]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
2ca5e7bac1a4ea5478590368a56fbe02c9aa7b27
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_raidz.h>
67 #include <sys/vdev_draid.h>
68 #include <sys/metaslab.h>
69 #include <sys/metaslab_impl.h>
70 #include <sys/mmp.h>
71 #include <sys/uberblock_impl.h>
72 #include <sys/txg.h>
73 #include <sys/avl.h>
74 #include <sys/bpobj.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dmu_objset.h>
77 #include <sys/unique.h>
78 #include <sys/dsl_pool.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_synctask.h>
83 #include <sys/fs/zfs.h>
84 #include <sys/arc.h>
85 #include <sys/callb.h>
86 #include <sys/systeminfo.h>
87 #include <sys/zfs_ioctl.h>
88 #include <sys/dsl_scan.h>
89 #include <sys/zfeature.h>
90 #include <sys/dsl_destroy.h>
91 #include <sys/zvol.h>
92
93 #ifdef _KERNEL
94 #include <sys/fm/protocol.h>
95 #include <sys/fm/util.h>
96 #include <sys/callb.h>
97 #include <sys/zone.h>
98 #include <sys/vmsystm.h>
99 #endif /* _KERNEL */
100
101 #include "zfs_prop.h"
102 #include "zfs_comutil.h"
103 #include <cityhash.h>
104
105 /*
106 * spa_thread() existed on Illumos as a parent thread for the various worker
107 * threads that actually run the pool, as a way to both reference the entire
108 * pool work as a single object, and to share properties like scheduling
109 * options. It has not yet been adapted to Linux or FreeBSD. This define is
110 * used to mark related parts of the code to make things easier for the reader,
111 * and to compile this code out. It can be removed when someone implements it,
112 * moves it to some Illumos-specific place, or removes it entirely.
113 */
114 #undef HAVE_SPA_THREAD
115
116 /*
117 * The "System Duty Cycle" scheduling class is an Illumos feature to help
118 * prevent CPU-intensive kernel threads from affecting latency on interactive
119 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
120 * gated behind a define. On Illumos SDC depends on spa_thread(), but
121 * spa_thread() also has other uses, so this is a separate define.
122 */
123 #undef HAVE_SYSDC
124
125 /*
126 * The interval, in seconds, at which failed configuration cache file writes
127 * should be retried.
128 */
129 int zfs_ccw_retry_interval = 300;
130
131 typedef enum zti_modes {
132 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
133 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
134 ZTI_MODE_SYNC, /* sync thread assigned */
135 ZTI_MODE_NULL, /* don't create a taskq */
136 ZTI_NMODES
137 } zti_modes_t;
138
139 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
140 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
141 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
142 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
143 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
144
145 #define ZTI_N(n) ZTI_P(n, 1)
146 #define ZTI_ONE ZTI_N(1)
147
148 typedef struct zio_taskq_info {
149 zti_modes_t zti_mode;
150 uint_t zti_value;
151 uint_t zti_count;
152 } zio_taskq_info_t;
153
154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
155 "iss", "iss_h", "int", "int_h"
156 };
157
158 /*
159 * This table defines the taskq settings for each ZFS I/O type. When
160 * initializing a pool, we use this table to create an appropriately sized
161 * taskq. Some operations are low volume and therefore have a small, static
162 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
163 * macros. Other operations process a large amount of data; the ZTI_SCALE
164 * macro causes us to create a taskq oriented for throughput. Some operations
165 * are so high frequency and short-lived that the taskq itself can become a
166 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
167 * additional degree of parallelism specified by the number of threads per-
168 * taskq and the number of taskqs; when dispatching an event in this case, the
169 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
170 * that scales with the number of CPUs.
171 *
172 * The different taskq priorities are to handle the different contexts (issue
173 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
174 * need to be handled with minimum delay.
175 */
176 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
177 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
178 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
179 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
180 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
181 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
183 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
184 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
185 };
186
187 static void spa_sync_version(void *arg, dmu_tx_t *tx);
188 static void spa_sync_props(void *arg, dmu_tx_t *tx);
189 static boolean_t spa_has_active_shared_spare(spa_t *spa);
190 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
191 const char **ereport);
192 static void spa_vdev_resilver_done(spa_t *spa);
193
194 /*
195 * Percentage of all CPUs that can be used by the metaslab preload taskq.
196 */
197 static uint_t metaslab_preload_pct = 50;
198
199 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
200 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
201
202 #ifdef HAVE_SYSDC
203 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
204 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
205 #endif
206
207 #ifdef HAVE_SPA_THREAD
208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
209 #endif
210
211 static uint_t zio_taskq_wr_iss_ncpus = 0;
212
213 /*
214 * Report any spa_load_verify errors found, but do not fail spa_load.
215 * This is used by zdb to analyze non-idle pools.
216 */
217 boolean_t spa_load_verify_dryrun = B_FALSE;
218
219 /*
220 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
221 * This is used by zdb for spacemaps verification.
222 */
223 boolean_t spa_mode_readable_spacemaps = B_FALSE;
224
225 /*
226 * This (illegal) pool name is used when temporarily importing a spa_t in order
227 * to get the vdev stats associated with the imported devices.
228 */
229 #define TRYIMPORT_NAME "$import"
230
231 /*
232 * For debugging purposes: print out vdev tree during pool import.
233 */
234 static int spa_load_print_vdev_tree = B_FALSE;
235
236 /*
237 * A non-zero value for zfs_max_missing_tvds means that we allow importing
238 * pools with missing top-level vdevs. This is strictly intended for advanced
239 * pool recovery cases since missing data is almost inevitable. Pools with
240 * missing devices can only be imported read-only for safety reasons, and their
241 * fail-mode will be automatically set to "continue".
242 *
243 * With 1 missing vdev we should be able to import the pool and mount all
244 * datasets. User data that was not modified after the missing device has been
245 * added should be recoverable. This means that snapshots created prior to the
246 * addition of that device should be completely intact.
247 *
248 * With 2 missing vdevs, some datasets may fail to mount since there are
249 * dataset statistics that are stored as regular metadata. Some data might be
250 * recoverable if those vdevs were added recently.
251 *
252 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
253 * may be missing entirely. Chances of data recovery are very low. Note that
254 * there are also risks of performing an inadvertent rewind as we might be
255 * missing all the vdevs with the latest uberblocks.
256 */
257 uint64_t zfs_max_missing_tvds = 0;
258
259 /*
260 * The parameters below are similar to zfs_max_missing_tvds but are only
261 * intended for a preliminary open of the pool with an untrusted config which
262 * might be incomplete or out-dated.
263 *
264 * We are more tolerant for pools opened from a cachefile since we could have
265 * an out-dated cachefile where a device removal was not registered.
266 * We could have set the limit arbitrarily high but in the case where devices
267 * are really missing we would want to return the proper error codes; we chose
268 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
269 * and we get a chance to retrieve the trusted config.
270 */
271 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
272
273 /*
274 * In the case where config was assembled by scanning device paths (/dev/dsks
275 * by default) we are less tolerant since all the existing devices should have
276 * been detected and we want spa_load to return the right error codes.
277 */
278 uint64_t zfs_max_missing_tvds_scan = 0;
279
280 /*
281 * Debugging aid that pauses spa_sync() towards the end.
282 */
283 static const boolean_t zfs_pause_spa_sync = B_FALSE;
284
285 /*
286 * Variables to indicate the livelist condense zthr func should wait at certain
287 * points for the livelist to be removed - used to test condense/destroy races
288 */
289 static int zfs_livelist_condense_zthr_pause = 0;
290 static int zfs_livelist_condense_sync_pause = 0;
291
292 /*
293 * Variables to track whether or not condense cancellation has been
294 * triggered in testing.
295 */
296 static int zfs_livelist_condense_sync_cancel = 0;
297 static int zfs_livelist_condense_zthr_cancel = 0;
298
299 /*
300 * Variable to track whether or not extra ALLOC blkptrs were added to a
301 * livelist entry while it was being condensed (caused by the way we track
302 * remapped blkptrs in dbuf_remap_impl)
303 */
304 static int zfs_livelist_condense_new_alloc = 0;
305
306 /*
307 * ==========================================================================
308 * SPA properties routines
309 * ==========================================================================
310 */
311
312 /*
313 * Add a (source=src, propname=propval) list to an nvlist.
314 */
315 static void
316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
317 uint64_t intval, zprop_source_t src)
318 {
319 const char *propname = zpool_prop_to_name(prop);
320 nvlist_t *propval;
321
322 propval = fnvlist_alloc();
323 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
324
325 if (strval != NULL)
326 fnvlist_add_string(propval, ZPROP_VALUE, strval);
327 else
328 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
329
330 fnvlist_add_nvlist(nvl, propname, propval);
331 nvlist_free(propval);
332 }
333
334 /*
335 * Add a user property (source=src, propname=propval) to an nvlist.
336 */
337 static void
338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
339 zprop_source_t src)
340 {
341 nvlist_t *propval;
342
343 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
344 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
345 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
346 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
347 nvlist_free(propval);
348 }
349
350 /*
351 * Get property values from the spa configuration.
352 */
353 static void
354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
355 {
356 vdev_t *rvd = spa->spa_root_vdev;
357 dsl_pool_t *pool = spa->spa_dsl_pool;
358 uint64_t size, alloc, cap, version;
359 const zprop_source_t src = ZPROP_SRC_NONE;
360 spa_config_dirent_t *dp;
361 metaslab_class_t *mc = spa_normal_class(spa);
362
363 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
364
365 if (rvd != NULL) {
366 alloc = metaslab_class_get_alloc(mc);
367 alloc += metaslab_class_get_alloc(spa_special_class(spa));
368 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
369 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
370
371 size = metaslab_class_get_space(mc);
372 size += metaslab_class_get_space(spa_special_class(spa));
373 size += metaslab_class_get_space(spa_dedup_class(spa));
374 size += metaslab_class_get_space(spa_embedded_log_class(spa));
375
376 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
377 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
379 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
380 size - alloc, src);
381 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
382 spa->spa_checkpoint_info.sci_dspace, src);
383
384 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
385 metaslab_class_fragmentation(mc), src);
386 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
387 metaslab_class_expandable_space(mc), src);
388 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
389 (spa_mode(spa) == SPA_MODE_READ), src);
390
391 cap = (size == 0) ? 0 : (alloc * 100 / size);
392 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
393
394 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
395 ddt_get_pool_dedup_ratio(spa), src);
396 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
397 brt_get_used(spa), src);
398 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
399 brt_get_saved(spa), src);
400 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
401 brt_get_ratio(spa), src);
402
403 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
404 rvd->vdev_state, src);
405
406 version = spa_version(spa);
407 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
408 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
409 version, ZPROP_SRC_DEFAULT);
410 } else {
411 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
412 version, ZPROP_SRC_LOCAL);
413 }
414 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
415 NULL, spa_load_guid(spa), src);
416 }
417
418 if (pool != NULL) {
419 /*
420 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
421 * when opening pools before this version freedir will be NULL.
422 */
423 if (pool->dp_free_dir != NULL) {
424 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
425 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
426 src);
427 } else {
428 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
429 NULL, 0, src);
430 }
431
432 if (pool->dp_leak_dir != NULL) {
433 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
434 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
435 src);
436 } else {
437 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
438 NULL, 0, src);
439 }
440 }
441
442 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
443
444 if (spa->spa_comment != NULL) {
445 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
446 0, ZPROP_SRC_LOCAL);
447 }
448
449 if (spa->spa_compatibility != NULL) {
450 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
451 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
452 }
453
454 if (spa->spa_root != NULL)
455 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
456 0, ZPROP_SRC_LOCAL);
457
458 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
459 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
460 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
461 } else {
462 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
463 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
464 }
465
466 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
467 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
468 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
469 } else {
470 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
471 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
472 }
473
474 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
475 if (dp->scd_path == NULL) {
476 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
477 "none", 0, ZPROP_SRC_LOCAL);
478 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
479 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
480 dp->scd_path, 0, ZPROP_SRC_LOCAL);
481 }
482 }
483 }
484
485 /*
486 * Get zpool property values.
487 */
488 int
489 spa_prop_get(spa_t *spa, nvlist_t **nvp)
490 {
491 objset_t *mos = spa->spa_meta_objset;
492 zap_cursor_t zc;
493 zap_attribute_t za;
494 dsl_pool_t *dp;
495 int err;
496
497 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
498 if (err)
499 return (err);
500
501 dp = spa_get_dsl(spa);
502 dsl_pool_config_enter(dp, FTAG);
503 mutex_enter(&spa->spa_props_lock);
504
505 /*
506 * Get properties from the spa config.
507 */
508 spa_prop_get_config(spa, nvp);
509
510 /* If no pool property object, no more prop to get. */
511 if (mos == NULL || spa->spa_pool_props_object == 0)
512 goto out;
513
514 /*
515 * Get properties from the MOS pool property object.
516 */
517 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
518 (err = zap_cursor_retrieve(&zc, &za)) == 0;
519 zap_cursor_advance(&zc)) {
520 uint64_t intval = 0;
521 char *strval = NULL;
522 zprop_source_t src = ZPROP_SRC_DEFAULT;
523 zpool_prop_t prop;
524
525 if ((prop = zpool_name_to_prop(za.za_name)) ==
526 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
527 continue;
528
529 switch (za.za_integer_length) {
530 case 8:
531 /* integer property */
532 if (za.za_first_integer !=
533 zpool_prop_default_numeric(prop))
534 src = ZPROP_SRC_LOCAL;
535
536 if (prop == ZPOOL_PROP_BOOTFS) {
537 dsl_dataset_t *ds = NULL;
538
539 err = dsl_dataset_hold_obj(dp,
540 za.za_first_integer, FTAG, &ds);
541 if (err != 0)
542 break;
543
544 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
545 KM_SLEEP);
546 dsl_dataset_name(ds, strval);
547 dsl_dataset_rele(ds, FTAG);
548 } else {
549 strval = NULL;
550 intval = za.za_first_integer;
551 }
552
553 spa_prop_add_list(*nvp, prop, strval, intval, src);
554
555 if (strval != NULL)
556 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
557
558 break;
559
560 case 1:
561 /* string property */
562 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
563 err = zap_lookup(mos, spa->spa_pool_props_object,
564 za.za_name, 1, za.za_num_integers, strval);
565 if (err) {
566 kmem_free(strval, za.za_num_integers);
567 break;
568 }
569 if (prop != ZPOOL_PROP_INVAL) {
570 spa_prop_add_list(*nvp, prop, strval, 0, src);
571 } else {
572 src = ZPROP_SRC_LOCAL;
573 spa_prop_add_user(*nvp, za.za_name, strval,
574 src);
575 }
576 kmem_free(strval, za.za_num_integers);
577 break;
578
579 default:
580 break;
581 }
582 }
583 zap_cursor_fini(&zc);
584 out:
585 mutex_exit(&spa->spa_props_lock);
586 dsl_pool_config_exit(dp, FTAG);
587 if (err && err != ENOENT) {
588 nvlist_free(*nvp);
589 *nvp = NULL;
590 return (err);
591 }
592
593 return (0);
594 }
595
596 /*
597 * Validate the given pool properties nvlist and modify the list
598 * for the property values to be set.
599 */
600 static int
601 spa_prop_validate(spa_t *spa, nvlist_t *props)
602 {
603 nvpair_t *elem;
604 int error = 0, reset_bootfs = 0;
605 uint64_t objnum = 0;
606 boolean_t has_feature = B_FALSE;
607
608 elem = NULL;
609 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
610 uint64_t intval;
611 const char *strval, *slash, *check, *fname;
612 const char *propname = nvpair_name(elem);
613 zpool_prop_t prop = zpool_name_to_prop(propname);
614
615 switch (prop) {
616 case ZPOOL_PROP_INVAL:
617 /*
618 * Sanitize the input.
619 */
620 if (zfs_prop_user(propname)) {
621 if (strlen(propname) >= ZAP_MAXNAMELEN) {
622 error = SET_ERROR(ENAMETOOLONG);
623 break;
624 }
625
626 if (strlen(fnvpair_value_string(elem)) >=
627 ZAP_MAXVALUELEN) {
628 error = SET_ERROR(E2BIG);
629 break;
630 }
631 } else if (zpool_prop_feature(propname)) {
632 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
633 error = SET_ERROR(EINVAL);
634 break;
635 }
636
637 if (nvpair_value_uint64(elem, &intval) != 0) {
638 error = SET_ERROR(EINVAL);
639 break;
640 }
641
642 if (intval != 0) {
643 error = SET_ERROR(EINVAL);
644 break;
645 }
646
647 fname = strchr(propname, '@') + 1;
648 if (zfeature_lookup_name(fname, NULL) != 0) {
649 error = SET_ERROR(EINVAL);
650 break;
651 }
652
653 has_feature = B_TRUE;
654 } else {
655 error = SET_ERROR(EINVAL);
656 break;
657 }
658 break;
659
660 case ZPOOL_PROP_VERSION:
661 error = nvpair_value_uint64(elem, &intval);
662 if (!error &&
663 (intval < spa_version(spa) ||
664 intval > SPA_VERSION_BEFORE_FEATURES ||
665 has_feature))
666 error = SET_ERROR(EINVAL);
667 break;
668
669 case ZPOOL_PROP_DELEGATION:
670 case ZPOOL_PROP_AUTOREPLACE:
671 case ZPOOL_PROP_LISTSNAPS:
672 case ZPOOL_PROP_AUTOEXPAND:
673 case ZPOOL_PROP_AUTOTRIM:
674 error = nvpair_value_uint64(elem, &intval);
675 if (!error && intval > 1)
676 error = SET_ERROR(EINVAL);
677 break;
678
679 case ZPOOL_PROP_MULTIHOST:
680 error = nvpair_value_uint64(elem, &intval);
681 if (!error && intval > 1)
682 error = SET_ERROR(EINVAL);
683
684 if (!error) {
685 uint32_t hostid = zone_get_hostid(NULL);
686 if (hostid)
687 spa->spa_hostid = hostid;
688 else
689 error = SET_ERROR(ENOTSUP);
690 }
691
692 break;
693
694 case ZPOOL_PROP_BOOTFS:
695 /*
696 * If the pool version is less than SPA_VERSION_BOOTFS,
697 * or the pool is still being created (version == 0),
698 * the bootfs property cannot be set.
699 */
700 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
701 error = SET_ERROR(ENOTSUP);
702 break;
703 }
704
705 /*
706 * Make sure the vdev config is bootable
707 */
708 if (!vdev_is_bootable(spa->spa_root_vdev)) {
709 error = SET_ERROR(ENOTSUP);
710 break;
711 }
712
713 reset_bootfs = 1;
714
715 error = nvpair_value_string(elem, &strval);
716
717 if (!error) {
718 objset_t *os;
719
720 if (strval == NULL || strval[0] == '\0') {
721 objnum = zpool_prop_default_numeric(
722 ZPOOL_PROP_BOOTFS);
723 break;
724 }
725
726 error = dmu_objset_hold(strval, FTAG, &os);
727 if (error != 0)
728 break;
729
730 /* Must be ZPL. */
731 if (dmu_objset_type(os) != DMU_OST_ZFS) {
732 error = SET_ERROR(ENOTSUP);
733 } else {
734 objnum = dmu_objset_id(os);
735 }
736 dmu_objset_rele(os, FTAG);
737 }
738 break;
739
740 case ZPOOL_PROP_FAILUREMODE:
741 error = nvpair_value_uint64(elem, &intval);
742 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
743 error = SET_ERROR(EINVAL);
744
745 /*
746 * This is a special case which only occurs when
747 * the pool has completely failed. This allows
748 * the user to change the in-core failmode property
749 * without syncing it out to disk (I/Os might
750 * currently be blocked). We do this by returning
751 * EIO to the caller (spa_prop_set) to trick it
752 * into thinking we encountered a property validation
753 * error.
754 */
755 if (!error && spa_suspended(spa)) {
756 spa->spa_failmode = intval;
757 error = SET_ERROR(EIO);
758 }
759 break;
760
761 case ZPOOL_PROP_CACHEFILE:
762 if ((error = nvpair_value_string(elem, &strval)) != 0)
763 break;
764
765 if (strval[0] == '\0')
766 break;
767
768 if (strcmp(strval, "none") == 0)
769 break;
770
771 if (strval[0] != '/') {
772 error = SET_ERROR(EINVAL);
773 break;
774 }
775
776 slash = strrchr(strval, '/');
777 ASSERT(slash != NULL);
778
779 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
780 strcmp(slash, "/..") == 0)
781 error = SET_ERROR(EINVAL);
782 break;
783
784 case ZPOOL_PROP_COMMENT:
785 if ((error = nvpair_value_string(elem, &strval)) != 0)
786 break;
787 for (check = strval; *check != '\0'; check++) {
788 if (!isprint(*check)) {
789 error = SET_ERROR(EINVAL);
790 break;
791 }
792 }
793 if (strlen(strval) > ZPROP_MAX_COMMENT)
794 error = SET_ERROR(E2BIG);
795 break;
796
797 default:
798 break;
799 }
800
801 if (error)
802 break;
803 }
804
805 (void) nvlist_remove_all(props,
806 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
807
808 if (!error && reset_bootfs) {
809 error = nvlist_remove(props,
810 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
811
812 if (!error) {
813 error = nvlist_add_uint64(props,
814 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
815 }
816 }
817
818 return (error);
819 }
820
821 void
822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
823 {
824 const char *cachefile;
825 spa_config_dirent_t *dp;
826
827 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
828 &cachefile) != 0)
829 return;
830
831 dp = kmem_alloc(sizeof (spa_config_dirent_t),
832 KM_SLEEP);
833
834 if (cachefile[0] == '\0')
835 dp->scd_path = spa_strdup(spa_config_path);
836 else if (strcmp(cachefile, "none") == 0)
837 dp->scd_path = NULL;
838 else
839 dp->scd_path = spa_strdup(cachefile);
840
841 list_insert_head(&spa->spa_config_list, dp);
842 if (need_sync)
843 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
844 }
845
846 int
847 spa_prop_set(spa_t *spa, nvlist_t *nvp)
848 {
849 int error;
850 nvpair_t *elem = NULL;
851 boolean_t need_sync = B_FALSE;
852
853 if ((error = spa_prop_validate(spa, nvp)) != 0)
854 return (error);
855
856 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
857 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
858
859 if (prop == ZPOOL_PROP_CACHEFILE ||
860 prop == ZPOOL_PROP_ALTROOT ||
861 prop == ZPOOL_PROP_READONLY)
862 continue;
863
864 if (prop == ZPOOL_PROP_INVAL &&
865 zfs_prop_user(nvpair_name(elem))) {
866 need_sync = B_TRUE;
867 break;
868 }
869
870 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
871 uint64_t ver = 0;
872
873 if (prop == ZPOOL_PROP_VERSION) {
874 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
875 } else {
876 ASSERT(zpool_prop_feature(nvpair_name(elem)));
877 ver = SPA_VERSION_FEATURES;
878 need_sync = B_TRUE;
879 }
880
881 /* Save time if the version is already set. */
882 if (ver == spa_version(spa))
883 continue;
884
885 /*
886 * In addition to the pool directory object, we might
887 * create the pool properties object, the features for
888 * read object, the features for write object, or the
889 * feature descriptions object.
890 */
891 error = dsl_sync_task(spa->spa_name, NULL,
892 spa_sync_version, &ver,
893 6, ZFS_SPACE_CHECK_RESERVED);
894 if (error)
895 return (error);
896 continue;
897 }
898
899 need_sync = B_TRUE;
900 break;
901 }
902
903 if (need_sync) {
904 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
905 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
906 }
907
908 return (0);
909 }
910
911 /*
912 * If the bootfs property value is dsobj, clear it.
913 */
914 void
915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
916 {
917 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
918 VERIFY(zap_remove(spa->spa_meta_objset,
919 spa->spa_pool_props_object,
920 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
921 spa->spa_bootfs = 0;
922 }
923 }
924
925 static int
926 spa_change_guid_check(void *arg, dmu_tx_t *tx)
927 {
928 uint64_t *newguid __maybe_unused = arg;
929 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
930 vdev_t *rvd = spa->spa_root_vdev;
931 uint64_t vdev_state;
932
933 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
934 int error = (spa_has_checkpoint(spa)) ?
935 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
936 return (SET_ERROR(error));
937 }
938
939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
940 vdev_state = rvd->vdev_state;
941 spa_config_exit(spa, SCL_STATE, FTAG);
942
943 if (vdev_state != VDEV_STATE_HEALTHY)
944 return (SET_ERROR(ENXIO));
945
946 ASSERT3U(spa_guid(spa), !=, *newguid);
947
948 return (0);
949 }
950
951 static void
952 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
953 {
954 uint64_t *newguid = arg;
955 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
956 uint64_t oldguid;
957 vdev_t *rvd = spa->spa_root_vdev;
958
959 oldguid = spa_guid(spa);
960
961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
962 rvd->vdev_guid = *newguid;
963 rvd->vdev_guid_sum += (*newguid - oldguid);
964 vdev_config_dirty(rvd);
965 spa_config_exit(spa, SCL_STATE, FTAG);
966
967 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
968 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
969 }
970
971 /*
972 * Change the GUID for the pool. This is done so that we can later
973 * re-import a pool built from a clone of our own vdevs. We will modify
974 * the root vdev's guid, our own pool guid, and then mark all of our
975 * vdevs dirty. Note that we must make sure that all our vdevs are
976 * online when we do this, or else any vdevs that weren't present
977 * would be orphaned from our pool. We are also going to issue a
978 * sysevent to update any watchers.
979 */
980 int
981 spa_change_guid(spa_t *spa)
982 {
983 int error;
984 uint64_t guid;
985
986 mutex_enter(&spa->spa_vdev_top_lock);
987 mutex_enter(&spa_namespace_lock);
988 guid = spa_generate_guid(NULL);
989
990 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
991 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
992
993 if (error == 0) {
994 /*
995 * Clear the kobj flag from all the vdevs to allow
996 * vdev_cache_process_kobj_evt() to post events to all the
997 * vdevs since GUID is updated.
998 */
999 vdev_clear_kobj_evt(spa->spa_root_vdev);
1000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1001 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1002
1003 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1005 }
1006
1007 mutex_exit(&spa_namespace_lock);
1008 mutex_exit(&spa->spa_vdev_top_lock);
1009
1010 return (error);
1011 }
1012
1013 /*
1014 * ==========================================================================
1015 * SPA state manipulation (open/create/destroy/import/export)
1016 * ==========================================================================
1017 */
1018
1019 static int
1020 spa_error_entry_compare(const void *a, const void *b)
1021 {
1022 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1023 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1024 int ret;
1025
1026 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1027 sizeof (zbookmark_phys_t));
1028
1029 return (TREE_ISIGN(ret));
1030 }
1031
1032 /*
1033 * Utility function which retrieves copies of the current logs and
1034 * re-initializes them in the process.
1035 */
1036 void
1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1038 {
1039 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1040
1041 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1042 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1043
1044 avl_create(&spa->spa_errlist_scrub,
1045 spa_error_entry_compare, sizeof (spa_error_entry_t),
1046 offsetof(spa_error_entry_t, se_avl));
1047 avl_create(&spa->spa_errlist_last,
1048 spa_error_entry_compare, sizeof (spa_error_entry_t),
1049 offsetof(spa_error_entry_t, se_avl));
1050 }
1051
1052 static void
1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1054 {
1055 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1056 enum zti_modes mode = ztip->zti_mode;
1057 uint_t value = ztip->zti_value;
1058 uint_t count = ztip->zti_count;
1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1060 uint_t cpus, flags = TASKQ_DYNAMIC;
1061
1062 switch (mode) {
1063 case ZTI_MODE_FIXED:
1064 ASSERT3U(value, >, 0);
1065 break;
1066
1067 case ZTI_MODE_SYNC:
1068
1069 /*
1070 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus',
1071 * not to exceed the number of spa allocators.
1072 */
1073 if (zio_taskq_wr_iss_ncpus == 0) {
1074 count = MAX(boot_ncpus / spa->spa_alloc_count, 1);
1075 } else {
1076 count = MAX(1,
1077 boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus));
1078 }
1079 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1080 count = MIN(count, spa->spa_alloc_count);
1081
1082 /*
1083 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1084 * single taskq may have more threads than 100% of online cpus.
1085 */
1086 value = (zio_taskq_batch_pct + count / 2) / count;
1087 value = MIN(value, 100);
1088 flags |= TASKQ_THREADS_CPU_PCT;
1089 break;
1090
1091 case ZTI_MODE_SCALE:
1092 flags |= TASKQ_THREADS_CPU_PCT;
1093 /*
1094 * We want more taskqs to reduce lock contention, but we want
1095 * less for better request ordering and CPU utilization.
1096 */
1097 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1098 if (zio_taskq_batch_tpq > 0) {
1099 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1100 zio_taskq_batch_tpq);
1101 } else {
1102 /*
1103 * Prefer 6 threads per taskq, but no more taskqs
1104 * than threads in them on large systems. For 80%:
1105 *
1106 * taskq taskq total
1107 * cpus taskqs percent threads threads
1108 * ------- ------- ------- ------- -------
1109 * 1 1 80% 1 1
1110 * 2 1 80% 1 1
1111 * 4 1 80% 3 3
1112 * 8 2 40% 3 6
1113 * 16 3 27% 4 12
1114 * 32 5 16% 5 25
1115 * 64 7 11% 7 49
1116 * 128 10 8% 10 100
1117 * 256 14 6% 15 210
1118 */
1119 count = 1 + cpus / 6;
1120 while (count * count > cpus)
1121 count--;
1122 }
1123 /* Limit each taskq within 100% to not trigger assertion. */
1124 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1125 value = (zio_taskq_batch_pct + count / 2) / count;
1126 break;
1127
1128 case ZTI_MODE_NULL:
1129 tqs->stqs_count = 0;
1130 tqs->stqs_taskq = NULL;
1131 return;
1132
1133 default:
1134 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1135 "spa_taskqs_init()",
1136 zio_type_name[t], zio_taskq_types[q], mode, value);
1137 break;
1138 }
1139
1140 ASSERT3U(count, >, 0);
1141 tqs->stqs_count = count;
1142 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1143
1144 for (uint_t i = 0; i < count; i++) {
1145 taskq_t *tq;
1146 char name[32];
1147
1148 if (count > 1)
1149 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1150 zio_type_name[t], zio_taskq_types[q], i);
1151 else
1152 (void) snprintf(name, sizeof (name), "%s_%s",
1153 zio_type_name[t], zio_taskq_types[q]);
1154
1155 #ifdef HAVE_SYSDC
1156 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1157 (void) zio_taskq_basedc;
1158 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1159 spa->spa_proc, zio_taskq_basedc, flags);
1160 } else {
1161 #endif
1162 pri_t pri = maxclsyspri;
1163 /*
1164 * The write issue taskq can be extremely CPU
1165 * intensive. Run it at slightly less important
1166 * priority than the other taskqs.
1167 *
1168 * Under Linux and FreeBSD this means incrementing
1169 * the priority value as opposed to platforms like
1170 * illumos where it should be decremented.
1171 *
1172 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1173 * are equal then a difference between them is
1174 * insignificant.
1175 */
1176 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1177 #if defined(__linux__)
1178 pri++;
1179 #elif defined(__FreeBSD__)
1180 pri += 4;
1181 #else
1182 #error "unknown OS"
1183 #endif
1184 }
1185 tq = taskq_create_proc(name, value, pri, 50,
1186 INT_MAX, spa->spa_proc, flags);
1187 #ifdef HAVE_SYSDC
1188 }
1189 #endif
1190
1191 tqs->stqs_taskq[i] = tq;
1192 }
1193 }
1194
1195 static void
1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1197 {
1198 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1199
1200 if (tqs->stqs_taskq == NULL) {
1201 ASSERT3U(tqs->stqs_count, ==, 0);
1202 return;
1203 }
1204
1205 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1206 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1207 taskq_destroy(tqs->stqs_taskq[i]);
1208 }
1209
1210 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1211 tqs->stqs_taskq = NULL;
1212 }
1213
1214 /*
1215 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1216 * Note that a type may have multiple discrete taskqs to avoid lock contention
1217 * on the taskq itself.
1218 */
1219 static taskq_t *
1220 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1221 zio_t *zio)
1222 {
1223 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1224 taskq_t *tq;
1225
1226 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1227 ASSERT3U(tqs->stqs_count, !=, 0);
1228
1229 if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1230 (zio != NULL) && (zio->io_wr_iss_tq != NULL)) {
1231 /* dispatch to assigned write issue taskq */
1232 tq = zio->io_wr_iss_tq;
1233 return (tq);
1234 }
1235
1236 if (tqs->stqs_count == 1) {
1237 tq = tqs->stqs_taskq[0];
1238 } else {
1239 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1240 }
1241 return (tq);
1242 }
1243
1244 void
1245 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1246 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent,
1247 zio_t *zio)
1248 {
1249 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio);
1250 taskq_dispatch_ent(tq, func, arg, flags, ent);
1251 }
1252
1253 /*
1254 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1255 */
1256 void
1257 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1258 task_func_t *func, void *arg, uint_t flags)
1259 {
1260 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL);
1261 taskqid_t id = taskq_dispatch(tq, func, arg, flags);
1262 if (id)
1263 taskq_wait_id(tq, id);
1264 }
1265
1266 static void
1267 spa_create_zio_taskqs(spa_t *spa)
1268 {
1269 for (int t = 0; t < ZIO_TYPES; t++) {
1270 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1271 spa_taskqs_init(spa, t, q);
1272 }
1273 }
1274 }
1275
1276 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1277 static void
1278 spa_thread(void *arg)
1279 {
1280 psetid_t zio_taskq_psrset_bind = PS_NONE;
1281 callb_cpr_t cprinfo;
1282
1283 spa_t *spa = arg;
1284 user_t *pu = PTOU(curproc);
1285
1286 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1287 spa->spa_name);
1288
1289 ASSERT(curproc != &p0);
1290 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1291 "zpool-%s", spa->spa_name);
1292 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1293
1294 /* bind this thread to the requested psrset */
1295 if (zio_taskq_psrset_bind != PS_NONE) {
1296 pool_lock();
1297 mutex_enter(&cpu_lock);
1298 mutex_enter(&pidlock);
1299 mutex_enter(&curproc->p_lock);
1300
1301 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1302 0, NULL, NULL) == 0) {
1303 curthread->t_bind_pset = zio_taskq_psrset_bind;
1304 } else {
1305 cmn_err(CE_WARN,
1306 "Couldn't bind process for zfs pool \"%s\" to "
1307 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1308 }
1309
1310 mutex_exit(&curproc->p_lock);
1311 mutex_exit(&pidlock);
1312 mutex_exit(&cpu_lock);
1313 pool_unlock();
1314 }
1315
1316 #ifdef HAVE_SYSDC
1317 if (zio_taskq_sysdc) {
1318 sysdc_thread_enter(curthread, 100, 0);
1319 }
1320 #endif
1321
1322 spa->spa_proc = curproc;
1323 spa->spa_did = curthread->t_did;
1324
1325 spa_create_zio_taskqs(spa);
1326
1327 mutex_enter(&spa->spa_proc_lock);
1328 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1329
1330 spa->spa_proc_state = SPA_PROC_ACTIVE;
1331 cv_broadcast(&spa->spa_proc_cv);
1332
1333 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1334 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1335 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1336 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1337
1338 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1339 spa->spa_proc_state = SPA_PROC_GONE;
1340 spa->spa_proc = &p0;
1341 cv_broadcast(&spa->spa_proc_cv);
1342 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1343
1344 mutex_enter(&curproc->p_lock);
1345 lwp_exit();
1346 }
1347 #endif
1348
1349 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1350
1351 /*
1352 * Activate an uninitialized pool.
1353 */
1354 static void
1355 spa_activate(spa_t *spa, spa_mode_t mode)
1356 {
1357 metaslab_ops_t *msp = metaslab_allocator(spa);
1358 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1359
1360 spa->spa_state = POOL_STATE_ACTIVE;
1361 spa->spa_mode = mode;
1362 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1363
1364 spa->spa_normal_class = metaslab_class_create(spa, msp);
1365 spa->spa_log_class = metaslab_class_create(spa, msp);
1366 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1367 spa->spa_special_class = metaslab_class_create(spa, msp);
1368 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1369
1370 /* Try to create a covering process */
1371 mutex_enter(&spa->spa_proc_lock);
1372 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1373 ASSERT(spa->spa_proc == &p0);
1374 spa->spa_did = 0;
1375
1376 #ifdef HAVE_SPA_THREAD
1377 /* Only create a process if we're going to be around a while. */
1378 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1379 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1380 NULL, 0) == 0) {
1381 spa->spa_proc_state = SPA_PROC_CREATED;
1382 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1383 cv_wait(&spa->spa_proc_cv,
1384 &spa->spa_proc_lock);
1385 }
1386 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1387 ASSERT(spa->spa_proc != &p0);
1388 ASSERT(spa->spa_did != 0);
1389 } else {
1390 #ifdef _KERNEL
1391 cmn_err(CE_WARN,
1392 "Couldn't create process for zfs pool \"%s\"\n",
1393 spa->spa_name);
1394 #endif
1395 }
1396 }
1397 #endif /* HAVE_SPA_THREAD */
1398 mutex_exit(&spa->spa_proc_lock);
1399
1400 /* If we didn't create a process, we need to create our taskqs. */
1401 if (spa->spa_proc == &p0) {
1402 spa_create_zio_taskqs(spa);
1403 }
1404
1405 for (size_t i = 0; i < TXG_SIZE; i++) {
1406 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1407 ZIO_FLAG_CANFAIL);
1408 }
1409
1410 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1411 offsetof(vdev_t, vdev_config_dirty_node));
1412 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1413 offsetof(objset_t, os_evicting_node));
1414 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1415 offsetof(vdev_t, vdev_state_dirty_node));
1416
1417 txg_list_create(&spa->spa_vdev_txg_list, spa,
1418 offsetof(struct vdev, vdev_txg_node));
1419
1420 avl_create(&spa->spa_errlist_scrub,
1421 spa_error_entry_compare, sizeof (spa_error_entry_t),
1422 offsetof(spa_error_entry_t, se_avl));
1423 avl_create(&spa->spa_errlist_last,
1424 spa_error_entry_compare, sizeof (spa_error_entry_t),
1425 offsetof(spa_error_entry_t, se_avl));
1426 avl_create(&spa->spa_errlist_healed,
1427 spa_error_entry_compare, sizeof (spa_error_entry_t),
1428 offsetof(spa_error_entry_t, se_avl));
1429
1430 spa_activate_os(spa);
1431
1432 spa_keystore_init(&spa->spa_keystore);
1433
1434 /*
1435 * This taskq is used to perform zvol-minor-related tasks
1436 * asynchronously. This has several advantages, including easy
1437 * resolution of various deadlocks.
