mc_rotor or mc_aliquot because
3698 * nothing actually breaks if we miss a few updates -- we just won't
3699 * allocate quite as evenly. It all balances out over time.
3700 *
3701 * If we are doing ditto or log blocks, try to spread them across
3702 * consecutive vdevs. If we're forced to reuse a vdev before we've
3703 * allocated all of our ditto blocks, then try and spread them out on
3704 * that vdev as much as possible. If it turns out to not be possible,
3705 * gradually lower our standards until anything becomes acceptable.
3706 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3707 * gives us hope of containing our fault domains to something we're
3708 * able to reason about. Otherwise, any two top-level vdev failures
3709 * will guarantee the loss of data. With consecutive allocation,
3710 * only two adjacent top-level vdev failures will result in data loss.
3711 *
3712 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3713 * ourselves on the same vdev as our gang block header. That
3714 * way, we can hope for locality in vdev_cache, plus it makes our
3715 * fault domains something tractable.
3716 */
3717 if (hintdva) {
3718 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3719
3720 /*
3721 * It's possible the vdev we're using as the hint no
3722 * longer exists or its mg has been closed (e.g. by
3723 * device removal). Consult the rotor when
3724 * all else fails.
3725 */
3726 if (vd != NULL && vd->vdev_mg != NULL) {
3727 mg = vd->vdev_mg;
3728
3729 if (flags & METASLAB_HINTBP_AVOID &&
3730 mg->mg_next != NULL)
3731 mg = mg->mg_next;
3732 } else {
3733 mg = mc->mc_rotor;
3734 }
3735 } else if (d != 0) {
3736 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3737 mg = vd->vdev_mg->mg_next;
3738 } else if (flags & METASLAB_FASTWRITE) {
3739 mg = fast_mg = mc->mc_rotor;
3740
3741 do {
3742 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3743 mg->mg_vd->vdev_pending_fastwrite)
3744 mg = fast_mg;
3745 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3746
3747 } else {
3748 ASSERT(mc->mc_rotor != NULL);
3749 mg = mc->mc_rotor;
3750 }
3751
3752 /*
3753 * If the hint put us into the wrong metaslab class, or into a
3754 * metaslab group that has been passivated, just follow the rotor.
3755 */
3756 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3757 mg = mc->mc_rotor;
3758
3759 rotor = mg;
3760 top:
3761 do {
3762 boolean_t allocatable;
3763
3764 ASSERT(mg->mg_activation_count == 1);
3765 vd = mg->mg_vd;
3766
3767 /*
3768 * Don't allocate from faulted devices.
3769 */
3770 if (try_hard) {
3771 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3772 allocatable = vdev_allocatable(vd);
3773 spa_config_exit(spa, SCL_ZIO, FTAG);
3774 } else {
3775 allocatable = vdev_allocatable(vd);
3776 }
3777
3778 /*
3779 * Determine if the selected metaslab group is eligible
3780 * for allocations. If we're ganging then don't allow
3781 * this metaslab group to skip allocations since that would
3782 * inadvertently return ENOSPC and suspend the pool
3783 * even though space is still available.
3784 */
3785 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3786 allocatable = metaslab_group_allocatable(mg, rotor,
3787 psize, allocator, d);
3788 }
3789
3790 if (!allocatable) {
3791 metaslab_trace_add(zal, mg, NULL, psize, d,
3792 TRACE_NOT_ALLOCATABLE, allocator);
3793 goto next;
3794 }
3795
3796 ASSERT(mg->mg_initialized);
3797
3798 /*
3799 * Avoid writing single-copy data to a failing,
3800 * non-redundant vdev, unless we've already tried all
3801 * other vdevs.
