]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
c10c78ebf6db8c7278ab328a59bfe12c65393850
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_raidz.h>
62 #include <sys/zvol.h>
63 #include <sys/zfs_ratelimit.h>
64 #include "zfs_prop.h"
65
66 /*
67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69 * part of the spa_embedded_log_class. The metaslab with the most free space
70 * in each vdev is selected for this purpose when the pool is opened (or a
71 * vdev is added). See vdev_metaslab_init().
72 *
73 * Log blocks can be allocated from the following locations. Each one is tried
74 * in order until the allocation succeeds:
75 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76 * 2. embedded slog metaslabs (spa_embedded_log_class)
77 * 3. other metaslabs in normal vdevs (spa_normal_class)
78 *
79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80 * than this number of metaslabs in the vdev. This ensures that we don't set
81 * aside an unreasonable amount of space for the ZIL. If set to less than
82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84 */
85 static uint_t zfs_embedded_slog_min_ms = 64;
86
87 /* default target for number of metaslabs per top-level vdev */
88 static uint_t zfs_vdev_default_ms_count = 200;
89
90 /* minimum number of metaslabs per top-level vdev */
91 static uint_t zfs_vdev_min_ms_count = 16;
92
93 /* practical upper limit of total metaslabs per top-level vdev */
94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
95
96 /* lower limit for metaslab size (512M) */
97 static uint_t zfs_vdev_default_ms_shift = 29;
98
99 /* upper limit for metaslab size (16G) */
100 static uint_t zfs_vdev_max_ms_shift = 34;
101
102 int vdev_validate_skip = B_FALSE;
103
104 /*
105 * Since the DTL space map of a vdev is not expected to have a lot of
106 * entries, we default its block size to 4K.
107 */
108 int zfs_vdev_dtl_sm_blksz = (1 << 12);
109
110 /*
111 * Rate limit slow IO (delay) events to this many per second.
112 */
113 static unsigned int zfs_slow_io_events_per_second = 20;
114
115 /*
116 * Rate limit checksum events after this many checksum errors per second.
117 */
118 static unsigned int zfs_checksum_events_per_second = 20;
119
120 /*
121 * Ignore errors during scrub/resilver. Allows to work around resilver
122 * upon import when there are pool errors.
123 */
124 static int zfs_scan_ignore_errors = 0;
125
126 /*
127 * vdev-wide space maps that have lots of entries written to them at
128 * the end of each transaction can benefit from a higher I/O bandwidth
129 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
130 */
131 int zfs_vdev_standard_sm_blksz = (1 << 17);
132
133 /*
134 * Tunable parameter for debugging or performance analysis. Setting this
135 * will cause pool corruption on power loss if a volatile out-of-order
136 * write cache is enabled.
137 */
138 int zfs_nocacheflush = 0;
139
140 /*
141 * Maximum and minimum ashift values that can be automatically set based on
142 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
143 * is higher than the maximum value, it is intentionally limited here to not
144 * excessively impact pool space efficiency. Higher ashift values may still
145 * be forced by vdev logical ashift or by user via ashift property, but won't
146 * be set automatically as a performance optimization.