1438 *
1439 * The taskq must be single threaded to ensure tasks are always
1440 * processed in the order in which they were dispatched.
1441 *
1442 * A taskq per pool allows one to keep the pools independent.
1443 * This way if one pool is suspended, it will not impact another.
1444 *
1445 * The preferred location to dispatch a zvol minor task is a sync
1446 * task. In this context, there is easy access to the spa_t and minimal
1447 * error handling is required because the sync task must succeed.
1448 */
1449 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1450 1, INT_MAX, 0);
1451
1452 /*
1453 * The taskq to preload metaslabs.
1454 */
1455 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1456 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1457 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1458
1459 /*
1460 * Taskq dedicated to prefetcher threads: this is used to prevent the
1461 * pool traverse code from monopolizing the global (and limited)
1462 * system_taskq by inappropriately scheduling long running tasks on it.
1463 */
1464 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1465 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1466
1467 /*
1468 * The taskq to upgrade datasets in this pool. Currently used by
1469 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1470 */
1471 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1472 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1473 }
1474
1475 /*
1476 * Opposite of spa_activate().
1477 */
1478 static void
1479 spa_deactivate(spa_t *spa)
1480 {
1481 ASSERT(spa->spa_sync_on == B_FALSE);
1482 ASSERT(spa->spa_dsl_pool == NULL);
1483 ASSERT(spa->spa_root_vdev == NULL);
1484 ASSERT(spa->spa_async_zio_root == NULL);
1485 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1486
1487 spa_evicting_os_wait(spa);
1488
1489 if (spa->spa_zvol_taskq) {
1490 taskq_destroy(spa->spa_zvol_taskq);
1491 spa->spa_zvol_taskq = NULL;
1492 }
1493
1494 if (spa->spa_metaslab_taskq) {
1495 taskq_destroy(spa->spa_metaslab_taskq);
1496 spa->spa_metaslab_taskq = NULL;
1497 }
1498
1499 if (spa->spa_prefetch_taskq) {
1500 taskq_destroy(spa->spa_prefetch_taskq);
1501 spa->spa_prefetch_taskq = NULL;
1502 }
1503
1504 if (spa->spa_upgrade_taskq) {
1505 taskq_destroy(spa->spa_upgrade_taskq);
1506 spa->spa_upgrade_taskq = NULL;
1507 }
1508
1509 txg_list_destroy(&spa->spa_vdev_txg_list);
1510
1511 list_destroy(&spa->spa_config_dirty_list);
1512 list_destroy(&spa->spa_evicting_os_list);
1513 list_destroy(&spa->spa_state_dirty_list);
1514
1515 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1516
1517 for (int t = 0; t < ZIO_TYPES; t++) {
1518 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1519 spa_taskqs_fini(spa, t, q);
1520 }
1521 }
1522
1523 for (size_t i = 0; i < TXG_SIZE; i++) {
1524 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1525 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1526 spa->spa_txg_zio[i] = NULL;
1527 }
1528
1529 metaslab_class_destroy(spa->spa_normal_class);
1530 spa->spa_normal_class = NULL;
1531
1532 metaslab_class_destroy(spa->spa_log_class);
1533 spa->spa_log_class = NULL;
1534
1535 metaslab_class_destroy(spa->spa_embedded_log_class);
1536 spa->spa_embedded_log_class = NULL;
1537
1538 metaslab_class_destroy(spa->spa_special_class);
1539 spa->spa_special_class = NULL;
1540
1541 metaslab_class_destroy(spa->spa_dedup_class);
1542 spa->spa_dedup_class = NULL;
1543
1544 /*
1545 * If this was part of an import or the open otherwise failed, we may
1546 * still have errors left in the queues. Empty them just in case.
1547 */
1548 spa_errlog_drain(spa);
1549 avl_destroy(&spa->spa_errlist_scrub);
1550 avl_destroy(&spa->spa_errlist_last);
1551 avl_destroy(&spa->spa_errlist_healed);
1552
1553 spa_keystore_fini(&spa->spa_keystore);
1554
1555 spa->spa_state = POOL_STATE_UNINITIALIZED;
1556
1557 mutex_enter(&spa->spa_proc_lock);
1558 if (spa->spa_proc_state != SPA_PROC_NONE) {
1559 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1560 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1561 cv_broadcast(&spa->spa_proc_cv);
1562 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1563 ASSERT(spa->spa_proc != &p0);
1564 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1565 }
1566 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1567 spa->spa_proc_state = SPA_PROC_NONE;
1568 }
1569 ASSERT(spa->spa_proc == &p0);
1570 mutex_exit(&spa->spa_proc_lock);
1571
1572 /*
1573 * We want to make sure spa_thread() has actually exited the ZFS
1574 * module, so that the module can't be unloaded out from underneath
1575 * it.
1576 */
1577 if (spa->spa_did != 0) {
1578 thread_join(spa->spa_did);
1579 spa->spa_did = 0;
1580 }
1581
1582 spa_deactivate_os(spa);
1583
1584 }
1585
1586 /*
1587 * Verify a pool configuration, and construct the vdev tree appropriately. This
1588 * will create all the necessary vdevs in the appropriate layout, with each vdev
1589 * in the CLOSED state. This will prep the pool before open/creation/import.
1590 * All vdev validation is done by the vdev_alloc() routine.
1591 */
1592 int
1593 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1594 uint_t id, int atype)
1595 {
1596 nvlist_t **child;
1597 uint_t children;
1598 int error;
1599
1600 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1601 return (error);
1602
1603 if ((*vdp)->vdev_ops->vdev_op_leaf)
1604 return (0);
1605
1606 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1607 &child, &children);
1608
1609 if (error == ENOENT)
1610 return (0);
1611
1612 if (error) {
1613 vdev_free(*vdp);
1614 *vdp = NULL;
1615 return (SET_ERROR(EINVAL));
1616 }
1617
1618 for (int c = 0; c < children; c++) {
1619 vdev_t *vd;
1620 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1621 atype)) != 0) {
1622 vdev_free(*vdp);
1623 *vdp = NULL;
1624 return (error);
1625 }
1626 }
1627
1628 ASSERT(*vdp != NULL);
1629
1630 return (0);
1631 }
1632
1633 static boolean_t
1634 spa_should_flush_logs_on_unload(spa_t *spa)
1635 {
1636 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1637 return (B_FALSE);
1638
1639 if (!spa_writeable(spa))
1640 return (B_FALSE);
1641
1642 if (!spa->spa_sync_on)
1643 return (B_FALSE);
1644
1645 if (spa_state(spa) != POOL_STATE_EXPORTED)
1646 return (B_FALSE);
1647
1648 if (zfs_keep_log_spacemaps_at_export)
1649 return (B_FALSE);
1650
1651 return (B_TRUE);
1652 }
1653
1654 /*
1655 * Opens a transaction that will set the flag that will instruct
1656 * spa_sync to attempt to flush all the metaslabs for that txg.
1657 */
1658 static void
1659 spa_unload_log_sm_flush_all(spa_t *spa)
1660 {
1661 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1662 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1663
1664 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1665 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1666
1667 dmu_tx_commit(tx);
1668 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1669 }
1670
1671 static void
1672 spa_unload_log_sm_metadata(spa_t *spa)
1673 {
1674 void *cookie = NULL;
1675 spa_log_sm_t *sls;
1676 log_summary_entry_t *e;
1677
1678 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1679 &cookie)) != NULL) {
1680 VERIFY0(sls->sls_mscount);
1681 kmem_free(sls, sizeof (spa_log_sm_t));
1682 }
1683
1684 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1685 VERIFY0(e->lse_mscount);
1686 kmem_free(e, sizeof (log_summary_entry_t));
1687 }
1688
1689 spa->spa_unflushed_stats.sus_nblocks = 0;
1690 spa->spa_unflushed_stats.sus_memused = 0;
1691 spa->spa_unflushed_stats.sus_blocklimit = 0;
1692 }
1693
1694 static void
1695 spa_destroy_aux_threads(spa_t *spa)
1696 {
1697 if (spa->spa_condense_zthr != NULL) {
1698 zthr_destroy(spa->spa_condense_zthr);
1699 spa->spa_condense_zthr = NULL;
1700 }
1701 if (spa->spa_checkpoint_discard_zthr != NULL) {
1702 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1703 spa->spa_checkpoint_discard_zthr = NULL;
1704 }
1705 if (spa->spa_livelist_delete_zthr != NULL) {
1706 zthr_destroy(spa->spa_livelist_delete_zthr);
1707 spa->spa_livelist_delete_zthr = NULL;
1708 }
1709 if (spa->spa_livelist_condense_zthr != NULL) {
1710 zthr_destroy(spa->spa_livelist_condense_zthr);
1711 spa->spa_livelist_condense_zthr = NULL;
1712 }
1713 if (spa->spa_raidz_expand_zthr != NULL) {
1714 zthr_destroy(spa->spa_raidz_expand_zthr);
1715 spa->spa_raidz_expand_zthr = NULL;
1716 }
1717 }
1718
1719 /*
1720 * Opposite of spa_load().
1721 */
1722 static void
1723 spa_unload(spa_t *spa)
1724 {
1725 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1726 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1727
1728 spa_import_progress_remove(spa_guid(spa));
1729 spa_load_note(spa, "UNLOADING");
1730
1731 spa_wake_waiters(spa);
1732
1733 /*
1734 * If we have set the spa_final_txg, we have already performed the
1735 * tasks below in spa_export_common(). We should not redo it here since
1736 * we delay the final TXGs beyond what spa_final_txg is set at.
1737 */
1738 if (spa->spa_final_txg == UINT64_MAX) {
1739 /*
1740 * If the log space map feature is enabled and the pool is
1741 * getting exported (but not destroyed), we want to spend some
1742 * time flushing as many metaslabs as we can in an attempt to
1743 * destroy log space maps and save import time.
1744 */
1745 if (spa_should_flush_logs_on_unload(spa))
1746 spa_unload_log_sm_flush_all(spa);
1747
1748 /*
1749 * Stop async tasks.
1750 */
1751 spa_async_suspend(spa);
1752
1753 if (spa->spa_root_vdev) {
1754 vdev_t *root_vdev = spa->spa_root_vdev;
1755 vdev_initialize_stop_all(root_vdev,
1756 VDEV_INITIALIZE_ACTIVE);
1757 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1758 vdev_autotrim_stop_all(spa);
1759 vdev_rebuild_stop_all(spa);
1760 }
1761 }
1762
1763 /*
1764 * Stop syncing.
1765 */
1766 if (spa->spa_sync_on) {
1767 txg_sync_stop(spa->spa_dsl_pool);
1768 spa->spa_sync_on = B_FALSE;
1769 }
1770
1771 /*
1772 * This ensures that there is no async metaslab prefetching
1773 * while we attempt to unload the spa.
1774 */
1775 taskq_wait(spa->spa_metaslab_taskq);
1776
1777 if (spa->spa_mmp.mmp_thread)
1778 mmp_thread_stop(spa);
1779
1780 /*
1781 * Wait for any outstanding async I/O to complete.
1782 */
1783 if (spa->spa_async_zio_root != NULL) {
1784 for (int i = 0; i < max_ncpus; i++)
1785 (void) zio_wait(spa->spa_async_zio_root[i]);
1786 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1787 spa->spa_async_zio_root = NULL;
1788 }
1789
1790 if (spa->spa_vdev_removal != NULL) {
1791 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1792 spa->spa_vdev_removal = NULL;
1793 }
1794
1795 spa_destroy_aux_threads(spa);
1796
1797 spa_condense_fini(spa);
1798
1799 bpobj_close(&spa->spa_deferred_bpobj);
1800
1801 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1802
1803 /*
1804 * Close all vdevs.
1805 */
1806 if (spa->spa_root_vdev)
1807 vdev_free(spa->spa_root_vdev);
1808 ASSERT(spa->spa_root_vdev == NULL);
1809
1810 /*
1811 * Close the dsl pool.
1812 */
1813 if (spa->spa_dsl_pool) {
1814 dsl_pool_close(spa->spa_dsl_pool);
1815 spa->spa_dsl_pool = NULL;
1816 spa->spa_meta_objset = NULL;
1817 }
1818
1819 ddt_unload(spa);
1820 brt_unload(spa);
1821 spa_unload_log_sm_metadata(spa);
1822
1823 /*
1824 * Drop and purge level 2 cache
1825 */
1826 spa_l2cache_drop(spa);
1827
1828 if (spa->spa_spares.sav_vdevs) {
1829 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1830 vdev_free(spa->spa_spares.sav_vdevs[i]);
1831 kmem_free(spa->spa_spares.sav_vdevs,
1832 spa->spa_spares.sav_count * sizeof (void *));
1833 spa->spa_spares.sav_vdevs = NULL;
1834 }
1835 if (spa->spa_spares.sav_config) {
1836 nvlist_free(spa->spa_spares.sav_config);
1837 spa->spa_spares.sav_config = NULL;
1838 }
1839 spa->spa_spares.sav_count = 0;
1840
1841 if (spa->spa_l2cache.sav_vdevs) {
1842 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1843 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1844 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1845 }
1846 kmem_free(spa->spa_l2cache.sav_vdevs,
1847 spa->spa_l2cache.sav_count * sizeof (void *));
1848 spa->spa_l2cache.sav_vdevs = NULL;
1849 }
1850 if (spa->spa_l2cache.sav_config) {
1851 nvlist_free(spa->spa_l2cache.sav_config);
1852 spa->spa_l2cache.sav_config = NULL;
1853 }
1854 spa->spa_l2cache.sav_count = 0;
1855
1856 spa->spa_async_suspended = 0;
1857
1858 spa->spa_indirect_vdevs_loaded = B_FALSE;
1859
1860 if (spa->spa_comment != NULL) {
1861 spa_strfree(spa->spa_comment);
1862 spa->spa_comment = NULL;
1863 }
1864 if (spa->spa_compatibility != NULL) {
1865 spa_strfree(spa->spa_compatibility);
1866 spa->spa_compatibility = NULL;
1867 }
1868
1869 spa->spa_raidz_expand = NULL;
1870
1871 spa_config_exit(spa, SCL_ALL, spa);
1872 }
1873
1874 /*
1875 * Load (or re-load) the current list of vdevs describing the active spares for
1876 * this pool. When this is called, we have some form of basic information in
1877 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1878 * then re-generate a more complete list including status information.
1879 */
1880 void
1881 spa_load_spares(spa_t *spa)
1882 {
1883 nvlist_t **spares;
1884 uint_t nspares;
1885 int i;
1886 vdev_t *vd, *tvd;
1887
1888 #ifndef _KERNEL
1889 /*
1890 * zdb opens both the current state of the pool and the
1891 * checkpointed state (if present), with a different spa_t.
1892 *
1893 * As spare vdevs are shared among open pools, we skip loading
1894 * them when we load the checkpointed state of the pool.
1895 */
1896 if (!spa_writeable(spa))
1897 return;
1898 #endif
1899
1900 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1901
1902 /*
1903 * First, close and free any existing spare vdevs.
1904 */
1905 if (spa->spa_spares.sav_vdevs) {
1906 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1907 vd = spa->spa_spares.sav_vdevs[i];
1908
1909 /* Undo the call to spa_activate() below */
1910 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1911 B_FALSE)) != NULL && tvd->vdev_isspare)
1912 spa_spare_remove(tvd);
1913 vdev_close(vd);
1914 vdev_free(vd);
1915 }
1916
1917 kmem_free(spa->spa_spares.sav_vdevs,
1918 spa->spa_spares.sav_count * sizeof (void *));
1919 }
1920
1921 if (spa->spa_spares.sav_config == NULL)
1922 nspares = 0;
1923 else
1924 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1925 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1926
1927 spa->spa_spares.sav_count = (int)nspares;
1928 spa->spa_spares.sav_vdevs = NULL;
1929
1930 if (nspares == 0)
1931 return;
1932
1933 /*
1934 * Construct the array of vdevs, opening them to get status in the
1935 * process. For each spare, there is potentially two different vdev_t
1936 * structures associated with it: one in the list of spares (used only
1937 * for basic validation purposes) and one in the active vdev
1938 * configuration (if it's spared in). During this phase we open and
1939 * validate each vdev on the spare list. If the vdev also exists in the
1940 * active configuration, then we also mark this vdev as an active spare.
1941 */
1942 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1943 KM_SLEEP);
1944 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1945 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1946 VDEV_ALLOC_SPARE) == 0);
1947 ASSERT(vd != NULL);
1948
1949 spa->spa_spares.sav_vdevs[i] = vd;
1950
1951 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1952 B_FALSE)) != NULL) {
1953 if (!tvd->vdev_isspare)
1954 spa_spare_add(tvd);
1955
1956 /*
1957 * We only mark the spare active if we were successfully
1958 * able to load the vdev. Otherwise, importing a pool
1959 * with a bad active spare would result in strange
1960 * behavior, because multiple pool would think the spare
1961 * is actively in use.
1962 *
1963 * There is a vulnerability here to an equally bizarre
1964 * circumstance, where a dead active spare is later
1965 * brought back to life (onlined or otherwise). Given
1966 * the rarity of this scenario, and the extra complexity
1967 * it adds, we ignore the possibility.
1968 */
1969 if (!vdev_is_dead(tvd))
1970 spa_spare_activate(tvd);
1971 }
1972
1973 vd->vdev_top = vd;
1974 vd->vdev_aux = &spa->spa_spares;
1975
1976 if (vdev_open(vd) != 0)
1977 continue;
1978
1979 if (vdev_validate_aux(vd) == 0)
1980 spa_spare_add(vd);
1981 }
1982
1983 /*
1984 * Recompute the stashed list of spares, with status information
1985 * this time.
1986 */
1987 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1988
1989 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1990 KM_SLEEP);
1991 for (i = 0; i < spa->spa_spares.sav_count; i++)
1992 spares[i] = vdev_config_generate(spa,
1993 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1994 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1995 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1996 spa->spa_spares.sav_count);
1997 for (i = 0; i < spa->spa_spares.sav_count; i++)
1998 nvlist_free(spares[i]);
1999 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2000 }
2001
2002 /*
2003 * Load (or re-load) the current list of vdevs describing the active l2cache for
2004 * this pool. When this is called, we have some form of basic information in
2005 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2006 * then re-generate a more complete list including status information.
2007 * Devices which are already active have their details maintained, and are
2008 * not re-opened.
2009 */
2010 void
2011 spa_load_l2cache(spa_t *spa)
2012 {
2013 nvlist_t **l2cache = NULL;
2014 uint_t nl2cache;
2015 int i, j, oldnvdevs;
2016 uint64_t guid;
2017 vdev_t *vd, **oldvdevs, **newvdevs;
2018 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2019
2020 #ifndef _KERNEL
2021 /*
2022 * zdb opens both the current state of the pool and the
2023 * checkpointed state (if present), with a different spa_t.
2024 *
2025 * As L2 caches are part of the ARC which is shared among open
2026 * pools, we skip loading them when we load the checkpointed
2027 * state of the pool.
2028 */
2029 if (!spa_writeable(spa))
2030 return;
2031 #endif
2032
2033 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2034
2035 oldvdevs = sav->sav_vdevs;
2036 oldnvdevs = sav->sav_count;
2037 sav->sav_vdevs = NULL;
2038 sav->sav_count = 0;
2039
2040 if (sav->sav_config == NULL) {
2041 nl2cache = 0;
2042 newvdevs = NULL;
2043 goto out;
2044 }
2045
2046 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2047 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2048 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2049
2050 /*
2051 * Process new nvlist of vdevs.
2052 */
2053 for (i = 0; i < nl2cache; i++) {
2054 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2055
2056 newvdevs[i] = NULL;
2057 for (j = 0; j < oldnvdevs; j++) {
2058 vd = oldvdevs[j];
2059 if (vd != NULL && guid == vd->vdev_guid) {
2060 /*
2061 * Retain previous vdev for add/remove ops.
2062 */
2063 newvdevs[i] = vd;
2064 oldvdevs[j] = NULL;
2065 break;
2066 }
2067 }
2068
2069 if (newvdevs[i] == NULL) {
2070 /*
2071 * Create new vdev
2072 */
2073 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2074 VDEV_ALLOC_L2CACHE) == 0);
2075 ASSERT(vd != NULL);
2076 newvdevs[i] = vd;
2077
2078 /*
2079 * Commit this vdev as an l2cache device,
2080 * even if it fails to open.
2081 */
2082 spa_l2cache_add(vd);
2083
2084 vd->vdev_top = vd;
2085 vd->vdev_aux = sav;
2086
2087 spa_l2cache_activate(vd);
2088
2089 if (vdev_open(vd) != 0)
2090 continue;
2091
2092 (void) vdev_validate_aux(vd);
2093
2094 if (!vdev_is_dead(vd))
2095 l2arc_add_vdev(spa, vd);
2096
2097 /*
2098 * Upon cache device addition to a pool or pool
2099 * creation with a cache device or if the header
2100 * of the device is invalid we issue an async
2101 * TRIM command for the whole device which will
2102 * execute if l2arc_trim_ahead > 0.
2103 */
2104 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2105 }
2106 }
2107
2108 sav->sav_vdevs = newvdevs;
2109 sav->sav_count = (int)nl2cache;
2110
2111 /*
2112 * Recompute the stashed list of l2cache devices, with status
2113 * information this time.
2114 */
2115 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2116
2117 if (sav->sav_count > 0)
2118 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2119 KM_SLEEP);
2120 for (i = 0; i < sav->sav_count; i++)
2121 l2cache[i] = vdev_config_generate(spa,
2122 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2123 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2124 (const nvlist_t * const *)l2cache, sav->sav_count);
2125
2126 out:
2127 /*
2128 * Purge vdevs that were dropped
2129 */
2130 if (oldvdevs) {
2131 for (i = 0; i < oldnvdevs; i++) {
2132 uint64_t pool;
2133
2134 vd = oldvdevs[i];
2135 if (vd != NULL) {
2136 ASSERT(vd->vdev_isl2cache);
2137
2138 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2139 pool != 0ULL && l2arc_vdev_present(vd))
2140 l2arc_remove_vdev(vd);
2141 vdev_clear_stats(vd);
2142 vdev_free(vd);
2143 }
2144 }
2145
2146 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2147 }
2148
2149 for (i = 0; i < sav->sav_count; i++)
2150 nvlist_free(l2cache[i]);
2151 if (sav->sav_count)
2152 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2153 }
2154
2155 static int
2156 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2157 {
2158 dmu_buf_t *db;
2159 char *packed = NULL;
2160 size_t nvsize = 0;
2161 int error;
2162 *value = NULL;
2163
2164 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2165 if (error)
2166 return (error);
2167
2168 nvsize = *(uint64_t *)db->db_data;
2169 dmu_buf_rele(db, FTAG);
2170
2171 packed = vmem_alloc(nvsize, KM_SLEEP);
2172 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2173 DMU_READ_PREFETCH);
2174 if (error == 0)
2175 error = nvlist_unpack(packed, nvsize, value, 0);
2176 vmem_free(packed, nvsize);
2177
2178 return (error);
2179 }
2180
2181 /*
2182 * Concrete top-level vdevs that are not missing and are not logs. At every
2183 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2184 */
2185 static uint64_t
2186 spa_healthy_core_tvds(spa_t *spa)
2187 {
2188 vdev_t *rvd = spa->spa_root_vdev;
2189 uint64_t tvds = 0;
2190
2191 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2192 vdev_t *vd = rvd->vdev_child[i];
2193 if (vd->vdev_islog)
2194 continue;
2195 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2196 tvds++;
2197 }
2198
2199 return (tvds);
2200 }
2201
2202 /*
2203 * Checks to see if the given vdev could not be opened, in which case we post a
2204 * sysevent to notify the autoreplace code that the device has been removed.
2205 */
2206 static void
2207 spa_check_removed(vdev_t *vd)
2208 {
2209 for (uint64_t c = 0; c < vd->vdev_children; c++)
2210 spa_check_removed(vd->vdev_child[c]);
2211
2212 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2213 vdev_is_concrete(vd)) {
2214 zfs_post_autoreplace(vd->vdev_spa, vd);
2215 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2216 }
2217 }
2218
2219 static int
2220 spa_check_for_missing_logs(spa_t *spa)
2221 {
2222 vdev_t *rvd = spa->spa_root_vdev;
2223
2224 /*
2225 * If we're doing a normal import, then build up any additional
2226 * diagnostic information about missing log devices.
2227 * We'll pass this up to the user for further processing.
2228 */
2229 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2230 nvlist_t **child, *nv;
2231 uint64_t idx = 0;
2232
2233 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2234 KM_SLEEP);
2235 nv = fnvlist_alloc();
2236
2237 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2238 vdev_t *tvd = rvd->vdev_child[c];
2239
2240 /*
2241 * We consider a device as missing only if it failed
2242 * to open (i.e. offline or faulted is not considered
2243 * as missing).
2244 */
2245 if (tvd->vdev_islog &&
2246 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2247 child[idx++] = vdev_config_generate(spa, tvd,
2248 B_FALSE, VDEV_CONFIG_MISSING);
2249 }
2250 }
2251
2252 if (idx > 0) {
2253 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2254 (const nvlist_t * const *)child, idx);
2255 fnvlist_add_nvlist(spa->spa_load_info,
2256 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2257
2258 for (uint64_t i = 0; i < idx; i++)
2259 nvlist_free(child[i]);
2260 }
2261 nvlist_free(nv);
2262 kmem_free(child, rvd->vdev_children * sizeof (char **));
2263
2264 if (idx > 0) {
2265 spa_load_failed(spa, "some log devices are missing");
2266 vdev_dbgmsg_print_tree(rvd, 2);
2267 return (SET_ERROR(ENXIO));
2268 }
2269 } else {
2270 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2271 vdev_t *tvd = rvd->vdev_child[c];
2272
2273 if (tvd->vdev_islog &&
2274 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2275 spa_set_log_state(spa, SPA_LOG_CLEAR);
2276 spa_load_note(spa, "some log devices are "
2277 "missing, ZIL is dropped.");
2278 vdev_dbgmsg_print_tree(rvd, 2);
2279 break;
2280 }
2281 }
2282 }
2283
2284 return (0);
2285 }
2286
2287 /*
2288 * Check for missing log devices
2289 */
2290 static boolean_t
2291 spa_check_logs(spa_t *spa)
2292 {
2293 boolean_t rv = B_FALSE;
2294 dsl_pool_t *dp = spa_get_dsl(spa);
2295
2296 switch (spa->spa_log_state) {
2297 default:
2298 break;
2299 case SPA_LOG_MISSING:
2300 /* need to recheck in case slog has been restored */
2301 case SPA_LOG_UNKNOWN:
2302 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2303 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2304 if (rv)
2305 spa_set_log_state(spa, SPA_LOG_MISSING);
2306 break;
2307 }
2308 return (rv);
2309 }
2310
2311 /*
2312 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2313 */
2314 static boolean_t
2315 spa_passivate_log(spa_t *spa)
2316 {
2317 vdev_t *rvd = spa->spa_root_vdev;
2318 boolean_t slog_found = B_FALSE;
2319
2320 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2321
2322 for (int c = 0; c < rvd->vdev_children; c++) {
2323 vdev_t *tvd = rvd->vdev_child[c];
2324
2325 if (tvd->vdev_islog) {
2326 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2327 metaslab_group_passivate(tvd->vdev_mg);
2328 slog_found = B_TRUE;
2329 }
2330 }
2331
2332 return (slog_found);
2333 }
2334
2335 /*
2336 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2337 */
2338 static void
2339 spa_activate_log(spa_t *spa)
2340 {
2341 vdev_t *rvd = spa->spa_root_vdev;
2342
2343 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2344
2345 for (int c = 0; c < rvd->vdev_children; c++) {
2346 vdev_t *tvd = rvd->vdev_child[c];
2347
2348 if (tvd->vdev_islog) {
2349 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2350 metaslab_group_activate(tvd->vdev_mg);
2351 }
2352 }
2353 }
2354
2355 int
2356 spa_reset_logs(spa_t *spa)
2357 {
2358 int error;
2359
2360 error = dmu_objset_find(spa_name(spa), zil_reset,
2361 NULL, DS_FIND_CHILDREN);
2362 if (error == 0) {
2363 /*
2364 * We successfully offlined the log device, sync out the
2365 * current txg so that the "stubby" block can be removed
2366 * by zil_sync().
2367 */
2368 txg_wait_synced(spa->spa_dsl_pool, 0);
2369 }
2370 return (error);
2371 }
2372
2373 static void
2374 spa_aux_check_removed(spa_aux_vdev_t *sav)
2375 {
2376 for (int i = 0; i < sav->sav_count; i++)
2377 spa_check_removed(sav->sav_vdevs[i]);
2378 }
2379
2380 void
2381 spa_claim_notify(zio_t *zio)
2382 {
2383 spa_t *spa = zio->io_spa;
2384
2385 if (zio->io_error)
2386 return;
2387
2388 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2389 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2390 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2391 mutex_exit(&spa->spa_props_lock);
2392 }
2393
2394 typedef struct spa_load_error {
2395 boolean_t sle_verify_data;
2396 uint64_t sle_meta_count;
2397 uint64_t sle_data_count;
2398 } spa_load_error_t;
2399
2400 static void
2401 spa_load_verify_done(zio_t *zio)
2402 {
2403 blkptr_t *bp = zio->io_bp;
2404 spa_load_error_t *sle = zio->io_private;
2405 dmu_object_type_t type = BP_GET_TYPE(bp);
2406 int error = zio->io_error;
2407 spa_t *spa = zio->io_spa;
2408
2409 abd_free(zio->io_abd);
2410 if (error) {
2411 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2412 type != DMU_OT_INTENT_LOG)
2413 atomic_inc_64(&sle->sle_meta_count);
2414 else
2415 atomic_inc_64(&sle->sle_data_count);
2416 }
2417
2418 mutex_enter(&spa->spa_scrub_lock);
2419 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2420 cv_broadcast(&spa->spa_scrub_io_cv);
2421 mutex_exit(&spa->spa_scrub_lock);
2422 }
2423
2424 /*
2425 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2426 * By default, we set it to 1/16th of the arc.
2427 */
2428 static uint_t spa_load_verify_shift = 4;
2429 static int spa_load_verify_metadata = B_TRUE;
2430 static int spa_load_verify_data = B_TRUE;
2431
2432 static int
2433 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2434 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2435 {
2436 zio_t *rio = arg;
2437 spa_load_error_t *sle = rio->io_private;
2438
2439 (void) zilog, (void) dnp;
2440
2441 /*
2442 * Note: normally this routine will not be called if
2443 * spa_load_verify_metadata is not set. However, it may be useful
2444 * to manually set the flag after the traversal has begun.
2445 */
2446 if (!spa_load_verify_metadata)
2447 return (0);
2448
2449 /*
2450 * Sanity check the block pointer in order to detect obvious damage
2451 * before using the contents in subsequent checks or in zio_read().
2452 * When damaged consider it to be a metadata error since we cannot
2453 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2454 */
2455 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2456 atomic_inc_64(&sle->sle_meta_count);
2457 return (0);
2458 }
2459
2460 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2461 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2462 return (0);
2463
2464 if (!BP_IS_METADATA(bp) &&
2465 (!spa_load_verify_data || !sle->sle_verify_data))
2466 return (0);
2467
2468 uint64_t maxinflight_bytes =
2469 arc_target_bytes() >> spa_load_verify_shift;
2470 size_t size = BP_GET_PSIZE(bp);
2471
2472 mutex_enter(&spa->spa_scrub_lock);
2473 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2474 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2475 spa->spa_load_verify_bytes += size;
2476 mutex_exit(&spa->spa_scrub_lock);
2477
2478 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2479 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2480 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2481 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2482 return (0);
2483 }
2484
2485 static int
2486 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2487 {
2488 (void) dp, (void) arg;
2489
2490 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2491 return (SET_ERROR(ENAMETOOLONG));
2492
2493 return (0);
2494 }
2495
2496 static int
2497 spa_load_verify(spa_t *spa)
2498 {
2499 zio_t *rio;
2500 spa_load_error_t sle = { 0 };
2501 zpool_load_policy_t policy;
2502 boolean_t verify_ok = B_FALSE;
2503 int error = 0;
2504
2505 zpool_get_load_policy(spa->spa_config, &policy);
2506
2507 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2508 policy.zlp_maxmeta == UINT64_MAX)
2509 return (0);
2510
2511 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2512 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2513 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2514 DS_FIND_CHILDREN);
2515 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2516 if (error != 0)
2517 return (error);
2518
2519 /*
2520 * Verify data only if we are rewinding or error limit was set.
2521 * Otherwise nothing except dbgmsg care about it to waste time.
2522 */
2523 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2524 (policy.zlp_maxdata < UINT64_MAX);
2525
2526 rio = zio_root(spa, NULL, &sle,
2527 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2528
2529 if (spa_load_verify_metadata) {
2530 if (spa->spa_extreme_rewind) {
2531 spa_load_note(spa, "performing a complete scan of the "
2532 "pool since extreme rewind is on. This may take "
2533 "a very long time.\n (spa_load_verify_data=%u, "
2534 "spa_load_verify_metadata=%u)",
2535 spa_load_verify_data, spa_load_verify_metadata);
2536 }
2537
2538 error = traverse_pool(spa, spa->spa_verify_min_txg,
2539 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2540 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2541 }
2542
2543 (void) zio_wait(rio);
2544 ASSERT0(spa->spa_load_verify_bytes);
2545
2546 spa->spa_load_meta_errors = sle.sle_meta_count;
2547 spa->spa_load_data_errors = sle.sle_data_count;
2548
2549 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2550 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2551 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2552 (u_longlong_t)sle.sle_data_count);
2553 }
2554
2555 if (spa_load_verify_dryrun ||
2556 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2557 sle.sle_data_count <= policy.zlp_maxdata)) {
2558 int64_t loss = 0;
2559
2560 verify_ok = B_TRUE;
2561 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2562 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2563
2564 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2565 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2566 spa->spa_load_txg_ts);
2567 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2568 loss);
2569 fnvlist_add_uint64(spa->spa_load_info,
2570 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2571 fnvlist_add_uint64(spa->spa_load_info,
2572 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2573 } else {
2574 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2575 }
2576
2577 if (spa_load_verify_dryrun)
2578 return (0);
2579
2580 if (error) {
2581 if (error != ENXIO && error != EIO)
2582 error = SET_ERROR(EIO);
2583 return (error);
2584 }
2585
2586 return (verify_ok ? 0 : EIO);
2587 }
2588
2589 /*
2590 * Find a value in the pool props object.
2591 */
2592 static void
2593 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2594 {
2595 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2596 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2597 }
2598
2599 /*
2600 * Find a value in the pool directory object.
2601 */
2602 static int
2603 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2604 {
2605 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2606 name, sizeof (uint64_t), 1, val);
2607
2608 if (error != 0 && (error != ENOENT || log_enoent)) {
2609 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2610 "[error=%d]", name, error);
2611 }
2612
2613 return (error);
2614 }
2615
2616 static int
2617 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2618 {
2619 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2620 return (SET_ERROR(err));
2621 }
2622
2623 boolean_t
2624 spa_livelist_delete_check(spa_t *spa)
2625 {
2626 return (spa->spa_livelists_to_delete != 0);
2627 }
2628
2629 static boolean_t
2630 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2631 {
2632 (void) z;
2633 spa_t *spa = arg;
2634 return (spa_livelist_delete_check(spa));
2635 }
2636
2637 static int
2638 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2639 {
2640 spa_t *spa = arg;
2641 zio_free(spa, tx->tx_txg, bp);
2642 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2643 -bp_get_dsize_sync(spa, bp),
2644 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2645 return (0);
2646 }
2647
2648 static int
2649 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2650 {
2651 int err;
2652 zap_cursor_t zc;
2653 zap_attribute_t za;
2654 zap_cursor_init(&zc, os, zap_obj);
2655 err = zap_cursor_retrieve(&zc, &za);
2656 zap_cursor_fini(&zc);
2657 if (err == 0)
2658 *llp = za.za_first_integer;
2659 return (err);
2660 }
2661
2662 /*
2663 * Components of livelist deletion that must be performed in syncing
2664 * context: freeing block pointers and updating the pool-wide data
2665 * structures to indicate how much work is left to do
2666 */
2667 typedef struct sublist_delete_arg {
2668 spa_t *spa;
2669 dsl_deadlist_t *ll;
2670 uint64_t key;
2671 bplist_t *to_free;
2672 } sublist_delete_arg_t;
2673
2674 static void
2675 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2676 {
2677 sublist_delete_arg_t *sda = arg;
2678 spa_t *spa = sda->spa;
2679 dsl_deadlist_t *ll = sda->ll;
2680 uint64_t key = sda->key;
2681 bplist_t *to_free = sda->to_free;
2682
2683 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2684 dsl_deadlist_remove_entry(ll, key, tx);
2685 }
2686
2687 typedef struct livelist_delete_arg {
2688 spa_t *spa;
2689 uint64_t ll_obj;
2690 uint64_t zap_obj;
2691 } livelist_delete_arg_t;
2692
2693 static void
2694 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2695 {
2696 livelist_delete_arg_t *lda = arg;
2697 spa_t *spa = lda->spa;
2698 uint64_t ll_obj = lda->ll_obj;
2699 uint64_t zap_obj = lda->zap_obj;
2700 objset_t *mos = spa->spa_meta_objset;
2701 uint64_t count;
2702
2703 /* free the livelist and decrement the feature count */
2704 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2705 dsl_deadlist_free(mos, ll_obj, tx);
2706 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2707 VERIFY0(zap_count(mos, zap_obj, &count));
2708 if (count == 0) {
2709 /* no more livelists to delete */
2710 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2711 DMU_POOL_DELETED_CLONES, tx));
2712 VERIFY0(zap_destroy(mos, zap_obj, tx));
2713 spa->spa_livelists_to_delete = 0;
2714 spa_notify_waiters(spa);
2715 }
2716 }
2717
2718 /*
2719 * Load in the value for the livelist to be removed and open it. Then,
2720 * load its first sublist and determine which block pointers should actually
2721 * be freed. Then, call a synctask which performs the actual frees and updates
2722 * the pool-wide livelist data.