3802 */
3803 if ((vd->vdev_stat.vs_write_errors > 0 ||
3804 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3805 d == 0 && !try_hard && vd->vdev_children == 0) {
3806 metaslab_trace_add(zal, mg, NULL, psize, d,
3807 TRACE_VDEV_ERROR, allocator);
3808 goto next;
3809 }
3810
3811 ASSERT(mg->mg_class == mc);
3812
3813 uint64_t asize = vdev_psize_to_asize(vd, psize);
3814 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3815
3816 /*
3817 * If we don't need to try hard, then require that the
3818 * block be on an different metaslab from any other DVAs
3819 * in this BP (unique=true). If we are trying hard, then
3820 * allow any metaslab to be used (unique=false).
3821 */
3822 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3823 !try_hard, dva, d, allocator);
3824
3825 if (offset != -1ULL) {
3826 /*
3827 * If we've just selected this metaslab group,
3828 * figure out whether the corresponding vdev is
3829 * over- or under-used relative to the pool,
3830 * and set an allocation bias to even it out.
3831 *
3832 * Bias is also used to compensate for unequally
3833 * sized vdevs so that space is allocated fairly.
3834 */
3835 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3836 vdev_stat_t *vs = &vd->vdev_stat;
3837 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3838 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3839 int64_t ratio;
3840
3841 /*
3842 * Calculate how much more or less we should
3843 * try to allocate from this device during
3844 * this iteration around the rotor.
3845 *
3846 * This basically introduces a zero-centered
3847 * bias towards the devices with the most
3848 * free space, while compensating for vdev
3849 * size differences.
3850 *
3851 * Examples:
3852 * vdev V1 = 16M/128M
3853 * vdev V2 = 16M/128M
3854 * ratio(V1) = 100% ratio(V2) = 100%
3855 *
3856 * vdev V1 = 16M/128M
3857 * vdev V2 = 64M/128M
3858 * ratio(V1) = 127% ratio(V2) = 72%
3859 *
3860 * vdev V1 = 16M/128M
3861 * vdev V2 = 64M/512M
3862 * ratio(V1) = 40% ratio(V2) = 160%
3863 */
3864 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3865 (mc_free + 1);
3866 mg->mg_bias = ((ratio - 100) *
3867 (int64_t)mg->mg_aliquot) / 100;
3868 } else if (!metaslab_bias_enabled) {
3869 mg->mg_bias = 0;
3870 }
3871
3872 if ((flags & METASLAB_FASTWRITE) ||
3873 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3874 mg->mg_aliquot + mg->mg_bias) {
3875 mc->mc_rotor = mg->mg_next;
3876 mc->mc_aliquot = 0;
3877 }
3878
3879 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3880 DVA_SET_OFFSET(&dva[d], offset);
3881 DVA_SET_GANG(&dva[d],
3882 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3883 DVA_SET_ASIZE(&dva[d], asize);
3884
3885 if (flags & METASLAB_FASTWRITE) {
3886 atomic_add_64(&vd->vdev_pending_fastwrite,
3887 psize);
3888 }
3889
3890 return (0);
3891 }
3892 next:
3893 mc->mc_rotor = mg->mg_next;
3894 mc->mc_aliquot = 0;
3895 } while ((mg = mg->mg_next) != rotor);
3896
3897 /*
3898 * If we haven't tried hard, do so now.