147 */
148 uint_t zfs_vdev_max_auto_ashift = 14;
149 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
150
151 void
152 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
153 {
154 va_list adx;
155 char buf[256];
156
157 va_start(adx, fmt);
158 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
159 va_end(adx);
160
161 if (vd->vdev_path != NULL) {
162 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
163 vd->vdev_path, buf);
164 } else {
165 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
166 vd->vdev_ops->vdev_op_type,
167 (u_longlong_t)vd->vdev_id,
168 (u_longlong_t)vd->vdev_guid, buf);
169 }
170 }
171
172 void
173 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
174 {
175 char state[20];
176
177 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
178 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
179 (u_longlong_t)vd->vdev_id,
180 vd->vdev_ops->vdev_op_type);
181 return;
182 }
183
184 switch (vd->vdev_state) {
185 case VDEV_STATE_UNKNOWN:
186 (void) snprintf(state, sizeof (state), "unknown");
187 break;
188 case VDEV_STATE_CLOSED:
189 (void) snprintf(state, sizeof (state), "closed");
190 break;
191 case VDEV_STATE_OFFLINE:
192 (void) snprintf(state, sizeof (state), "offline");
193 break;
194 case VDEV_STATE_REMOVED:
195 (void) snprintf(state, sizeof (state), "removed");
196 break;
197 case VDEV_STATE_CANT_OPEN:
198 (void) snprintf(state, sizeof (state), "can't open");
199 break;
200 case VDEV_STATE_FAULTED:
201 (void) snprintf(state, sizeof (state), "faulted");
202 break;
203 case VDEV_STATE_DEGRADED:
204 (void) snprintf(state, sizeof (state), "degraded");
205 break;
206 case VDEV_STATE_HEALTHY:
207 (void) snprintf(state, sizeof (state), "healthy");
208 break;
209 default:
210 (void) snprintf(state, sizeof (state), "<state %u>",
211 (uint_t)vd->vdev_state);
212 }
213
214 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
215 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
216 vd->vdev_islog ? " (log)" : "",
217 (u_longlong_t)vd->vdev_guid,
218 vd->vdev_path ? vd->vdev_path : "N/A", state);
219
220 for (uint64_t i = 0; i < vd->vdev_children; i++)
221 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
222 }
223
224 /*
225 * Virtual device management.
226 */
227
228 static vdev_ops_t *const vdev_ops_table[] = {
229 &vdev_root_ops,
230 &vdev_raidz_ops,
231 &vdev_draid_ops,
232 &vdev_draid_spare_ops,
233 &vdev_mirror_ops,
234 &vdev_replacing_ops,
235 &vdev_spare_ops,
236 &vdev_disk_ops,
237 &vdev_file_ops,
238 &vdev_missing_ops,
239 &vdev_hole_ops,
240 &vdev_indirect_ops,
241 NULL
242 };
243
244 /*
245 * Given a vdev type, return the appropriate ops vector.
246 */
247 static vdev_ops_t *
248 vdev_getops(const char *type)
249 {
250 vdev_ops_t *ops, *const *opspp;
251
252 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
253 if (strcmp(ops->vdev_op_type, type) == 0)
254 break;
255
256 return (ops);
257 }
258
259 /*
260 * Given a vdev and a metaslab class, find which metaslab group we're
261 * interested in. All vdevs may belong to two different metaslab classes.
262 * Dedicated slog devices use only the primary metaslab group, rather than a
263 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
264 */
265 metaslab_group_t *
266 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
267 {
268 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
269 vd->vdev_log_mg != NULL)
270 return (vd->vdev_log_mg);
271 else
272 return (vd->vdev_mg);
273 }
274
275 void
276 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
277 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
278 {
279 (void) vd, (void) remain_rs;
280
281 physical_rs->rs_start = logical_rs->rs_start;
282 physical_rs->rs_end = logical_rs->rs_end;
283 }
284
285 /*
286 * Derive the enumerated allocation bias from string input.
287 * String origin is either the per-vdev zap or zpool(8).
288 */
289 static vdev_alloc_bias_t
290 vdev_derive_alloc_bias(const char *bias)
291 {
292 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
293
294 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
295 alloc_bias = VDEV_BIAS_LOG;
296 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
297 alloc_bias = VDEV_BIAS_SPECIAL;
298 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
299 alloc_bias = VDEV_BIAS_DEDUP;
300
301 return (alloc_bias);
302 }
303
304 /*
305 * Default asize function: return the MAX of psize with the asize of
306 * all children. This is what's used by anything other than RAID-Z.
307 */
308 uint64_t
309 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
310 {
311 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
312 uint64_t csize;
313
314 for (int c = 0; c < vd->vdev_children; c++) {
315 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
316 asize = MAX(asize, csize);
317 }
318
319 return (asize);
320 }
321
322 uint64_t
323 vdev_default_min_asize(vdev_t *vd)
324 {
325 return (vd->vdev_min_asize);
326 }
327
328 /*
329 * Get the minimum allocatable size. We define the allocatable size as
330 * the vdev's asize rounded to the nearest metaslab. This allows us to
331 * replace or attach devices which don't have the same physical size but
332 * can still satisfy the same number of allocations.