2723 */
2724 static void
2725 spa_livelist_delete_cb(void *arg, zthr_t *z)
2726 {
2727 spa_t *spa = arg;
2728 uint64_t ll_obj = 0, count;
2729 objset_t *mos = spa->spa_meta_objset;
2730 uint64_t zap_obj = spa->spa_livelists_to_delete;
2731 /*
2732 * Determine the next livelist to delete. This function should only
2733 * be called if there is at least one deleted clone.
2734 */
2735 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2736 VERIFY0(zap_count(mos, ll_obj, &count));
2737 if (count > 0) {
2738 dsl_deadlist_t *ll;
2739 dsl_deadlist_entry_t *dle;
2740 bplist_t to_free;
2741 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2742 dsl_deadlist_open(ll, mos, ll_obj);
2743 dle = dsl_deadlist_first(ll);
2744 ASSERT3P(dle, !=, NULL);
2745 bplist_create(&to_free);
2746 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2747 z, NULL);
2748 if (err == 0) {
2749 sublist_delete_arg_t sync_arg = {
2750 .spa = spa,
2751 .ll = ll,
2752 .key = dle->dle_mintxg,
2753 .to_free = &to_free
2754 };
2755 zfs_dbgmsg("deleting sublist (id %llu) from"
2756 " livelist %llu, %lld remaining",
2757 (u_longlong_t)dle->dle_bpobj.bpo_object,
2758 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2759 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2760 sublist_delete_sync, &sync_arg, 0,
2761 ZFS_SPACE_CHECK_DESTROY));
2762 } else {
2763 VERIFY3U(err, ==, EINTR);
2764 }
2765 bplist_clear(&to_free);
2766 bplist_destroy(&to_free);
2767 dsl_deadlist_close(ll);
2768 kmem_free(ll, sizeof (dsl_deadlist_t));
2769 } else {
2770 livelist_delete_arg_t sync_arg = {
2771 .spa = spa,
2772 .ll_obj = ll_obj,
2773 .zap_obj = zap_obj
2774 };
2775 zfs_dbgmsg("deletion of livelist %llu completed",
2776 (u_longlong_t)ll_obj);
2777 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2778 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2779 }
2780 }
2781
2782 static void
2783 spa_start_livelist_destroy_thread(spa_t *spa)
2784 {
2785 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2786 spa->spa_livelist_delete_zthr =
2787 zthr_create("z_livelist_destroy",
2788 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2789 minclsyspri);
2790 }
2791
2792 typedef struct livelist_new_arg {
2793 bplist_t *allocs;
2794 bplist_t *frees;
2795 } livelist_new_arg_t;
2796
2797 static int
2798 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2799 dmu_tx_t *tx)
2800 {
2801 ASSERT(tx == NULL);
2802 livelist_new_arg_t *lna = arg;
2803 if (bp_freed) {
2804 bplist_append(lna->frees, bp);
2805 } else {
2806 bplist_append(lna->allocs, bp);
2807 zfs_livelist_condense_new_alloc++;
2808 }
2809 return (0);
2810 }
2811
2812 typedef struct livelist_condense_arg {
2813 spa_t *spa;
2814 bplist_t to_keep;
2815 uint64_t first_size;
2816 uint64_t next_size;
2817 } livelist_condense_arg_t;
2818
2819 static void
2820 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2821 {
2822 livelist_condense_arg_t *lca = arg;
2823 spa_t *spa = lca->spa;
2824 bplist_t new_frees;
2825 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2826
2827 /* Have we been cancelled? */
2828 if (spa->spa_to_condense.cancelled) {
2829 zfs_livelist_condense_sync_cancel++;
2830 goto out;
2831 }
2832
2833 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2834 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2835 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2836
2837 /*
2838 * It's possible that the livelist was changed while the zthr was
2839 * running. Therefore, we need to check for new blkptrs in the two
2840 * entries being condensed and continue to track them in the livelist.
2841 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2842 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2843 * we need to sort them into two different bplists.
2844 */
2845 uint64_t first_obj = first->dle_bpobj.bpo_object;
2846 uint64_t next_obj = next->dle_bpobj.bpo_object;
2847 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2848 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2849
2850 bplist_create(&new_frees);
2851 livelist_new_arg_t new_bps = {
2852 .allocs = &lca->to_keep,
2853 .frees = &new_frees,
2854 };
2855
2856 if (cur_first_size > lca->first_size) {
2857 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2858 livelist_track_new_cb, &new_bps, lca->first_size));
2859 }
2860 if (cur_next_size > lca->next_size) {
2861 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2862 livelist_track_new_cb, &new_bps, lca->next_size));
2863 }
2864
2865 dsl_deadlist_clear_entry(first, ll, tx);
2866 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2867 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2868
2869 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2870 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2871 bplist_destroy(&new_frees);
2872
2873 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2874 dsl_dataset_name(ds, dsname);
2875 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2876 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2877 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2878 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2879 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2880 (u_longlong_t)cur_next_size,
2881 (u_longlong_t)first->dle_bpobj.bpo_object,
2882 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2883 out:
2884 dmu_buf_rele(ds->ds_dbuf, spa);
2885 spa->spa_to_condense.ds = NULL;
2886 bplist_clear(&lca->to_keep);
2887 bplist_destroy(&lca->to_keep);
2888 kmem_free(lca, sizeof (livelist_condense_arg_t));
2889 spa->spa_to_condense.syncing = B_FALSE;
2890 }
2891
2892 static void
2893 spa_livelist_condense_cb(void *arg, zthr_t *t)
2894 {
2895 while (zfs_livelist_condense_zthr_pause &&
2896 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2897 delay(1);
2898
2899 spa_t *spa = arg;
2900 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2901 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2902 uint64_t first_size, next_size;
2903
2904 livelist_condense_arg_t *lca =
2905 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2906 bplist_create(&lca->to_keep);
2907
2908 /*
2909 * Process the livelists (matching FREEs and ALLOCs) in open context
2910 * so we have minimal work in syncing context to condense.
2911 *
2912 * We save bpobj sizes (first_size and next_size) to use later in
2913 * syncing context to determine if entries were added to these sublists
2914 * while in open context. This is possible because the clone is still
2915 * active and open for normal writes and we want to make sure the new,
2916 * unprocessed blockpointers are inserted into the livelist normally.
2917 *
2918 * Note that dsl_process_sub_livelist() both stores the size number of
2919 * blockpointers and iterates over them while the bpobj's lock held, so
2920 * the sizes returned to us are consistent which what was actually
2921 * processed.
2922 */
2923 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2924 &first_size);
2925 if (err == 0)
2926 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2927 t, &next_size);
2928
2929 if (err == 0) {
2930 while (zfs_livelist_condense_sync_pause &&
2931 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2932 delay(1);
2933
2934 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2935 dmu_tx_mark_netfree(tx);
2936 dmu_tx_hold_space(tx, 1);
2937 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2938 if (err == 0) {
2939 /*
2940 * Prevent the condense zthr restarting before
2941 * the synctask completes.
2942 */
2943 spa->spa_to_condense.syncing = B_TRUE;
2944 lca->spa = spa;
2945 lca->first_size = first_size;
2946 lca->next_size = next_size;
2947 dsl_sync_task_nowait(spa_get_dsl(spa),
2948 spa_livelist_condense_sync, lca, tx);
2949 dmu_tx_commit(tx);
2950 return;
2951 }
2952 }
2953 /*
2954 * Condensing can not continue: either it was externally stopped or
2955 * we were unable to assign to a tx because the pool has run out of
2956 * space. In the second case, we'll just end up trying to condense
2957 * again in a later txg.
2958 */
2959 ASSERT(err != 0);
2960 bplist_clear(&lca->to_keep);
2961 bplist_destroy(&lca->to_keep);
2962 kmem_free(lca, sizeof (livelist_condense_arg_t));
2963 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2964 spa->spa_to_condense.ds = NULL;
2965 if (err == EINTR)
2966 zfs_livelist_condense_zthr_cancel++;
2967 }
2968
2969 /*
2970 * Check that there is something to condense but that a condense is not
2971 * already in progress and that condensing has not been cancelled.
2972 */
2973 static boolean_t
2974 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2975 {
2976 (void) z;
2977 spa_t *spa = arg;
2978 if ((spa->spa_to_condense.ds != NULL) &&
2979 (spa->spa_to_condense.syncing == B_FALSE) &&
2980 (spa->spa_to_condense.cancelled == B_FALSE)) {
2981 return (B_TRUE);
2982 }
2983 return (B_FALSE);
2984 }
2985
2986 static void
2987 spa_start_livelist_condensing_thread(spa_t *spa)
2988 {
2989 spa->spa_to_condense.ds = NULL;
2990 spa->spa_to_condense.first = NULL;
2991 spa->spa_to_condense.next = NULL;
2992 spa->spa_to_condense.syncing = B_FALSE;
2993 spa->spa_to_condense.cancelled = B_FALSE;
2994
2995 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2996 spa->spa_livelist_condense_zthr =
2997 zthr_create("z_livelist_condense",
2998 spa_livelist_condense_cb_check,
2999 spa_livelist_condense_cb, spa, minclsyspri);
3000 }
3001
3002 static void
3003 spa_spawn_aux_threads(spa_t *spa)
3004 {
3005 ASSERT(spa_writeable(spa));
3006
3007 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3008
3009 spa_start_raidz_expansion_thread(spa);
3010 spa_start_indirect_condensing_thread(spa);
3011 spa_start_livelist_destroy_thread(spa);
3012 spa_start_livelist_condensing_thread(spa);
3013
3014 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3015 spa->spa_checkpoint_discard_zthr =
3016 zthr_create("z_checkpoint_discard",
3017 spa_checkpoint_discard_thread_check,
3018 spa_checkpoint_discard_thread, spa, minclsyspri);
3019 }
3020
3021 /*
3022 * Fix up config after a partly-completed split. This is done with the
3023 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3024 * pool have that entry in their config, but only the splitting one contains
3025 * a list of all the guids of the vdevs that are being split off.
3026 *
3027 * This function determines what to do with that list: either rejoin
3028 * all the disks to the pool, or complete the splitting process. To attempt
3029 * the rejoin, each disk that is offlined is marked online again, and
3030 * we do a reopen() call. If the vdev label for every disk that was
3031 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3032 * then we call vdev_split() on each disk, and complete the split.
3033 *
3034 * Otherwise we leave the config alone, with all the vdevs in place in
3035 * the original pool.
3036 */
3037 static void
3038 spa_try_repair(spa_t *spa, nvlist_t *config)
3039 {
3040 uint_t extracted;
3041 uint64_t *glist;
3042 uint_t i, gcount;
3043 nvlist_t *nvl;
3044 vdev_t **vd;
3045 boolean_t attempt_reopen;
3046
3047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3048 return;
3049
3050 /* check that the config is complete */
3051 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3052 &glist, &gcount) != 0)
3053 return;
3054
3055 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3056
3057 /* attempt to online all the vdevs & validate */
3058 attempt_reopen = B_TRUE;
3059 for (i = 0; i < gcount; i++) {
3060 if (glist[i] == 0) /* vdev is hole */
3061 continue;
3062
3063 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3064 if (vd[i] == NULL) {
3065 /*
3066 * Don't bother attempting to reopen the disks;
3067 * just do the split.
3068 */
3069 attempt_reopen = B_FALSE;
3070 } else {
3071 /* attempt to re-online it */
3072 vd[i]->vdev_offline = B_FALSE;
3073 }
3074 }
3075
3076 if (attempt_reopen) {
3077 vdev_reopen(spa->spa_root_vdev);
3078
3079 /* check each device to see what state it's in */
3080 for (extracted = 0, i = 0; i < gcount; i++) {
3081 if (vd[i] != NULL &&
3082 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3083 break;
3084 ++extracted;
3085 }
3086 }
3087
3088 /*
3089 * If every disk has been moved to the new pool, or if we never
3090 * even attempted to look at them, then we split them off for
3091 * good.
3092 */
3093 if (!attempt_reopen || gcount == extracted) {
3094 for (i = 0; i < gcount; i++)
3095 if (vd[i] != NULL)
3096 vdev_split(vd[i]);
3097 vdev_reopen(spa->spa_root_vdev);
3098 }
3099
3100 kmem_free(vd, gcount * sizeof (vdev_t *));
3101 }
3102
3103 static int
3104 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3105 {
3106 const char *ereport = FM_EREPORT_ZFS_POOL;
3107 int error;
3108
3109 spa->spa_load_state = state;
3110 (void) spa_import_progress_set_state(spa_guid(spa),
3111 spa_load_state(spa));
3112 spa_import_progress_set_notes(spa, "spa_load()");
3113
3114 gethrestime(&spa->spa_loaded_ts);
3115 error = spa_load_impl(spa, type, &ereport);
3116
3117 /*
3118 * Don't count references from objsets that are already closed
3119 * and are making their way through the eviction process.
3120 */
3121 spa_evicting_os_wait(spa);
3122 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3123 if (error) {
3124 if (error != EEXIST) {
3125 spa->spa_loaded_ts.tv_sec = 0;
3126 spa->spa_loaded_ts.tv_nsec = 0;
3127 }
3128 if (error != EBADF) {
3129 (void) zfs_ereport_post(ereport, spa,
3130 NULL, NULL, NULL, 0);
3131 }
3132 }
3133 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3134 spa->spa_ena = 0;
3135
3136 (void) spa_import_progress_set_state(spa_guid(spa),
3137 spa_load_state(spa));
3138
3139 return (error);
3140 }
3141
3142 #ifdef ZFS_DEBUG
3143 /*
3144 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3145 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3146 * spa's per-vdev ZAP list.
3147 */
3148 static uint64_t
3149 vdev_count_verify_zaps(vdev_t *vd)
3150 {
3151 spa_t *spa = vd->vdev_spa;
3152 uint64_t total = 0;
3153
3154 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3155 vd->vdev_root_zap != 0) {
3156 total++;
3157 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3158 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3159 }
3160 if (vd->vdev_top_zap != 0) {
3161 total++;
3162 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3163 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3164 }
3165 if (vd->vdev_leaf_zap != 0) {
3166 total++;
3167 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3168 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3169 }
3170
3171 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3172 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3173 }
3174
3175 return (total);
3176 }
3177 #else
3178 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3179 #endif
3180
3181 /*
3182 * Determine whether the activity check is required.
3183 */
3184 static boolean_t
3185 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3186 nvlist_t *config)
3187 {
3188 uint64_t state = 0;
3189 uint64_t hostid = 0;
3190 uint64_t tryconfig_txg = 0;
3191 uint64_t tryconfig_timestamp = 0;
3192 uint16_t tryconfig_mmp_seq = 0;
3193 nvlist_t *nvinfo;
3194
3195 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3196 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3197 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3198 &tryconfig_txg);
3199 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3200 &tryconfig_timestamp);
3201 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3202 &tryconfig_mmp_seq);
3203 }
3204
3205 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3206
3207 /*
3208 * Disable the MMP activity check - This is used by zdb which
3209 * is intended to be used on potentially active pools.
3210 */
3211 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3212 return (B_FALSE);
3213
3214 /*
3215 * Skip the activity check when the MMP feature is disabled.
3216 */
3217 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3218 return (B_FALSE);
3219
3220 /*
3221 * If the tryconfig_ values are nonzero, they are the results of an
3222 * earlier tryimport. If they all match the uberblock we just found,
3223 * then the pool has not changed and we return false so we do not test
3224 * a second time.
3225 */
3226 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3227 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3228 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3229 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3230 return (B_FALSE);
3231
3232 /*
3233 * Allow the activity check to be skipped when importing the pool
3234 * on the same host which last imported it. Since the hostid from
3235 * configuration may be stale use the one read from the label.
3236 */
3237 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3238 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3239
3240 if (hostid == spa_get_hostid(spa))
3241 return (B_FALSE);
3242
3243 /*
3244 * Skip the activity test when the pool was cleanly exported.
3245 */
3246 if (state != POOL_STATE_ACTIVE)
3247 return (B_FALSE);
3248
3249 return (B_TRUE);
3250 }
3251
3252 /*
3253 * Nanoseconds the activity check must watch for changes on-disk.
3254 */
3255 static uint64_t
3256 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3257 {
3258 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3259 uint64_t multihost_interval = MSEC2NSEC(
3260 MMP_INTERVAL_OK(zfs_multihost_interval));
3261 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3262 multihost_interval);
3263
3264 /*
3265 * Local tunables determine a minimum duration except for the case
3266 * where we know when the remote host will suspend the pool if MMP
3267 * writes do not land.
3268 *
3269 * See Big Theory comment at the top of mmp.c for the reasoning behind
3270 * these cases and times.
3271 */
3272
3273 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3274
3275 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3276 MMP_FAIL_INT(ub) > 0) {
3277
3278 /* MMP on remote host will suspend pool after failed writes */
3279 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3280 MMP_IMPORT_SAFETY_FACTOR / 100;
3281
3282 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3283 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3284 "import_intervals=%llu", (u_longlong_t)import_delay,
3285 (u_longlong_t)MMP_FAIL_INT(ub),
3286 (u_longlong_t)MMP_INTERVAL(ub),
3287 (u_longlong_t)import_intervals);
3288
3289 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3290 MMP_FAIL_INT(ub) == 0) {
3291
3292 /* MMP on remote host will never suspend pool */
3293 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3294 ub->ub_mmp_delay) * import_intervals);
3295
3296 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3297 "mmp_interval=%llu ub_mmp_delay=%llu "
3298 "import_intervals=%llu", (u_longlong_t)import_delay,
3299 (u_longlong_t)MMP_INTERVAL(ub),
3300 (u_longlong_t)ub->ub_mmp_delay,
3301 (u_longlong_t)import_intervals);
3302
3303 } else if (MMP_VALID(ub)) {
3304 /*
3305 * zfs-0.7 compatibility case
3306 */
3307
3308 import_delay = MAX(import_delay, (multihost_interval +
3309 ub->ub_mmp_delay) * import_intervals);
3310
3311 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3312 "import_intervals=%llu leaves=%u",
3313 (u_longlong_t)import_delay,
3314 (u_longlong_t)ub->ub_mmp_delay,
3315 (u_longlong_t)import_intervals,
3316 vdev_count_leaves(spa));
3317 } else {
3318 /* Using local tunings is the only reasonable option */
3319 zfs_dbgmsg("pool last imported on non-MMP aware "
3320 "host using import_delay=%llu multihost_interval=%llu "
3321 "import_intervals=%llu", (u_longlong_t)import_delay,
3322 (u_longlong_t)multihost_interval,
3323 (u_longlong_t)import_intervals);
3324 }
3325
3326 return (import_delay);
3327 }
3328
3329 /*
3330 * Perform the import activity check. If the user canceled the import or
3331 * we detected activity then fail.
3332 */
3333 static int
3334 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3335 {
3336 uint64_t txg = ub->ub_txg;
3337 uint64_t timestamp = ub->ub_timestamp;
3338 uint64_t mmp_config = ub->ub_mmp_config;
3339 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3340 uint64_t import_delay;
3341 hrtime_t import_expire, now;
3342 nvlist_t *mmp_label = NULL;
3343 vdev_t *rvd = spa->spa_root_vdev;
3344 kcondvar_t cv;
3345 kmutex_t mtx;
3346 int error = 0;
3347
3348 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3349 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3350 mutex_enter(&mtx);
3351
3352 /*
3353 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3354 * during the earlier tryimport. If the txg recorded there is 0 then
3355 * the pool is known to be active on another host.
3356 *
3357 * Otherwise, the pool might be in use on another host. Check for
3358 * changes in the uberblocks on disk if necessary.
3359 */
3360 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3361 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3362 ZPOOL_CONFIG_LOAD_INFO);
3363
3364 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3365 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3366 vdev_uberblock_load(rvd, ub, &mmp_label);
3367 error = SET_ERROR(EREMOTEIO);
3368 goto out;
3369 }
3370 }
3371
3372 import_delay = spa_activity_check_duration(spa, ub);
3373
3374 /* Add a small random factor in case of simultaneous imports (0-25%) */
3375 import_delay += import_delay * random_in_range(250) / 1000;
3376
3377 import_expire = gethrtime() + import_delay;
3378
3379 spa_import_progress_set_notes(spa, "Checking MMP activity, waiting "
3380 "%llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3381
3382 int interations = 0;
3383 while ((now = gethrtime()) < import_expire) {
3384 if (interations++ % 30 == 0) {
3385 spa_import_progress_set_notes(spa, "Checking MMP "
3386 "activity, %llu ms remaining",
3387 (u_longlong_t)NSEC2MSEC(import_expire - now));
3388 }
3389
3390 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3391 NSEC2SEC(import_expire - gethrtime()));
3392
3393 vdev_uberblock_load(rvd, ub, &mmp_label);
3394
3395 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3396 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3397 zfs_dbgmsg("multihost activity detected "
3398 "txg %llu ub_txg %llu "
3399 "timestamp %llu ub_timestamp %llu "
3400 "mmp_config %#llx ub_mmp_config %#llx",
3401 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3402 (u_longlong_t)timestamp,
3403 (u_longlong_t)ub->ub_timestamp,
3404 (u_longlong_t)mmp_config,
3405 (u_longlong_t)ub->ub_mmp_config);
3406
3407 error = SET_ERROR(EREMOTEIO);
3408 break;
3409 }
3410
3411 if (mmp_label) {
3412 nvlist_free(mmp_label);
3413 mmp_label = NULL;
3414 }
3415
3416 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3417 if (error != -1) {
3418 error = SET_ERROR(EINTR);
3419 break;
3420 }
3421 error = 0;
3422 }
3423
3424 out:
3425 mutex_exit(&mtx);
3426 mutex_destroy(&mtx);
3427 cv_destroy(&cv);
3428
3429 /*
3430 * If the pool is determined to be active store the status in the
3431 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3432 * available from configuration read from disk store them as well.
3433 * This allows 'zpool import' to generate a more useful message.
3434 *
3435 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3436 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3437 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3438 */
3439 if (error == EREMOTEIO) {
3440 const char *hostname = "<unknown>";
3441 uint64_t hostid = 0;
3442
3443 if (mmp_label) {
3444 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3445 hostname = fnvlist_lookup_string(mmp_label,
3446 ZPOOL_CONFIG_HOSTNAME);
3447 fnvlist_add_string(spa->spa_load_info,
3448 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3449 }
3450
3451 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3452 hostid = fnvlist_lookup_uint64(mmp_label,
3453 ZPOOL_CONFIG_HOSTID);
3454 fnvlist_add_uint64(spa->spa_load_info,
3455 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3456 }
3457 }
3458
3459 fnvlist_add_uint64(spa->spa_load_info,
3460 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3461 fnvlist_add_uint64(spa->spa_load_info,
3462 ZPOOL_CONFIG_MMP_TXG, 0);
3463
3464 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3465 }
3466
3467 if (mmp_label)
3468 nvlist_free(mmp_label);
3469
3470 return (error);
3471 }
3472
3473 static int
3474 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3475 {
3476 uint64_t hostid;
3477 const char *hostname;
3478 uint64_t myhostid = 0;
3479
3480 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3481 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3482 hostname = fnvlist_lookup_string(mos_config,
3483 ZPOOL_CONFIG_HOSTNAME);
3484
3485 myhostid = zone_get_hostid(NULL);
3486
3487 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3488 cmn_err(CE_WARN, "pool '%s' could not be "
3489 "loaded as it was last accessed by "
3490 "another system (host: %s hostid: 0x%llx). "
3491 "See: https://openzfs.github.io/openzfs-docs/msg/"
3492 "ZFS-8000-EY",
3493 spa_name(spa), hostname, (u_longlong_t)hostid);
3494 spa_load_failed(spa, "hostid verification failed: pool "
3495 "last accessed by host: %s (hostid: 0x%llx)",
3496 hostname, (u_longlong_t)hostid);
3497 return (SET_ERROR(EBADF));
3498 }
3499 }
3500
3501 return (0);
3502 }
3503
3504 static int
3505 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3506 {
3507 int error = 0;
3508 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3509 int parse;
3510 vdev_t *rvd;
3511 uint64_t pool_guid;
3512 const char *comment;
3513 const char *compatibility;
3514
3515 /*
3516 * Versioning wasn't explicitly added to the label until later, so if
3517 * it's not present treat it as the initial version.
3518 */
3519 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3520 &spa->spa_ubsync.ub_version) != 0)
3521 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3522
3523 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3524 spa_load_failed(spa, "invalid config provided: '%s' missing",
3525 ZPOOL_CONFIG_POOL_GUID);
3526 return (SET_ERROR(EINVAL));
3527 }
3528
3529 /*
3530 * If we are doing an import, ensure that the pool is not already
3531 * imported by checking if its pool guid already exists in the
3532 * spa namespace.
3533 *
3534 * The only case that we allow an already imported pool to be
3535 * imported again, is when the pool is checkpointed and we want to
3536 * look at its checkpointed state from userland tools like zdb.
3537 */
3538 #ifdef _KERNEL
3539 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3540 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3541 spa_guid_exists(pool_guid, 0)) {
3542 #else
3543 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3544 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3545 spa_guid_exists(pool_guid, 0) &&
3546 !spa_importing_readonly_checkpoint(spa)) {
3547 #endif
3548 spa_load_failed(spa, "a pool with guid %llu is already open",
3549 (u_longlong_t)pool_guid);
3550 return (SET_ERROR(EEXIST));
3551 }
3552
3553 spa->spa_config_guid = pool_guid;
3554
3555 nvlist_free(spa->spa_load_info);
3556 spa->spa_load_info = fnvlist_alloc();
3557
3558 ASSERT(spa->spa_comment == NULL);
3559 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3560 spa->spa_comment = spa_strdup(comment);
3561
3562 ASSERT(spa->spa_compatibility == NULL);
3563 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3564 &compatibility) == 0)
3565 spa->spa_compatibility = spa_strdup(compatibility);
3566
3567 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3568 &spa->spa_config_txg);
3569
3570 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3571 spa->spa_config_splitting = fnvlist_dup(nvl);
3572
3573 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3574 spa_load_failed(spa, "invalid config provided: '%s' missing",
3575 ZPOOL_CONFIG_VDEV_TREE);
3576 return (SET_ERROR(EINVAL));
3577 }
3578
3579 /*
3580 * Create "The Godfather" zio to hold all async IOs
3581 */
3582 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3583 KM_SLEEP);
3584 for (int i = 0; i < max_ncpus; i++) {
3585 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3586 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3587 ZIO_FLAG_GODFATHER);
3588 }
3589
3590 /*
3591 * Parse the configuration into a vdev tree. We explicitly set the
3592 * value that will be returned by spa_version() since parsing the
3593 * configuration requires knowing the version number.
3594 */
3595 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3596 parse = (type == SPA_IMPORT_EXISTING ?
3597 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3598 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3599 spa_config_exit(spa, SCL_ALL, FTAG);
3600
3601 if (error != 0) {
3602 spa_load_failed(spa, "unable to parse config [error=%d]",
3603 error);
3604 return (error);
3605 }
3606
3607 ASSERT(spa->spa_root_vdev == rvd);
3608 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3609 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3610
3611 if (type != SPA_IMPORT_ASSEMBLE) {
3612 ASSERT(spa_guid(spa) == pool_guid);
3613 }
3614
3615 return (0);
3616 }
3617
3618 /*
3619 * Recursively open all vdevs in the vdev tree. This function is called twice:
3620 * first with the untrusted config, then with the trusted config.
3621 */
3622 static int
3623 spa_ld_open_vdevs(spa_t *spa)
3624 {
3625 int error = 0;
3626
3627 /*
3628 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3629 * missing/unopenable for the root vdev to be still considered openable.
3630 */
3631 if (spa->spa_trust_config) {
3632 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3633 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3634 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3635 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3636 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3637 } else {
3638 spa->spa_missing_tvds_allowed = 0;
3639 }
3640
3641 spa->spa_missing_tvds_allowed =
3642 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3643
3644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3645 error = vdev_open(spa->spa_root_vdev);
3646 spa_config_exit(spa, SCL_ALL, FTAG);
3647
3648 if (spa->spa_missing_tvds != 0) {
3649 spa_load_note(spa, "vdev tree has %lld missing top-level "
3650 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3651 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3652 /*
3653 * Although theoretically we could allow users to open
3654 * incomplete pools in RW mode, we'd need to add a lot
3655 * of extra logic (e.g. adjust pool space to account
3656 * for missing vdevs).
3657 * This limitation also prevents users from accidentally
3658 * opening the pool in RW mode during data recovery and
3659 * damaging it further.
3660 */
3661 spa_load_note(spa, "pools with missing top-level "
3662 "vdevs can only be opened in read-only mode.");
3663 error = SET_ERROR(ENXIO);
3664 } else {
3665 spa_load_note(spa, "current settings allow for maximum "
3666 "%lld missing top-level vdevs at this stage.",
3667 (u_longlong_t)spa->spa_missing_tvds_allowed);
3668 }
3669 }
3670 if (error != 0) {
3671 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3672 error);
3673 }
3674 if (spa->spa_missing_tvds != 0 || error != 0)
3675 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3676
3677 return (error);
3678 }
3679
3680 /*
3681 * We need to validate the vdev labels against the configuration that
3682 * we have in hand. This function is called twice: first with an untrusted
3683 * config, then with a trusted config. The validation is more strict when the
3684 * config is trusted.
3685 */
3686 static int
3687 spa_ld_validate_vdevs(spa_t *spa)
3688 {
3689 int error = 0;
3690 vdev_t *rvd = spa->spa_root_vdev;
3691
3692 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3693 error = vdev_validate(rvd);
3694 spa_config_exit(spa, SCL_ALL, FTAG);
3695
3696 if (error != 0) {
3697 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3698 return (error);
3699 }
3700
3701 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3702 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3703 "some vdevs");
3704 vdev_dbgmsg_print_tree(rvd, 2);
3705 return (SET_ERROR(ENXIO));
3706 }
3707
3708 return (0);
3709 }
3710
3711 static void
3712 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3713 {
3714 spa->spa_state = POOL_STATE_ACTIVE;
3715 spa->spa_ubsync = spa->spa_uberblock;
3716 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3717 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3718 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3719 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3720 spa->spa_claim_max_txg = spa->spa_first_txg;
3721 spa->spa_prev_software_version = ub->ub_software_version;
3722 }
3723
3724 static int
3725 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3726 {
3727 vdev_t *rvd = spa->spa_root_vdev;
3728 nvlist_t *label;
3729 uberblock_t *ub = &spa->spa_uberblock;
3730 boolean_t activity_check = B_FALSE;
3731
3732 /*
3733 * If we are opening the checkpointed state of the pool by
3734 * rewinding to it, at this point we will have written the
3735 * checkpointed uberblock to the vdev labels, so searching
3736 * the labels will find the right uberblock. However, if
3737 * we are opening the checkpointed state read-only, we have
3738 * not modified the labels. Therefore, we must ignore the
3739 * labels and continue using the spa_uberblock that was set
3740 * by spa_ld_checkpoint_rewind.
3741 *
3742 * Note that it would be fine to ignore the labels when
3743 * rewinding (opening writeable) as well. However, if we
3744 * crash just after writing the labels, we will end up
3745 * searching the labels. Doing so in the common case means
3746 * that this code path gets exercised normally, rather than
3747 * just in the edge case.
3748 */
3749 if (ub->ub_checkpoint_txg != 0 &&
3750 spa_importing_readonly_checkpoint(spa)) {
3751 spa_ld_select_uberblock_done(spa, ub);
3752 return (0);
3753 }
3754
3755 /*
3756 * Find the best uberblock.
3757 */
3758 vdev_uberblock_load(rvd, ub, &label);
3759
3760 /*
3761 * If we weren't able to find a single valid uberblock, return failure.
3762 */
3763 if (ub->ub_txg == 0) {
3764 nvlist_free(label);
3765 spa_load_failed(spa, "no valid uberblock found");
3766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3767 }
3768
3769 if (spa->spa_load_max_txg != UINT64_MAX) {
3770 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3771 (u_longlong_t)spa->spa_load_max_txg);
3772 }
3773 spa_load_note(spa, "using uberblock with txg=%llu",
3774 (u_longlong_t)ub->ub_txg);
3775 if (ub->ub_raidz_reflow_info != 0) {
3776 spa_load_note(spa, "uberblock raidz_reflow_info: "
3777 "state=%u offset=%llu",
3778 (int)RRSS_GET_STATE(ub),
3779 (u_longlong_t)RRSS_GET_OFFSET(ub));
3780 }
3781
3782
3783 /*
3784 * For pools which have the multihost property on determine if the
3785 * pool is truly inactive and can be safely imported. Prevent
3786 * hosts which don't have a hostid set from importing the pool.
3787 */
3788 activity_check = spa_activity_check_required(spa, ub, label,
3789 spa->spa_config);
3790 if (activity_check) {
3791 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3792 spa_get_hostid(spa) == 0) {
3793 nvlist_free(label);
3794 fnvlist_add_uint64(spa->spa_load_info,
3795 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3796 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3797 }
3798
3799 int error = spa_activity_check(spa, ub, spa->spa_config);
3800 if (error) {
3801 nvlist_free(label);
3802 return (error);
3803 }
3804
3805 fnvlist_add_uint64(spa->spa_load_info,
3806 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3807 fnvlist_add_uint64(spa->spa_load_info,
3808 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3809 fnvlist_add_uint16(spa->spa_load_info,
3810 ZPOOL_CONFIG_MMP_SEQ,
3811 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3812 }
3813
3814 /*
3815 * If the pool has an unsupported version we can't open it.
3816 */
3817 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3818 nvlist_free(label);
3819 spa_load_failed(spa, "version %llu is not supported",
3820 (u_longlong_t)ub->ub_version);
3821 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3822 }
3823
3824 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3825 nvlist_t *features;
3826
3827 /*
3828 * If we weren't able to find what's necessary for reading the
3829 * MOS in the label, return failure.
3830 */
3831 if (label == NULL) {
3832 spa_load_failed(spa, "label config unavailable");
3833 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3834 ENXIO));
3835 }
3836
3837 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3838 &features) != 0) {
3839 nvlist_free(label);
3840 spa_load_failed(spa, "invalid label: '%s' missing",
3841 ZPOOL_CONFIG_FEATURES_FOR_READ);
3842 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3843 ENXIO));
3844 }
3845
3846 /*
3847 * Update our in-core representation with the definitive values
3848 * from the label.
3849 */
3850 nvlist_free(spa->spa_label_features);
3851 spa->spa_label_features = fnvlist_dup(features);
3852 }
3853
3854 nvlist_free(label);
3855
3856 /*
3857 * Look through entries in the label nvlist's features_for_read. If
3858 * there is a feature listed there which we don't understand then we
3859 * cannot open a pool.
3860 */
3861 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3862 nvlist_t *unsup_feat;
3863
3864 unsup_feat = fnvlist_alloc();
3865
3866 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3867 NULL); nvp != NULL;
3868 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3869 if (!zfeature_is_supported(nvpair_name(nvp))) {
3870 fnvlist_add_string(unsup_feat,
3871 nvpair_name(nvp), "");
3872 }
3873 }
3874
3875 if (!nvlist_empty(unsup_feat)) {
3876 fnvlist_add_nvlist(spa->spa_load_info,
3877 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3878 nvlist_free(unsup_feat);
3879 spa_load_failed(spa, "some features are unsupported");
3880 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3881 ENOTSUP));
3882 }
3883
3884 nvlist_free(unsup_feat);
3885 }
3886
3887 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3888 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3889 spa_try_repair(spa, spa->spa_config);
3890 spa_config_exit(spa, SCL_ALL, FTAG);
3891 nvlist_free(spa->spa_config_splitting);
3892 spa->spa_config_splitting = NULL;
3893 }
3894
3895 /*
3896 * Initialize internal SPA structures.
3897 */
3898 spa_ld_select_uberblock_done(spa, ub);
3899
3900 return (0);
3901 }
3902
3903 static int
3904 spa_ld_open_rootbp(spa_t *spa)
3905 {
3906 int error = 0;
3907 vdev_t *rvd = spa->spa_root_vdev;
3908
3909 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3910 if (error != 0) {
3911 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3912 "[error=%d]", error);
3913 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3914 }
3915 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3916
3917 return (0);
3918 }
3919
3920 static int
3921 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3922 boolean_t reloading)
3923 {
3924 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3925 nvlist_t *nv, *mos_config, *policy;
3926 int error = 0, copy_error;
3927 uint64_t healthy_tvds, healthy_tvds_mos;
3928 uint64_t mos_config_txg;
3929
3930 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3931 != 0)
3932 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3933
3934 /*
3935 * If we're assembling a pool from a split, the config provided is
3936 * already trusted so there is nothing to do.
3937 */
3938 if (type == SPA_IMPORT_ASSEMBLE)
3939 return (0);
3940
3941 healthy_tvds = spa_healthy_core_tvds(spa);
3942
3943 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3944 != 0) {
3945 spa_load_failed(spa, "unable to retrieve MOS config");
3946 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3947 }
3948
3949 /*
3950 * If we are doing an open, pool owner wasn't verified yet, thus do
3951 * the verification here.
3952 */
3953 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3954 error = spa_verify_host(spa, mos_config);
3955 if (error != 0) {
3956 nvlist_free(mos_config);
3957 return (error);
3958 }
3959 }
3960
3961 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3962
3963 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3964
3965 /*
3966 * Build a new vdev tree from the trusted config
3967 */
3968 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3969 if (error != 0) {
3970 nvlist_free(mos_config);
3971 spa_config_exit(spa, SCL_ALL, FTAG);
3972 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3973 error);
3974 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3975 }
3976
3977 /*
3978 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3979 * obtained by scanning /dev/dsk, then it will have the right vdev
3980 * paths. We update the trusted MOS config with this information.
3981 * We first try to copy the paths with vdev_copy_path_strict, which
3982 * succeeds only when both configs have exactly the same vdev tree.
3983 * If that fails, we fall back to a more flexible method that has a
3984 * best effort policy.
3985 */
3986 copy_error = vdev_copy_path_strict(rvd, mrvd);
3987 if (copy_error != 0 || spa_load_print_vdev_tree) {
3988 spa_load_note(spa, "provided vdev tree:");
3989 vdev_dbgmsg_print_tree(rvd, 2);
3990 spa_load_note(spa, "MOS vdev tree:");
3991 vdev_dbgmsg_print_tree(mrvd, 2);
3992 }
3993 if (copy_error != 0) {
3994 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3995 "back to vdev_copy_path_relaxed");
3996 vdev_copy_path_relaxed(rvd, mrvd);
3997 }
3998
3999 vdev_close(rvd);
4000 vdev_free(rvd);
4001 spa->spa_root_vdev = mrvd;
4002 rvd = mrvd;
4003 spa_config_exit(spa, SCL_ALL, FTAG);
4004
4005 /*
4006 * If 'zpool import' used a cached config, then the on-disk hostid and
4007 * hostname may be different to the cached config in ways that should
4008 * prevent import. Userspace can't discover this without a scan, but
4009 * we know, so we add these values to LOAD_INFO so the caller can know
4010 * the difference.