3899 */
3900 if (!try_hard) {
3901 try_hard = B_TRUE;
3902 goto top;
3903 }
3904
3905 bzero(&dva[d], sizeof (dva_t));
3906
3907 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3908 return (SET_ERROR(ENOSPC));
3909 }
3910
3911 void
3912 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3913 boolean_t checkpoint)
3914 {
3915 metaslab_t *msp;
3916 spa_t *spa = vd->vdev_spa;
3917
3918 ASSERT(vdev_is_concrete(vd));
3919 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3920 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3921
3922 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3923
3924 VERIFY(!msp->ms_condensing);
3925 VERIFY3U(offset, >=, msp->ms_start);
3926 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3927 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3928 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3929
3930 metaslab_check_free_impl(vd, offset, asize);
3931
3932 mutex_enter(&msp->ms_lock);
3933 if (range_tree_is_empty(msp->ms_freeing) &&
3934 range_tree_is_empty(msp->ms_checkpointing)) {
3935 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3936 }
3937
3938 if (checkpoint) {
3939 ASSERT(spa_has_checkpoint(spa));
3940 range_tree_add(msp->ms_checkpointing, offset, asize);
3941 } else {
3942 range_tree_add(msp->ms_freeing, offset, asize);
3943 }
3944 mutex_exit(&msp->ms_lock);
3945 }
3946
3947 /* ARGSUSED */
3948 void
3949 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3950 uint64_t size, void *arg)
3951 {
3952 boolean_t *checkpoint = arg;
3953
3954 ASSERT3P(checkpoint, !=, NULL);
3955
3956 if (vd->vdev_ops->vdev_op_remap != NULL)
3957 vdev_indirect_mark_obsolete(vd, offset, size);
3958 else
3959 metaslab_free_impl(vd, offset, size, *checkpoint);
3960 }
3961
3962 static void
3963 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3964 boolean_t checkpoint)
3965 {
3966 spa_t *spa = vd->vdev_spa;
3967
3968 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3969
3970 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3971 return;
3972
3973 if (spa->spa_vdev_removal != NULL &&
3974 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3975 vdev_is_concrete(vd)) {
3976 /*
3977 * Note: we check if the vdev is concrete because when
3978 * we complete the removal, we first change the vdev to be
3979 * an indirect vdev (in open context), and then (in syncing
3980 * context) clear spa_vdev_removal.
3981 */
3982 free_from_removing_vdev(vd, offset, size);
3983 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3984 vdev_indirect_mark_obsolete(vd, offset, size);
3985 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3986 metaslab_free_impl_cb, &checkpoint);
3987 } else {
3988 metaslab_free_concrete(vd, offset, size, checkpoint);
3989 }
3990 }
3991
3992 typedef struct remap_blkptr_cb_arg {
3993 blkptr_t *rbca_bp;
3994 spa_remap_cb_t rbca_cb;
3995 vdev_t *rbca_remap_vd;
3996 uint64_t rbca_remap_offset;
3997 void *rbca_cb_arg;
3998 } remap_blkptr_cb_arg_t;
3999
4000 void
4001 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4002 uint64_t size, void *arg)
4003 {
4004 remap_blkptr_cb_arg_t *rbca = arg;
4005 blkptr_t *bp = rbca->rbca_bp;
4006
4007 /* We can not remap split blocks. */
4008 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
4009 return;
4010 ASSERT0(inner_offset);
4011
4012 if (rbca->rbca_cb != NULL) {
4013 /*
4014 * At this point we know that we are not handling split
4015 * blocks and we invoke the callback on the previous
4016 * vdev which must be indirect.
4017 */
4018 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
4019
4020 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
4021 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
4022
4023 /* set up remap_blkptr_cb_arg for the next call */
4024 rbca->rbca_remap_vd = vd;
4025 rbca->rbca_remap_offset = offset;
4026 }
4027
4028 /*
4029 * The phys birth time is that of dva[0]. This ensures that we know
4030 * when each dva was written, so that resilver can determine which
4031 * blocks need to be scrubbed (i.e. those written during the time
4032 * the vdev was offline). It also ensures that the key used in
4033 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
4034 * we didn't change the phys_birth, a lookup in the ARC for a
4035 * remapped BP could find the data that was previously stored at
4036 * this vdev + offset.
4037 */
4038 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
4039 DVA_GET_VDEV(&bp->blk_dva[0]));
4040 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
4041 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
4042 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
4043
4044 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
4045 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
4046 }
4047
4048 /*
4049 * If the block pointer contains any indirect DVAs, modify them to refer to
4050 * concrete DVAs. Note that this will sometimes not be possible, leaving
4051 * the indirect DVA in place. This happens if the indirect DVA spans multiple
4052 * segments in the mapping (i.e. it is a "split block").