333 */
334 uint64_t
335 vdev_get_min_asize(vdev_t *vd)
336 {
337 vdev_t *pvd = vd->vdev_parent;
338
339 /*
340 * If our parent is NULL (inactive spare or cache) or is the root,
341 * just return our own asize.
342 */
343 if (pvd == NULL)
344 return (vd->vdev_asize);
345
346 /*
347 * The top-level vdev just returns the allocatable size rounded
348 * to the nearest metaslab.
349 */
350 if (vd == vd->vdev_top)
351 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
352
353 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
354 }
355
356 void
357 vdev_set_min_asize(vdev_t *vd)
358 {
359 vd->vdev_min_asize = vdev_get_min_asize(vd);
360
361 for (int c = 0; c < vd->vdev_children; c++)
362 vdev_set_min_asize(vd->vdev_child[c]);
363 }
364
365 /*
366 * Get the minimal allocation size for the top-level vdev.
367 */
368 uint64_t
369 vdev_get_min_alloc(vdev_t *vd)
370 {
371 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
372
373 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
374 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
375
376 return (min_alloc);
377 }
378
379 /*
380 * Get the parity level for a top-level vdev.
381 */
382 uint64_t
383 vdev_get_nparity(vdev_t *vd)
384 {
385 uint64_t nparity = 0;
386
387 if (vd->vdev_ops->vdev_op_nparity != NULL)
388 nparity = vd->vdev_ops->vdev_op_nparity(vd);
389
390 return (nparity);
391 }
392
393 static int
394 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
395 {
396 spa_t *spa = vd->vdev_spa;
397 objset_t *mos = spa->spa_meta_objset;
398 uint64_t objid;
399 int err;
400
401 if (vd->vdev_root_zap != 0) {
402 objid = vd->vdev_root_zap;
403 } else if (vd->vdev_top_zap != 0) {
404 objid = vd->vdev_top_zap;
405 } else if (vd->vdev_leaf_zap != 0) {
406 objid = vd->vdev_leaf_zap;
407 } else {
408 return (EINVAL);
409 }
410
411 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
412 sizeof (uint64_t), 1, value);
413
414 if (err == ENOENT)
415 *value = vdev_prop_default_numeric(prop);
416
417 return (err);
418 }
419
420 /*
421 * Get the number of data disks for a top-level vdev.
422 */
423 uint64_t
424 vdev_get_ndisks(vdev_t *vd)
425 {
426 uint64_t ndisks = 1;
427
428 if (vd->vdev_ops->vdev_op_ndisks != NULL)
429 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
430
431 return (ndisks);
432 }
433
434 vdev_t *
435 vdev_lookup_top(spa_t *spa, uint64_t vdev)
436 {
437 vdev_t *rvd = spa->spa_root_vdev;
438
439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
440
441 if (vdev < rvd->vdev_children) {
442 ASSERT(rvd->vdev_child[vdev] != NULL);
443 return (rvd->vdev_child[vdev]);
444 }
445
446 return (NULL);
447 }
448
449 vdev_t *
450 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
451 {
452 vdev_t *mvd;
453
454 if (vd->vdev_guid == guid)
455 return (vd);
456
457 for (int c = 0; c < vd->vdev_children; c++)
458 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
459 NULL)
460 return (mvd);
461
462 return (NULL);
463 }
464
465 static int
466 vdev_count_leaves_impl(vdev_t *vd)
467 {
468 int n = 0;
469
470 if (vd->vdev_ops->vdev_op_leaf)
471 return (1);
472
473 for (int c = 0; c < vd->vdev_children; c++)
474 n += vdev_count_leaves_impl(vd->vdev_child[c]);
475
476 return (n);
477 }
478
479 int
480 vdev_count_leaves(spa_t *spa)
481 {
482 int rc;
483
484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
485 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
486 spa_config_exit(spa, SCL_VDEV, FTAG);
487
488 return (rc);
489 }
490
491 void
492 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
493 {
494 size_t oldsize, newsize;
495 uint64_t id = cvd->vdev_id;
496 vdev_t **newchild;
497
498 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
499 ASSERT(cvd->vdev_parent == NULL);
500
501 cvd->vdev_parent = pvd;
502
503 if (pvd == NULL)
504 return;
505
506 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
507
508 oldsize = pvd->vdev_children * sizeof (vdev_t *);
509 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
510 newsize = pvd->vdev_children * sizeof (vdev_t *);
511
512 newchild = kmem_alloc(newsize, KM_SLEEP);
513 if (pvd->vdev_child != NULL) {
514 memcpy(newchild, pvd->vdev_child, oldsize);
515 kmem_free(pvd->vdev_child, oldsize);
516 }
517
518 pvd->vdev_child = newchild;
519 pvd->vdev_child[id] = cvd;
520
521 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
522 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
523
524 /*
525 * Walk up all ancestors to update guid sum.