4011 *
4012 * Note that we have to do this before the config is regenerated,
4013 * because the new config will have the hostid and hostname for this
4014 * host, in readiness for import.
4015 */
4016 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4017 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4018 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4019 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4020 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4021 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4022
4023 /*
4024 * We will use spa_config if we decide to reload the spa or if spa_load
4025 * fails and we rewind. We must thus regenerate the config using the
4026 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4027 * pass settings on how to load the pool and is not stored in the MOS.
4028 * We copy it over to our new, trusted config.
4029 */
4030 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4031 ZPOOL_CONFIG_POOL_TXG);
4032 nvlist_free(mos_config);
4033 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4034 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4035 &policy) == 0)
4036 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4037 spa_config_set(spa, mos_config);
4038 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4039
4040 /*
4041 * Now that we got the config from the MOS, we should be more strict
4042 * in checking blkptrs and can make assumptions about the consistency
4043 * of the vdev tree. spa_trust_config must be set to true before opening
4044 * vdevs in order for them to be writeable.
4045 */
4046 spa->spa_trust_config = B_TRUE;
4047
4048 /*
4049 * Open and validate the new vdev tree
4050 */
4051 error = spa_ld_open_vdevs(spa);
4052 if (error != 0)
4053 return (error);
4054
4055 error = spa_ld_validate_vdevs(spa);
4056 if (error != 0)
4057 return (error);
4058
4059 if (copy_error != 0 || spa_load_print_vdev_tree) {
4060 spa_load_note(spa, "final vdev tree:");
4061 vdev_dbgmsg_print_tree(rvd, 2);
4062 }
4063
4064 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4065 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4066 /*
4067 * Sanity check to make sure that we are indeed loading the
4068 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4069 * in the config provided and they happened to be the only ones
4070 * to have the latest uberblock, we could involuntarily perform
4071 * an extreme rewind.
4072 */
4073 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4074 if (healthy_tvds_mos - healthy_tvds >=
4075 SPA_SYNC_MIN_VDEVS) {
4076 spa_load_note(spa, "config provided misses too many "
4077 "top-level vdevs compared to MOS (%lld vs %lld). ",
4078 (u_longlong_t)healthy_tvds,
4079 (u_longlong_t)healthy_tvds_mos);
4080 spa_load_note(spa, "vdev tree:");
4081 vdev_dbgmsg_print_tree(rvd, 2);
4082 if (reloading) {
4083 spa_load_failed(spa, "config was already "
4084 "provided from MOS. Aborting.");
4085 return (spa_vdev_err(rvd,
4086 VDEV_AUX_CORRUPT_DATA, EIO));
4087 }
4088 spa_load_note(spa, "spa must be reloaded using MOS "
4089 "config");
4090 return (SET_ERROR(EAGAIN));
4091 }
4092 }
4093
4094 error = spa_check_for_missing_logs(spa);
4095 if (error != 0)
4096 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4097
4098 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4099 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4100 "guid sum (%llu != %llu)",
4101 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4102 (u_longlong_t)rvd->vdev_guid_sum);
4103 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4104 ENXIO));
4105 }
4106
4107 return (0);
4108 }
4109
4110 static int
4111 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4112 {
4113 int error = 0;
4114 vdev_t *rvd = spa->spa_root_vdev;
4115
4116 /*
4117 * Everything that we read before spa_remove_init() must be stored
4118 * on concreted vdevs. Therefore we do this as early as possible.
4119 */
4120 error = spa_remove_init(spa);
4121 if (error != 0) {
4122 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4123 error);
4124 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4125 }
4126
4127 /*
4128 * Retrieve information needed to condense indirect vdev mappings.
4129 */
4130 error = spa_condense_init(spa);
4131 if (error != 0) {
4132 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4133 error);
4134 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4135 }
4136
4137 return (0);
4138 }
4139
4140 static int
4141 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4142 {
4143 int error = 0;
4144 vdev_t *rvd = spa->spa_root_vdev;
4145
4146 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4147 boolean_t missing_feat_read = B_FALSE;
4148 nvlist_t *unsup_feat, *enabled_feat;
4149
4150 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4151 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4152 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4153 }
4154
4155 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4156 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4158 }
4159
4160 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4161 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4162 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4163 }
4164
4165 enabled_feat = fnvlist_alloc();
4166 unsup_feat = fnvlist_alloc();
4167
4168 if (!spa_features_check(spa, B_FALSE,
4169 unsup_feat, enabled_feat))
4170 missing_feat_read = B_TRUE;
4171
4172 if (spa_writeable(spa) ||
4173 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4174 if (!spa_features_check(spa, B_TRUE,
4175 unsup_feat, enabled_feat)) {
4176 *missing_feat_writep = B_TRUE;
4177 }
4178 }
4179
4180 fnvlist_add_nvlist(spa->spa_load_info,
4181 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4182
4183 if (!nvlist_empty(unsup_feat)) {
4184 fnvlist_add_nvlist(spa->spa_load_info,
4185 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4186 }
4187
4188 fnvlist_free(enabled_feat);
4189 fnvlist_free(unsup_feat);
4190
4191 if (!missing_feat_read) {
4192 fnvlist_add_boolean(spa->spa_load_info,
4193 ZPOOL_CONFIG_CAN_RDONLY);
4194 }
4195
4196 /*
4197 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4198 * twofold: to determine whether the pool is available for
4199 * import in read-write mode and (if it is not) whether the
4200 * pool is available for import in read-only mode. If the pool
4201 * is available for import in read-write mode, it is displayed
4202 * as available in userland; if it is not available for import
4203 * in read-only mode, it is displayed as unavailable in
4204 * userland. If the pool is available for import in read-only
4205 * mode but not read-write mode, it is displayed as unavailable
4206 * in userland with a special note that the pool is actually
4207 * available for open in read-only mode.
4208 *
4209 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4210 * missing a feature for write, we must first determine whether
4211 * the pool can be opened read-only before returning to
4212 * userland in order to know whether to display the
4213 * abovementioned note.
4214 */
4215 if (missing_feat_read || (*missing_feat_writep &&
4216 spa_writeable(spa))) {
4217 spa_load_failed(spa, "pool uses unsupported features");
4218 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4219 ENOTSUP));
4220 }
4221
4222 /*
4223 * Load refcounts for ZFS features from disk into an in-memory
4224 * cache during SPA initialization.
4225 */
4226 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4227 uint64_t refcount;
4228
4229 error = feature_get_refcount_from_disk(spa,
4230 &spa_feature_table[i], &refcount);
4231 if (error == 0) {
4232 spa->spa_feat_refcount_cache[i] = refcount;
4233 } else if (error == ENOTSUP) {
4234 spa->spa_feat_refcount_cache[i] =
4235 SPA_FEATURE_DISABLED;
4236 } else {
4237 spa_load_failed(spa, "error getting refcount "
4238 "for feature %s [error=%d]",
4239 spa_feature_table[i].fi_guid, error);
4240 return (spa_vdev_err(rvd,
4241 VDEV_AUX_CORRUPT_DATA, EIO));
4242 }
4243 }
4244 }
4245
4246 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4247 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4248 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4249 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4250 }
4251
4252 /*
4253 * Encryption was added before bookmark_v2, even though bookmark_v2
4254 * is now a dependency. If this pool has encryption enabled without
4255 * bookmark_v2, trigger an errata message.
4256 */
4257 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4258 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4259 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4260 }
4261
4262 return (0);
4263 }
4264
4265 static int
4266 spa_ld_load_special_directories(spa_t *spa)
4267 {
4268 int error = 0;
4269 vdev_t *rvd = spa->spa_root_vdev;
4270
4271 spa->spa_is_initializing = B_TRUE;
4272 error = dsl_pool_open(spa->spa_dsl_pool);
4273 spa->spa_is_initializing = B_FALSE;
4274 if (error != 0) {
4275 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4276 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4277 }
4278
4279 return (0);
4280 }
4281
4282 static int
4283 spa_ld_get_props(spa_t *spa)
4284 {
4285 int error = 0;
4286 uint64_t obj;
4287 vdev_t *rvd = spa->spa_root_vdev;
4288
4289 /* Grab the checksum salt from the MOS. */
4290 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4291 DMU_POOL_CHECKSUM_SALT, 1,
4292 sizeof (spa->spa_cksum_salt.zcs_bytes),
4293 spa->spa_cksum_salt.zcs_bytes);
4294 if (error == ENOENT) {
4295 /* Generate a new salt for subsequent use */
4296 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4297 sizeof (spa->spa_cksum_salt.zcs_bytes));
4298 } else if (error != 0) {
4299 spa_load_failed(spa, "unable to retrieve checksum salt from "
4300 "MOS [error=%d]", error);
4301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4302 }
4303
4304 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4305 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4306 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4307 if (error != 0) {
4308 spa_load_failed(spa, "error opening deferred-frees bpobj "
4309 "[error=%d]", error);
4310 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4311 }
4312
4313 /*
4314 * Load the bit that tells us to use the new accounting function
4315 * (raid-z deflation). If we have an older pool, this will not
4316 * be present.
4317 */
4318 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4319 if (error != 0 && error != ENOENT)
4320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4321
4322 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4323 &spa->spa_creation_version, B_FALSE);
4324 if (error != 0 && error != ENOENT)
4325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4326
4327 /*
4328 * Load the persistent error log. If we have an older pool, this will
4329 * not be present.
4330 */
4331 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4332 B_FALSE);
4333 if (error != 0 && error != ENOENT)
4334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4335
4336 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4337 &spa->spa_errlog_scrub, B_FALSE);
4338 if (error != 0 && error != ENOENT)
4339 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4340
4341 /*
4342 * Load the livelist deletion field. If a livelist is queued for
4343 * deletion, indicate that in the spa
4344 */
4345 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4346 &spa->spa_livelists_to_delete, B_FALSE);
4347 if (error != 0 && error != ENOENT)
4348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4349
4350 /*
4351 * Load the history object. If we have an older pool, this
4352 * will not be present.
4353 */
4354 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4355 if (error != 0 && error != ENOENT)
4356 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4357
4358 /*
4359 * Load the per-vdev ZAP map. If we have an older pool, this will not
4360 * be present; in this case, defer its creation to a later time to
4361 * avoid dirtying the MOS this early / out of sync context. See
4362 * spa_sync_config_object.
4363 */
4364
4365 /* The sentinel is only available in the MOS config. */
4366 nvlist_t *mos_config;
4367 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4368 spa_load_failed(spa, "unable to retrieve MOS config");
4369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4370 }
4371
4372 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4373 &spa->spa_all_vdev_zaps, B_FALSE);
4374
4375 if (error == ENOENT) {
4376 VERIFY(!nvlist_exists(mos_config,
4377 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4378 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4379 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4380 } else if (error != 0) {
4381 nvlist_free(mos_config);
4382 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4383 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4384 /*
4385 * An older version of ZFS overwrote the sentinel value, so
4386 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4387 * destruction to later; see spa_sync_config_object.
4388 */
4389 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4390 /*
4391 * We're assuming that no vdevs have had their ZAPs created
4392 * before this. Better be sure of it.
4393 */
4394 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4395 }
4396 nvlist_free(mos_config);
4397
4398 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4399
4400 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4401 B_FALSE);
4402 if (error && error != ENOENT)
4403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4404
4405 if (error == 0) {
4406 uint64_t autoreplace = 0;
4407
4408 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4409 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4410 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4411 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4412 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4413 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4414 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4415 spa->spa_autoreplace = (autoreplace != 0);
4416 }
4417
4418 /*
4419 * If we are importing a pool with missing top-level vdevs,
4420 * we enforce that the pool doesn't panic or get suspended on
4421 * error since the likelihood of missing data is extremely high.
4422 */
4423 if (spa->spa_missing_tvds > 0 &&
4424 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4425 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4426 spa_load_note(spa, "forcing failmode to 'continue' "
4427 "as some top level vdevs are missing");
4428 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4429 }
4430
4431 return (0);
4432 }
4433
4434 static int
4435 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4436 {
4437 int error = 0;
4438 vdev_t *rvd = spa->spa_root_vdev;
4439
4440 /*
4441 * If we're assembling the pool from the split-off vdevs of
4442 * an existing pool, we don't want to attach the spares & cache
4443 * devices.
4444 */
4445
4446 /*
4447 * Load any hot spares for this pool.
4448 */
4449 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4450 B_FALSE);
4451 if (error != 0 && error != ENOENT)
4452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4453 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4454 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4455 if (load_nvlist(spa, spa->spa_spares.sav_object,
4456 &spa->spa_spares.sav_config) != 0) {
4457 spa_load_failed(spa, "error loading spares nvlist");
4458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4459 }
4460
4461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4462 spa_load_spares(spa);
4463 spa_config_exit(spa, SCL_ALL, FTAG);
4464 } else if (error == 0) {
4465 spa->spa_spares.sav_sync = B_TRUE;
4466 }
4467
4468 /*
4469 * Load any level 2 ARC devices for this pool.
4470 */
4471 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4472 &spa->spa_l2cache.sav_object, B_FALSE);
4473 if (error != 0 && error != ENOENT)
4474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4475 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4476 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4477 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4478 &spa->spa_l2cache.sav_config) != 0) {
4479 spa_load_failed(spa, "error loading l2cache nvlist");
4480 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4481 }
4482
4483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4484 spa_load_l2cache(spa);
4485 spa_config_exit(spa, SCL_ALL, FTAG);
4486 } else if (error == 0) {
4487 spa->spa_l2cache.sav_sync = B_TRUE;
4488 }
4489
4490 return (0);
4491 }
4492
4493 static int
4494 spa_ld_load_vdev_metadata(spa_t *spa)
4495 {
4496 int error = 0;
4497 vdev_t *rvd = spa->spa_root_vdev;
4498
4499 /*
4500 * If the 'multihost' property is set, then never allow a pool to
4501 * be imported when the system hostid is zero. The exception to
4502 * this rule is zdb which is always allowed to access pools.
4503 */
4504 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4505 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4506 fnvlist_add_uint64(spa->spa_load_info,
4507 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4508 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4509 }
4510
4511 /*
4512 * If the 'autoreplace' property is set, then post a resource notifying
4513 * the ZFS DE that it should not issue any faults for unopenable
4514 * devices. We also iterate over the vdevs, and post a sysevent for any
4515 * unopenable vdevs so that the normal autoreplace handler can take
4516 * over.
4517 */
4518 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4519 spa_check_removed(spa->spa_root_vdev);
4520 /*
4521 * For the import case, this is done in spa_import(), because
4522 * at this point we're using the spare definitions from
4523 * the MOS config, not necessarily from the userland config.
4524 */
4525 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4526 spa_aux_check_removed(&spa->spa_spares);
4527 spa_aux_check_removed(&spa->spa_l2cache);
4528 }
4529 }
4530
4531 /*
4532 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4533 */
4534 error = vdev_load(rvd);
4535 if (error != 0) {
4536 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4538 }
4539
4540 error = spa_ld_log_spacemaps(spa);
4541 if (error != 0) {
4542 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4543 error);
4544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4545 }
4546
4547 /*
4548 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4549 */
4550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4551 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4552 spa_config_exit(spa, SCL_ALL, FTAG);
4553
4554 return (0);
4555 }
4556
4557 static int
4558 spa_ld_load_dedup_tables(spa_t *spa)
4559 {
4560 int error = 0;
4561 vdev_t *rvd = spa->spa_root_vdev;
4562
4563 error = ddt_load(spa);
4564 if (error != 0) {
4565 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4567 }
4568
4569 return (0);
4570 }
4571
4572 static int
4573 spa_ld_load_brt(spa_t *spa)
4574 {
4575 int error = 0;
4576 vdev_t *rvd = spa->spa_root_vdev;
4577
4578 error = brt_load(spa);
4579 if (error != 0) {
4580 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4582 }
4583
4584 return (0);
4585 }
4586
4587 static int
4588 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4589 {
4590 vdev_t *rvd = spa->spa_root_vdev;
4591
4592 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4593 boolean_t missing = spa_check_logs(spa);
4594 if (missing) {
4595 if (spa->spa_missing_tvds != 0) {
4596 spa_load_note(spa, "spa_check_logs failed "
4597 "so dropping the logs");
4598 } else {
4599 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4600 spa_load_failed(spa, "spa_check_logs failed");
4601 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4602 ENXIO));
4603 }
4604 }
4605 }
4606
4607 return (0);
4608 }
4609
4610 static int
4611 spa_ld_verify_pool_data(spa_t *spa)
4612 {
4613 int error = 0;
4614 vdev_t *rvd = spa->spa_root_vdev;
4615
4616 /*
4617 * We've successfully opened the pool, verify that we're ready
4618 * to start pushing transactions.
4619 */
4620 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4621 error = spa_load_verify(spa);
4622 if (error != 0) {
4623 spa_load_failed(spa, "spa_load_verify failed "
4624 "[error=%d]", error);
4625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4626 error));
4627 }
4628 }
4629
4630 return (0);
4631 }
4632
4633 static void
4634 spa_ld_claim_log_blocks(spa_t *spa)
4635 {
4636 dmu_tx_t *tx;
4637 dsl_pool_t *dp = spa_get_dsl(spa);
4638
4639 /*
4640 * Claim log blocks that haven't been committed yet.
4641 * This must all happen in a single txg.
4642 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4643 * invoked from zil_claim_log_block()'s i/o done callback.
4644 * Price of rollback is that we abandon the log.
4645 */
4646 spa->spa_claiming = B_TRUE;
4647
4648 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4649 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4650 zil_claim, tx, DS_FIND_CHILDREN);
4651 dmu_tx_commit(tx);
4652
4653 spa->spa_claiming = B_FALSE;
4654
4655 spa_set_log_state(spa, SPA_LOG_GOOD);
4656 }
4657
4658 static void
4659 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4660 boolean_t update_config_cache)
4661 {
4662 vdev_t *rvd = spa->spa_root_vdev;
4663 int need_update = B_FALSE;
4664
4665 /*
4666 * If the config cache is stale, or we have uninitialized
4667 * metaslabs (see spa_vdev_add()), then update the config.
4668 *
4669 * If this is a verbatim import, trust the current
4670 * in-core spa_config and update the disk labels.
4671 */
4672 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4673 spa->spa_load_state == SPA_LOAD_IMPORT ||
4674 spa->spa_load_state == SPA_LOAD_RECOVER ||
4675 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4676 need_update = B_TRUE;
4677
4678 for (int c = 0; c < rvd->vdev_children; c++)
4679 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4680 need_update = B_TRUE;
4681
4682 /*
4683 * Update the config cache asynchronously in case we're the
4684 * root pool, in which case the config cache isn't writable yet.
4685 */
4686 if (need_update)
4687 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4688 }
4689
4690 static void
4691 spa_ld_prepare_for_reload(spa_t *spa)
4692 {
4693 spa_mode_t mode = spa->spa_mode;
4694 int async_suspended = spa->spa_async_suspended;
4695
4696 spa_unload(spa);
4697 spa_deactivate(spa);
4698 spa_activate(spa, mode);
4699
4700 /*
4701 * We save the value of spa_async_suspended as it gets reset to 0 by
4702 * spa_unload(). We want to restore it back to the original value before
4703 * returning as we might be calling spa_async_resume() later.
4704 */
4705 spa->spa_async_suspended = async_suspended;
4706 }
4707
4708 static int
4709 spa_ld_read_checkpoint_txg(spa_t *spa)
4710 {
4711 uberblock_t checkpoint;
4712 int error = 0;
4713
4714 ASSERT0(spa->spa_checkpoint_txg);
4715 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4716
4717 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4718 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4719 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4720
4721 if (error == ENOENT)
4722 return (0);
4723
4724 if (error != 0)
4725 return (error);
4726
4727 ASSERT3U(checkpoint.ub_txg, !=, 0);
4728 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4729 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4730 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4731 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4732
4733 return (0);
4734 }
4735
4736 static int
4737 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4738 {
4739 int error = 0;
4740
4741 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4742 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4743
4744 /*
4745 * Never trust the config that is provided unless we are assembling
4746 * a pool following a split.
4747 * This means don't trust blkptrs and the vdev tree in general. This
4748 * also effectively puts the spa in read-only mode since
4749 * spa_writeable() checks for spa_trust_config to be true.
4750 * We will later load a trusted config from the MOS.
4751 */
4752 if (type != SPA_IMPORT_ASSEMBLE)
4753 spa->spa_trust_config = B_FALSE;
4754
4755 /*
4756 * Parse the config provided to create a vdev tree.
4757 */
4758 error = spa_ld_parse_config(spa, type);
4759 if (error != 0)
4760 return (error);
4761
4762 spa_import_progress_add(spa);
4763
4764 /*
4765 * Now that we have the vdev tree, try to open each vdev. This involves
4766 * opening the underlying physical device, retrieving its geometry and
4767 * probing the vdev with a dummy I/O. The state of each vdev will be set
4768 * based on the success of those operations. After this we'll be ready
4769 * to read from the vdevs.
4770 */
4771 error = spa_ld_open_vdevs(spa);
4772 if (error != 0)
4773 return (error);
4774
4775 /*
4776 * Read the label of each vdev and make sure that the GUIDs stored
4777 * there match the GUIDs in the config provided.
4778 * If we're assembling a new pool that's been split off from an
4779 * existing pool, the labels haven't yet been updated so we skip
4780 * validation for now.
4781 */
4782 if (type != SPA_IMPORT_ASSEMBLE) {
4783 error = spa_ld_validate_vdevs(spa);
4784 if (error != 0)
4785 return (error);
4786 }
4787
4788 /*
4789 * Read all vdev labels to find the best uberblock (i.e. latest,
4790 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4791 * get the list of features required to read blkptrs in the MOS from
4792 * the vdev label with the best uberblock and verify that our version
4793 * of zfs supports them all.
4794 */
4795 error = spa_ld_select_uberblock(spa, type);
4796 if (error != 0)
4797 return (error);
4798
4799 /*
4800 * Pass that uberblock to the dsl_pool layer which will open the root
4801 * blkptr. This blkptr points to the latest version of the MOS and will
4802 * allow us to read its contents.
4803 */
4804 error = spa_ld_open_rootbp(spa);
4805 if (error != 0)
4806 return (error);
4807
4808 return (0);
4809 }
4810
4811 static int
4812 spa_ld_checkpoint_rewind(spa_t *spa)
4813 {
4814 uberblock_t checkpoint;
4815 int error = 0;
4816
4817 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4818 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4819
4820 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4821 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4822 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4823
4824 if (error != 0) {
4825 spa_load_failed(spa, "unable to retrieve checkpointed "
4826 "uberblock from the MOS config [error=%d]", error);
4827
4828 if (error == ENOENT)
4829 error = ZFS_ERR_NO_CHECKPOINT;
4830
4831 return (error);
4832 }
4833
4834 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4835 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4836
4837 /*
4838 * We need to update the txg and timestamp of the checkpointed
4839 * uberblock to be higher than the latest one. This ensures that
4840 * the checkpointed uberblock is selected if we were to close and
4841 * reopen the pool right after we've written it in the vdev labels.
4842 * (also see block comment in vdev_uberblock_compare)
4843 */
4844 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4845 checkpoint.ub_timestamp = gethrestime_sec();
4846
4847 /*
4848 * Set current uberblock to be the checkpointed uberblock.
4849 */
4850 spa->spa_uberblock = checkpoint;
4851
4852 /*
4853 * If we are doing a normal rewind, then the pool is open for
4854 * writing and we sync the "updated" checkpointed uberblock to
4855 * disk. Once this is done, we've basically rewound the whole
4856 * pool and there is no way back.
4857 *
4858 * There are cases when we don't want to attempt and sync the
4859 * checkpointed uberblock to disk because we are opening a
4860 * pool as read-only. Specifically, verifying the checkpointed
4861 * state with zdb, and importing the checkpointed state to get
4862 * a "preview" of its content.
4863 */
4864 if (spa_writeable(spa)) {
4865 vdev_t *rvd = spa->spa_root_vdev;
4866
4867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4868 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4869 int svdcount = 0;
4870 int children = rvd->vdev_children;
4871 int c0 = random_in_range(children);
4872
4873 for (int c = 0; c < children; c++) {
4874 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4875
4876 /* Stop when revisiting the first vdev */
4877 if (c > 0 && svd[0] == vd)
4878 break;
4879
4880 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4881 !vdev_is_concrete(vd))
4882 continue;
4883
4884 svd[svdcount++] = vd;
4885 if (svdcount == SPA_SYNC_MIN_VDEVS)
4886 break;
4887 }
4888 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4889 if (error == 0)
4890 spa->spa_last_synced_guid = rvd->vdev_guid;
4891 spa_config_exit(spa, SCL_ALL, FTAG);
4892
4893 if (error != 0) {
4894 spa_load_failed(spa, "failed to write checkpointed "
4895 "uberblock to the vdev labels [error=%d]", error);
4896 return (error);
4897 }
4898 }
4899
4900 return (0);
4901 }
4902
4903 static int
4904 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4905 boolean_t *update_config_cache)
4906 {
4907 int error;
4908
4909 /*
4910 * Parse the config for pool, open and validate vdevs,
4911 * select an uberblock, and use that uberblock to open
4912 * the MOS.
4913 */
4914 error = spa_ld_mos_init(spa, type);
4915 if (error != 0)
4916 return (error);
4917
4918 /*
4919 * Retrieve the trusted config stored in the MOS and use it to create
4920 * a new, exact version of the vdev tree, then reopen all vdevs.
4921 */
4922 error = spa_ld_trusted_config(spa, type, B_FALSE);
4923 if (error == EAGAIN) {
4924 if (update_config_cache != NULL)
4925 *update_config_cache = B_TRUE;
4926
4927 /*
4928 * Redo the loading process with the trusted config if it is
4929 * too different from the untrusted config.
4930 */
4931 spa_ld_prepare_for_reload(spa);
4932 spa_load_note(spa, "RELOADING");
4933 error = spa_ld_mos_init(spa, type);
4934 if (error != 0)
4935 return (error);
4936
4937 error = spa_ld_trusted_config(spa, type, B_TRUE);
4938 if (error != 0)
4939 return (error);
4940
4941 } else if (error != 0) {
4942 return (error);
4943 }
4944
4945 return (0);
4946 }
4947
4948 /*
4949 * Load an existing storage pool, using the config provided. This config
4950 * describes which vdevs are part of the pool and is later validated against
4951 * partial configs present in each vdev's label and an entire copy of the
4952 * config stored in the MOS.
4953 */
4954 static int
4955 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4956 {
4957 int error = 0;
4958 boolean_t missing_feat_write = B_FALSE;
4959 boolean_t checkpoint_rewind =
4960 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4961 boolean_t update_config_cache = B_FALSE;
4962
4963 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4964 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4965
4966 spa_load_note(spa, "LOADING");
4967
4968 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4969 if (error != 0)
4970 return (error);
4971
4972 /*
4973 * If we are rewinding to the checkpoint then we need to repeat
4974 * everything we've done so far in this function but this time
4975 * selecting the checkpointed uberblock and using that to open
4976 * the MOS.
4977 */
4978 if (checkpoint_rewind) {
4979 /*
4980 * If we are rewinding to the checkpoint update config cache
4981 * anyway.
4982 */
4983 update_config_cache = B_TRUE;
4984
4985 /*
4986 * Extract the checkpointed uberblock from the current MOS
4987 * and use this as the pool's uberblock from now on. If the
4988 * pool is imported as writeable we also write the checkpoint
4989 * uberblock to the labels, making the rewind permanent.
4990 */
4991 error = spa_ld_checkpoint_rewind(spa);
4992 if (error != 0)
4993 return (error);
4994
4995 /*
4996 * Redo the loading process again with the
4997 * checkpointed uberblock.
4998 */
4999 spa_ld_prepare_for_reload(spa);
5000 spa_load_note(spa, "LOADING checkpointed uberblock");
5001 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5002 if (error != 0)
5003 return (error);
5004 }
5005
5006 /*
5007 * Retrieve the checkpoint txg if the pool has a checkpoint.
5008 */
5009 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5010 error = spa_ld_read_checkpoint_txg(spa);
5011 if (error != 0)
5012 return (error);
5013
5014 /*
5015 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5016 * from the pool and their contents were re-mapped to other vdevs. Note
5017 * that everything that we read before this step must have been
5018 * rewritten on concrete vdevs after the last device removal was
5019 * initiated. Otherwise we could be reading from indirect vdevs before
5020 * we have loaded their mappings.
5021 */
5022 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5023 error = spa_ld_open_indirect_vdev_metadata(spa);
5024 if (error != 0)
5025 return (error);
5026
5027 /*
5028 * Retrieve the full list of active features from the MOS and check if
5029 * they are all supported.
5030 */
5031 spa_import_progress_set_notes(spa, "Checking feature flags");
5032 error = spa_ld_check_features(spa, &missing_feat_write);
5033 if (error != 0)
5034 return (error);
5035
5036 /*
5037 * Load several special directories from the MOS needed by the dsl_pool
5038 * layer.
5039 */
5040 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5041 error = spa_ld_load_special_directories(spa);
5042 if (error != 0)
5043 return (error);
5044
5045 /*
5046 * Retrieve pool properties from the MOS.
5047 */
5048 spa_import_progress_set_notes(spa, "Loading properties");
5049 error = spa_ld_get_props(spa);
5050 if (error != 0)
5051 return (error);
5052
5053 /*
5054 * Retrieve the list of auxiliary devices - cache devices and spares -
5055 * and open them.
5056 */
5057 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5058 error = spa_ld_open_aux_vdevs(spa, type);
5059 if (error != 0)
5060 return (error);
5061
5062 /*
5063 * Load the metadata for all vdevs. Also check if unopenable devices
5064 * should be autoreplaced.
5065 */
5066 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5067 error = spa_ld_load_vdev_metadata(spa);
5068 if (error != 0)
5069 return (error);
5070
5071 spa_import_progress_set_notes(spa, "Loading dedup tables");
5072 error = spa_ld_load_dedup_tables(spa);
5073 if (error != 0)
5074 return (error);
5075
5076 spa_import_progress_set_notes(spa, "Loading BRT");
5077 error = spa_ld_load_brt(spa);
5078 if (error != 0)
5079 return (error);
5080
5081 /*
5082 * Verify the logs now to make sure we don't have any unexpected errors
5083 * when we claim log blocks later.
5084 */
5085 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5086 error = spa_ld_verify_logs(spa, type, ereport);
5087 if (error != 0)
5088 return (error);
5089
5090 if (missing_feat_write) {
5091 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5092
5093 /*
5094 * At this point, we know that we can open the pool in
5095 * read-only mode but not read-write mode. We now have enough
5096 * information and can return to userland.
5097 */
5098 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5099 ENOTSUP));
5100 }
5101
5102 /*
5103 * Traverse the last txgs to make sure the pool was left off in a safe
5104 * state. When performing an extreme rewind, we verify the whole pool,
5105 * which can take a very long time.
5106 */
5107 spa_import_progress_set_notes(spa, "Verifying pool data");
5108 error = spa_ld_verify_pool_data(spa);
5109 if (error != 0)
5110 return (error);
5111
5112 /*
5113 * Calculate the deflated space for the pool. This must be done before
5114 * we write anything to the pool because we'd need to update the space
5115 * accounting using the deflated sizes.
5116 */
5117 spa_import_progress_set_notes(spa, "Calculating deflated space");
5118 spa_update_dspace(spa);
5119
5120 /*
5121 * We have now retrieved all the information we needed to open the
5122 * pool. If we are importing the pool in read-write mode, a few
5123 * additional steps must be performed to finish the import.
5124 */
5125 spa_import_progress_set_notes(spa, "Starting import");
5126 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5127 spa->spa_load_max_txg == UINT64_MAX)) {
5128 uint64_t config_cache_txg = spa->spa_config_txg;
5129
5130 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5131
5132 /*
5133 * Before we do any zio_write's, complete the raidz expansion
5134 * scratch space copying, if necessary.
5135 */
5136 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5137 vdev_raidz_reflow_copy_scratch(spa);
5138
5139 /*
5140 * In case of a checkpoint rewind, log the original txg
5141 * of the checkpointed uberblock.
5142 */
5143 if (checkpoint_rewind) {
5144 spa_history_log_internal(spa, "checkpoint rewind",
5145 NULL, "rewound state to txg=%llu",
5146 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5147 }
5148
5149 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5150 /*
5151 * Traverse the ZIL and claim all blocks.
5152 */
5153 spa_ld_claim_log_blocks(spa);
5154
5155 /*
5156 * Kick-off the syncing thread.
5157 */
5158 spa->spa_sync_on = B_TRUE;
5159 txg_sync_start(spa->spa_dsl_pool);
5160 mmp_thread_start(spa);
5161
5162 /*
5163 * Wait for all claims to sync. We sync up to the highest
5164 * claimed log block birth time so that claimed log blocks
5165 * don't appear to be from the future. spa_claim_max_txg
5166 * will have been set for us by ZIL traversal operations
5167 * performed above.
5168 */
5169 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5170 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5171
5172 /*
5173 * Check if we need to request an update of the config. On the
5174 * next sync, we would update the config stored in vdev labels
5175 * and the cachefile (by default /etc/zfs/zpool.cache).
5176 */
5177 spa_import_progress_set_notes(spa, "Updating configs");
5178 spa_ld_check_for_config_update(spa, config_cache_txg,
5179 update_config_cache);
5180
5181 /*
5182 * Check if a rebuild was in progress and if so resume it.
5183 * Then check all DTLs to see if anything needs resilvering.
5184 * The resilver will be deferred if a rebuild was started.
5185 */
5186 spa_import_progress_set_notes(spa, "Starting resilvers");
5187 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5188 vdev_rebuild_restart(spa);
5189 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5190 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5191 spa_async_request(spa, SPA_ASYNC_RESILVER);
5192 }
5193
5194 /*
5195 * Log the fact that we booted up (so that we can detect if
5196 * we rebooted in the middle of an operation).
5197 */
5198 spa_history_log_version(spa, "open", NULL);
5199
5200 spa_import_progress_set_notes(spa,
5201 "Restarting device removals");
5202 spa_restart_removal(spa);
5203 spa_spawn_aux_threads(spa);
5204
5205 /*
5206 * Delete any inconsistent datasets.
5207 *
5208 * Note:
5209 * Since we may be issuing deletes for clones here,
5210 * we make sure to do so after we've spawned all the
5211 * auxiliary threads above (from which the livelist
5212 * deletion zthr is part of).
5213 */
5214 spa_import_progress_set_notes(spa,
5215 "Cleaning up inconsistent objsets");
5216 (void) dmu_objset_find(spa_name(spa),
5217 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5218
5219 /*
5220 * Clean up any stale temporary dataset userrefs.
5221 */
5222 spa_import_progress_set_notes(spa,
5223 "Cleaning up temporary userrefs");
5224 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5225
5226 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5227 spa_import_progress_set_notes(spa, "Restarting initialize");
5228 vdev_initialize_restart(spa->spa_root_vdev);
5229 spa_import_progress_set_notes(spa, "Restarting TRIM");
5230 vdev_trim_restart(spa->spa_root_vdev);
5231 vdev_autotrim_restart(spa);
5232 spa_config_exit(spa, SCL_CONFIG, FTAG);
5233 spa_import_progress_set_notes(spa, "Finished importing");
5234 }
5235
5236 spa_import_progress_remove(spa_guid(spa));
5237 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5238
5239 spa_load_note(spa, "LOADED");
5240
5241 return (0);
5242 }
5243
5244 static int
5245 spa_load_retry(spa_t *spa, spa_load_state_t state)
5246 {
5247 spa_mode_t mode = spa->spa_mode;
5248
5249 spa_unload(spa);
5250 spa_deactivate(spa);
5251
5252 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5253
5254 spa_activate(spa, mode);
5255 spa_async_suspend(spa);
5256
5257 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5258 (u_longlong_t)spa->spa_load_max_txg);
5259
5260 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5261 }
5262
5263 /*
5264 * If spa_load() fails this function will try loading prior txg's. If
5265 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5266 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5267 * function will not rewind the pool and will return the same error as
5268 * spa_load().
5269 */
5270 static int
5271 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5272 int rewind_flags)
5273 {
5274 nvlist_t *loadinfo = NULL;
5275 nvlist_t *config = NULL;
5276 int load_error, rewind_error;
5277 uint64_t safe_rewind_txg;
5278 uint64_t min_txg;
5279
5280 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5281 spa->spa_load_max_txg = spa->spa_load_txg;
5282 spa_set_log_state(spa, SPA_LOG_CLEAR);
5283 } else {
5284 spa->spa_load_max_txg = max_request;
5285 if (max_request != UINT64_MAX)
5286 spa->spa_extreme_rewind = B_TRUE;
5287 }
5288
5289 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5290 if (load_error == 0)
5291 return (0);
5292 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5293 /*
5294 * When attempting checkpoint-rewind on a pool with no
5295 * checkpoint, we should not attempt to load uberblocks
5296 * from previous txgs when spa_load fails.
5297 */
5298 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5299 spa_import_progress_remove(spa_guid(spa));
5300 return (load_error);
5301 }
5302
5303 if (spa->spa_root_vdev != NULL)
5304 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5305
5306 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5307 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5308
5309 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5310 nvlist_free(config);
5311 spa_import_progress_remove(spa_guid(spa));
5312 return (load_error);
5313 }
5314
5315 if (state == SPA_LOAD_RECOVER) {
5316 /* Price of rolling back is discarding txgs, including log */
5317 spa_set_log_state(spa, SPA_LOG_CLEAR);
5318 } else {
5319 /*
5320 * If we aren't rolling back save the load info from our first
5321 * import attempt so that we can restore it after attempting
5322 * to rewind.