4053 *
4054 * If the BP was remapped, calls the callback on the original dva (note the
4055 * callback can be called multiple times if the original indirect DVA refers
4056 * to another indirect DVA, etc).
4057 *
4058 * Returns TRUE if the BP was remapped.
4059 */
4060 boolean_t
4061 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
4062 {
4063 remap_blkptr_cb_arg_t rbca;
4064
4065 if (!zfs_remap_blkptr_enable)
4066 return (B_FALSE);
4067
4068 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
4069 return (B_FALSE);
4070
4071 /*
4072 * Dedup BP's can not be remapped, because ddt_phys_select() depends
4073 * on DVA[0] being the same in the BP as in the DDT (dedup table).
4074 */
4075 if (BP_GET_DEDUP(bp))
4076 return (B_FALSE);
4077
4078 /*
4079 * Gang blocks can not be remapped, because
4080 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
4081 * the BP used to read the gang block header (GBH) being the same
4082 * as the DVA[0] that we allocated for the GBH.
4083 */
4084 if (BP_IS_GANG(bp))
4085 return (B_FALSE);
4086
4087 /*
4088 * Embedded BP's have no DVA to remap.
4089 */
4090 if (BP_GET_NDVAS(bp) < 1)
4091 return (B_FALSE);
4092
4093 /*
4094 * Note: we only remap dva[0]. If we remapped other dvas, we
4095 * would no longer know what their phys birth txg is.
4096 */
4097 dva_t *dva = &bp->blk_dva[0];
4098
4099 uint64_t offset = DVA_GET_OFFSET(dva);
4100 uint64_t size = DVA_GET_ASIZE(dva);
4101 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
4102
4103 if (vd->vdev_ops->vdev_op_remap == NULL)
4104 return (B_FALSE);
4105
4106 rbca.rbca_bp = bp;
4107 rbca.rbca_cb = callback;
4108 rbca.rbca_remap_vd = vd;
4109 rbca.rbca_remap_offset = offset;
4110 rbca.rbca_cb_arg = arg;
4111
4112 /*
4113 * remap_blkptr_cb() will be called in order for each level of
4114 * indirection, until a concrete vdev is reached or a split block is
4115 * encountered. old_vd and old_offset are updated within the callback
4116 * as we go from the one indirect vdev to the next one (either concrete
4117 * or indirect again) in that order.
4118 */
4119 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
4120
4121 /* Check if the DVA wasn't remapped because it is a split block */
4122 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
4123 return (B_FALSE);
4124
4125 return (B_TRUE);
4126 }
4127
4128 /*
4129 * Undo the allocation of a DVA which happened in the given transaction group.
4130 */
4131 void
4132 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4133 {
4134 metaslab_t *msp;
4135 vdev_t *vd;
4136 uint64_t vdev = DVA_GET_VDEV(dva);
4137 uint64_t offset = DVA_GET_OFFSET(dva);
4138 uint64_t size = DVA_GET_ASIZE(dva);
4139
4140 ASSERT(DVA_IS_VALID(dva));
4141 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4142
4143 if (txg > spa_freeze_txg(spa))
4144 return;
4145
4146 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
4147 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
4148 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
4149 (u_longlong_t)vdev, (u_longlong_t)offset,
4150 (u_longlong_t)size);
4151 return;
4152 }
4153
4154 ASSERT(!vd->vdev_removing);
4155 ASSERT(vdev_is_concrete(vd));
4156 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4157 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
4158
4159 if (DVA_GET_GANG(dva))
4160 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4161
4162 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4163
4164 mutex_enter(&msp->ms_lock);
4165 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
4166 offset, size);
4167
4168 VERIFY(!msp->ms_condensing);
4169 VERIFY3U(offset, >=, msp->ms_start);
4170 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
4171 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
4172 msp->ms_size);
4173 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4174 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4175 range_tree_add(msp->ms_allocatable, offset, size);
4176 mutex_exit(&msp->ms_lock);
4177 }
4178
4179 /*
4180 * Free the block represented by the given DVA.