526 */
527 for (; pvd != NULL; pvd = pvd->vdev_parent)
528 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
529
530 if (cvd->vdev_ops->vdev_op_leaf) {
531 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
532 cvd->vdev_spa->spa_leaf_list_gen++;
533 }
534 }
535
536 void
537 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
538 {
539 int c;
540 uint_t id = cvd->vdev_id;
541
542 ASSERT(cvd->vdev_parent == pvd);
543
544 if (pvd == NULL)
545 return;
546
547 ASSERT(id < pvd->vdev_children);
548 ASSERT(pvd->vdev_child[id] == cvd);
549
550 pvd->vdev_child[id] = NULL;
551 cvd->vdev_parent = NULL;
552
553 for (c = 0; c < pvd->vdev_children; c++)
554 if (pvd->vdev_child[c])
555 break;
556
557 if (c == pvd->vdev_children) {
558 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
559 pvd->vdev_child = NULL;
560 pvd->vdev_children = 0;
561 }
562
563 if (cvd->vdev_ops->vdev_op_leaf) {
564 spa_t *spa = cvd->vdev_spa;
565 list_remove(&spa->spa_leaf_list, cvd);
566 spa->spa_leaf_list_gen++;
567 }
568
569 /*
570 * Walk up all ancestors to update guid sum.
571 */
572 for (; pvd != NULL; pvd = pvd->vdev_parent)
573 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
574 }
575
576 /*
577 * Remove any holes in the child array.
578 */
579 void
580 vdev_compact_children(vdev_t *pvd)
581 {
582 vdev_t **newchild, *cvd;
583 int oldc = pvd->vdev_children;
584 int newc;
585
586 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
587
588 if (oldc == 0)
589 return;
590
591 for (int c = newc = 0; c < oldc; c++)
592 if (pvd->vdev_child[c])
593 newc++;
594
595 if (newc > 0) {
596 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
597
598 for (int c = newc = 0; c < oldc; c++) {
599 if ((cvd = pvd->vdev_child[c]) != NULL) {
600 newchild[newc] = cvd;
601 cvd->vdev_id = newc++;
602 }
603 }
604 } else {
605 newchild = NULL;
606 }
607
608 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
609 pvd->vdev_child = newchild;
610 pvd->vdev_children = newc;
611 }
612
613 /*
614 * Allocate and minimally initialize a vdev_t.
615 */
616 vdev_t *
617 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
618 {
619 vdev_t *vd;
620 vdev_indirect_config_t *vic;
621
622 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
623 vic = &vd->vdev_indirect_config;
624
625 if (spa->spa_root_vdev == NULL) {
626 ASSERT(ops == &vdev_root_ops);
627 spa->spa_root_vdev = vd;
628 spa->spa_load_guid = spa_generate_guid(NULL);
629 }
630
631 if (guid == 0 && ops != &vdev_hole_ops) {
632 if (spa->spa_root_vdev == vd) {
633 /*
634 * The root vdev's guid will also be the pool guid,
635 * which must be unique among all pools.