5323 */
5324 loadinfo = spa->spa_load_info;
5325 spa->spa_load_info = fnvlist_alloc();
5326 }
5327
5328 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5329 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5330 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5331 TXG_INITIAL : safe_rewind_txg;
5332
5333 /*
5334 * Continue as long as we're finding errors, we're still within
5335 * the acceptable rewind range, and we're still finding uberblocks
5336 */
5337 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5338 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5339 if (spa->spa_load_max_txg < safe_rewind_txg)
5340 spa->spa_extreme_rewind = B_TRUE;
5341 rewind_error = spa_load_retry(spa, state);
5342 }
5343
5344 spa->spa_extreme_rewind = B_FALSE;
5345 spa->spa_load_max_txg = UINT64_MAX;
5346
5347 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5348 spa_config_set(spa, config);
5349 else
5350 nvlist_free(config);
5351
5352 if (state == SPA_LOAD_RECOVER) {
5353 ASSERT3P(loadinfo, ==, NULL);
5354 spa_import_progress_remove(spa_guid(spa));
5355 return (rewind_error);
5356 } else {
5357 /* Store the rewind info as part of the initial load info */
5358 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5359 spa->spa_load_info);
5360
5361 /* Restore the initial load info */
5362 fnvlist_free(spa->spa_load_info);
5363 spa->spa_load_info = loadinfo;
5364
5365 spa_import_progress_remove(spa_guid(spa));
5366 return (load_error);
5367 }
5368 }
5369
5370 /*
5371 * Pool Open/Import
5372 *
5373 * The import case is identical to an open except that the configuration is sent
5374 * down from userland, instead of grabbed from the configuration cache. For the
5375 * case of an open, the pool configuration will exist in the
5376 * POOL_STATE_UNINITIALIZED state.
5377 *
5378 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5379 * the same time open the pool, without having to keep around the spa_t in some
5380 * ambiguous state.
5381 */
5382 static int
5383 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5384 nvlist_t *nvpolicy, nvlist_t **config)
5385 {
5386 spa_t *spa;
5387 spa_load_state_t state = SPA_LOAD_OPEN;
5388 int error;
5389 int locked = B_FALSE;
5390 int firstopen = B_FALSE;
5391
5392 *spapp = NULL;
5393
5394 /*
5395 * As disgusting as this is, we need to support recursive calls to this
5396 * function because dsl_dir_open() is called during spa_load(), and ends
5397 * up calling spa_open() again. The real fix is to figure out how to
5398 * avoid dsl_dir_open() calling this in the first place.
5399 */
5400 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5401 mutex_enter(&spa_namespace_lock);
5402 locked = B_TRUE;
5403 }
5404
5405 if ((spa = spa_lookup(pool)) == NULL) {
5406 if (locked)
5407 mutex_exit(&spa_namespace_lock);
5408 return (SET_ERROR(ENOENT));
5409 }
5410
5411 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5412 zpool_load_policy_t policy;
5413
5414 firstopen = B_TRUE;
5415
5416 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5417 &policy);
5418 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5419 state = SPA_LOAD_RECOVER;
5420
5421 spa_activate(spa, spa_mode_global);
5422
5423 if (state != SPA_LOAD_RECOVER)
5424 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5425 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5426
5427 zfs_dbgmsg("spa_open_common: opening %s", pool);
5428 error = spa_load_best(spa, state, policy.zlp_txg,
5429 policy.zlp_rewind);
5430
5431 if (error == EBADF) {
5432 /*
5433 * If vdev_validate() returns failure (indicated by
5434 * EBADF), it indicates that one of the vdevs indicates
5435 * that the pool has been exported or destroyed. If
5436 * this is the case, the config cache is out of sync and
5437 * we should remove the pool from the namespace.
5438 */
5439 spa_unload(spa);
5440 spa_deactivate(spa);
5441 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5442 spa_remove(spa);
5443 if (locked)
5444 mutex_exit(&spa_namespace_lock);
5445 return (SET_ERROR(ENOENT));
5446 }
5447
5448 if (error) {
5449 /*
5450 * We can't open the pool, but we still have useful
5451 * information: the state of each vdev after the
5452 * attempted vdev_open(). Return this to the user.
5453 */
5454 if (config != NULL && spa->spa_config) {
5455 *config = fnvlist_dup(spa->spa_config);
5456 fnvlist_add_nvlist(*config,
5457 ZPOOL_CONFIG_LOAD_INFO,
5458 spa->spa_load_info);
5459 }
5460 spa_unload(spa);
5461 spa_deactivate(spa);
5462 spa->spa_last_open_failed = error;
5463 if (locked)
5464 mutex_exit(&spa_namespace_lock);
5465 *spapp = NULL;
5466 return (error);
5467 }
5468 }
5469
5470 spa_open_ref(spa, tag);
5471
5472 if (config != NULL)
5473 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5474
5475 /*
5476 * If we've recovered the pool, pass back any information we
5477 * gathered while doing the load.
5478 */
5479 if (state == SPA_LOAD_RECOVER && config != NULL) {
5480 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5481 spa->spa_load_info);
5482 }
5483
5484 if (locked) {
5485 spa->spa_last_open_failed = 0;
5486 spa->spa_last_ubsync_txg = 0;
5487 spa->spa_load_txg = 0;
5488 mutex_exit(&spa_namespace_lock);
5489 }
5490
5491 if (firstopen)
5492 zvol_create_minors_recursive(spa_name(spa));
5493
5494 *spapp = spa;
5495
5496 return (0);
5497 }
5498
5499 int
5500 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5501 nvlist_t *policy, nvlist_t **config)
5502 {
5503 return (spa_open_common(name, spapp, tag, policy, config));
5504 }
5505
5506 int
5507 spa_open(const char *name, spa_t **spapp, const void *tag)
5508 {
5509 return (spa_open_common(name, spapp, tag, NULL, NULL));
5510 }
5511
5512 /*
5513 * Lookup the given spa_t, incrementing the inject count in the process,
5514 * preventing it from being exported or destroyed.
5515 */
5516 spa_t *
5517 spa_inject_addref(char *name)
5518 {
5519 spa_t *spa;
5520
5521 mutex_enter(&spa_namespace_lock);
5522 if ((spa = spa_lookup(name)) == NULL) {
5523 mutex_exit(&spa_namespace_lock);
5524 return (NULL);
5525 }
5526 spa->spa_inject_ref++;
5527 mutex_exit(&spa_namespace_lock);
5528
5529 return (spa);
5530 }
5531
5532 void
5533 spa_inject_delref(spa_t *spa)
5534 {
5535 mutex_enter(&spa_namespace_lock);
5536 spa->spa_inject_ref--;
5537 mutex_exit(&spa_namespace_lock);
5538 }
5539
5540 /*
5541 * Add spares device information to the nvlist.
5542 */
5543 static void
5544 spa_add_spares(spa_t *spa, nvlist_t *config)
5545 {
5546 nvlist_t **spares;
5547 uint_t i, nspares;
5548 nvlist_t *nvroot;
5549 uint64_t guid;
5550 vdev_stat_t *vs;
5551 uint_t vsc;
5552 uint64_t pool;
5553
5554 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5555
5556 if (spa->spa_spares.sav_count == 0)
5557 return;
5558
5559 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5560 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5561 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5562 if (nspares != 0) {
5563 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5564 (const nvlist_t * const *)spares, nspares);
5565 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5566 &spares, &nspares));
5567
5568 /*
5569 * Go through and find any spares which have since been
5570 * repurposed as an active spare. If this is the case, update
5571 * their status appropriately.
5572 */
5573 for (i = 0; i < nspares; i++) {
5574 guid = fnvlist_lookup_uint64(spares[i],
5575 ZPOOL_CONFIG_GUID);
5576 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5577 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5578 if (spa_spare_exists(guid, &pool, NULL) &&
5579 pool != 0ULL) {
5580 vs->vs_state = VDEV_STATE_CANT_OPEN;
5581 vs->vs_aux = VDEV_AUX_SPARED;
5582 } else {
5583 vs->vs_state =
5584 spa->spa_spares.sav_vdevs[i]->vdev_state;
5585 }
5586 }
5587 }
5588 }
5589
5590 /*
5591 * Add l2cache device information to the nvlist, including vdev stats.
5592 */
5593 static void
5594 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5595 {
5596 nvlist_t **l2cache;
5597 uint_t i, j, nl2cache;
5598 nvlist_t *nvroot;
5599 uint64_t guid;
5600 vdev_t *vd;
5601 vdev_stat_t *vs;
5602 uint_t vsc;
5603
5604 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5605
5606 if (spa->spa_l2cache.sav_count == 0)
5607 return;
5608
5609 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5610 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5611 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5612 if (nl2cache != 0) {
5613 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5614 (const nvlist_t * const *)l2cache, nl2cache);
5615 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5616 &l2cache, &nl2cache));
5617
5618 /*
5619 * Update level 2 cache device stats.
5620 */
5621
5622 for (i = 0; i < nl2cache; i++) {
5623 guid = fnvlist_lookup_uint64(l2cache[i],
5624 ZPOOL_CONFIG_GUID);
5625
5626 vd = NULL;
5627 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5628 if (guid ==
5629 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5630 vd = spa->spa_l2cache.sav_vdevs[j];
5631 break;
5632 }
5633 }
5634 ASSERT(vd != NULL);
5635
5636 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5637 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5638 vdev_get_stats(vd, vs);
5639 vdev_config_generate_stats(vd, l2cache[i]);
5640
5641 }
5642 }
5643 }
5644
5645 static void
5646 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5647 {
5648 zap_cursor_t zc;
5649 zap_attribute_t za;
5650
5651 if (spa->spa_feat_for_read_obj != 0) {
5652 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5653 spa->spa_feat_for_read_obj);
5654 zap_cursor_retrieve(&zc, &za) == 0;
5655 zap_cursor_advance(&zc)) {
5656 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5657 za.za_num_integers == 1);
5658 VERIFY0(nvlist_add_uint64(features, za.za_name,
5659 za.za_first_integer));
5660 }
5661 zap_cursor_fini(&zc);
5662 }
5663
5664 if (spa->spa_feat_for_write_obj != 0) {
5665 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5666 spa->spa_feat_for_write_obj);
5667 zap_cursor_retrieve(&zc, &za) == 0;
5668 zap_cursor_advance(&zc)) {
5669 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5670 za.za_num_integers == 1);
5671 VERIFY0(nvlist_add_uint64(features, za.za_name,
5672 za.za_first_integer));
5673 }
5674 zap_cursor_fini(&zc);
5675 }
5676 }
5677
5678 static void
5679 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5680 {
5681 int i;
5682
5683 for (i = 0; i < SPA_FEATURES; i++) {
5684 zfeature_info_t feature = spa_feature_table[i];
5685 uint64_t refcount;
5686
5687 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5688 continue;
5689
5690 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5691 }
5692 }
5693
5694 /*
5695 * Store a list of pool features and their reference counts in the
5696 * config.
5697 *
5698 * The first time this is called on a spa, allocate a new nvlist, fetch
5699 * the pool features and reference counts from disk, then save the list
5700 * in the spa. In subsequent calls on the same spa use the saved nvlist
5701 * and refresh its values from the cached reference counts. This
5702 * ensures we don't block here on I/O on a suspended pool so 'zpool
5703 * clear' can resume the pool.
5704 */
5705 static void
5706 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5707 {
5708 nvlist_t *features;
5709
5710 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5711
5712 mutex_enter(&spa->spa_feat_stats_lock);
5713 features = spa->spa_feat_stats;
5714
5715 if (features != NULL) {
5716 spa_feature_stats_from_cache(spa, features);
5717 } else {
5718 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5719 spa->spa_feat_stats = features;
5720 spa_feature_stats_from_disk(spa, features);
5721 }
5722
5723 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5724 features));
5725
5726 mutex_exit(&spa->spa_feat_stats_lock);
5727 }
5728
5729 int
5730 spa_get_stats(const char *name, nvlist_t **config,
5731 char *altroot, size_t buflen)
5732 {
5733 int error;
5734 spa_t *spa;
5735
5736 *config = NULL;
5737 error = spa_open_common(name, &spa, FTAG, NULL, config);
5738
5739 if (spa != NULL) {
5740 /*
5741 * This still leaves a window of inconsistency where the spares
5742 * or l2cache devices could change and the config would be
5743 * self-inconsistent.
5744 */
5745 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5746
5747 if (*config != NULL) {
5748 uint64_t loadtimes[2];
5749
5750 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5751 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5752 fnvlist_add_uint64_array(*config,
5753 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5754
5755 fnvlist_add_uint64(*config,
5756 ZPOOL_CONFIG_ERRCOUNT,
5757 spa_approx_errlog_size(spa));
5758
5759 if (spa_suspended(spa)) {
5760 fnvlist_add_uint64(*config,
5761 ZPOOL_CONFIG_SUSPENDED,
5762 spa->spa_failmode);
5763 fnvlist_add_uint64(*config,
5764 ZPOOL_CONFIG_SUSPENDED_REASON,
5765 spa->spa_suspended);
5766 }
5767
5768 spa_add_spares(spa, *config);
5769 spa_add_l2cache(spa, *config);
5770 spa_add_feature_stats(spa, *config);
5771 }
5772 }
5773
5774 /*
5775 * We want to get the alternate root even for faulted pools, so we cheat
5776 * and call spa_lookup() directly.
5777 */
5778 if (altroot) {
5779 if (spa == NULL) {
5780 mutex_enter(&spa_namespace_lock);
5781 spa = spa_lookup(name);
5782 if (spa)
5783 spa_altroot(spa, altroot, buflen);
5784 else
5785 altroot[0] = '\0';
5786 spa = NULL;
5787 mutex_exit(&spa_namespace_lock);
5788 } else {
5789 spa_altroot(spa, altroot, buflen);
5790 }
5791 }
5792
5793 if (spa != NULL) {
5794 spa_config_exit(spa, SCL_CONFIG, FTAG);
5795 spa_close(spa, FTAG);
5796 }
5797
5798 return (error);
5799 }
5800
5801 /*
5802 * Validate that the auxiliary device array is well formed. We must have an
5803 * array of nvlists, each which describes a valid leaf vdev. If this is an
5804 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5805 * specified, as long as they are well-formed.
5806 */
5807 static int
5808 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5809 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5810 vdev_labeltype_t label)
5811 {
5812 nvlist_t **dev;
5813 uint_t i, ndev;
5814 vdev_t *vd;
5815 int error;
5816
5817 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5818
5819 /*
5820 * It's acceptable to have no devs specified.
5821 */
5822 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5823 return (0);
5824
5825 if (ndev == 0)
5826 return (SET_ERROR(EINVAL));
5827
5828 /*
5829 * Make sure the pool is formatted with a version that supports this
5830 * device type.
5831 */
5832 if (spa_version(spa) < version)
5833 return (SET_ERROR(ENOTSUP));
5834
5835 /*
5836 * Set the pending device list so we correctly handle device in-use
5837 * checking.
5838 */
5839 sav->sav_pending = dev;
5840 sav->sav_npending = ndev;
5841
5842 for (i = 0; i < ndev; i++) {
5843 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5844 mode)) != 0)
5845 goto out;
5846
5847 if (!vd->vdev_ops->vdev_op_leaf) {
5848 vdev_free(vd);
5849 error = SET_ERROR(EINVAL);
5850 goto out;
5851 }
5852
5853 vd->vdev_top = vd;
5854
5855 if ((error = vdev_open(vd)) == 0 &&
5856 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5857 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5858 vd->vdev_guid);
5859 }
5860
5861 vdev_free(vd);
5862
5863 if (error &&
5864 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5865 goto out;
5866 else
5867 error = 0;
5868 }
5869
5870 out:
5871 sav->sav_pending = NULL;
5872 sav->sav_npending = 0;
5873 return (error);
5874 }
5875
5876 static int
5877 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5878 {
5879 int error;
5880
5881 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5882
5883 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5884 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5885 VDEV_LABEL_SPARE)) != 0) {
5886 return (error);
5887 }
5888
5889 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5890 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5891 VDEV_LABEL_L2CACHE));
5892 }
5893
5894 static void
5895 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5896 const char *config)
5897 {
5898 int i;
5899
5900 if (sav->sav_config != NULL) {
5901 nvlist_t **olddevs;
5902 uint_t oldndevs;
5903 nvlist_t **newdevs;
5904
5905 /*
5906 * Generate new dev list by concatenating with the
5907 * current dev list.
5908 */
5909 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5910 &olddevs, &oldndevs));
5911
5912 newdevs = kmem_alloc(sizeof (void *) *
5913 (ndevs + oldndevs), KM_SLEEP);
5914 for (i = 0; i < oldndevs; i++)
5915 newdevs[i] = fnvlist_dup(olddevs[i]);
5916 for (i = 0; i < ndevs; i++)
5917 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5918
5919 fnvlist_remove(sav->sav_config, config);
5920
5921 fnvlist_add_nvlist_array(sav->sav_config, config,
5922 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5923 for (i = 0; i < oldndevs + ndevs; i++)
5924 nvlist_free(newdevs[i]);
5925 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5926 } else {
5927 /*
5928 * Generate a new dev list.
5929 */
5930 sav->sav_config = fnvlist_alloc();
5931 fnvlist_add_nvlist_array(sav->sav_config, config,
5932 (const nvlist_t * const *)devs, ndevs);
5933 }
5934 }
5935
5936 /*
5937 * Stop and drop level 2 ARC devices
5938 */
5939 void
5940 spa_l2cache_drop(spa_t *spa)
5941 {
5942 vdev_t *vd;
5943 int i;
5944 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5945
5946 for (i = 0; i < sav->sav_count; i++) {
5947 uint64_t pool;
5948
5949 vd = sav->sav_vdevs[i];
5950 ASSERT(vd != NULL);
5951
5952 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5953 pool != 0ULL && l2arc_vdev_present(vd))
5954 l2arc_remove_vdev(vd);
5955 }
5956 }
5957
5958 /*
5959 * Verify encryption parameters for spa creation. If we are encrypting, we must
5960 * have the encryption feature flag enabled.
5961 */
5962 static int
5963 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5964 boolean_t has_encryption)
5965 {
5966 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5967 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5968 !has_encryption)
5969 return (SET_ERROR(ENOTSUP));
5970
5971 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5972 }
5973
5974 /*
5975 * Pool Creation
5976 */
5977 int
5978 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5979 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5980 {
5981 spa_t *spa;
5982 const char *altroot = NULL;
5983 vdev_t *rvd;
5984 dsl_pool_t *dp;
5985 dmu_tx_t *tx;
5986 int error = 0;
5987 uint64_t txg = TXG_INITIAL;
5988 nvlist_t **spares, **l2cache;
5989 uint_t nspares, nl2cache;
5990 uint64_t version, obj, ndraid = 0;
5991 boolean_t has_features;
5992 boolean_t has_encryption;
5993 boolean_t has_allocclass;
5994 spa_feature_t feat;
5995 const char *feat_name;
5996 const char *poolname;
5997 nvlist_t *nvl;
5998
5999 if (props == NULL ||
6000 nvlist_lookup_string(props, "tname", &poolname) != 0)
6001 poolname = (char *)pool;
6002
6003 /*
6004 * If this pool already exists, return failure.
6005 */
6006 mutex_enter(&spa_namespace_lock);
6007 if (spa_lookup(poolname) != NULL) {
6008 mutex_exit(&spa_namespace_lock);
6009 return (SET_ERROR(EEXIST));
6010 }
6011
6012 /*
6013 * Allocate a new spa_t structure.
6014 */
6015 nvl = fnvlist_alloc();
6016 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6017 (void) nvlist_lookup_string(props,
6018 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6019 spa = spa_add(poolname, nvl, altroot);
6020 fnvlist_free(nvl);
6021 spa_activate(spa, spa_mode_global);
6022
6023 if (props && (error = spa_prop_validate(spa, props))) {
6024 spa_deactivate(spa);
6025 spa_remove(spa);
6026 mutex_exit(&spa_namespace_lock);
6027 return (error);
6028 }
6029
6030 /*
6031 * Temporary pool names should never be written to disk.
6032 */
6033 if (poolname != pool)
6034 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6035
6036 has_features = B_FALSE;
6037 has_encryption = B_FALSE;
6038 has_allocclass = B_FALSE;
6039 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6040 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6041 if (zpool_prop_feature(nvpair_name(elem))) {
6042 has_features = B_TRUE;
6043
6044 feat_name = strchr(nvpair_name(elem), '@') + 1;
6045 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6046 if (feat == SPA_FEATURE_ENCRYPTION)
6047 has_encryption = B_TRUE;
6048 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6049 has_allocclass = B_TRUE;
6050 }
6051 }
6052
6053 /* verify encryption params, if they were provided */
6054 if (dcp != NULL) {
6055 error = spa_create_check_encryption_params(dcp, has_encryption);
6056 if (error != 0) {
6057 spa_deactivate(spa);
6058 spa_remove(spa);
6059 mutex_exit(&spa_namespace_lock);
6060 return (error);
6061 }
6062 }
6063 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6064 spa_deactivate(spa);
6065 spa_remove(spa);
6066 mutex_exit(&spa_namespace_lock);
6067 return (ENOTSUP);
6068 }
6069
6070 if (has_features || nvlist_lookup_uint64(props,
6071 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6072 version = SPA_VERSION;
6073 }
6074 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6075
6076 spa->spa_first_txg = txg;
6077 spa->spa_uberblock.ub_txg = txg - 1;
6078 spa->spa_uberblock.ub_version = version;
6079 spa->spa_ubsync = spa->spa_uberblock;
6080 spa->spa_load_state = SPA_LOAD_CREATE;
6081 spa->spa_removing_phys.sr_state = DSS_NONE;
6082 spa->spa_removing_phys.sr_removing_vdev = -1;
6083 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6084 spa->spa_indirect_vdevs_loaded = B_TRUE;
6085
6086 /*
6087 * Create "The Godfather" zio to hold all async IOs
6088 */
6089 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6090 KM_SLEEP);
6091 for (int i = 0; i < max_ncpus; i++) {
6092 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6093 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6094 ZIO_FLAG_GODFATHER);
6095 }
6096
6097 /*
6098 * Create the root vdev.
6099 */
6100 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6101
6102 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6103
6104 ASSERT(error != 0 || rvd != NULL);
6105 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6106
6107 if (error == 0 && !zfs_allocatable_devs(nvroot))
6108 error = SET_ERROR(EINVAL);
6109
6110 if (error == 0 &&
6111 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6112 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6113 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6114 /*
6115 * instantiate the metaslab groups (this will dirty the vdevs)
6116 * we can no longer error exit past this point
6117 */
6118 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6119 vdev_t *vd = rvd->vdev_child[c];
6120
6121 vdev_metaslab_set_size(vd);
6122 vdev_expand(vd, txg);
6123 }
6124 }
6125
6126 spa_config_exit(spa, SCL_ALL, FTAG);
6127
6128 if (error != 0) {
6129 spa_unload(spa);
6130 spa_deactivate(spa);
6131 spa_remove(spa);
6132 mutex_exit(&spa_namespace_lock);
6133 return (error);
6134 }
6135
6136 /*
6137 * Get the list of spares, if specified.
6138 */
6139 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6140 &spares, &nspares) == 0) {
6141 spa->spa_spares.sav_config = fnvlist_alloc();
6142 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6143 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6144 nspares);
6145 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6146 spa_load_spares(spa);
6147 spa_config_exit(spa, SCL_ALL, FTAG);
6148 spa->spa_spares.sav_sync = B_TRUE;
6149 }
6150
6151 /*
6152 * Get the list of level 2 cache devices, if specified.
6153 */
6154 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6155 &l2cache, &nl2cache) == 0) {
6156 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6157 NV_UNIQUE_NAME, KM_SLEEP));
6158 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6159 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6160 nl2cache);
6161 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6162 spa_load_l2cache(spa);
6163 spa_config_exit(spa, SCL_ALL, FTAG);
6164 spa->spa_l2cache.sav_sync = B_TRUE;
6165 }
6166
6167 spa->spa_is_initializing = B_TRUE;
6168 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6169 spa->spa_is_initializing = B_FALSE;
6170
6171 /*
6172 * Create DDTs (dedup tables).
6173 */
6174 ddt_create(spa);
6175 /*
6176 * Create BRT table and BRT table object.
6177 */
6178 brt_create(spa);
6179
6180 spa_update_dspace(spa);
6181
6182 tx = dmu_tx_create_assigned(dp, txg);
6183
6184 /*
6185 * Create the pool's history object.
6186 */
6187 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6188 spa_history_create_obj(spa, tx);
6189
6190 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6191 spa_history_log_version(spa, "create", tx);
6192
6193 /*
6194 * Create the pool config object.
6195 */
6196 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6197 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6198 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6199
6200 if (zap_add(spa->spa_meta_objset,
6201 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6202 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6203 cmn_err(CE_PANIC, "failed to add pool config");
6204 }
6205
6206 if (zap_add(spa->spa_meta_objset,
6207 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6208 sizeof (uint64_t), 1, &version, tx) != 0) {
6209 cmn_err(CE_PANIC, "failed to add pool version");
6210 }
6211
6212 /* Newly created pools with the right version are always deflated. */
6213 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6214 spa->spa_deflate = TRUE;
6215 if (zap_add(spa->spa_meta_objset,
6216 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6217 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6218 cmn_err(CE_PANIC, "failed to add deflate");
6219 }
6220 }
6221
6222 /*
6223 * Create the deferred-free bpobj. Turn off compression
6224 * because sync-to-convergence takes longer if the blocksize
6225 * keeps changing.
6226 */
6227 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6228 dmu_object_set_compress(spa->spa_meta_objset, obj,
6229 ZIO_COMPRESS_OFF, tx);
6230 if (zap_add(spa->spa_meta_objset,
6231 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6232 sizeof (uint64_t), 1, &obj, tx) != 0) {
6233 cmn_err(CE_PANIC, "failed to add bpobj");
6234 }
6235 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6236 spa->spa_meta_objset, obj));
6237
6238 /*
6239 * Generate some random noise for salted checksums to operate on.
6240 */
6241 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6242 sizeof (spa->spa_cksum_salt.zcs_bytes));
6243
6244 /*
6245 * Set pool properties.
6246 */
6247 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6248 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6249 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6250 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6251 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6252 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6253
6254 if (props != NULL) {
6255 spa_configfile_set(spa, props, B_FALSE);
6256 spa_sync_props(props, tx);
6257 }
6258
6259 for (int i = 0; i < ndraid; i++)
6260 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6261
6262 dmu_tx_commit(tx);
6263
6264 spa->spa_sync_on = B_TRUE;
6265 txg_sync_start(dp);
6266 mmp_thread_start(spa);
6267 txg_wait_synced(dp, txg);
6268
6269 spa_spawn_aux_threads(spa);
6270
6271 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6272
6273 /*
6274 * Don't count references from objsets that are already closed
6275 * and are making their way through the eviction process.
6276 */
6277 spa_evicting_os_wait(spa);
6278 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6279 spa->spa_load_state = SPA_LOAD_NONE;
6280
6281 spa_import_os(spa);
6282
6283 mutex_exit(&spa_namespace_lock);
6284
6285 return (0);
6286 }
6287
6288 /*
6289 * Import a non-root pool into the system.
6290 */
6291 int
6292 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6293 {
6294 spa_t *spa;
6295 const char *altroot = NULL;
6296 spa_load_state_t state = SPA_LOAD_IMPORT;
6297 zpool_load_policy_t policy;
6298 spa_mode_t mode = spa_mode_global;
6299 uint64_t readonly = B_FALSE;
6300 int error;
6301 nvlist_t *nvroot;
6302 nvlist_t **spares, **l2cache;
6303 uint_t nspares, nl2cache;
6304
6305 /*
6306 * If a pool with this name exists, return failure.
6307 */
6308 mutex_enter(&spa_namespace_lock);
6309 if (spa_lookup(pool) != NULL) {
6310 mutex_exit(&spa_namespace_lock);
6311 return (SET_ERROR(EEXIST));
6312 }
6313
6314 /*
6315 * Create and initialize the spa structure.
6316 */
6317 (void) nvlist_lookup_string(props,
6318 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6319 (void) nvlist_lookup_uint64(props,
6320 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6321 if (readonly)
6322 mode = SPA_MODE_READ;
6323 spa = spa_add(pool, config, altroot);
6324 spa->spa_import_flags = flags;
6325
6326 /*
6327 * Verbatim import - Take a pool and insert it into the namespace
6328 * as if it had been loaded at boot.
6329 */
6330 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6331 if (props != NULL)
6332 spa_configfile_set(spa, props, B_FALSE);
6333
6334 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6335 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6336 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6337 mutex_exit(&spa_namespace_lock);
6338 return (0);
6339 }
6340
6341 spa_activate(spa, mode);
6342
6343 /*
6344 * Don't start async tasks until we know everything is healthy.
6345 */
6346 spa_async_suspend(spa);
6347
6348 zpool_get_load_policy(config, &policy);
6349 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6350 state = SPA_LOAD_RECOVER;
6351
6352 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6353
6354 if (state != SPA_LOAD_RECOVER) {
6355 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6356 zfs_dbgmsg("spa_import: importing %s", pool);
6357 } else {
6358 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6359 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6360 }
6361 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6362
6363 /*
6364 * Propagate anything learned while loading the pool and pass it
6365 * back to caller (i.e. rewind info, missing devices, etc).
6366 */
6367 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6368
6369 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6370 /*
6371 * Toss any existing sparelist, as it doesn't have any validity
6372 * anymore, and conflicts with spa_has_spare().
6373 */
6374 if (spa->spa_spares.sav_config) {
6375 nvlist_free(spa->spa_spares.sav_config);
6376 spa->spa_spares.sav_config = NULL;
6377 spa_load_spares(spa);
6378 }
6379 if (spa->spa_l2cache.sav_config) {
6380 nvlist_free(spa->spa_l2cache.sav_config);
6381 spa->spa_l2cache.sav_config = NULL;
6382 spa_load_l2cache(spa);
6383 }
6384
6385 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6386 spa_config_exit(spa, SCL_ALL, FTAG);
6387
6388 if (props != NULL)
6389 spa_configfile_set(spa, props, B_FALSE);
6390
6391 if (error != 0 || (props && spa_writeable(spa) &&
6392 (error = spa_prop_set(spa, props)))) {
6393 spa_unload(spa);
6394 spa_deactivate(spa);
6395 spa_remove(spa);
6396 mutex_exit(&spa_namespace_lock);
6397 return (error);
6398 }
6399
6400 spa_async_resume(spa);
6401
6402 /*
6403 * Override any spares and level 2 cache devices as specified by
6404 * the user, as these may have correct device names/devids, etc.
6405 */
6406 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6407 &spares, &nspares) == 0) {
6408 if (spa->spa_spares.sav_config)
6409 fnvlist_remove(spa->spa_spares.sav_config,
6410 ZPOOL_CONFIG_SPARES);
6411 else
6412 spa->spa_spares.sav_config = fnvlist_alloc();
6413 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6414 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6415 nspares);
6416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6417 spa_load_spares(spa);
6418 spa_config_exit(spa, SCL_ALL, FTAG);
6419 spa->spa_spares.sav_sync = B_TRUE;
6420 }
6421 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6422 &l2cache, &nl2cache) == 0) {
6423 if (spa->spa_l2cache.sav_config)
6424 fnvlist_remove(spa->spa_l2cache.sav_config,
6425 ZPOOL_CONFIG_L2CACHE);
6426 else
6427 spa->spa_l2cache.sav_config = fnvlist_alloc();
6428 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6429 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6430 nl2cache);
6431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6432 spa_load_l2cache(spa);
6433 spa_config_exit(spa, SCL_ALL, FTAG);
6434 spa->spa_l2cache.sav_sync = B_TRUE;
6435 }
6436
6437 /*
6438 * Check for any removed devices.
6439 */
6440 if (spa->spa_autoreplace) {
6441 spa_aux_check_removed(&spa->spa_spares);
6442 spa_aux_check_removed(&spa->spa_l2cache);
6443 }
6444
6445 if (spa_writeable(spa)) {
6446 /*
6447 * Update the config cache to include the newly-imported pool.
6448 */
6449 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6450 }
6451
6452 /*
6453 * It's possible that the pool was expanded while it was exported.
6454 * We kick off an async task to handle this for us.
6455 */
6456 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6457
6458 spa_history_log_version(spa, "import", NULL);
6459
6460 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6461
6462 mutex_exit(&spa_namespace_lock);
6463
6464 zvol_create_minors_recursive(pool);
6465
6466 spa_import_os(spa);
6467
6468 return (0);
6469 }
6470
6471 nvlist_t *
6472 spa_tryimport(nvlist_t *tryconfig)
6473 {
6474 nvlist_t *config = NULL;
6475 const char *poolname, *cachefile;
6476 spa_t *spa;
6477 uint64_t state;
6478 int error;
6479 zpool_load_policy_t policy;
6480
6481 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6482 return (NULL);
6483
6484 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6485 return (NULL);
6486
6487 /*
6488 * Create and initialize the spa structure.
6489 */
6490 mutex_enter(&spa_namespace_lock);
6491 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6492 spa_activate(spa, SPA_MODE_READ);
6493
6494 /*
6495 * Rewind pool if a max txg was provided.
6496 */
6497 zpool_get_load_policy(spa->spa_config, &policy);
6498 if (policy.zlp_txg != UINT64_MAX) {
6499 spa->spa_load_max_txg = policy.zlp_txg;
6500 spa->spa_extreme_rewind = B_TRUE;
6501 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6502 poolname, (longlong_t)policy.zlp_txg);
6503 } else {
6504 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6505 }
6506
6507 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6508 == 0) {
6509 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6510 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6511 } else {
6512 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6513 }
6514
6515 /*
6516 * spa_import() relies on a pool config fetched by spa_try_import()
6517 * for spare/cache devices. Import flags are not passed to
6518 * spa_tryimport(), which makes it return early due to a missing log
6519 * device and missing retrieving the cache device and spare eventually.
6520 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6521 * the correct configuration regardless of the missing log device.
6522 */
6523 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6524
6525 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6526
6527 /*
6528 * If 'tryconfig' was at least parsable, return the current config.
6529 */
6530 if (spa->spa_root_vdev != NULL) {
6531 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6532 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6533 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6534 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6535 spa->spa_uberblock.ub_timestamp);
6536 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6537 spa->spa_load_info);
6538 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6539 spa->spa_errata);
6540
6541 /*
6542 * If the bootfs property exists on this pool then we
6543 * copy it out so that external consumers can tell which
6544 * pools are bootable.
6545 */
6546 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6547 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6548
6549 /*
6550 * We have to play games with the name since the
6551 * pool was opened as TRYIMPORT_NAME.
6552 */
6553 if (dsl_dsobj_to_dsname(spa_name(spa),
6554 spa->spa_bootfs, tmpname) == 0) {
6555 char *cp;
6556 char *dsname;
6557
6558 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6559
6560 cp = strchr(tmpname, '/');
6561 if (cp == NULL) {
6562 (void) strlcpy(dsname, tmpname,
6563 MAXPATHLEN);
6564 } else {
6565 (void) snprintf(dsname, MAXPATHLEN,
6566 "%s/%s", poolname, ++cp);
6567 }
6568 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6569 dsname);
6570 kmem_free(dsname, MAXPATHLEN);
6571 }
6572 kmem_free(tmpname, MAXPATHLEN);
6573 }
6574
6575 /*
6576 * Add the list of hot spares and level 2 cache devices.
6577 */
6578 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6579 spa_add_spares(spa, config);
6580 spa_add_l2cache(spa, config);
6581 spa_config_exit(spa, SCL_CONFIG, FTAG);
6582 }
6583
6584 spa_unload(spa);
6585 spa_deactivate(spa);
6586 spa_remove(spa);
6587 mutex_exit(&spa_namespace_lock);
6588
6589 return (config);
6590 }
6591
6592 /*
6593 * Pool export/destroy
6594 *
6595 * The act of destroying or exporting a pool is very simple. We make sure there
6596 * is no more pending I/O and any references to the pool are gone. Then, we
6597 * update the pool state and sync all the labels to disk, removing the
6598 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6599 * we don't sync the labels or remove the configuration cache.
6600 */
6601 static int
6602 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6603 boolean_t force, boolean_t hardforce)
6604 {
6605 int error;
6606 spa_t *spa;
6607
6608 if (oldconfig)
6609 *oldconfig = NULL;
6610
6611 if (!(spa_mode_global & SPA_MODE_WRITE))
6612 return (SET_ERROR(EROFS));
6613
6614 mutex_enter(&spa_namespace_lock);
6615 if ((spa = spa_lookup(pool)) == NULL) {
6616 mutex_exit(&spa_namespace_lock);
6617 return (SET_ERROR(ENOENT));
6618 }
6619
6620 if (spa->spa_is_exporting) {
6621 /* the pool is being exported by another thread */
6622 mutex_exit(&spa_namespace_lock);
6623 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6624 }
6625 spa->spa_is_exporting = B_TRUE;
6626
6627 /*
6628 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6629 * reacquire the namespace lock, and see if we can export.
6630 */
6631 spa_open_ref(spa, FTAG);
6632 mutex_exit(&spa_namespace_lock);
6633 spa_async_suspend(spa);
6634 if (spa->spa_zvol_taskq) {
6635 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6636 taskq_wait(spa->spa_zvol_taskq);
6637 }
6638 mutex_enter(&spa_namespace_lock);
6639 spa_close(spa, FTAG);
6640
6641 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6642 goto export_spa;
6643 /*
6644 * The pool will be in core if it's openable, in which case we can
6645 * modify its state. Objsets may be open only because they're dirty,
6646 * so we have to force it to sync before checking spa_refcnt.
6647 */
6648 if (spa->spa_sync_on) {
6649 txg_wait_synced(spa->spa_dsl_pool, 0);
6650 spa_evicting_os_wait(spa);
6651 }
6652
6653 /*
6654 * A pool cannot be exported or destroyed if there are active
6655 * references. If we are resetting a pool, allow references by
6656 * fault injection handlers.
6657 */
6658 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6659 error = SET_ERROR(EBUSY);
6660 goto fail;
6661 }
6662
6663 if (spa->spa_sync_on) {
6664 vdev_t *rvd = spa->spa_root_vdev;
6665 /*
6666 * A pool cannot be exported if it has an active shared spare.
6667 * This is to prevent other pools stealing the active spare
6668 * from an exported pool. At user's own will, such pool can
6669 * be forcedly exported.
6670 */
6671 if (!force && new_state == POOL_STATE_EXPORTED &&
6672 spa_has_active_shared_spare(spa)) {
6673 error = SET_ERROR(EXDEV);
6674 goto fail;
6675 }
6676
6677 /*
6678 * We're about to export or destroy this pool. Make sure
6679 * we stop all initialization and trim activity here before
6680 * we set the spa_final_txg. This will ensure that all
6681 * dirty data resulting from the initialization is
6682 * committed to disk before we unload the pool.
6683 */
6684 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6685 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6686 vdev_autotrim_stop_all(spa);
6687 vdev_rebuild_stop_all(spa);
6688
6689 /*
6690 * We want this to be reflected on every label,
6691 * so mark them all dirty. spa_unload() will do the
6692 * final sync that pushes these changes out.