4181 */
4182 void
4183 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
4184 {
4185 uint64_t vdev = DVA_GET_VDEV(dva);
4186 uint64_t offset = DVA_GET_OFFSET(dva);
4187 uint64_t size = DVA_GET_ASIZE(dva);
4188 vdev_t *vd = vdev_lookup_top(spa, vdev);
4189
4190 ASSERT(DVA_IS_VALID(dva));
4191 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4192
4193 if (DVA_GET_GANG(dva)) {
4194 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4195 }
4196
4197 metaslab_free_impl(vd, offset, size, checkpoint);
4198 }
4199
4200 /*
4201 * Reserve some allocation slots. The reservation system must be called
4202 * before we call into the allocator. If there aren't any available slots
4203 * then the I/O will be throttled until an I/O completes and its slots are
4204 * freed up. The function returns true if it was successful in placing
4205 * the reservation.
4206 */
4207 boolean_t
4208 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
4209 zio_t *zio, int flags)
4210 {
4211 uint64_t available_slots = 0;
4212 boolean_t slot_reserved = B_FALSE;
4213 uint64_t max = mc->mc_alloc_max_slots[allocator];
4214
4215 ASSERT(mc->mc_alloc_throttle_enabled);
4216 mutex_enter(&mc->mc_lock);
4217
4218 uint64_t reserved_slots =
4219 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
4220 if (reserved_slots < max)
4221 available_slots = max - reserved_slots;
4222
4223 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
4224 flags & METASLAB_MUST_RESERVE) {
4225 /*
4226 * We reserve the slots individually so that we can unreserve
4227 * them individually when an I/O completes.
4228 */
4229 for (int d = 0; d < slots; d++) {
4230 reserved_slots =
4231 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
4232 zio);
4233 }
4234 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
4235 slot_reserved = B_TRUE;
4236 }
4237
4238 mutex_exit(&mc->mc_lock);
4239 return (slot_reserved);
4240 }
4241
4242 void
4243 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
4244 int allocator, zio_t *zio)
4245 {
4246 ASSERT(mc->mc_alloc_throttle_enabled);
4247 mutex_enter(&mc->mc_lock);
4248 for (int d = 0; d < slots; d++) {
4249 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
4250 zio);
4251 }
4252 mutex_exit(&mc->mc_lock);
4253 }
4254
4255 static int
4256 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
4257 uint64_t txg)
4258 {
4259 metaslab_t *msp;
4260 spa_t *spa = vd->vdev_spa;
4261 int error = 0;
4262
4263 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
4264 return (SET_ERROR(ENXIO));
4265
4266 ASSERT3P(vd->vdev_ms, !=, NULL);
4267 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4268
4269 mutex_enter(&msp->ms_lock);
4270
4271 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
4272 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
4273 if (error == EBUSY) {
4274 ASSERT(msp->ms_loaded);
4275 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4276 error = 0;
4277 }
4278 }
4279
4280 if (error == 0 &&
4281 !range_tree_contains(msp->ms_allocatable, offset, size))
4282 error = SET_ERROR(ENOENT);
4283
4284 if (error || txg == 0) { /* txg == 0 indicates dry run */
4285 mutex_exit(&msp->ms_lock);
4286 return (error);
4287 }
4288
4289 VERIFY(!msp->ms_condensing);
4290 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4291 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4292 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
4293 msp->ms_size);
4294 range_tree_remove(msp->ms_allocatable, offset, size);
4295
4296 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
4297 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4298 vdev_dirty(vd, VDD_METASLAB, msp, txg);
4299 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
4300 offset, size);
4301 }
4302
4303 mutex_exit(&msp->ms_lock);
4304
4305 return (0);
4306 }
4307
4308 typedef struct metaslab_claim_cb_arg_t {
4309 uint64_t mcca_txg;
4310 int mcca_error;
4311 } metaslab_claim_cb_arg_t;
4312
4313 /* ARGSUSED */
4314 static void
4315 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4316 uint64_t size, void *arg)
4317 {
4318 metaslab_claim_cb_arg_t *mcca_arg = arg;
4319
4320 if (mcca_arg->mcca_error == 0) {
4321 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
4322 size, mcca_arg->mcca_txg);
4323 }
4324 }
4325
4326 int
4327 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
4328 {
4329 if (vd->vdev_ops->vdev_op_remap != NULL) {
4330 metaslab_claim_cb_arg_t arg;
4331
4332 /*
4333 * Only zdb(1M) can claim on indirect vdevs. This is used
4334 * to detect leaks of mapped space (that are not accounted
4335 * for in the obsolete counts, spacemap, or bpobj).