636 */
637 guid = spa_generate_guid(NULL);
638 } else {
639 /*
640 * Any other vdev's guid must be unique within the pool.
641 */
642 guid = spa_generate_guid(spa);
643 }
644 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
645 }
646
647 vd->vdev_spa = spa;
648 vd->vdev_id = id;
649 vd->vdev_guid = guid;
650 vd->vdev_guid_sum = guid;
651 vd->vdev_ops = ops;
652 vd->vdev_state = VDEV_STATE_CLOSED;
653 vd->vdev_ishole = (ops == &vdev_hole_ops);
654 vic->vic_prev_indirect_vdev = UINT64_MAX;
655
656 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
657 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
658 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
659 0, 0);
660
661 /*
662 * Initialize rate limit structs for events. We rate limit ZIO delay
663 * and checksum events so that we don't overwhelm ZED with thousands
664 * of events when a disk is acting up.
665 */
666 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
667 1);
668 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
669 1);
670 zfs_ratelimit_init(&vd->vdev_checksum_rl,
671 &zfs_checksum_events_per_second, 1);
672
673 /*
674 * Default Thresholds for tuning ZED
675 */
676 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
677 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
678 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
679 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
680
681 list_link_init(&vd->vdev_config_dirty_node);
682 list_link_init(&vd->vdev_state_dirty_node);
683 list_link_init(&vd->vdev_initialize_node);
684 list_link_init(&vd->vdev_leaf_node);
685 list_link_init(&vd->vdev_trim_node);
686
687 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
688 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
689 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
690 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
691
692 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
693 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
694 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
695 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
696
697 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
698 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
699 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
700 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
701 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
702 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
703 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
704
705 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
706 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
707
708 for (int t = 0; t < DTL_TYPES; t++) {
709 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
710 0);
711 }
712
713 txg_list_create(&vd->vdev_ms_list, spa,
714 offsetof(struct metaslab, ms_txg_node));
715 txg_list_create(&vd->vdev_dtl_list, spa,
716 offsetof(struct vdev, vdev_dtl_node));
717 vd->vdev_stat.vs_timestamp = gethrtime();
718 vdev_queue_init(vd);
719
720 return (vd);
721 }
722
723 /*
724 * Allocate a new vdev. The 'alloctype' is used to control whether we are
725 * creating a new vdev or loading an existing one - the behavior is slightly
726 * different for each case.
727 */
728 int
729 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
730 int alloctype)
731 {
732 vdev_ops_t *ops;
733 const char *type;
734 uint64_t guid = 0, islog;
735 vdev_t *vd;
736 vdev_indirect_config_t *vic;
737 const char *tmp = NULL;
738 int rc;
739 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
740 boolean_t top_level = (parent && !parent->vdev_parent);
741
742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743
744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
745 return (SET_ERROR(EINVAL));
746
747 if ((ops = vdev_getops(type)) == NULL)
748 return (SET_ERROR(EINVAL));
749
750 /*
751 * If this is a load, get the vdev guid from the nvlist.
752 * Otherwise, vdev_alloc_common() will generate one for us.
753 */
754 if (alloctype == VDEV_ALLOC_LOAD) {
755 uint64_t label_id;
756
757 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
758 label_id != id)
759 return (SET_ERROR(EINVAL));
760
761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
762 return (SET_ERROR(EINVAL));
763 } else if (alloctype == VDEV_ALLOC_SPARE) {
764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
765 return (SET_ERROR(EINVAL));
766 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
768 return (SET_ERROR(EINVAL));
769 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
770 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
771 return (SET_ERROR(EINVAL));
772 }
773
774 /*
775 * The first allocated vdev must be of type 'root'.
776 */
777 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
778 return (SET_ERROR(EINVAL));
779
780 /*
781 * Determine whether we're a log vdev.