6693 */
6694 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6695 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6696 spa->spa_state = new_state;
6697 vdev_config_dirty(rvd);
6698 spa_config_exit(spa, SCL_ALL, FTAG);
6699 }
6700
6701 /*
6702 * If the log space map feature is enabled and the pool is
6703 * getting exported (but not destroyed), we want to spend some
6704 * time flushing as many metaslabs as we can in an attempt to
6705 * destroy log space maps and save import time. This has to be
6706 * done before we set the spa_final_txg, otherwise
6707 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6708 * spa_should_flush_logs_on_unload() should be called after
6709 * spa_state has been set to the new_state.
6710 */
6711 if (spa_should_flush_logs_on_unload(spa))
6712 spa_unload_log_sm_flush_all(spa);
6713
6714 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6715 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6716 spa->spa_final_txg = spa_last_synced_txg(spa) +
6717 TXG_DEFER_SIZE + 1;
6718 spa_config_exit(spa, SCL_ALL, FTAG);
6719 }
6720 }
6721
6722 export_spa:
6723 spa_export_os(spa);
6724
6725 if (new_state == POOL_STATE_DESTROYED)
6726 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6727 else if (new_state == POOL_STATE_EXPORTED)
6728 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6729
6730 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6731 spa_unload(spa);
6732 spa_deactivate(spa);
6733 }
6734
6735 if (oldconfig && spa->spa_config)
6736 *oldconfig = fnvlist_dup(spa->spa_config);
6737
6738 if (new_state != POOL_STATE_UNINITIALIZED) {
6739 if (!hardforce)
6740 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6741 spa_remove(spa);
6742 } else {
6743 /*
6744 * If spa_remove() is not called for this spa_t and
6745 * there is any possibility that it can be reused,
6746 * we make sure to reset the exporting flag.
6747 */
6748 spa->spa_is_exporting = B_FALSE;
6749 }
6750
6751 mutex_exit(&spa_namespace_lock);
6752 return (0);
6753
6754 fail:
6755 spa->spa_is_exporting = B_FALSE;
6756 spa_async_resume(spa);
6757 mutex_exit(&spa_namespace_lock);
6758 return (error);
6759 }
6760
6761 /*
6762 * Destroy a storage pool.
6763 */
6764 int
6765 spa_destroy(const char *pool)
6766 {
6767 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6768 B_FALSE, B_FALSE));
6769 }
6770
6771 /*
6772 * Export a storage pool.
6773 */
6774 int
6775 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6776 boolean_t hardforce)
6777 {
6778 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6779 force, hardforce));
6780 }
6781
6782 /*
6783 * Similar to spa_export(), this unloads the spa_t without actually removing it
6784 * from the namespace in any way.
6785 */
6786 int
6787 spa_reset(const char *pool)
6788 {
6789 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6790 B_FALSE, B_FALSE));
6791 }
6792
6793 /*
6794 * ==========================================================================
6795 * Device manipulation
6796 * ==========================================================================
6797 */
6798
6799 /*
6800 * This is called as a synctask to increment the draid feature flag
6801 */
6802 static void
6803 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6804 {
6805 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6806 int draid = (int)(uintptr_t)arg;
6807
6808 for (int c = 0; c < draid; c++)
6809 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6810 }
6811
6812 /*
6813 * Add a device to a storage pool.
6814 */
6815 int
6816 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6817 {
6818 uint64_t txg, ndraid = 0;
6819 int error;
6820 vdev_t *rvd = spa->spa_root_vdev;
6821 vdev_t *vd, *tvd;
6822 nvlist_t **spares, **l2cache;
6823 uint_t nspares, nl2cache;
6824
6825 ASSERT(spa_writeable(spa));
6826
6827 txg = spa_vdev_enter(spa);
6828
6829 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6830 VDEV_ALLOC_ADD)) != 0)
6831 return (spa_vdev_exit(spa, NULL, txg, error));
6832
6833 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6834
6835 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6836 &nspares) != 0)
6837 nspares = 0;
6838
6839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6840 &nl2cache) != 0)
6841 nl2cache = 0;
6842
6843 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6844 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6845
6846 if (vd->vdev_children != 0 &&
6847 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6848 return (spa_vdev_exit(spa, vd, txg, error));
6849 }
6850
6851 /*
6852 * The virtual dRAID spares must be added after vdev tree is created
6853 * and the vdev guids are generated. The guid of their associated
6854 * dRAID is stored in the config and used when opening the spare.
6855 */
6856 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6857 rvd->vdev_children)) == 0) {
6858 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6859 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6860 nspares = 0;
6861 } else {
6862 return (spa_vdev_exit(spa, vd, txg, error));
6863 }
6864
6865 /*
6866 * We must validate the spares and l2cache devices after checking the
6867 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6868 */
6869 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6870 return (spa_vdev_exit(spa, vd, txg, error));
6871
6872 /*
6873 * If we are in the middle of a device removal, we can only add
6874 * devices which match the existing devices in the pool.
6875 * If we are in the middle of a removal, or have some indirect
6876 * vdevs, we can not add raidz or dRAID top levels.
6877 */
6878 if (spa->spa_vdev_removal != NULL ||
6879 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6880 for (int c = 0; c < vd->vdev_children; c++) {
6881 tvd = vd->vdev_child[c];
6882 if (spa->spa_vdev_removal != NULL &&
6883 tvd->vdev_ashift != spa->spa_max_ashift) {
6884 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6885 }
6886 /* Fail if top level vdev is raidz or a dRAID */
6887 if (vdev_get_nparity(tvd) != 0)
6888 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6889
6890 /*
6891 * Need the top level mirror to be
6892 * a mirror of leaf vdevs only
6893 */
6894 if (tvd->vdev_ops == &vdev_mirror_ops) {
6895 for (uint64_t cid = 0;
6896 cid < tvd->vdev_children; cid++) {
6897 vdev_t *cvd = tvd->vdev_child[cid];
6898 if (!cvd->vdev_ops->vdev_op_leaf) {
6899 return (spa_vdev_exit(spa, vd,
6900 txg, EINVAL));
6901 }
6902 }
6903 }
6904 }
6905 }
6906
6907 for (int c = 0; c < vd->vdev_children; c++) {
6908 tvd = vd->vdev_child[c];
6909 vdev_remove_child(vd, tvd);
6910 tvd->vdev_id = rvd->vdev_children;
6911 vdev_add_child(rvd, tvd);
6912 vdev_config_dirty(tvd);
6913 }
6914
6915 if (nspares != 0) {
6916 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6917 ZPOOL_CONFIG_SPARES);
6918 spa_load_spares(spa);
6919 spa->spa_spares.sav_sync = B_TRUE;
6920 }
6921
6922 if (nl2cache != 0) {
6923 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6924 ZPOOL_CONFIG_L2CACHE);
6925 spa_load_l2cache(spa);
6926 spa->spa_l2cache.sav_sync = B_TRUE;
6927 }
6928
6929 /*
6930 * We can't increment a feature while holding spa_vdev so we
6931 * have to do it in a synctask.
6932 */
6933 if (ndraid != 0) {
6934 dmu_tx_t *tx;
6935
6936 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6937 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6938 (void *)(uintptr_t)ndraid, tx);
6939 dmu_tx_commit(tx);
6940 }
6941
6942 /*
6943 * We have to be careful when adding new vdevs to an existing pool.
6944 * If other threads start allocating from these vdevs before we
6945 * sync the config cache, and we lose power, then upon reboot we may
6946 * fail to open the pool because there are DVAs that the config cache
6947 * can't translate. Therefore, we first add the vdevs without
6948 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6949 * and then let spa_config_update() initialize the new metaslabs.
6950 *
6951 * spa_load() checks for added-but-not-initialized vdevs, so that
6952 * if we lose power at any point in this sequence, the remaining
6953 * steps will be completed the next time we load the pool.
6954 */
6955 (void) spa_vdev_exit(spa, vd, txg, 0);
6956
6957 mutex_enter(&spa_namespace_lock);
6958 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6959 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6960 mutex_exit(&spa_namespace_lock);
6961
6962 return (0);
6963 }
6964
6965 /*
6966 * Attach a device to a vdev specified by its guid. The vdev type can be
6967 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
6968 * single device). When the vdev is a single device, a mirror vdev will be
6969 * automatically inserted.
6970 *
6971 * If 'replacing' is specified, the new device is intended to replace the
6972 * existing device; in this case the two devices are made into their own
6973 * mirror using the 'replacing' vdev, which is functionally identical to
6974 * the mirror vdev (it actually reuses all the same ops) but has a few
6975 * extra rules: you can't attach to it after it's been created, and upon
6976 * completion of resilvering, the first disk (the one being replaced)
6977 * is automatically detached.
6978 *
6979 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6980 * should be performed instead of traditional healing reconstruction. From
6981 * an administrators perspective these are both resilver operations.
6982 */
6983 int
6984 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6985 int rebuild)
6986 {
6987 uint64_t txg, dtl_max_txg;
6988 vdev_t *rvd = spa->spa_root_vdev;
6989 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6990 vdev_ops_t *pvops;
6991 char *oldvdpath, *newvdpath;
6992 int newvd_isspare = B_FALSE;
6993 int error;
6994
6995 ASSERT(spa_writeable(spa));
6996
6997 txg = spa_vdev_enter(spa);
6998
6999 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7000
7001 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7002 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7003 error = (spa_has_checkpoint(spa)) ?
7004 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7005 return (spa_vdev_exit(spa, NULL, txg, error));
7006 }
7007
7008 if (rebuild) {
7009 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7010 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7011
7012 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7013 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7014 return (spa_vdev_exit(spa, NULL, txg,
7015 ZFS_ERR_RESILVER_IN_PROGRESS));
7016 }
7017 } else {
7018 if (vdev_rebuild_active(rvd))
7019 return (spa_vdev_exit(spa, NULL, txg,
7020 ZFS_ERR_REBUILD_IN_PROGRESS));
7021 }
7022
7023 if (spa->spa_vdev_removal != NULL) {
7024 return (spa_vdev_exit(spa, NULL, txg,
7025 ZFS_ERR_DEVRM_IN_PROGRESS));
7026 }
7027
7028 if (oldvd == NULL)
7029 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7030
7031 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7032
7033 if (raidz) {
7034 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7035 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7036
7037 /*
7038 * Can't expand a raidz while prior expand is in progress.
7039 */
7040 if (spa->spa_raidz_expand != NULL) {
7041 return (spa_vdev_exit(spa, NULL, txg,
7042 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7043 }
7044 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7045 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7046 }
7047
7048 if (raidz)
7049 pvd = oldvd;
7050 else
7051 pvd = oldvd->vdev_parent;
7052
7053 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7054 VDEV_ALLOC_ATTACH) != 0)
7055 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7056
7057 if (newrootvd->vdev_children != 1)
7058 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7059
7060 newvd = newrootvd->vdev_child[0];
7061
7062 if (!newvd->vdev_ops->vdev_op_leaf)
7063 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7064
7065 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7066 return (spa_vdev_exit(spa, newrootvd, txg, error));
7067
7068 /*
7069 * log, dedup and special vdevs should not be replaced by spares.
7070 */
7071 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7072 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7073 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7074 }
7075
7076 /*
7077 * A dRAID spare can only replace a child of its parent dRAID vdev.
7078 */
7079 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7080 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7081 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7082 }
7083
7084 if (rebuild) {
7085 /*
7086 * For rebuilds, the top vdev must support reconstruction
7087 * using only space maps. This means the only allowable
7088 * vdevs types are the root vdev, a mirror, or dRAID.
7089 */
7090 tvd = pvd;
7091 if (pvd->vdev_top != NULL)
7092 tvd = pvd->vdev_top;
7093
7094 if (tvd->vdev_ops != &vdev_mirror_ops &&
7095 tvd->vdev_ops != &vdev_root_ops &&
7096 tvd->vdev_ops != &vdev_draid_ops) {
7097 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7098 }
7099 }
7100
7101 if (!replacing) {
7102 /*
7103 * For attach, the only allowable parent is a mirror or
7104 * the root vdev. A raidz vdev can be attached to, but
7105 * you cannot attach to a raidz child.
7106 */
7107 if (pvd->vdev_ops != &vdev_mirror_ops &&
7108 pvd->vdev_ops != &vdev_root_ops &&
7109 !raidz)
7110 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7111
7112 pvops = &vdev_mirror_ops;
7113 } else {
7114 /*
7115 * Active hot spares can only be replaced by inactive hot
7116 * spares.
7117 */
7118 if (pvd->vdev_ops == &vdev_spare_ops &&
7119 oldvd->vdev_isspare &&
7120 !spa_has_spare(spa, newvd->vdev_guid))
7121 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7122
7123 /*
7124 * If the source is a hot spare, and the parent isn't already a
7125 * spare, then we want to create a new hot spare. Otherwise, we
7126 * want to create a replacing vdev. The user is not allowed to
7127 * attach to a spared vdev child unless the 'isspare' state is
7128 * the same (spare replaces spare, non-spare replaces
7129 * non-spare).
7130 */
7131 if (pvd->vdev_ops == &vdev_replacing_ops &&
7132 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7133 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7134 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7135 newvd->vdev_isspare != oldvd->vdev_isspare) {
7136 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7137 }
7138
7139 if (newvd->vdev_isspare)
7140 pvops = &vdev_spare_ops;
7141 else
7142 pvops = &vdev_replacing_ops;
7143 }
7144
7145 /*
7146 * Make sure the new device is big enough.
7147 */
7148 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7149 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7150 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7151
7152 /*
7153 * The new device cannot have a higher alignment requirement
7154 * than the top-level vdev.
7155 */
7156 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7157 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7158
7159 /*
7160 * RAIDZ-expansion-specific checks.
7161 */
7162 if (raidz) {
7163 if (vdev_raidz_attach_check(newvd) != 0)
7164 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7165
7166 /*
7167 * Fail early if a child is not healthy or being replaced
7168 */
7169 for (int i = 0; i < oldvd->vdev_children; i++) {
7170 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7171 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7172 return (spa_vdev_exit(spa, newrootvd, txg,
7173 ENXIO));
7174 }
7175 /* Also fail if reserved boot area is in-use */
7176 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7177 != 0) {
7178 return (spa_vdev_exit(spa, newrootvd, txg,
7179 EADDRINUSE));
7180 }
7181 }
7182 }
7183
7184 if (raidz) {
7185 /*
7186 * Note: oldvdpath is freed by spa_strfree(), but
7187 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7188 * move it to a spa_strdup-ed string.
7189 */
7190 char *tmp = kmem_asprintf("raidz%u-%u",
7191 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7192 oldvdpath = spa_strdup(tmp);
7193 kmem_strfree(tmp);
7194 } else {
7195 oldvdpath = spa_strdup(oldvd->vdev_path);
7196 }
7197 newvdpath = spa_strdup(newvd->vdev_path);
7198
7199 /*
7200 * If this is an in-place replacement, update oldvd's path and devid
7201 * to make it distinguishable from newvd, and unopenable from now on.
7202 */
7203 if (strcmp(oldvdpath, newvdpath) == 0) {
7204 spa_strfree(oldvd->vdev_path);
7205 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7206 KM_SLEEP);
7207 (void) sprintf(oldvd->vdev_path, "%s/old",
7208 newvdpath);
7209 if (oldvd->vdev_devid != NULL) {
7210 spa_strfree(oldvd->vdev_devid);
7211 oldvd->vdev_devid = NULL;
7212 }
7213 spa_strfree(oldvdpath);
7214 oldvdpath = spa_strdup(oldvd->vdev_path);
7215 }
7216
7217 /*
7218 * If the parent is not a mirror, or if we're replacing, insert the new
7219 * mirror/replacing/spare vdev above oldvd.
7220 */
7221 if (!raidz && pvd->vdev_ops != pvops) {
7222 pvd = vdev_add_parent(oldvd, pvops);
7223 ASSERT(pvd->vdev_ops == pvops);
7224 ASSERT(oldvd->vdev_parent == pvd);
7225 }
7226
7227 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7228
7229 /*
7230 * Extract the new device from its root and add it to pvd.
7231 */
7232 vdev_remove_child(newrootvd, newvd);
7233 newvd->vdev_id = pvd->vdev_children;
7234 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7235 vdev_add_child(pvd, newvd);
7236
7237 /*
7238 * Reevaluate the parent vdev state.
7239 */
7240 vdev_propagate_state(pvd);
7241
7242 tvd = newvd->vdev_top;
7243 ASSERT(pvd->vdev_top == tvd);
7244 ASSERT(tvd->vdev_parent == rvd);
7245
7246 vdev_config_dirty(tvd);
7247
7248 /*
7249 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7250 * for any dmu_sync-ed blocks. It will propagate upward when
7251 * spa_vdev_exit() calls vdev_dtl_reassess().
7252 */
7253 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7254
7255 if (raidz) {
7256 /*
7257 * Wait for the youngest allocations and frees to sync,
7258 * and then wait for the deferral of those frees to finish.
7259 */
7260 spa_vdev_config_exit(spa, NULL,
7261 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7262
7263 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7264 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7265 vdev_autotrim_stop_wait(tvd);
7266
7267 dtl_max_txg = spa_vdev_config_enter(spa);
7268
7269 tvd->vdev_rz_expanding = B_TRUE;
7270
7271 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7272 vdev_config_dirty(tvd);
7273
7274 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7275 dtl_max_txg);
7276 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7277 newvd, tx);
7278 dmu_tx_commit(tx);
7279 } else {
7280 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7281 dtl_max_txg - TXG_INITIAL);
7282
7283 if (newvd->vdev_isspare) {
7284 spa_spare_activate(newvd);
7285 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7286 }
7287
7288 newvd_isspare = newvd->vdev_isspare;
7289
7290 /*
7291 * Mark newvd's DTL dirty in this txg.
7292 */
7293 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7294
7295 /*
7296 * Schedule the resilver or rebuild to restart in the future.
7297 * We do this to ensure that dmu_sync-ed blocks have been
7298 * stitched into the respective datasets.
7299 */
7300 if (rebuild) {
7301 newvd->vdev_rebuild_txg = txg;
7302
7303 vdev_rebuild(tvd);
7304 } else {
7305 newvd->vdev_resilver_txg = txg;
7306
7307 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7308 spa_feature_is_enabled(spa,
7309 SPA_FEATURE_RESILVER_DEFER)) {
7310 vdev_defer_resilver(newvd);
7311 } else {
7312 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7313 dtl_max_txg);
7314 }
7315 }
7316 }
7317
7318 if (spa->spa_bootfs)
7319 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7320
7321 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7322
7323 /*
7324 * Commit the config
7325 */
7326 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7327
7328 spa_history_log_internal(spa, "vdev attach", NULL,
7329 "%s vdev=%s %s vdev=%s",
7330 replacing && newvd_isspare ? "spare in" :
7331 replacing ? "replace" : "attach", newvdpath,
7332 replacing ? "for" : "to", oldvdpath);
7333
7334 spa_strfree(oldvdpath);
7335 spa_strfree(newvdpath);
7336
7337 return (0);
7338 }
7339
7340 /*
7341 * Detach a device from a mirror or replacing vdev.
7342 *
7343 * If 'replace_done' is specified, only detach if the parent
7344 * is a replacing or a spare vdev.
7345 */
7346 int
7347 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7348 {
7349 uint64_t txg;
7350 int error;
7351 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7352 vdev_t *vd, *pvd, *cvd, *tvd;
7353 boolean_t unspare = B_FALSE;
7354 uint64_t unspare_guid = 0;
7355 char *vdpath;
7356
7357 ASSERT(spa_writeable(spa));
7358
7359 txg = spa_vdev_detach_enter(spa, guid);
7360
7361 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7362
7363 /*
7364 * Besides being called directly from the userland through the
7365 * ioctl interface, spa_vdev_detach() can be potentially called
7366 * at the end of spa_vdev_resilver_done().
7367 *
7368 * In the regular case, when we have a checkpoint this shouldn't
7369 * happen as we never empty the DTLs of a vdev during the scrub
7370 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7371 * should never get here when we have a checkpoint.
7372 *
7373 * That said, even in a case when we checkpoint the pool exactly
7374 * as spa_vdev_resilver_done() calls this function everything
7375 * should be fine as the resilver will return right away.
7376 */
7377 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7378 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7379 error = (spa_has_checkpoint(spa)) ?
7380 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7381 return (spa_vdev_exit(spa, NULL, txg, error));
7382 }
7383
7384 if (vd == NULL)
7385 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7386
7387 if (!vd->vdev_ops->vdev_op_leaf)
7388 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7389
7390 pvd = vd->vdev_parent;
7391
7392 /*
7393 * If the parent/child relationship is not as expected, don't do it.
7394 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7395 * vdev that's replacing B with C. The user's intent in replacing
7396 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7397 * the replace by detaching C, the expected behavior is to end up
7398 * M(A,B). But suppose that right after deciding to detach C,
7399 * the replacement of B completes. We would have M(A,C), and then
7400 * ask to detach C, which would leave us with just A -- not what
7401 * the user wanted. To prevent this, we make sure that the
7402 * parent/child relationship hasn't changed -- in this example,
7403 * that C's parent is still the replacing vdev R.
7404 */
7405 if (pvd->vdev_guid != pguid && pguid != 0)
7406 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7407
7408 /*
7409 * Only 'replacing' or 'spare' vdevs can be replaced.
7410 */
7411 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7412 pvd->vdev_ops != &vdev_spare_ops)
7413 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7414
7415 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7416 spa_version(spa) >= SPA_VERSION_SPARES);
7417
7418 /*
7419 * Only mirror, replacing, and spare vdevs support detach.
7420 */
7421 if (pvd->vdev_ops != &vdev_replacing_ops &&
7422 pvd->vdev_ops != &vdev_mirror_ops &&
7423 pvd->vdev_ops != &vdev_spare_ops)
7424 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7425
7426 /*
7427 * If this device has the only valid copy of some data,
7428 * we cannot safely detach it.
7429 */
7430 if (vdev_dtl_required(vd))
7431 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7432
7433 ASSERT(pvd->vdev_children >= 2);
7434
7435 /*
7436 * If we are detaching the second disk from a replacing vdev, then
7437 * check to see if we changed the original vdev's path to have "/old"
7438 * at the end in spa_vdev_attach(). If so, undo that change now.
7439 */
7440 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7441 vd->vdev_path != NULL) {
7442 size_t len = strlen(vd->vdev_path);
7443
7444 for (int c = 0; c < pvd->vdev_children; c++) {
7445 cvd = pvd->vdev_child[c];
7446
7447 if (cvd == vd || cvd->vdev_path == NULL)
7448 continue;
7449
7450 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7451 strcmp(cvd->vdev_path + len, "/old") == 0) {
7452 spa_strfree(cvd->vdev_path);
7453 cvd->vdev_path = spa_strdup(vd->vdev_path);
7454 break;
7455 }
7456 }
7457 }
7458
7459 /*
7460 * If we are detaching the original disk from a normal spare, then it
7461 * implies that the spare should become a real disk, and be removed
7462 * from the active spare list for the pool. dRAID spares on the
7463 * other hand are coupled to the pool and thus should never be removed
7464 * from the spares list.
7465 */
7466 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7467 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7468
7469 if (last_cvd->vdev_isspare &&
7470 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7471 unspare = B_TRUE;
7472 }
7473 }
7474
7475 /*
7476 * Erase the disk labels so the disk can be used for other things.
7477 * This must be done after all other error cases are handled,
7478 * but before we disembowel vd (so we can still do I/O to it).
7479 * But if we can't do it, don't treat the error as fatal --
7480 * it may be that the unwritability of the disk is the reason
7481 * it's being detached!
7482 */
7483 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7484
7485 /*
7486 * Remove vd from its parent and compact the parent's children.
7487 */
7488 vdev_remove_child(pvd, vd);
7489 vdev_compact_children(pvd);
7490
7491 /*
7492 * Remember one of the remaining children so we can get tvd below.
7493 */
7494 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7495
7496 /*
7497 * If we need to remove the remaining child from the list of hot spares,
7498 * do it now, marking the vdev as no longer a spare in the process.
7499 * We must do this before vdev_remove_parent(), because that can
7500 * change the GUID if it creates a new toplevel GUID. For a similar
7501 * reason, we must remove the spare now, in the same txg as the detach;
7502 * otherwise someone could attach a new sibling, change the GUID, and
7503 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7504 */
7505 if (unspare) {
7506 ASSERT(cvd->vdev_isspare);
7507 spa_spare_remove(cvd);
7508 unspare_guid = cvd->vdev_guid;
7509 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7510 cvd->vdev_unspare = B_TRUE;
7511 }
7512
7513 /*
7514 * If the parent mirror/replacing vdev only has one child,
7515 * the parent is no longer needed. Remove it from the tree.
7516 */
7517 if (pvd->vdev_children == 1) {
7518 if (pvd->vdev_ops == &vdev_spare_ops)
7519 cvd->vdev_unspare = B_FALSE;
7520 vdev_remove_parent(cvd);
7521 }
7522
7523 /*
7524 * We don't set tvd until now because the parent we just removed
7525 * may have been the previous top-level vdev.
7526 */
7527 tvd = cvd->vdev_top;
7528 ASSERT(tvd->vdev_parent == rvd);
7529
7530 /*
7531 * Reevaluate the parent vdev state.
7532 */
7533 vdev_propagate_state(cvd);
7534
7535 /*
7536 * If the 'autoexpand' property is set on the pool then automatically
7537 * try to expand the size of the pool. For example if the device we
7538 * just detached was smaller than the others, it may be possible to
7539 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7540 * first so that we can obtain the updated sizes of the leaf vdevs.
7541 */
7542 if (spa->spa_autoexpand) {
7543 vdev_reopen(tvd);
7544 vdev_expand(tvd, txg);
7545 }
7546
7547 vdev_config_dirty(tvd);
7548
7549 /*
7550 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7551 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7552 * But first make sure we're not on any *other* txg's DTL list, to
7553 * prevent vd from being accessed after it's freed.
7554 */
7555 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7556 for (int t = 0; t < TXG_SIZE; t++)
7557 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7558 vd->vdev_detached = B_TRUE;
7559 vdev_dirty(tvd, VDD_DTL, vd, txg);
7560
7561 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7562 spa_notify_waiters(spa);
7563
7564 /* hang on to the spa before we release the lock */
7565 spa_open_ref(spa, FTAG);
7566
7567 error = spa_vdev_exit(spa, vd, txg, 0);
7568
7569 spa_history_log_internal(spa, "detach", NULL,
7570 "vdev=%s", vdpath);
7571 spa_strfree(vdpath);
7572
7573 /*
7574 * If this was the removal of the original device in a hot spare vdev,
7575 * then we want to go through and remove the device from the hot spare
7576 * list of every other pool.
7577 */
7578 if (unspare) {
7579 spa_t *altspa = NULL;
7580
7581 mutex_enter(&spa_namespace_lock);
7582 while ((altspa = spa_next(altspa)) != NULL) {
7583 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7584 altspa == spa)
7585 continue;
7586
7587 spa_open_ref(altspa, FTAG);
7588 mutex_exit(&spa_namespace_lock);
7589 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7590 mutex_enter(&spa_namespace_lock);
7591 spa_close(altspa, FTAG);
7592 }
7593 mutex_exit(&spa_namespace_lock);
7594
7595 /* search the rest of the vdevs for spares to remove */
7596 spa_vdev_resilver_done(spa);
7597 }
7598
7599 /* all done with the spa; OK to release */
7600 mutex_enter(&spa_namespace_lock);
7601 spa_close(spa, FTAG);
7602 mutex_exit(&spa_namespace_lock);
7603
7604 return (error);
7605 }
7606
7607 static int
7608 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7609 list_t *vd_list)
7610 {
7611 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7612
7613 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7614
7615 /* Look up vdev and ensure it's a leaf. */
7616 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7617 if (vd == NULL || vd->vdev_detached) {
7618 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7619 return (SET_ERROR(ENODEV));
7620 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7621 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7622 return (SET_ERROR(EINVAL));
7623 } else if (!vdev_writeable(vd)) {
7624 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7625 return (SET_ERROR(EROFS));
7626 }
7627 mutex_enter(&vd->vdev_initialize_lock);
7628 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7629
7630 /*
7631 * When we activate an initialize action we check to see
7632 * if the vdev_initialize_thread is NULL. We do this instead
7633 * of using the vdev_initialize_state since there might be
7634 * a previous initialization process which has completed but
7635 * the thread is not exited.
7636 */
7637 if (cmd_type == POOL_INITIALIZE_START &&
7638 (vd->vdev_initialize_thread != NULL ||
7639 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
7640 mutex_exit(&vd->vdev_initialize_lock);
7641 return (SET_ERROR(EBUSY));
7642 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7643 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7644 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7645 mutex_exit(&vd->vdev_initialize_lock);
7646 return (SET_ERROR(ESRCH));
7647 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7648 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7649 mutex_exit(&vd->vdev_initialize_lock);
7650 return (SET_ERROR(ESRCH));
7651 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7652 vd->vdev_initialize_thread != NULL) {
7653 mutex_exit(&vd->vdev_initialize_lock);
7654 return (SET_ERROR(EBUSY));
7655 }
7656
7657 switch (cmd_type) {
7658 case POOL_INITIALIZE_START:
7659 vdev_initialize(vd);
7660 break;
7661 case POOL_INITIALIZE_CANCEL:
7662 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7663 break;
7664 case POOL_INITIALIZE_SUSPEND:
7665 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7666 break;
7667 case POOL_INITIALIZE_UNINIT:
7668 vdev_uninitialize(vd);
7669 break;
7670 default:
7671 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7672 }
7673 mutex_exit(&vd->vdev_initialize_lock);
7674
7675 return (0);
7676 }
7677
7678 int
7679 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7680 nvlist_t *vdev_errlist)
7681 {
7682 int total_errors = 0;
7683 list_t vd_list;
7684
7685 list_create(&vd_list, sizeof (vdev_t),
7686 offsetof(vdev_t, vdev_initialize_node));
7687
7688 /*
7689 * We hold the namespace lock through the whole function
7690 * to prevent any changes to the pool while we're starting or
7691 * stopping initialization. The config and state locks are held so that
7692 * we can properly assess the vdev state before we commit to
7693 * the initializing operation.
7694 */
7695 mutex_enter(&spa_namespace_lock);
7696
7697 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7698 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7699 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7700
7701 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7702 &vd_list);
7703 if (error != 0) {
7704 char guid_as_str[MAXNAMELEN];
7705
7706 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7707 "%llu", (unsigned long long)vdev_guid);
7708 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7709 total_errors++;
7710 }
7711 }
7712
7713 /* Wait for all initialize threads to stop. */
7714 vdev_initialize_stop_wait(spa, &vd_list);
7715
7716 /* Sync out the initializing state */
7717 txg_wait_synced(spa->spa_dsl_pool, 0);
7718 mutex_exit(&spa_namespace_lock);
7719
7720 list_destroy(&vd_list);
7721
7722 return (total_errors);
7723 }
7724
7725 static int
7726 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7727 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7728 {
7729 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7730
7731 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7732
7733 /* Look up vdev and ensure it's a leaf. */
7734 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7735 if (vd == NULL || vd->vdev_detached) {
7736 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7737 return (SET_ERROR(ENODEV));
7738 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7739 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7740 return (SET_ERROR(EINVAL));
7741 } else if (!vdev_writeable(vd)) {
7742 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7743 return (SET_ERROR(EROFS));
7744 } else if (!vd->vdev_has_trim) {
7745 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7746 return (SET_ERROR(EOPNOTSUPP));
7747 } else if (secure && !vd->vdev_has_securetrim) {
7748 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7749 return (SET_ERROR(EOPNOTSUPP));
7750 }
7751 mutex_enter(&vd->vdev_trim_lock);
7752 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7753
7754 /*
7755 * When we activate a TRIM action we check to see if the
7756 * vdev_trim_thread is NULL. We do this instead of using the
7757 * vdev_trim_state since there might be a previous TRIM process
7758 * which has completed but the thread is not exited.
7759 */
7760 if (cmd_type == POOL_TRIM_START &&
7761 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
7762 vd->vdev_top->vdev_rz_expanding)) {
7763 mutex_exit(&vd->vdev_trim_lock);
7764 return (SET_ERROR(EBUSY));
7765 } else if (cmd_type == POOL_TRIM_CANCEL &&
7766 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7767 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7768 mutex_exit(&vd->vdev_trim_lock);
7769 return (SET_ERROR(ESRCH));
7770 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7771 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7772 mutex_exit(&vd->vdev_trim_lock);
7773 return (SET_ERROR(ESRCH));
7774 }
7775
7776 switch (cmd_type) {
7777 case POOL_TRIM_START:
7778 vdev_trim(vd, rate, partial, secure);
7779 break;
7780 case POOL_TRIM_CANCEL:
7781 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7782 break;
7783 case POOL_TRIM_SUSPEND:
7784 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7785 break;
7786 default:
7787 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7788 }
7789 mutex_exit(&vd->vdev_trim_lock);
7790
7791 return (0);
7792 }
7793
7794 /*
7795 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7796 * TRIM threads for each child vdev. These threads pass over all of the free
7797 * space in the vdev's metaslabs and issues TRIM commands for that space.
7798 */
7799 int
7800 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7801 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7802 {
7803 int total_errors = 0;
7804 list_t vd_list;
7805
7806 list_create(&vd_list, sizeof (vdev_t),
7807 offsetof(vdev_t, vdev_trim_node));
7808
7809 /*
7810 * We hold the namespace lock through the whole function
7811 * to prevent any changes to the pool while we're starting or
7812 * stopping TRIM. The config and state locks are held so that
7813 * we can properly assess the vdev state before we commit to
7814 * the TRIM operation.
7815 */
7816 mutex_enter(&spa_namespace_lock);
7817
7818 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7819 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7820 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7821
7822 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7823 rate, partial, secure, &vd_list);
7824 if (error != 0) {
7825 char guid_as_str[MAXNAMELEN];
7826
7827 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7828 "%llu", (unsigned long long)vdev_guid);
7829 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7830 total_errors++;
7831 }
7832 }
7833
7834 /* Wait for all TRIM threads to stop. */
7835 vdev_trim_stop_wait(spa, &vd_list);
7836
7837 /* Sync out the TRIM state */
7838 txg_wait_synced(spa->spa_dsl_pool, 0);
7839 mutex_exit(&spa_namespace_lock);
7840
7841 list_destroy(&vd_list);
7842
7843 return (total_errors);
7844 }
7845
7846 /*
7847 * Split a set of devices from their mirrors, and create a new pool from them.
7848 */
7849 int
7850 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7851 nvlist_t *props, boolean_t exp)
7852 {
7853 int error = 0;
7854 uint64_t txg, *glist;
7855 spa_t *newspa;
7856 uint_t c, children, lastlog;
7857 nvlist_t **child, *nvl, *tmp;
7858 dmu_tx_t *tx;
7859 const char *altroot = NULL;
7860 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7861 boolean_t activate_slog;
7862
7863 ASSERT(spa_writeable(spa));
7864
7865 txg = spa_vdev_enter(spa);
7866
7867 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7868 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7869 error = (spa_has_checkpoint(spa)) ?
7870 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7871 return (spa_vdev_exit(spa, NULL, txg, error));
7872 }
7873
7874 /* clear the log and flush everything up to now */
7875 activate_slog = spa_passivate_log(spa);
7876 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7877 error = spa_reset_logs(spa);
7878 txg = spa_vdev_config_enter(spa);
7879
7880 if (activate_slog)
7881 spa_activate_log(spa);
7882
7883 if (error != 0)
7884 return (spa_vdev_exit(spa, NULL, txg, error));
7885
7886 /* check new spa name before going any further */
7887 if (spa_lookup(newname) != NULL)
7888 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7889
7890 /*
7891 * scan through all the children to ensure they're all mirrors
7892 */
7893 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7894 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7895 &children) != 0)
7896 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7897
7898 /* first, check to ensure we've got the right child count */
7899 rvd = spa->spa_root_vdev;
7900 lastlog = 0;
7901 for (c = 0; c < rvd->vdev_children; c++) {
7902 vdev_t *vd = rvd->vdev_child[c];
7903
7904 /* don't count the holes & logs as children */
7905 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7906 !vdev_is_concrete(vd))) {
7907 if (lastlog == 0)
7908 lastlog = c;
7909 continue;
7910 }
7911
7912 lastlog = 0;
7913 }
7914 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7915 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7916
7917 /* next, ensure no spare or cache devices are part of the split */
7918 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7919 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7920 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7921
7922 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7923 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7924
7925 /* then, loop over each vdev and validate it */
7926 for (c = 0; c < children; c++) {
7927 uint64_t is_hole = 0;
7928
7929 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7930 &is_hole);
7931
7932 if (is_hole != 0) {
7933 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7934 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7935 continue;
7936 } else {
7937 error = SET_ERROR(EINVAL);
7938 break;
7939 }
7940 }
7941
7942 /* deal with indirect vdevs */
7943 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7944 &vdev_indirect_ops)
7945 continue;
7946
7947 /* which disk is going to be split? */
7948 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7949 &glist[c]) != 0) {
7950 error = SET_ERROR(EINVAL);
7951 break;
7952 }
7953
7954 /* look it up in the spa */
7955 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7956 if (vml[c] == NULL) {
7957 error = SET_ERROR(ENODEV);
7958 break;
7959 }
7960
7961 /* make sure there's nothing stopping the split */
7962 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7963 vml[c]->vdev_islog ||
7964 !vdev_is_concrete(vml[c]) ||
7965 vml[c]->vdev_isspare ||
7966 vml[c]->vdev_isl2cache ||
7967 !vdev_writeable(vml[c]) ||
7968 vml[c]->vdev_children != 0 ||
7969 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7970 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7971 error = SET_ERROR(EINVAL);
7972 break;
7973 }
7974
7975 if (vdev_dtl_required(vml[c]) ||
7976 vdev_resilver_needed(vml[c], NULL, NULL)) {
7977 error = SET_ERROR(EBUSY);
7978 break;
7979 }
7980
7981 /* we need certain info from the top level */
7982 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7983 vml[c]->vdev_top->vdev_ms_array);
7984 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7985 vml[c]->vdev_top->vdev_ms_shift);
7986 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7987 vml[c]->vdev_top->vdev_asize);
7988 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7989 vml[c]->vdev_top->vdev_ashift);
7990
7991 /* transfer per-vdev ZAPs */
7992 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7993 VERIFY0(nvlist_add_uint64(child[c],
7994 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7995
7996 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7997 VERIFY0(nvlist_add_uint64(child[c],
7998 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7999 vml[c]->vdev_parent->vdev_top_zap));
8000 }
8001
8002 if (error != 0) {
8003 kmem_free(vml, children * sizeof (vdev_t *));
8004 kmem_free(glist, children * sizeof (uint64_t));
8005 return (spa_vdev_exit(spa, NULL, txg, error));
8006 }
8007
8008 /* stop writers from using the disks */
8009 for (c = 0; c < children; c++) {
8010 if (vml[c] != NULL)
8011 vml[c]->vdev_offline = B_TRUE;
8012 }
8013 vdev_reopen(spa->spa_root_vdev);
8014
8015 /*
8016 * Temporarily record the splitting vdevs in the spa config. This
8017 * will disappear once the config is regenerated.