4336 */
4337 ASSERT(!spa_writeable(vd->vdev_spa));
4338 arg.mcca_error = 0;
4339 arg.mcca_txg = txg;
4340
4341 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4342 metaslab_claim_impl_cb, &arg);
4343
4344 if (arg.mcca_error == 0) {
4345 arg.mcca_error = metaslab_claim_concrete(vd,
4346 offset, size, txg);
4347 }
4348 return (arg.mcca_error);
4349 } else {
4350 return (metaslab_claim_concrete(vd, offset, size, txg));
4351 }
4352 }
4353
4354 /*
4355 * Intent log support: upon opening the pool after a crash, notify the SPA
4356 * of blocks that the intent log has allocated for immediate write, but
4357 * which are still considered free by the SPA because the last transaction
4358 * group didn't commit yet.
4359 */
4360 static int
4361 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4362 {
4363 uint64_t vdev = DVA_GET_VDEV(dva);
4364 uint64_t offset = DVA_GET_OFFSET(dva);
4365 uint64_t size = DVA_GET_ASIZE(dva);
4366 vdev_t *vd;
4367
4368 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4369 return (SET_ERROR(ENXIO));
4370 }
4371
4372 ASSERT(DVA_IS_VALID(dva));
4373
4374 if (DVA_GET_GANG(dva))
4375 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4376
4377 return (metaslab_claim_impl(vd, offset, size, txg));
4378 }
4379
4380 int
4381 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4382 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4383 zio_alloc_list_t *zal, zio_t *zio, int allocator)
4384 {
4385 dva_t *dva = bp->blk_dva;
4386 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
4387 int error = 0;
4388
4389 ASSERT(bp->blk_birth == 0);
4390 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4391
4392 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4393
4394 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4395 spa_config_exit(spa, SCL_ALLOC, FTAG);
4396 return (SET_ERROR(ENOSPC));
4397 }
4398
4399 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4400 ASSERT(BP_GET_NDVAS(bp) == 0);
4401 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4402 ASSERT3P(zal, !=, NULL);
4403
4404 for (int d = 0; d < ndvas; d++) {
4405 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4406 txg, flags, zal, allocator);
4407 if (error != 0) {
4408 for (d--; d >= 0; d--) {
4409 metaslab_unalloc_dva(spa, &dva[d], txg);
4410 metaslab_group_alloc_decrement(spa,
4411 DVA_GET_VDEV(&dva[d]), zio, flags,
4412 allocator, B_FALSE);
4413 bzero(&dva[d], sizeof (dva_t));
4414 }
4415 spa_config_exit(spa, SCL_ALLOC, FTAG);
4416 return (error);
4417 } else {
4418 /*
4419 * Update the metaslab group's queue depth
4420 * based on the newly allocated dva.