8018 */
8019 nvl = fnvlist_alloc();
8020 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8021 kmem_free(glist, children * sizeof (uint64_t));
8022
8023 mutex_enter(&spa->spa_props_lock);
8024 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8025 mutex_exit(&spa->spa_props_lock);
8026 spa->spa_config_splitting = nvl;
8027 vdev_config_dirty(spa->spa_root_vdev);
8028
8029 /* configure and create the new pool */
8030 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8031 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8032 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8033 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8034 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8035 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8036 spa_generate_guid(NULL));
8037 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8038 (void) nvlist_lookup_string(props,
8039 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8040
8041 /* add the new pool to the namespace */
8042 newspa = spa_add(newname, config, altroot);
8043 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8044 newspa->spa_config_txg = spa->spa_config_txg;
8045 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8046
8047 /* release the spa config lock, retaining the namespace lock */
8048 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8049
8050 if (zio_injection_enabled)
8051 zio_handle_panic_injection(spa, FTAG, 1);
8052
8053 spa_activate(newspa, spa_mode_global);
8054 spa_async_suspend(newspa);
8055
8056 /*
8057 * Temporarily stop the initializing and TRIM activity. We set the
8058 * state to ACTIVE so that we know to resume initializing or TRIM
8059 * once the split has completed.
8060 */
8061 list_t vd_initialize_list;
8062 list_create(&vd_initialize_list, sizeof (vdev_t),
8063 offsetof(vdev_t, vdev_initialize_node));
8064
8065 list_t vd_trim_list;
8066 list_create(&vd_trim_list, sizeof (vdev_t),
8067 offsetof(vdev_t, vdev_trim_node));
8068
8069 for (c = 0; c < children; c++) {
8070 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8071 mutex_enter(&vml[c]->vdev_initialize_lock);
8072 vdev_initialize_stop(vml[c],
8073 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8074 mutex_exit(&vml[c]->vdev_initialize_lock);
8075
8076 mutex_enter(&vml[c]->vdev_trim_lock);
8077 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8078 mutex_exit(&vml[c]->vdev_trim_lock);
8079 }
8080 }
8081
8082 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8083 vdev_trim_stop_wait(spa, &vd_trim_list);
8084
8085 list_destroy(&vd_initialize_list);
8086 list_destroy(&vd_trim_list);
8087
8088 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8089 newspa->spa_is_splitting = B_TRUE;
8090
8091 /* create the new pool from the disks of the original pool */
8092 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8093 if (error)
8094 goto out;
8095
8096 /* if that worked, generate a real config for the new pool */
8097 if (newspa->spa_root_vdev != NULL) {
8098 newspa->spa_config_splitting = fnvlist_alloc();
8099 fnvlist_add_uint64(newspa->spa_config_splitting,
8100 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8101 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8102 B_TRUE));
8103 }
8104
8105 /* set the props */
8106 if (props != NULL) {
8107 spa_configfile_set(newspa, props, B_FALSE);
8108 error = spa_prop_set(newspa, props);
8109 if (error)
8110 goto out;
8111 }
8112
8113 /* flush everything */
8114 txg = spa_vdev_config_enter(newspa);
8115 vdev_config_dirty(newspa->spa_root_vdev);
8116 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8117
8118 if (zio_injection_enabled)
8119 zio_handle_panic_injection(spa, FTAG, 2);
8120
8121 spa_async_resume(newspa);
8122
8123 /* finally, update the original pool's config */
8124 txg = spa_vdev_config_enter(spa);
8125 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8126 error = dmu_tx_assign(tx, TXG_WAIT);
8127 if (error != 0)
8128 dmu_tx_abort(tx);
8129 for (c = 0; c < children; c++) {
8130 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8131 vdev_t *tvd = vml[c]->vdev_top;
8132
8133 /*
8134 * Need to be sure the detachable VDEV is not
8135 * on any *other* txg's DTL list to prevent it
8136 * from being accessed after it's freed.
8137 */
8138 for (int t = 0; t < TXG_SIZE; t++) {
8139 (void) txg_list_remove_this(
8140 &tvd->vdev_dtl_list, vml[c], t);
8141 }
8142
8143 vdev_split(vml[c]);
8144 if (error == 0)
8145 spa_history_log_internal(spa, "detach", tx,
8146 "vdev=%s", vml[c]->vdev_path);
8147
8148 vdev_free(vml[c]);
8149 }
8150 }
8151 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8152 vdev_config_dirty(spa->spa_root_vdev);
8153 spa->spa_config_splitting = NULL;
8154 nvlist_free(nvl);
8155 if (error == 0)
8156 dmu_tx_commit(tx);
8157 (void) spa_vdev_exit(spa, NULL, txg, 0);
8158
8159 if (zio_injection_enabled)
8160 zio_handle_panic_injection(spa, FTAG, 3);
8161
8162 /* split is complete; log a history record */
8163 spa_history_log_internal(newspa, "split", NULL,
8164 "from pool %s", spa_name(spa));
8165
8166 newspa->spa_is_splitting = B_FALSE;
8167 kmem_free(vml, children * sizeof (vdev_t *));
8168
8169 /* if we're not going to mount the filesystems in userland, export */
8170 if (exp)
8171 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8172 B_FALSE, B_FALSE);
8173
8174 return (error);
8175
8176 out:
8177 spa_unload(newspa);
8178 spa_deactivate(newspa);
8179 spa_remove(newspa);
8180
8181 txg = spa_vdev_config_enter(spa);
8182
8183 /* re-online all offlined disks */
8184 for (c = 0; c < children; c++) {
8185 if (vml[c] != NULL)
8186 vml[c]->vdev_offline = B_FALSE;
8187 }
8188
8189 /* restart initializing or trimming disks as necessary */
8190 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8191 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8192 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8193
8194 vdev_reopen(spa->spa_root_vdev);
8195
8196 nvlist_free(spa->spa_config_splitting);
8197 spa->spa_config_splitting = NULL;
8198 (void) spa_vdev_exit(spa, NULL, txg, error);
8199
8200 kmem_free(vml, children * sizeof (vdev_t *));
8201 return (error);
8202 }
8203
8204 /*
8205 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8206 * currently spared, so we can detach it.
8207 */
8208 static vdev_t *
8209 spa_vdev_resilver_done_hunt(vdev_t *vd)
8210 {
8211 vdev_t *newvd, *oldvd;
8212
8213 for (int c = 0; c < vd->vdev_children; c++) {
8214 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8215 if (oldvd != NULL)
8216 return (oldvd);
8217 }
8218
8219 /*
8220 * Check for a completed replacement. We always consider the first
8221 * vdev in the list to be the oldest vdev, and the last one to be
8222 * the newest (see spa_vdev_attach() for how that works). In
8223 * the case where the newest vdev is faulted, we will not automatically
8224 * remove it after a resilver completes. This is OK as it will require
8225 * user intervention to determine which disk the admin wishes to keep.
8226 */
8227 if (vd->vdev_ops == &vdev_replacing_ops) {
8228 ASSERT(vd->vdev_children > 1);
8229
8230 newvd = vd->vdev_child[vd->vdev_children - 1];
8231 oldvd = vd->vdev_child[0];
8232
8233 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8234 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8235 !vdev_dtl_required(oldvd))
8236 return (oldvd);
8237 }
8238
8239 /*
8240 * Check for a completed resilver with the 'unspare' flag set.
8241 * Also potentially update faulted state.
8242 */
8243 if (vd->vdev_ops == &vdev_spare_ops) {
8244 vdev_t *first = vd->vdev_child[0];
8245 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8246
8247 if (last->vdev_unspare) {
8248 oldvd = first;
8249 newvd = last;
8250 } else if (first->vdev_unspare) {
8251 oldvd = last;
8252 newvd = first;
8253 } else {
8254 oldvd = NULL;
8255 }
8256
8257 if (oldvd != NULL &&
8258 vdev_dtl_empty(newvd, DTL_MISSING) &&
8259 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8260 !vdev_dtl_required(oldvd))
8261 return (oldvd);
8262
8263 vdev_propagate_state(vd);
8264
8265 /*
8266 * If there are more than two spares attached to a disk,
8267 * and those spares are not required, then we want to
8268 * attempt to free them up now so that they can be used
8269 * by other pools. Once we're back down to a single
8270 * disk+spare, we stop removing them.
8271 */
8272 if (vd->vdev_children > 2) {
8273 newvd = vd->vdev_child[1];
8274
8275 if (newvd->vdev_isspare && last->vdev_isspare &&
8276 vdev_dtl_empty(last, DTL_MISSING) &&
8277 vdev_dtl_empty(last, DTL_OUTAGE) &&
8278 !vdev_dtl_required(newvd))
8279 return (newvd);
8280 }
8281 }
8282
8283 return (NULL);
8284 }
8285
8286 static void
8287 spa_vdev_resilver_done(spa_t *spa)
8288 {
8289 vdev_t *vd, *pvd, *ppvd;
8290 uint64_t guid, sguid, pguid, ppguid;
8291
8292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8293
8294 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8295 pvd = vd->vdev_parent;
8296 ppvd = pvd->vdev_parent;
8297 guid = vd->vdev_guid;
8298 pguid = pvd->vdev_guid;
8299 ppguid = ppvd->vdev_guid;
8300 sguid = 0;
8301 /*
8302 * If we have just finished replacing a hot spared device, then
8303 * we need to detach the parent's first child (the original hot
8304 * spare) as well.
8305 */
8306 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8307 ppvd->vdev_children == 2) {
8308 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8309 sguid = ppvd->vdev_child[1]->vdev_guid;
8310 }
8311 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8312
8313 spa_config_exit(spa, SCL_ALL, FTAG);
8314 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8315 return;
8316 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8317 return;
8318 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8319 }
8320
8321 spa_config_exit(spa, SCL_ALL, FTAG);
8322
8323 /*
8324 * If a detach was not performed above replace waiters will not have
8325 * been notified. In which case we must do so now.
8326 */
8327 spa_notify_waiters(spa);
8328 }
8329
8330 /*
8331 * Update the stored path or FRU for this vdev.
8332 */
8333 static int
8334 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8335 boolean_t ispath)
8336 {
8337 vdev_t *vd;
8338 boolean_t sync = B_FALSE;
8339
8340 ASSERT(spa_writeable(spa));
8341
8342 spa_vdev_state_enter(spa, SCL_ALL);
8343
8344 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8345 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8346
8347 if (!vd->vdev_ops->vdev_op_leaf)
8348 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8349
8350 if (ispath) {
8351 if (strcmp(value, vd->vdev_path) != 0) {
8352 spa_strfree(vd->vdev_path);
8353 vd->vdev_path = spa_strdup(value);
8354 sync = B_TRUE;
8355 }
8356 } else {
8357 if (vd->vdev_fru == NULL) {
8358 vd->vdev_fru = spa_strdup(value);
8359 sync = B_TRUE;
8360 } else if (strcmp(value, vd->vdev_fru) != 0) {
8361 spa_strfree(vd->vdev_fru);
8362 vd->vdev_fru = spa_strdup(value);
8363 sync = B_TRUE;
8364 }
8365 }
8366
8367 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8368 }
8369
8370 int
8371 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8372 {
8373 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8374 }
8375
8376 int
8377 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8378 {
8379 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8380 }
8381
8382 /*
8383 * ==========================================================================
8384 * SPA Scanning
8385 * ==========================================================================
8386 */
8387 int
8388 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8389 {
8390 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8391
8392 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8393 return (SET_ERROR(EBUSY));
8394
8395 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8396 }
8397
8398 int
8399 spa_scan_stop(spa_t *spa)
8400 {
8401 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8402 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8403 return (SET_ERROR(EBUSY));
8404
8405 return (dsl_scan_cancel(spa->spa_dsl_pool));
8406 }
8407
8408 int
8409 spa_scan(spa_t *spa, pool_scan_func_t func)
8410 {
8411 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8412
8413 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8414 return (SET_ERROR(ENOTSUP));
8415
8416 if (func == POOL_SCAN_RESILVER &&
8417 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8418 return (SET_ERROR(ENOTSUP));
8419
8420 /*
8421 * If a resilver was requested, but there is no DTL on a
8422 * writeable leaf device, we have nothing to do.
8423 */
8424 if (func == POOL_SCAN_RESILVER &&
8425 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8426 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8427 return (0);
8428 }
8429
8430 if (func == POOL_SCAN_ERRORSCRUB &&
8431 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8432 return (SET_ERROR(ENOTSUP));
8433
8434 return (dsl_scan(spa->spa_dsl_pool, func));
8435 }
8436
8437 /*
8438 * ==========================================================================
8439 * SPA async task processing
8440 * ==========================================================================
8441 */
8442
8443 static void
8444 spa_async_remove(spa_t *spa, vdev_t *vd)
8445 {
8446 if (vd->vdev_remove_wanted) {
8447 vd->vdev_remove_wanted = B_FALSE;
8448 vd->vdev_delayed_close = B_FALSE;
8449 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8450
8451 /*
8452 * We want to clear the stats, but we don't want to do a full
8453 * vdev_clear() as that will cause us to throw away
8454 * degraded/faulted state as well as attempt to reopen the
8455 * device, all of which is a waste.
8456 */
8457 vd->vdev_stat.vs_read_errors = 0;
8458 vd->vdev_stat.vs_write_errors = 0;
8459 vd->vdev_stat.vs_checksum_errors = 0;
8460
8461 vdev_state_dirty(vd->vdev_top);
8462
8463 /* Tell userspace that the vdev is gone. */
8464 zfs_post_remove(spa, vd);
8465 }
8466
8467 for (int c = 0; c < vd->vdev_children; c++)
8468 spa_async_remove(spa, vd->vdev_child[c]);
8469 }
8470
8471 static void
8472 spa_async_probe(spa_t *spa, vdev_t *vd)
8473 {
8474 if (vd->vdev_probe_wanted) {
8475 vd->vdev_probe_wanted = B_FALSE;
8476 vdev_reopen(vd); /* vdev_open() does the actual probe */
8477 }
8478
8479 for (int c = 0; c < vd->vdev_children; c++)
8480 spa_async_probe(spa, vd->vdev_child[c]);
8481 }
8482
8483 static void
8484 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8485 {
8486 if (!spa->spa_autoexpand)
8487 return;
8488
8489 for (int c = 0; c < vd->vdev_children; c++) {
8490 vdev_t *cvd = vd->vdev_child[c];
8491 spa_async_autoexpand(spa, cvd);
8492 }
8493
8494 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8495 return;
8496
8497 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8498 }
8499
8500 static __attribute__((noreturn)) void
8501 spa_async_thread(void *arg)
8502 {
8503 spa_t *spa = (spa_t *)arg;
8504 dsl_pool_t *dp = spa->spa_dsl_pool;
8505 int tasks;
8506
8507 ASSERT(spa->spa_sync_on);
8508
8509 mutex_enter(&spa->spa_async_lock);
8510 tasks = spa->spa_async_tasks;
8511 spa->spa_async_tasks = 0;
8512 mutex_exit(&spa->spa_async_lock);
8513
8514 /*
8515 * See if the config needs to be updated.
8516 */
8517 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8518 uint64_t old_space, new_space;
8519
8520 mutex_enter(&spa_namespace_lock);
8521 old_space = metaslab_class_get_space(spa_normal_class(spa));
8522 old_space += metaslab_class_get_space(spa_special_class(spa));
8523 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8524 old_space += metaslab_class_get_space(
8525 spa_embedded_log_class(spa));
8526
8527 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8528
8529 new_space = metaslab_class_get_space(spa_normal_class(spa));
8530 new_space += metaslab_class_get_space(spa_special_class(spa));
8531 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8532 new_space += metaslab_class_get_space(
8533 spa_embedded_log_class(spa));
8534 mutex_exit(&spa_namespace_lock);
8535
8536 /*
8537 * If the pool grew as a result of the config update,
8538 * then log an internal history event.
8539 */
8540 if (new_space != old_space) {
8541 spa_history_log_internal(spa, "vdev online", NULL,
8542 "pool '%s' size: %llu(+%llu)",
8543 spa_name(spa), (u_longlong_t)new_space,
8544 (u_longlong_t)(new_space - old_space));
8545 }
8546 }
8547
8548 /*
8549 * See if any devices need to be marked REMOVED.
8550 */
8551 if (tasks & SPA_ASYNC_REMOVE) {
8552 spa_vdev_state_enter(spa, SCL_NONE);
8553 spa_async_remove(spa, spa->spa_root_vdev);
8554 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8555 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8556 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8557 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8558 (void) spa_vdev_state_exit(spa, NULL, 0);
8559 }
8560
8561 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8562 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8563 spa_async_autoexpand(spa, spa->spa_root_vdev);
8564 spa_config_exit(spa, SCL_CONFIG, FTAG);
8565 }
8566
8567 /*
8568 * See if any devices need to be probed.
8569 */
8570 if (tasks & SPA_ASYNC_PROBE) {
8571 spa_vdev_state_enter(spa, SCL_NONE);
8572 spa_async_probe(spa, spa->spa_root_vdev);
8573 (void) spa_vdev_state_exit(spa, NULL, 0);
8574 }
8575
8576 /*
8577 * If any devices are done replacing, detach them.
8578 */
8579 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8580 tasks & SPA_ASYNC_REBUILD_DONE ||
8581 tasks & SPA_ASYNC_DETACH_SPARE) {
8582 spa_vdev_resilver_done(spa);
8583 }
8584
8585 /*
8586 * Kick off a resilver.
8587 */
8588 if (tasks & SPA_ASYNC_RESILVER &&
8589 !vdev_rebuild_active(spa->spa_root_vdev) &&
8590 (!dsl_scan_resilvering(dp) ||
8591 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8592 dsl_scan_restart_resilver(dp, 0);
8593
8594 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8595 mutex_enter(&spa_namespace_lock);
8596 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8597 vdev_initialize_restart(spa->spa_root_vdev);
8598 spa_config_exit(spa, SCL_CONFIG, FTAG);
8599 mutex_exit(&spa_namespace_lock);
8600 }
8601
8602 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8603 mutex_enter(&spa_namespace_lock);
8604 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8605 vdev_trim_restart(spa->spa_root_vdev);
8606 spa_config_exit(spa, SCL_CONFIG, FTAG);
8607 mutex_exit(&spa_namespace_lock);
8608 }
8609
8610 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8611 mutex_enter(&spa_namespace_lock);
8612 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8613 vdev_autotrim_restart(spa);
8614 spa_config_exit(spa, SCL_CONFIG, FTAG);
8615 mutex_exit(&spa_namespace_lock);
8616 }
8617
8618 /*
8619 * Kick off L2 cache whole device TRIM.
8620 */
8621 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8622 mutex_enter(&spa_namespace_lock);
8623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8624 vdev_trim_l2arc(spa);
8625 spa_config_exit(spa, SCL_CONFIG, FTAG);
8626 mutex_exit(&spa_namespace_lock);
8627 }
8628
8629 /*
8630 * Kick off L2 cache rebuilding.
8631 */
8632 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8633 mutex_enter(&spa_namespace_lock);
8634 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8635 l2arc_spa_rebuild_start(spa);
8636 spa_config_exit(spa, SCL_L2ARC, FTAG);
8637 mutex_exit(&spa_namespace_lock);
8638 }
8639
8640 /*
8641 * Let the world know that we're done.
8642 */
8643 mutex_enter(&spa->spa_async_lock);
8644 spa->spa_async_thread = NULL;
8645 cv_broadcast(&spa->spa_async_cv);
8646 mutex_exit(&spa->spa_async_lock);
8647 thread_exit();
8648 }
8649
8650 void
8651 spa_async_suspend(spa_t *spa)
8652 {
8653 mutex_enter(&spa->spa_async_lock);
8654 spa->spa_async_suspended++;
8655 while (spa->spa_async_thread != NULL)
8656 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8657 mutex_exit(&spa->spa_async_lock);
8658
8659 spa_vdev_remove_suspend(spa);
8660
8661 zthr_t *condense_thread = spa->spa_condense_zthr;
8662 if (condense_thread != NULL)
8663 zthr_cancel(condense_thread);
8664
8665 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8666 if (raidz_expand_thread != NULL)
8667 zthr_cancel(raidz_expand_thread);
8668
8669 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8670 if (discard_thread != NULL)
8671 zthr_cancel(discard_thread);
8672
8673 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8674 if (ll_delete_thread != NULL)
8675 zthr_cancel(ll_delete_thread);
8676
8677 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8678 if (ll_condense_thread != NULL)
8679 zthr_cancel(ll_condense_thread);
8680 }
8681
8682 void
8683 spa_async_resume(spa_t *spa)
8684 {
8685 mutex_enter(&spa->spa_async_lock);
8686 ASSERT(spa->spa_async_suspended != 0);
8687 spa->spa_async_suspended--;
8688 mutex_exit(&spa->spa_async_lock);
8689 spa_restart_removal(spa);
8690
8691 zthr_t *condense_thread = spa->spa_condense_zthr;
8692 if (condense_thread != NULL)
8693 zthr_resume(condense_thread);
8694
8695 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8696 if (raidz_expand_thread != NULL)
8697 zthr_resume(raidz_expand_thread);
8698
8699 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8700 if (discard_thread != NULL)
8701 zthr_resume(discard_thread);
8702
8703 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8704 if (ll_delete_thread != NULL)
8705 zthr_resume(ll_delete_thread);
8706
8707 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8708 if (ll_condense_thread != NULL)
8709 zthr_resume(ll_condense_thread);
8710 }
8711
8712 static boolean_t
8713 spa_async_tasks_pending(spa_t *spa)
8714 {
8715 uint_t non_config_tasks;
8716 uint_t config_task;
8717 boolean_t config_task_suspended;
8718
8719 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8720 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8721 if (spa->spa_ccw_fail_time == 0) {
8722 config_task_suspended = B_FALSE;
8723 } else {
8724 config_task_suspended =
8725 (gethrtime() - spa->spa_ccw_fail_time) <
8726 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8727 }
8728
8729 return (non_config_tasks || (config_task && !config_task_suspended));
8730 }
8731
8732 static void
8733 spa_async_dispatch(spa_t *spa)
8734 {
8735 mutex_enter(&spa->spa_async_lock);
8736 if (spa_async_tasks_pending(spa) &&
8737 !spa->spa_async_suspended &&
8738 spa->spa_async_thread == NULL)
8739 spa->spa_async_thread = thread_create(NULL, 0,
8740 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8741 mutex_exit(&spa->spa_async_lock);
8742 }
8743
8744 void
8745 spa_async_request(spa_t *spa, int task)
8746 {
8747 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8748 mutex_enter(&spa->spa_async_lock);
8749 spa->spa_async_tasks |= task;
8750 mutex_exit(&spa->spa_async_lock);
8751 }
8752
8753 int
8754 spa_async_tasks(spa_t *spa)
8755 {
8756 return (spa->spa_async_tasks);
8757 }
8758
8759 /*
8760 * ==========================================================================
8761 * SPA syncing routines
8762 * ==========================================================================
8763 */
8764
8765
8766 static int
8767 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8768 dmu_tx_t *tx)
8769 {
8770 bpobj_t *bpo = arg;
8771 bpobj_enqueue(bpo, bp, bp_freed, tx);
8772 return (0);
8773 }
8774
8775 int
8776 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8777 {
8778 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8779 }
8780
8781 int
8782 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8783 {
8784 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8785 }
8786
8787 static int
8788 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8789 {
8790 zio_t *pio = arg;
8791
8792 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8793 pio->io_flags));
8794 return (0);
8795 }
8796
8797 static int
8798 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8799 dmu_tx_t *tx)
8800 {
8801 ASSERT(!bp_freed);
8802 return (spa_free_sync_cb(arg, bp, tx));
8803 }
8804
8805 /*
8806 * Note: this simple function is not inlined to make it easier to dtrace the
8807 * amount of time spent syncing frees.
8808 */
8809 static void
8810 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8811 {
8812 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8813 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8814 VERIFY(zio_wait(zio) == 0);
8815 }
8816
8817 /*
8818 * Note: this simple function is not inlined to make it easier to dtrace the
8819 * amount of time spent syncing deferred frees.
8820 */
8821 static void
8822 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8823 {
8824 if (spa_sync_pass(spa) != 1)
8825 return;
8826
8827 /*
8828 * Note:
8829 * If the log space map feature is active, we stop deferring
8830 * frees to the next TXG and therefore running this function
8831 * would be considered a no-op as spa_deferred_bpobj should
8832 * not have any entries.
8833 *
8834 * That said we run this function anyway (instead of returning
8835 * immediately) for the edge-case scenario where we just
8836 * activated the log space map feature in this TXG but we have
8837 * deferred frees from the previous TXG.
8838 */
8839 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8840 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8841 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8842 VERIFY0(zio_wait(zio));
8843 }
8844
8845 static void
8846 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8847 {
8848 char *packed = NULL;
8849 size_t bufsize;
8850 size_t nvsize = 0;
8851 dmu_buf_t *db;
8852
8853 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8854
8855 /*
8856 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8857 * information. This avoids the dmu_buf_will_dirty() path and
8858 * saves us a pre-read to get data we don't actually care about.
8859 */
8860 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8861 packed = vmem_alloc(bufsize, KM_SLEEP);
8862
8863 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8864 KM_SLEEP) == 0);
8865 memset(packed + nvsize, 0, bufsize - nvsize);
8866
8867 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8868
8869 vmem_free(packed, bufsize);
8870
8871 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8872 dmu_buf_will_dirty(db, tx);
8873 *(uint64_t *)db->db_data = nvsize;
8874 dmu_buf_rele(db, FTAG);
8875 }
8876
8877 static void
8878 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8879 const char *config, const char *entry)
8880 {
8881 nvlist_t *nvroot;
8882 nvlist_t **list;
8883 int i;
8884
8885 if (!sav->sav_sync)
8886 return;
8887
8888 /*
8889 * Update the MOS nvlist describing the list of available devices.
8890 * spa_validate_aux() will have already made sure this nvlist is
8891 * valid and the vdevs are labeled appropriately.
8892 */
8893 if (sav->sav_object == 0) {
8894 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8895 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8896 sizeof (uint64_t), tx);
8897 VERIFY(zap_update(spa->spa_meta_objset,
8898 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8899 &sav->sav_object, tx) == 0);
8900 }
8901
8902 nvroot = fnvlist_alloc();
8903 if (sav->sav_count == 0) {
8904 fnvlist_add_nvlist_array(nvroot, config,
8905 (const nvlist_t * const *)NULL, 0);
8906 } else {
8907 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8908 for (i = 0; i < sav->sav_count; i++)
8909 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8910 B_FALSE, VDEV_CONFIG_L2CACHE);
8911 fnvlist_add_nvlist_array(nvroot, config,
8912 (const nvlist_t * const *)list, sav->sav_count);
8913 for (i = 0; i < sav->sav_count; i++)
8914 nvlist_free(list[i]);
8915 kmem_free(list, sav->sav_count * sizeof (void *));
8916 }
8917
8918 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8919 nvlist_free(nvroot);
8920
8921 sav->sav_sync = B_FALSE;
8922 }
8923
8924 /*
8925 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8926 * The all-vdev ZAP must be empty.
8927 */
8928 static void
8929 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8930 {
8931 spa_t *spa = vd->vdev_spa;
8932
8933 if (vd->vdev_root_zap != 0 &&
8934 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8935 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8936 vd->vdev_root_zap, tx));
8937 }
8938 if (vd->vdev_top_zap != 0) {
8939 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8940 vd->vdev_top_zap, tx));
8941 }
8942 if (vd->vdev_leaf_zap != 0) {
8943 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8944 vd->vdev_leaf_zap, tx));
8945 }
8946 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8947 spa_avz_build(vd->vdev_child[i], avz, tx);
8948 }
8949 }
8950
8951 static void
8952 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8953 {
8954 nvlist_t *config;
8955
8956 /*
8957 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8958 * its config may not be dirty but we still need to build per-vdev ZAPs.
8959 * Similarly, if the pool is being assembled (e.g. after a split), we
8960 * need to rebuild the AVZ although the config may not be dirty.
8961 */
8962 if (list_is_empty(&spa->spa_config_dirty_list) &&
8963 spa->spa_avz_action == AVZ_ACTION_NONE)
8964 return;
8965
8966 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8967
8968 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8969 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8970 spa->spa_all_vdev_zaps != 0);
8971
8972 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8973 /* Make and build the new AVZ */
8974 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8975 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8976 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8977
8978 /* Diff old AVZ with new one */
8979 zap_cursor_t zc;
8980 zap_attribute_t za;
8981
8982 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8983 spa->spa_all_vdev_zaps);
8984 zap_cursor_retrieve(&zc, &za) == 0;
8985 zap_cursor_advance(&zc)) {
8986 uint64_t vdzap = za.za_first_integer;
8987 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8988 vdzap) == ENOENT) {
8989 /*
8990 * ZAP is listed in old AVZ but not in new one;
8991 * destroy it
8992 */
8993 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8994 tx));
8995 }
8996 }
8997
8998 zap_cursor_fini(&zc);
8999
9000 /* Destroy the old AVZ */
9001 VERIFY0(zap_destroy(spa->spa_meta_objset,
9002 spa->spa_all_vdev_zaps, tx));
9003
9004 /* Replace the old AVZ in the dir obj with the new one */
9005 VERIFY0(zap_update(spa->spa_meta_objset,
9006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9007 sizeof (new_avz), 1, &new_avz, tx));
9008
9009 spa->spa_all_vdev_zaps = new_avz;
9010 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9011 zap_cursor_t zc;
9012 zap_attribute_t za;
9013
9014 /* Walk through the AVZ and destroy all listed ZAPs */
9015 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9016 spa->spa_all_vdev_zaps);
9017 zap_cursor_retrieve(&zc, &za) == 0;
9018 zap_cursor_advance(&zc)) {
9019 uint64_t zap = za.za_first_integer;
9020 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9021 }
9022
9023 zap_cursor_fini(&zc);
9024
9025 /* Destroy and unlink the AVZ itself */
9026 VERIFY0(zap_destroy(spa->spa_meta_objset,
9027 spa->spa_all_vdev_zaps, tx));
9028 VERIFY0(zap_remove(spa->spa_meta_objset,
9029 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9030 spa->spa_all_vdev_zaps = 0;
9031 }
9032
9033 if (spa->spa_all_vdev_zaps == 0) {
9034 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9035 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9036 DMU_POOL_VDEV_ZAP_MAP, tx);
9037 }
9038 spa->spa_avz_action = AVZ_ACTION_NONE;
9039
9040 /* Create ZAPs for vdevs that don't have them. */
9041 vdev_construct_zaps(spa->spa_root_vdev, tx);
9042
9043 config = spa_config_generate(spa, spa->spa_root_vdev,
9044 dmu_tx_get_txg(tx), B_FALSE);
9045
9046 /*
9047 * If we're upgrading the spa version then make sure that
9048 * the config object gets updated with the correct version.
9049 */
9050 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9051 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9052 spa->spa_uberblock.ub_version);
9053
9054 spa_config_exit(spa, SCL_STATE, FTAG);
9055
9056 nvlist_free(spa->spa_config_syncing);
9057 spa->spa_config_syncing = config;
9058
9059 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9060 }
9061
9062 static void
9063 spa_sync_version(void *arg, dmu_tx_t *tx)
9064 {
9065 uint64_t *versionp = arg;
9066 uint64_t version = *versionp;
9067 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9068
9069 /*
9070 * Setting the version is special cased when first creating the pool.
9071 */
9072 ASSERT(tx->tx_txg != TXG_INITIAL);
9073
9074 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9075 ASSERT(version >= spa_version(spa));
9076
9077 spa->spa_uberblock.ub_version = version;
9078 vdev_config_dirty(spa->spa_root_vdev);
9079 spa_history_log_internal(spa, "set", tx, "version=%lld",
9080 (longlong_t)version);
9081 }
9082
9083 /*
9084 * Set zpool properties.
9085 */
9086 static void
9087 spa_sync_props(void *arg, dmu_tx_t *tx)
9088 {
9089 nvlist_t *nvp = arg;
9090 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9091 objset_t *mos = spa->spa_meta_objset;
9092 nvpair_t *elem = NULL;
9093
9094 mutex_enter(&spa->spa_props_lock);
9095
9096 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9097 uint64_t intval;
9098 const char *strval, *fname;
9099 zpool_prop_t prop;
9100 const char *propname;
9101 const char *elemname = nvpair_name(elem);
9102 zprop_type_t proptype;
9103 spa_feature_t fid;
9104
9105 switch (prop = zpool_name_to_prop(elemname)) {
9106 case ZPOOL_PROP_VERSION:
9107 intval = fnvpair_value_uint64(elem);
9108 /*
9109 * The version is synced separately before other
9110 * properties and should be correct by now.
9111 */
9112 ASSERT3U(spa_version(spa), >=, intval);
9113 break;
9114
9115 case ZPOOL_PROP_ALTROOT:
9116 /*
9117 * 'altroot' is a non-persistent property. It should
9118 * have been set temporarily at creation or import time.
9119 */
9120 ASSERT(spa->spa_root != NULL);
9121 break;
9122
9123 case ZPOOL_PROP_READONLY:
9124 case ZPOOL_PROP_CACHEFILE:
9125 /*
9126 * 'readonly' and 'cachefile' are also non-persistent
9127 * properties.
9128 */
9129 break;
9130 case ZPOOL_PROP_COMMENT:
9131 strval = fnvpair_value_string(elem);
9132 if (spa->spa_comment != NULL)
9133 spa_strfree(spa->spa_comment);
9134 spa->spa_comment = spa_strdup(strval);
9135 /*
9136 * We need to dirty the configuration on all the vdevs
9137 * so that their labels get updated. We also need to
9138 * update the cache file to keep it in sync with the
9139 * MOS version. It's unnecessary to do this for pool
9140 * creation since the vdev's configuration has already
9141 * been dirtied.
9142 */
9143 if (tx->tx_txg != TXG_INITIAL) {
9144 vdev_config_dirty(spa->spa_root_vdev);
9145 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9146 }
9147 spa_history_log_internal(spa, "set", tx,
9148 "%s=%s", elemname, strval);
9149 break;
9150 case ZPOOL_PROP_COMPATIBILITY:
9151 strval = fnvpair_value_string(elem);
9152 if (spa->spa_compatibility != NULL)
9153 spa_strfree(spa->spa_compatibility);
9154 spa->spa_compatibility = spa_strdup(strval);
9155 /*
9156 * Dirty the configuration on vdevs as above.
9157 */
9158 if (tx->tx_txg != TXG_INITIAL) {
9159 vdev_config_dirty(spa->spa_root_vdev);
9160 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9161 }
9162
9163 spa_history_log_internal(spa, "set", tx,
9164 "%s=%s", nvpair_name(elem), strval);
9165 break;
9166
9167 case ZPOOL_PROP_INVAL:
9168 if (zpool_prop_feature(elemname)) {
9169 fname = strchr(elemname, '@') + 1;
9170 VERIFY0(zfeature_lookup_name(fname, &fid));
9171
9172 spa_feature_enable(spa, fid, tx);
9173 spa_history_log_internal(spa, "set", tx,
9174 "%s=enabled", elemname);
9175 break;
9176 } else if (!zfs_prop_user(elemname)) {
9177 ASSERT(zpool_prop_feature(elemname));
9178 break;
9179 }
9180 zfs_fallthrough;
9181 default:
9182 /*
9183 * Set pool property values in the poolprops mos object.
9184 */
9185 if (spa->spa_pool_props_object == 0) {
9186 spa->spa_pool_props_object =
9187 zap_create_link(mos, DMU_OT_POOL_PROPS,
9188 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9189 tx);
9190 }
9191
9192 /* normalize the property name */
9193 if (prop == ZPOOL_PROP_INVAL) {
9194 propname = elemname;
9195 proptype = PROP_TYPE_STRING;
9196 } else {
9197 propname = zpool_prop_to_name(prop);
9198 proptype = zpool_prop_get_type(prop);
9199 }
9200
9201 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9202 ASSERT(proptype == PROP_TYPE_STRING);
9203 strval = fnvpair_value_string(elem);
9204 VERIFY0(zap_update(mos,
9205 spa->spa_pool_props_object, propname,
9206 1, strlen(strval) + 1, strval, tx));
9207 spa_history_log_internal(spa, "set", tx,
9208 "%s=%s", elemname, strval);
9209 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9210 intval = fnvpair_value_uint64(elem);
9211
9212 if (proptype == PROP_TYPE_INDEX) {
9213 const char *unused;
9214 VERIFY0(zpool_prop_index_to_string(
9215 prop, intval, &unused));
9216 }
9217 VERIFY0(zap_update(mos,
9218 spa->spa_pool_props_object, propname,
9219 8, 1, &intval, tx));
9220 spa_history_log_internal(spa, "set", tx,
9221 "%s=%lld", elemname,
9222 (longlong_t)intval);
9223
9224 switch (prop) {
9225 case ZPOOL_PROP_DELEGATION:
9226 spa->spa_delegation = intval;
9227 break;
9228 case ZPOOL_PROP_BOOTFS:
9229 spa->spa_bootfs = intval;
9230 break;
9231 case ZPOOL_PROP_FAILUREMODE:
9232 spa->spa_failmode = intval;
9233 break;
9234 case ZPOOL_PROP_AUTOTRIM:
9235 spa->spa_autotrim = intval;
9236 spa_async_request(spa,
9237 SPA_ASYNC_AUTOTRIM_RESTART);
9238 break;
9239 case ZPOOL_PROP_AUTOEXPAND:
9240 spa->spa_autoexpand = intval;
9241 if (tx->tx_txg != TXG_INITIAL)
9242 spa_async_request(spa,
9243 SPA_ASYNC_AUTOEXPAND);
9244 break;
9245 case ZPOOL_PROP_MULTIHOST:
9246 spa->spa_multihost = intval;
9247 break;
9248 default:
9249 break;
9250 }
9251 } else {
9252 ASSERT(0); /* not allowed */
9253 }
9254 }
9255
9256 }
9257
9258 mutex_exit(&spa->spa_props_lock);
9259 }
9260
9261 /*
9262 * Perform one-time upgrade on-disk changes. spa_version() does not
9263 * reflect the new version this txg, so there must be no changes this
9264 * txg to anything that the upgrade code depends on after it executes.