4421 */
4422 metaslab_group_alloc_increment(spa,
4423 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4424 }
4425
4426 }
4427 ASSERT(error == 0);
4428 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4429
4430 spa_config_exit(spa, SCL_ALLOC, FTAG);
4431
4432 BP_SET_BIRTH(bp, txg, 0);
4433
4434 return (0);
4435 }
4436
4437 void
4438 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4439 {
4440 const dva_t *dva = bp->blk_dva;
4441 int ndvas = BP_GET_NDVAS(bp);
4442
4443 ASSERT(!BP_IS_HOLE(bp));
4444 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4445
4446 /*
4447 * If we have a checkpoint for the pool we need to make sure that
4448 * the blocks that we free that are part of the checkpoint won't be
4449 * reused until the checkpoint is discarded or we revert to it.
4450 *
4451 * The checkpoint flag is passed down the metaslab_free code path
4452 * and is set whenever we want to add a block to the checkpoint's
4453 * accounting. That is, we "checkpoint" blocks that existed at the
4454 * time the checkpoint was created and are therefore referenced by
4455 * the checkpointed uberblock.
4456 *
4457 * Note that, we don't checkpoint any blocks if the current
4458 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4459 * normally as they will be referenced by the checkpointed uberblock.
4460 */
4461 boolean_t checkpoint = B_FALSE;
4462 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4463 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4464 /*
4465 * At this point, if the block is part of the checkpoint
4466 * there is no way it was created in the current txg.
4467 */
4468 ASSERT(!now);
4469 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4470 checkpoint = B_TRUE;
4471 }
4472
4473 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4474
4475 for (int d = 0; d < ndvas; d++) {
4476 if (now) {
4477 metaslab_unalloc_dva(spa, &dva[d], txg);
4478 } else {
4479 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4480 metaslab_free_dva(spa, &dva[d], checkpoint);
4481 }
4482 }
4483
4484 spa_config_exit(spa, SCL_FREE, FTAG);
4485 }
4486
4487 int
4488 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4489 {
4490 const dva_t *dva = bp->blk_dva;
4491 int ndvas = BP_GET_NDVAS(bp);
4492 int error = 0;
4493
4494 ASSERT(!BP_IS_HOLE(bp));
4495
4496 if (txg != 0) {
4497 /*
4498 * First do a dry run to make sure all DVAs are claimable,
4499 * so we don't have to unwind from partial failures below.
4500 */
4501 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4502 return (error);
4503 }
4504
4505 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4506
4507 for (int d = 0; d < ndvas; d++) {
4508 error = metaslab_claim_dva(spa, &dva[d], txg);
4509 if (error != 0)
4510 break;
4511 }
4512
4513 spa_config_exit(spa, SCL_ALLOC, FTAG);
4514
4515 ASSERT(error == 0 || txg == 0);
4516
4517 return (error);
4518 }
4519
4520 void
4521 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
4522 {
4523 const dva_t *dva = bp->blk_dva;
4524 int ndvas = BP_GET_NDVAS(bp);
4525 uint64_t psize = BP_GET_PSIZE(bp);
4526 int d;
4527 vdev_t *vd;
4528
4529 ASSERT(!BP_IS_HOLE(bp));
4530 ASSERT(!BP_IS_EMBEDDED(bp));
4531 ASSERT(psize > 0);
4532
4533 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4534
4535 for (d = 0; d < ndvas; d++) {
4536 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4537 continue;
4538 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4539 }
4540
4541 spa_config_exit(spa, SCL_VDEV, FTAG);
4542 }
4543
4544 void
4545 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
4546 {
4547 const dva_t *dva = bp->blk_dva;
4548 int ndvas = BP_GET_NDVAS(bp);
4549 uint64_t psize = BP_GET_PSIZE(bp);
4550 int d;
4551 vdev_t *vd;
4552
4553 ASSERT(!BP_IS_HOLE(bp));
4554 ASSERT(!BP_IS_EMBEDDED(bp));
4555 ASSERT(psize > 0);
4556
4557 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4558
4559 for (d = 0; d < ndvas; d++) {
4560 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4561 continue;
4562 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4563 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4564 }
4565
4566 spa_config_exit(spa, SCL_VDEV, FTAG);
4567 }
4568
4569 /* ARGSUSED */
4570 static void
4571 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4572 uint64_t size, void *arg)
4573 {