9265 * Therefore this must be called after dsl_pool_sync() does the sync
9266 * tasks.
9267 */
9268 static void
9269 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9270 {
9271 if (spa_sync_pass(spa) != 1)
9272 return;
9273
9274 dsl_pool_t *dp = spa->spa_dsl_pool;
9275 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9276
9277 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9278 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9279 dsl_pool_create_origin(dp, tx);
9280
9281 /* Keeping the origin open increases spa_minref */
9282 spa->spa_minref += 3;
9283 }
9284
9285 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9286 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9287 dsl_pool_upgrade_clones(dp, tx);
9288 }
9289
9290 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9291 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9292 dsl_pool_upgrade_dir_clones(dp, tx);
9293
9294 /* Keeping the freedir open increases spa_minref */
9295 spa->spa_minref += 3;
9296 }
9297
9298 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9299 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9300 spa_feature_create_zap_objects(spa, tx);
9301 }
9302
9303 /*
9304 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9305 * when possibility to use lz4 compression for metadata was added
9306 * Old pools that have this feature enabled must be upgraded to have
9307 * this feature active
9308 */
9309 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9310 boolean_t lz4_en = spa_feature_is_enabled(spa,
9311 SPA_FEATURE_LZ4_COMPRESS);
9312 boolean_t lz4_ac = spa_feature_is_active(spa,
9313 SPA_FEATURE_LZ4_COMPRESS);
9314
9315 if (lz4_en && !lz4_ac)
9316 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9317 }
9318
9319 /*
9320 * If we haven't written the salt, do so now. Note that the
9321 * feature may not be activated yet, but that's fine since
9322 * the presence of this ZAP entry is backwards compatible.
9323 */
9324 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9325 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9326 VERIFY0(zap_add(spa->spa_meta_objset,
9327 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9328 sizeof (spa->spa_cksum_salt.zcs_bytes),
9329 spa->spa_cksum_salt.zcs_bytes, tx));
9330 }
9331
9332 rrw_exit(&dp->dp_config_rwlock, FTAG);
9333 }
9334
9335 static void
9336 vdev_indirect_state_sync_verify(vdev_t *vd)
9337 {
9338 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9339 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9340
9341 if (vd->vdev_ops == &vdev_indirect_ops) {
9342 ASSERT(vim != NULL);
9343 ASSERT(vib != NULL);
9344 }
9345
9346 uint64_t obsolete_sm_object = 0;
9347 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9348 if (obsolete_sm_object != 0) {
9349 ASSERT(vd->vdev_obsolete_sm != NULL);
9350 ASSERT(vd->vdev_removing ||
9351 vd->vdev_ops == &vdev_indirect_ops);
9352 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9353 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9354 ASSERT3U(obsolete_sm_object, ==,
9355 space_map_object(vd->vdev_obsolete_sm));
9356 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9357 space_map_allocated(vd->vdev_obsolete_sm));
9358 }
9359 ASSERT(vd->vdev_obsolete_segments != NULL);
9360
9361 /*
9362 * Since frees / remaps to an indirect vdev can only
9363 * happen in syncing context, the obsolete segments
9364 * tree must be empty when we start syncing.
9365 */
9366 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9367 }
9368
9369 /*
9370 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9371 * async write queue depth in case it changed. The max queue depth will
9372 * not change in the middle of syncing out this txg.
9373 */
9374 static void
9375 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9376 {
9377 ASSERT(spa_writeable(spa));
9378
9379 vdev_t *rvd = spa->spa_root_vdev;
9380 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9381 zfs_vdev_queue_depth_pct / 100;
9382 metaslab_class_t *normal = spa_normal_class(spa);
9383 metaslab_class_t *special = spa_special_class(spa);
9384 metaslab_class_t *dedup = spa_dedup_class(spa);
9385
9386 uint64_t slots_per_allocator = 0;
9387 for (int c = 0; c < rvd->vdev_children; c++) {
9388 vdev_t *tvd = rvd->vdev_child[c];
9389
9390 metaslab_group_t *mg = tvd->vdev_mg;
9391 if (mg == NULL || !metaslab_group_initialized(mg))
9392 continue;
9393
9394 metaslab_class_t *mc = mg->mg_class;
9395 if (mc != normal && mc != special && mc != dedup)
9396 continue;
9397
9398 /*
9399 * It is safe to do a lock-free check here because only async
9400 * allocations look at mg_max_alloc_queue_depth, and async
9401 * allocations all happen from spa_sync().
9402 */
9403 for (int i = 0; i < mg->mg_allocators; i++) {
9404 ASSERT0(zfs_refcount_count(
9405 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9406 }
9407 mg->mg_max_alloc_queue_depth = max_queue_depth;
9408
9409 for (int i = 0; i < mg->mg_allocators; i++) {
9410 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9411 zfs_vdev_def_queue_depth;
9412 }
9413 slots_per_allocator += zfs_vdev_def_queue_depth;
9414 }
9415
9416 for (int i = 0; i < spa->spa_alloc_count; i++) {
9417 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9418 mca_alloc_slots));
9419 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9420 mca_alloc_slots));
9421 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9422 mca_alloc_slots));
9423 normal->mc_allocator[i].mca_alloc_max_slots =
9424 slots_per_allocator;
9425 special->mc_allocator[i].mca_alloc_max_slots =
9426 slots_per_allocator;
9427 dedup->mc_allocator[i].mca_alloc_max_slots =
9428 slots_per_allocator;
9429 }
9430 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9431 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9432 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9433 }
9434
9435 static void
9436 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9437 {
9438 ASSERT(spa_writeable(spa));
9439
9440 vdev_t *rvd = spa->spa_root_vdev;
9441 for (int c = 0; c < rvd->vdev_children; c++) {
9442 vdev_t *vd = rvd->vdev_child[c];
9443 vdev_indirect_state_sync_verify(vd);
9444
9445 if (vdev_indirect_should_condense(vd)) {
9446 spa_condense_indirect_start_sync(vd, tx);
9447 break;
9448 }
9449 }
9450 }
9451
9452 static void
9453 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9454 {
9455 objset_t *mos = spa->spa_meta_objset;
9456 dsl_pool_t *dp = spa->spa_dsl_pool;
9457 uint64_t txg = tx->tx_txg;
9458 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9459
9460 do {
9461 int pass = ++spa->spa_sync_pass;
9462
9463 spa_sync_config_object(spa, tx);
9464 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9465 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9466 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9467 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9468 spa_errlog_sync(spa, txg);
9469 dsl_pool_sync(dp, txg);
9470
9471 if (pass < zfs_sync_pass_deferred_free ||
9472 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9473 /*
9474 * If the log space map feature is active we don't
9475 * care about deferred frees and the deferred bpobj
9476 * as the log space map should effectively have the
9477 * same results (i.e. appending only to one object).
9478 */
9479 spa_sync_frees(spa, free_bpl, tx);
9480 } else {
9481 /*
9482 * We can not defer frees in pass 1, because
9483 * we sync the deferred frees later in pass 1.
9484 */
9485 ASSERT3U(pass, >, 1);
9486 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9487 &spa->spa_deferred_bpobj, tx);
9488 }
9489
9490 brt_sync(spa, txg);
9491 ddt_sync(spa, txg);
9492 dsl_scan_sync(dp, tx);
9493 dsl_errorscrub_sync(dp, tx);
9494 svr_sync(spa, tx);
9495 spa_sync_upgrades(spa, tx);
9496
9497 spa_flush_metaslabs(spa, tx);
9498
9499 vdev_t *vd = NULL;
9500 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9501 != NULL)
9502 vdev_sync(vd, txg);
9503
9504 if (pass == 1) {
9505 /*
9506 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9507 * the config. If that happens, this txg should not
9508 * be a no-op. So we must sync the config to the MOS
9509 * before checking for no-op.
9510 *
9511 * Note that when the config is dirty, it will
9512 * be written to the MOS (i.e. the MOS will be
9513 * dirtied) every time we call spa_sync_config_object()
9514 * in this txg. Therefore we can't call this after
9515 * dsl_pool_sync() every pass, because it would
9516 * prevent us from converging, since we'd dirty
9517 * the MOS every pass.
9518 *
9519 * Sync tasks can only be processed in pass 1, so
9520 * there's no need to do this in later passes.
9521 */
9522 spa_sync_config_object(spa, tx);
9523 }
9524
9525 /*
9526 * Note: We need to check if the MOS is dirty because we could
9527 * have marked the MOS dirty without updating the uberblock
9528 * (e.g. if we have sync tasks but no dirty user data). We need
9529 * to check the uberblock's rootbp because it is updated if we
9530 * have synced out dirty data (though in this case the MOS will
9531 * most likely also be dirty due to second order effects, we
9532 * don't want to rely on that here).
9533 */
9534 if (pass == 1 &&
9535 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9536 !dmu_objset_is_dirty(mos, txg)) {
9537 /*
9538 * Nothing changed on the first pass, therefore this
9539 * TXG is a no-op. Avoid syncing deferred frees, so
9540 * that we can keep this TXG as a no-op.
9541 */
9542 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9543 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9544 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9545 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9546 break;
9547 }
9548
9549 spa_sync_deferred_frees(spa, tx);
9550 } while (dmu_objset_is_dirty(mos, txg));
9551 }
9552
9553 /*
9554 * Rewrite the vdev configuration (which includes the uberblock) to
9555 * commit the transaction group.
9556 *
9557 * If there are no dirty vdevs, we sync the uberblock to a few random
9558 * top-level vdevs that are known to be visible in the config cache
9559 * (see spa_vdev_add() for a complete description). If there *are* dirty
9560 * vdevs, sync the uberblock to all vdevs.
9561 */
9562 static void
9563 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9564 {
9565 vdev_t *rvd = spa->spa_root_vdev;
9566 uint64_t txg = tx->tx_txg;
9567
9568 for (;;) {
9569 int error = 0;
9570
9571 /*
9572 * We hold SCL_STATE to prevent vdev open/close/etc.
9573 * while we're attempting to write the vdev labels.
9574 */
9575 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9576
9577 if (list_is_empty(&spa->spa_config_dirty_list)) {
9578 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9579 int svdcount = 0;
9580 int children = rvd->vdev_children;
9581 int c0 = random_in_range(children);
9582
9583 for (int c = 0; c < children; c++) {
9584 vdev_t *vd =
9585 rvd->vdev_child[(c0 + c) % children];
9586
9587 /* Stop when revisiting the first vdev */
9588 if (c > 0 && svd[0] == vd)
9589 break;
9590
9591 if (vd->vdev_ms_array == 0 ||
9592 vd->vdev_islog ||
9593 !vdev_is_concrete(vd))
9594 continue;
9595
9596 svd[svdcount++] = vd;
9597 if (svdcount == SPA_SYNC_MIN_VDEVS)
9598 break;
9599 }
9600 error = vdev_config_sync(svd, svdcount, txg);
9601 } else {
9602 error = vdev_config_sync(rvd->vdev_child,
9603 rvd->vdev_children, txg);
9604 }
9605
9606 if (error == 0)
9607 spa->spa_last_synced_guid = rvd->vdev_guid;
9608
9609 spa_config_exit(spa, SCL_STATE, FTAG);
9610
9611 if (error == 0)
9612 break;
9613 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9614 zio_resume_wait(spa);
9615 }
9616 }
9617
9618 /*
9619 * Sync the specified transaction group. New blocks may be dirtied as
9620 * part of the process, so we iterate until it converges.
9621 */
9622 void
9623 spa_sync(spa_t *spa, uint64_t txg)
9624 {
9625 vdev_t *vd = NULL;
9626
9627 VERIFY(spa_writeable(spa));
9628
9629 /*
9630 * Wait for i/os issued in open context that need to complete
9631 * before this txg syncs.
9632 */
9633 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9634 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9635 ZIO_FLAG_CANFAIL);
9636
9637 /*
9638 * Now that there can be no more cloning in this transaction group,
9639 * but we are still before issuing frees, we can process pending BRT
9640 * updates.
9641 */
9642 brt_pending_apply(spa, txg);
9643
9644 /*
9645 * Lock out configuration changes.
9646 */
9647 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9648
9649 spa->spa_syncing_txg = txg;
9650 spa->spa_sync_pass = 0;
9651
9652 for (int i = 0; i < spa->spa_alloc_count; i++) {
9653 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9654 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9655 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9656 }
9657
9658 /*
9659 * If there are any pending vdev state changes, convert them
9660 * into config changes that go out with this transaction group.
9661 */
9662 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9663 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9664 /* Avoid holding the write lock unless actually necessary */
9665 if (vd->vdev_aux == NULL) {
9666 vdev_state_clean(vd);
9667 vdev_config_dirty(vd);
9668 continue;
9669 }
9670 /*
9671 * We need the write lock here because, for aux vdevs,
9672 * calling vdev_config_dirty() modifies sav_config.
9673 * This is ugly and will become unnecessary when we
9674 * eliminate the aux vdev wart by integrating all vdevs
9675 * into the root vdev tree.
9676 */
9677 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9678 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9679 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9680 vdev_state_clean(vd);
9681 vdev_config_dirty(vd);
9682 }
9683 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9684 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9685 }
9686 spa_config_exit(spa, SCL_STATE, FTAG);
9687
9688 dsl_pool_t *dp = spa->spa_dsl_pool;
9689 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9690
9691 spa->spa_sync_starttime = gethrtime();
9692 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9693 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9694 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9695 NSEC_TO_TICK(spa->spa_deadman_synctime));
9696
9697 /*
9698 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9699 * set spa_deflate if we have no raid-z vdevs.
9700 */
9701 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9702 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9703 vdev_t *rvd = spa->spa_root_vdev;
9704
9705 int i;
9706 for (i = 0; i < rvd->vdev_children; i++) {
9707 vd = rvd->vdev_child[i];
9708 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9709 break;
9710 }
9711 if (i == rvd->vdev_children) {
9712 spa->spa_deflate = TRUE;
9713 VERIFY0(zap_add(spa->spa_meta_objset,
9714 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9715 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9716 }
9717 }
9718
9719 spa_sync_adjust_vdev_max_queue_depth(spa);
9720
9721 spa_sync_condense_indirect(spa, tx);
9722
9723 spa_sync_iterate_to_convergence(spa, tx);
9724
9725 #ifdef ZFS_DEBUG
9726 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9727 /*
9728 * Make sure that the number of ZAPs for all the vdevs matches
9729 * the number of ZAPs in the per-vdev ZAP list. This only gets
9730 * called if the config is dirty; otherwise there may be
9731 * outstanding AVZ operations that weren't completed in
9732 * spa_sync_config_object.
9733 */
9734 uint64_t all_vdev_zap_entry_count;
9735 ASSERT0(zap_count(spa->spa_meta_objset,
9736 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9737 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9738 all_vdev_zap_entry_count);
9739 }
9740 #endif
9741
9742 if (spa->spa_vdev_removal != NULL) {
9743 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9744 }
9745
9746 spa_sync_rewrite_vdev_config(spa, tx);
9747 dmu_tx_commit(tx);
9748
9749 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9750 spa->spa_deadman_tqid = 0;
9751
9752 /*
9753 * Clear the dirty config list.
9754 */
9755 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9756 vdev_config_clean(vd);
9757
9758 /*
9759 * Now that the new config has synced transactionally,
9760 * let it become visible to the config cache.
9761 */
9762 if (spa->spa_config_syncing != NULL) {
9763 spa_config_set(spa, spa->spa_config_syncing);
9764 spa->spa_config_txg = txg;
9765 spa->spa_config_syncing = NULL;
9766 }
9767
9768 dsl_pool_sync_done(dp, txg);
9769
9770 for (int i = 0; i < spa->spa_alloc_count; i++) {
9771 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9772 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9773 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9774 }
9775
9776 /*
9777 * Update usable space statistics.
9778 */
9779 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9780 != NULL)
9781 vdev_sync_done(vd, txg);
9782
9783 metaslab_class_evict_old(spa->spa_normal_class, txg);
9784 metaslab_class_evict_old(spa->spa_log_class, txg);
9785
9786 spa_sync_close_syncing_log_sm(spa);
9787
9788 spa_update_dspace(spa);
9789
9790 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9791 vdev_autotrim_kick(spa);
9792
9793 /*
9794 * It had better be the case that we didn't dirty anything
9795 * since vdev_config_sync().
9796 */
9797 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9798 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9799 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9800
9801 while (zfs_pause_spa_sync)
9802 delay(1);
9803
9804 spa->spa_sync_pass = 0;
9805
9806 /*
9807 * Update the last synced uberblock here. We want to do this at
9808 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9809 * will be guaranteed that all the processing associated with
9810 * that txg has been completed.
9811 */
9812 spa->spa_ubsync = spa->spa_uberblock;
9813 spa_config_exit(spa, SCL_CONFIG, FTAG);
9814
9815 spa_handle_ignored_writes(spa);
9816
9817 /*
9818 * If any async tasks have been requested, kick them off.
9819 */
9820 spa_async_dispatch(spa);
9821 }
9822
9823 /*
9824 * Sync all pools. We don't want to hold the namespace lock across these
9825 * operations, so we take a reference on the spa_t and drop the lock during the
9826 * sync.
9827 */
9828 void
9829 spa_sync_allpools(void)
9830 {
9831 spa_t *spa = NULL;
9832 mutex_enter(&spa_namespace_lock);
9833 while ((spa = spa_next(spa)) != NULL) {
9834 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9835 !spa_writeable(spa) || spa_suspended(spa))
9836 continue;
9837 spa_open_ref(spa, FTAG);
9838 mutex_exit(&spa_namespace_lock);
9839 txg_wait_synced(spa_get_dsl(spa), 0);
9840 mutex_enter(&spa_namespace_lock);
9841 spa_close(spa, FTAG);
9842 }
9843 mutex_exit(&spa_namespace_lock);
9844 }
9845
9846 taskq_t *
9847 spa_sync_tq_create(spa_t *spa, const char *name)
9848 {
9849 kthread_t **kthreads;
9850
9851 ASSERT(spa->spa_sync_tq == NULL);
9852 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
9853
9854 /*
9855 * - do not allow more allocators than cpus.
9856 * - there may be more cpus than allocators.
9857 * - do not allow more sync taskq threads than allocators or cpus.
9858 */
9859 int nthreads = spa->spa_alloc_count;
9860 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
9861 nthreads, KM_SLEEP);
9862
9863 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
9864 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
9865 VERIFY(spa->spa_sync_tq != NULL);
9866 VERIFY(kthreads != NULL);
9867
9868 spa_taskqs_t *tqs =
9869 &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE];
9870
9871 spa_syncthread_info_t *ti = spa->spa_syncthreads;
9872 for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) {
9873 ti->sti_thread = kthreads[i];
9874 if (w == tqs->stqs_count) {
9875 w = 0;
9876 }
9877 ti->sti_wr_iss_tq = tqs->stqs_taskq[w];
9878 }
9879
9880 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
9881 return (spa->spa_sync_tq);
9882 }
9883
9884 void
9885 spa_sync_tq_destroy(spa_t *spa)
9886 {
9887 ASSERT(spa->spa_sync_tq != NULL);
9888
9889 taskq_wait(spa->spa_sync_tq);
9890 taskq_destroy(spa->spa_sync_tq);
9891 kmem_free(spa->spa_syncthreads,
9892 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
9893 spa->spa_sync_tq = NULL;
9894 }
9895
9896 void
9897 spa_select_allocator(zio_t *zio)
9898 {
9899 zbookmark_phys_t *bm = &zio->io_bookmark;
9900 spa_t *spa = zio->io_spa;
9901
9902 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
9903
9904 /*
9905 * A gang block (for example) may have inherited its parent's
9906 * allocator, in which case there is nothing further to do here.
9907 */
9908 if (ZIO_HAS_ALLOCATOR(zio))
9909 return;
9910
9911 ASSERT(spa != NULL);
9912 ASSERT(bm != NULL);
9913
9914 /*
9915 * First try to use an allocator assigned to the syncthread, and set
9916 * the corresponding write issue taskq for the allocator.
9917 * Note, we must have an open pool to do this.
9918 */
9919 if (spa->spa_sync_tq != NULL) {
9920 spa_syncthread_info_t *ti = spa->spa_syncthreads;
9921 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
9922 if (ti->sti_thread == curthread) {
9923 zio->io_allocator = i;
9924 zio->io_wr_iss_tq = ti->sti_wr_iss_tq;
9925 return;
9926 }
9927 }
9928 }
9929
9930 /*
9931 * We want to try to use as many allocators as possible to help improve
9932 * performance, but we also want logically adjacent IOs to be physically
9933 * adjacent to improve sequential read performance. We chunk each object
9934 * into 2^20 block regions, and then hash based on the objset, object,
9935 * level, and region to accomplish both of these goals.
9936 */
9937 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
9938 bm->zb_blkid >> 20);
9939
9940 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
9941 zio->io_wr_iss_tq = NULL;
9942 }
9943
9944 /*
9945 * ==========================================================================
9946 * Miscellaneous routines
9947 * ==========================================================================
9948 */
9949
9950 /*
9951 * Remove all pools in the system.
9952 */
9953 void
9954 spa_evict_all(void)
9955 {
9956 spa_t *spa;
9957
9958 /*
9959 * Remove all cached state. All pools should be closed now,
9960 * so every spa in the AVL tree should be unreferenced.
9961 */
9962 mutex_enter(&spa_namespace_lock);
9963 while ((spa = spa_next(NULL)) != NULL) {
9964 /*
9965 * Stop async tasks. The async thread may need to detach
9966 * a device that's been replaced, which requires grabbing
9967 * spa_namespace_lock, so we must drop it here.
9968 */
9969 spa_open_ref(spa, FTAG);
9970 mutex_exit(&spa_namespace_lock);
9971 spa_async_suspend(spa);
9972 mutex_enter(&spa_namespace_lock);
9973 spa_close(spa, FTAG);
9974
9975 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9976 spa_unload(spa);
9977 spa_deactivate(spa);
9978 }
9979 spa_remove(spa);
9980 }
9981 mutex_exit(&spa_namespace_lock);
9982 }
9983
9984 vdev_t *
9985 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9986 {
9987 vdev_t *vd;
9988 int i;
9989
9990 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9991 return (vd);
9992
9993 if (aux) {
9994 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9995 vd = spa->spa_l2cache.sav_vdevs[i];
9996 if (vd->vdev_guid == guid)
9997 return (vd);
9998 }
9999
10000 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10001 vd = spa->spa_spares.sav_vdevs[i];
10002 if (vd->vdev_guid == guid)
10003 return (vd);
10004 }
10005 }
10006
10007 return (NULL);
10008 }
10009
10010 void
10011 spa_upgrade(spa_t *spa, uint64_t version)
10012 {
10013 ASSERT(spa_writeable(spa));
10014
10015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10016
10017 /*
10018 * This should only be called for a non-faulted pool, and since a
10019 * future version would result in an unopenable pool, this shouldn't be
10020 * possible.
10021 */
10022 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10023 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10024
10025 spa->spa_uberblock.ub_version = version;
10026 vdev_config_dirty(spa->spa_root_vdev);
10027
10028 spa_config_exit(spa, SCL_ALL, FTAG);
10029
10030 txg_wait_synced(spa_get_dsl(spa), 0);
10031 }
10032
10033 static boolean_t
10034 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10035 {
10036 (void) spa;
10037 int i;
10038 uint64_t vdev_guid;
10039
10040 for (i = 0; i < sav->sav_count; i++)
10041 if (sav->sav_vdevs[i]->vdev_guid == guid)
10042 return (B_TRUE);
10043
10044 for (i = 0; i < sav->sav_npending; i++) {
10045 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10046 &vdev_guid) == 0 && vdev_guid == guid)
10047 return (B_TRUE);
10048 }
10049
10050 return (B_FALSE);
10051 }
10052
10053 boolean_t
10054 spa_has_l2cache(spa_t *spa, uint64_t guid)
10055 {
10056 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10057 }
10058
10059 boolean_t
10060 spa_has_spare(spa_t *spa, uint64_t guid)
10061 {
10062 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10063 }
10064
10065 /*
10066 * Check if a pool has an active shared spare device.
10067 * Note: reference count of an active spare is 2, as a spare and as a replace
10068 */
10069 static boolean_t
10070 spa_has_active_shared_spare(spa_t *spa)
10071 {
10072 int i, refcnt;
10073 uint64_t pool;
10074 spa_aux_vdev_t *sav = &spa->spa_spares;
10075
10076 for (i = 0; i < sav->sav_count; i++) {
10077 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10078 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10079 refcnt > 2)
10080 return (B_TRUE);
10081 }
10082
10083 return (B_FALSE);
10084 }
10085
10086 uint64_t
10087 spa_total_metaslabs(spa_t *spa)
10088 {
10089 vdev_t *rvd = spa->spa_root_vdev;
10090
10091 uint64_t m = 0;
10092 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10093 vdev_t *vd = rvd->vdev_child[c];
10094 if (!vdev_is_concrete(vd))
10095 continue;
10096 m += vd->vdev_ms_count;
10097 }
10098 return (m);
10099 }
10100
10101 /*
10102 * Notify any waiting threads that some activity has switched from being in-
10103 * progress to not-in-progress so that the thread can wake up and determine
10104 * whether it is finished waiting.
10105 */
10106 void
10107 spa_notify_waiters(spa_t *spa)
10108 {
10109 /*
10110 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10111 * happening between the waiting thread's check and cv_wait.
10112 */
10113 mutex_enter(&spa->spa_activities_lock);
10114 cv_broadcast(&spa->spa_activities_cv);
10115 mutex_exit(&spa->spa_activities_lock);
10116 }
10117
10118 /*
10119 * Notify any waiting threads that the pool is exporting, and then block until
10120 * they are finished using the spa_t.
10121 */
10122 void
10123 spa_wake_waiters(spa_t *spa)
10124 {
10125 mutex_enter(&spa->spa_activities_lock);
10126 spa->spa_waiters_cancel = B_TRUE;
10127 cv_broadcast(&spa->spa_activities_cv);
10128 while (spa->spa_waiters != 0)
10129 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10130 spa->spa_waiters_cancel = B_FALSE;
10131 mutex_exit(&spa->spa_activities_lock);
10132 }
10133
10134 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10135 static boolean_t
10136 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10137 {
10138 spa_t *spa = vd->vdev_spa;
10139
10140 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10141 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10142 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10143 activity == ZPOOL_WAIT_TRIM);
10144
10145 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10146 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10147
10148 mutex_exit(&spa->spa_activities_lock);
10149 mutex_enter(lock);
10150 mutex_enter(&spa->spa_activities_lock);
10151
10152 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10153 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10154 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10155 mutex_exit(lock);
10156
10157 if (in_progress)
10158 return (B_TRUE);
10159
10160 for (int i = 0; i < vd->vdev_children; i++) {
10161 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10162 activity))
10163 return (B_TRUE);
10164 }
10165
10166 return (B_FALSE);
10167 }
10168
10169 /*
10170 * If use_guid is true, this checks whether the vdev specified by guid is
10171 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10172 * is being initialized/trimmed. The caller must hold the config lock and
10173 * spa_activities_lock.
10174 */
10175 static int
10176 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10177 zpool_wait_activity_t activity, boolean_t *in_progress)
10178 {
10179 mutex_exit(&spa->spa_activities_lock);
10180 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10181 mutex_enter(&spa->spa_activities_lock);
10182
10183 vdev_t *vd;
10184 if (use_guid) {
10185 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10186 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10187 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10188 return (EINVAL);
10189 }
10190 } else {
10191 vd = spa->spa_root_vdev;
10192 }
10193
10194 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10195
10196 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10197 return (0);
10198 }
10199
10200 /*
10201 * Locking for waiting threads
10202 * ---------------------------
10203 *
10204 * Waiting threads need a way to check whether a given activity is in progress,
10205 * and then, if it is, wait for it to complete. Each activity will have some
10206 * in-memory representation of the relevant on-disk state which can be used to
10207 * determine whether or not the activity is in progress. The in-memory state and
10208 * the locking used to protect it will be different for each activity, and may
10209 * not be suitable for use with a cvar (e.g., some state is protected by the
10210 * config lock). To allow waiting threads to wait without any races, another
10211 * lock, spa_activities_lock, is used.
10212 *
10213 * When the state is checked, both the activity-specific lock (if there is one)
10214 * and spa_activities_lock are held. In some cases, the activity-specific lock
10215 * is acquired explicitly (e.g. the config lock). In others, the locking is
10216 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10217 * thread releases the activity-specific lock and, if the activity is in
10218 * progress, then cv_waits using spa_activities_lock.
10219 *
10220 * The waiting thread is woken when another thread, one completing some
10221 * activity, updates the state of the activity and then calls
10222 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10223 * needs to hold its activity-specific lock when updating the state, and this
10224 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10225 *
10226 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10227 * and because it is held when the waiting thread checks the state of the
10228 * activity, it can never be the case that the completing thread both updates
10229 * the activity state and cv_broadcasts in between the waiting thread's check
10230 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10231 *
10232 * In order to prevent deadlock, when the waiting thread does its check, in some
10233 * cases it will temporarily drop spa_activities_lock in order to acquire the
10234 * activity-specific lock. The order in which spa_activities_lock and the
10235 * activity specific lock are acquired in the waiting thread is determined by
10236 * the order in which they are acquired in the completing thread; if the
10237 * completing thread calls spa_notify_waiters with the activity-specific lock
10238 * held, then the waiting thread must also acquire the activity-specific lock
10239 * first.
10240 */
10241
10242 static int
10243 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10244 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10245 {
10246 int error = 0;
10247
10248 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10249
10250 switch (activity) {
10251 case ZPOOL_WAIT_CKPT_DISCARD:
10252 *in_progress =
10253 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10254 zap_contains(spa_meta_objset(spa),
10255 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10256 ENOENT);
10257 break;
10258 case ZPOOL_WAIT_FREE:
10259 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10260 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10261 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10262 spa_livelist_delete_check(spa));
10263 break;
10264 case ZPOOL_WAIT_INITIALIZE:
10265 case ZPOOL_WAIT_TRIM:
10266 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10267 activity, in_progress);
10268 break;
10269 case ZPOOL_WAIT_REPLACE:
10270 mutex_exit(&spa->spa_activities_lock);
10271 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10272 mutex_enter(&spa->spa_activities_lock);
10273
10274 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10275 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10276 break;
10277 case ZPOOL_WAIT_REMOVE:
10278 *in_progress = (spa->spa_removing_phys.sr_state ==
10279 DSS_SCANNING);
10280 break;
10281 case ZPOOL_WAIT_RESILVER:
10282 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10283 if (*in_progress)
10284 break;
10285 zfs_fallthrough;
10286 case ZPOOL_WAIT_SCRUB:
10287 {
10288 boolean_t scanning, paused, is_scrub;
10289 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10290
10291 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10292 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10293 paused = dsl_scan_is_paused_scrub(scn);
10294 *in_progress = (scanning && !paused &&
10295 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10296 break;
10297 }
10298 case ZPOOL_WAIT_RAIDZ_EXPAND:
10299 {
10300 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10301 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10302 break;
10303 }
10304 default:
10305 panic("unrecognized value for activity %d", activity);
10306 }
10307
10308 return (error);
10309 }
10310
10311 static int
10312 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10313 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10314 {
10315 /*
10316 * The tag is used to distinguish between instances of an activity.
10317 * 'initialize' and 'trim' are the only activities that we use this for.
10318 * The other activities can only have a single instance in progress in a
10319 * pool at one time, making the tag unnecessary.
10320 *
10321 * There can be multiple devices being replaced at once, but since they
10322 * all finish once resilvering finishes, we don't bother keeping track
10323 * of them individually, we just wait for them all to finish.
10324 */
10325 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10326 activity != ZPOOL_WAIT_TRIM)
10327 return (EINVAL);
10328
10329 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10330 return (EINVAL);
10331
10332 spa_t *spa;
10333 int error = spa_open(pool, &spa, FTAG);
10334 if (error != 0)
10335 return (error);
10336
10337 /*
10338 * Increment the spa's waiter count so that we can call spa_close and
10339 * still ensure that the spa_t doesn't get freed before this thread is
10340 * finished with it when the pool is exported. We want to call spa_close
10341 * before we start waiting because otherwise the additional ref would
10342 * prevent the pool from being exported or destroyed throughout the
10343 * potentially long wait.
10344 */
10345 mutex_enter(&spa->spa_activities_lock);
10346 spa->spa_waiters++;
10347 spa_close(spa, FTAG);
10348
10349 *waited = B_FALSE;
10350 for (;;) {
10351 boolean_t in_progress;
10352 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10353 &in_progress);
10354
10355 if (error || !in_progress || spa->spa_waiters_cancel)
10356 break;
10357
10358 *waited = B_TRUE;
10359
10360 if (cv_wait_sig(&spa->spa_activities_cv,
10361 &spa->spa_activities_lock) == 0) {
10362 error = EINTR;
10363 break;
10364 }
10365 }
10366
10367 spa->spa_waiters--;
10368 cv_signal(&spa->spa_waiters_cv);
10369 mutex_exit(&spa->spa_activities_lock);
10370
10371 return (error);
10372 }
10373
10374 /*
10375 * Wait for a particular instance of the specified activity to complete, where
10376 * the instance is identified by 'tag'
10377 */
10378 int
10379 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10380 boolean_t *waited)
10381 {
10382 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10383 }
10384
10385 /*
10386 * Wait for all instances of the specified activity complete
10387 */
10388 int
10389 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10390 {
10391
10392 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10393 }
10394
10395 sysevent_t *
10396 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10397 {
10398 sysevent_t *ev = NULL;
10399 #ifdef _KERNEL
10400 nvlist_t *resource;
10401
10402 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10403 if (resource) {
10404 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10405 ev->resource = resource;
10406 }
10407 #else
10408 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10409 #endif
10410 return (ev);
10411 }
10412
10413 void
10414 spa_event_post(sysevent_t *ev)
10415 {
10416 #ifdef _KERNEL
10417 if (ev) {
10418 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10419 kmem_free(ev, sizeof (*ev));
10420 }
10421 #else
10422 (void) ev;
10423 #endif
10424 }
10425
10426 /*
10427 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10428 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10429 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10430 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10431 * or zdb as real changes.
10432 */
10433 void
10434 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10435 {
10436 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10437 }
10438
10439 /* state manipulation functions */
10440 EXPORT_SYMBOL(spa_open);
10441 EXPORT_SYMBOL(spa_open_rewind);
10442 EXPORT_SYMBOL(spa_get_stats);
10443 EXPORT_SYMBOL(spa_create);
10444 EXPORT_SYMBOL(spa_import);
10445 EXPORT_SYMBOL(spa_tryimport);
10446 EXPORT_SYMBOL(spa_destroy);
10447 EXPORT_SYMBOL(spa_export);
10448 EXPORT_SYMBOL(spa_reset);
10449 EXPORT_SYMBOL(spa_async_request);
10450 EXPORT_SYMBOL(spa_async_suspend);
10451 EXPORT_SYMBOL(spa_async_resume);
10452 EXPORT_SYMBOL(spa_inject_addref);
10453 EXPORT_SYMBOL(spa_inject_delref);
10454 EXPORT_SYMBOL(spa_scan_stat_init);
10455 EXPORT_SYMBOL(spa_scan_get_stats);
10456
10457 /* device manipulation */
10458 EXPORT_SYMBOL(spa_vdev_add);
10459 EXPORT_SYMBOL(spa_vdev_attach);
10460 EXPORT_SYMBOL(spa_vdev_detach);
10461 EXPORT_SYMBOL(spa_vdev_setpath);
10462 EXPORT_SYMBOL(spa_vdev_setfru);
10463 EXPORT_SYMBOL(spa_vdev_split_mirror);
10464
10465 /* spare statech is global across all pools) */
10466 EXPORT_SYMBOL(spa_spare_add);
10467 EXPORT_SYMBOL(spa_spare_remove);
10468 EXPORT_SYMBOL(spa_spare_exists);
10469 EXPORT_SYMBOL(spa_spare_activate);
10470
10471 /* L2ARC statech is global across all pools) */
10472 EXPORT_SYMBOL(spa_l2cache_add);
10473 EXPORT_SYMBOL(spa_l2cache_remove);
10474 EXPORT_SYMBOL(spa_l2cache_exists);
10475 EXPORT_SYMBOL(spa_l2cache_activate);
10476 EXPORT_SYMBOL(spa_l2cache_drop);
10477
10478 /* scanning */
10479 EXPORT_SYMBOL(spa_scan);
10480 EXPORT_SYMBOL(spa_scan_stop);
10481
10482 /* spa syncing */
10483 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10484 EXPORT_SYMBOL(spa_sync_allpools);
10485
10486 /* properties */
10487 EXPORT_SYMBOL(spa_prop_set);
10488 EXPORT_SYMBOL(spa_prop_get);
10489 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10490
10491 /* asynchronous event notification */
10492 EXPORT_SYMBOL(spa_event_notify);
10493
10494 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10495 "Percentage of CPUs to run a metaslab preload taskq");
10496
10497 /* BEGIN CSTYLED */
10498 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10499 "log2 fraction of arc that can be used by inflight I/Os when "
10500 "verifying pool during import");
10501 /* END CSTYLED */
10502
10503 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10504 "Set to traverse metadata on pool import");
10505
10506 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10507 "Set to traverse data on pool import");
10508
10509 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10510 "Print vdev tree to zfs_dbgmsg during pool import");
10511
10512 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10513 "Percentage of CPUs to run an IO worker thread");
10514
10515 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10516 "Number of threads per IO worker taskqueue");
10517
10518 /* BEGIN CSTYLED */
10519 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10520 "Allow importing pool with up to this number of missing top-level "
10521 "vdevs (in read-only mode)");
10522 /* END CSTYLED */
10523
10524 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10525 ZMOD_RW, "Set the livelist condense zthr to pause");
10526
10527 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10528 ZMOD_RW, "Set the livelist condense synctask to pause");
10529
10530 /* BEGIN CSTYLED */
10531 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10532 INT, ZMOD_RW,
10533 "Whether livelist condensing was canceled in the synctask");
10534
10535 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10536 INT, ZMOD_RW,
10537 "Whether livelist condensing was canceled in the zthr function");
10538
10539 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10540 ZMOD_RW,
10541 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10542 "was being condensed");
10543 /* END CSTYLED */
10544
10545 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW,
10546 "Number of CPUs to run write issue taskqs");