4574 if (vd->vdev_ops == &vdev_indirect_ops)
4575 return;
4576
4577 metaslab_check_free_impl(vd, offset, size);
4578 }
4579
4580 static void
4581 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4582 {
4583 metaslab_t *msp;
4584 ASSERTV(spa_t *spa = vd->vdev_spa);
4585
4586 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4587 return;
4588
4589 if (vd->vdev_ops->vdev_op_remap != NULL) {
4590 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4591 metaslab_check_free_impl_cb, NULL);
4592 return;
4593 }
4594
4595 ASSERT(vdev_is_concrete(vd));
4596 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4597 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4598
4599 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4600
4601 mutex_enter(&msp->ms_lock);
4602 if (msp->ms_loaded) {
4603 range_tree_verify_not_present(msp->ms_allocatable,
4604 offset, size);
4605 }
4606
4607 range_tree_verify_not_present(msp->ms_freeing, offset, size);
4608 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
4609 range_tree_verify_not_present(msp->ms_freed, offset, size);
4610 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4611 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
4612 mutex_exit(&msp->ms_lock);
4613 }
4614
4615 void
4616 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4617 {
4618 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4619 return;
4620
4621 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4622 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4623 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4624 vdev_t *vd = vdev_lookup_top(spa, vdev);
4625 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4626 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4627
4628 if (DVA_GET_GANG(&bp->blk_dva[i]))
4629 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4630
4631 ASSERT3P(vd, !=, NULL);
4632
4633 metaslab_check_free_impl(vd, offset, size);
4634 }
4635 spa_config_exit(spa, SCL_VDEV, FTAG);
4636 }
4637
4638 #if defined(_KERNEL)
4639 /* BEGIN CSTYLED */
4640 module_param(metaslab_aliquot, ulong, 0644);
4641 MODULE_PARM_DESC(metaslab_aliquot,
4642 "allocation granularity (a.k.a. stripe size)");
4643
4644 module_param(metaslab_debug_load, int, 0644);
4645 MODULE_PARM_DESC(metaslab_debug_load,
4646 "load all metaslabs when pool is first opened");
4647
4648 module_param(metaslab_debug_unload, int, 0644);
4649 MODULE_PARM_DESC(metaslab_debug_unload,
4650 "prevent metaslabs from being unloaded");
4651
4652 module_param(metaslab_preload_enabled, int, 0644);
4653 MODULE_PARM_DESC(metaslab_preload_enabled,
4654 "preload potential metaslabs during reassessment");
4655
4656 module_param(zfs_mg_noalloc_threshold, int, 0644);
4657 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4658 "percentage of free space for metaslab group to allow allocation");
4659
4660 module_param(zfs_mg_fragmentation_threshold, int, 0644);
4661 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4662 "fragmentation for metaslab group to allow allocation");
4663
4664 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
4665 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4666 "fragmentation for metaslab to allow allocation");
4667
4668 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
4669 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4670 "use the fragmentation metric to prefer less fragmented metaslabs");
4671
4672 module_param(metaslab_lba_weighting_enabled, int, 0644);
4673 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4674 "prefer metaslabs with lower LBAs");
4675
4676 module_param(metaslab_bias_enabled, int, 0644);
4677 MODULE_PARM_DESC(metaslab_bias_enabled,
4678 "enable metaslab group biasing");
4679
4680 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4681 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4682 "enable segment-based metaslab selection");
4683
4684 module_param(zfs_metaslab_switch_threshold, int, 0644);
4685 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4686 "segment-based metaslab selection maximum buckets before switching");
4687
4688 module_param(metaslab_force_ganging, ulong, 0644);
4689 MODULE_PARM_DESC(metaslab_force_ganging,
4690 "blocks larger than this size are forced to be gang blocks");
4691 /* END CSTYLED */
4692
4693 #endif