782 */
783 islog = 0;
784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
785 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
786 return (SET_ERROR(ENOTSUP));
787
788 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
789 return (SET_ERROR(ENOTSUP));
790
791 if (top_level && alloctype == VDEV_ALLOC_ADD) {
792 const char *bias;
793
794 /*
795 * If creating a top-level vdev, check for allocation
796 * classes input.
797 */
798 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
799 &bias) == 0) {
800 alloc_bias = vdev_derive_alloc_bias(bias);
801
802 /* spa_vdev_add() expects feature to be enabled */
803 if (spa->spa_load_state != SPA_LOAD_CREATE &&
804 !spa_feature_is_enabled(spa,
805 SPA_FEATURE_ALLOCATION_CLASSES)) {
806 return (SET_ERROR(ENOTSUP));
807 }
808 }
809
810 /* spa_vdev_add() expects feature to be enabled */
811 if (ops == &vdev_draid_ops &&
812 spa->spa_load_state != SPA_LOAD_CREATE &&
813 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
814 return (SET_ERROR(ENOTSUP));
815 }
816 }
817
818 /*
819 * Initialize the vdev specific data. This is done before calling
820 * vdev_alloc_common() since it may fail and this simplifies the
821 * error reporting and cleanup code paths.
822 */
823 void *tsd = NULL;
824 if (ops->vdev_op_init != NULL) {
825 rc = ops->vdev_op_init(spa, nv, &tsd);
826 if (rc != 0) {
827 return (rc);
828 }
829 }
830
831 vd = vdev_alloc_common(spa, id, guid, ops);
832 vd->vdev_tsd = tsd;
833 vd->vdev_islog = islog;
834
835 if (top_level && alloc_bias != VDEV_BIAS_NONE)
836 vd->vdev_alloc_bias = alloc_bias;
837
838 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
839 vd->vdev_path = spa_strdup(tmp);
840
841 /*
842 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
843 * fault on a vdev and want it to persist across imports (like with
844 * zpool offline -f).
845 */
846 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
847 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
848 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
849 vd->vdev_faulted = 1;
850 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
851 }
852
853 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
854 vd->vdev_devid = spa_strdup(tmp);
855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
856 vd->vdev_physpath = spa_strdup(tmp);
857
858 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
859 &tmp) == 0)
860 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
861
862 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
863 vd->vdev_fru = spa_strdup(tmp);
864
865 /*
866 * Set the whole_disk property. If it's not specified, leave the value
867 * as -1.
868 */
869 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
870 &vd->vdev_wholedisk) != 0)
871 vd->vdev_wholedisk = -1ULL;
872
873 vic = &vd->vdev_indirect_config;
874
875 ASSERT0(vic->vic_mapping_object);
876 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
877 &vic->vic_mapping_object);
878 ASSERT0(vic->vic_births_object);
879 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
880 &vic->vic_births_object);
881 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
882 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
883 &vic->vic_prev_indirect_vdev);
884
885 /*
886 * Look for the 'not present' flag. This will only be set if the device
887 * was not present at the time of import.
888 */
889 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
890 &vd->vdev_not_present);
891
892 /*
893 * Get the alignment requirement. Ignore pool ashift for vdev
894 * attach case.
895 */
896 if (alloctype != VDEV_ALLOC_ATTACH) {
897 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
898 &vd->vdev_ashift);
899 } else {
900 vd->vdev_attaching = B_TRUE;
901 }
902
903 /*
904 * Retrieve the vdev creation time.
905 */
906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
907 &vd->vdev_crtxg);
908
909 if (vd->vdev_ops == &vdev_root_ops &&
910 (alloctype == VDEV_ALLOC_LOAD ||
911 alloctype == VDEV_ALLOC_SPLIT ||
912 alloctype == VDEV_ALLOC_ROOTPOOL)) {
913 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
914 &vd->vdev_root_zap);
915 }
916
917 /*
918 * If we're a top-level vdev, try to load the allocation parameters.
919 */
920 if (top_level &&
921 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
923 &vd->vdev_ms_array);
924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
925 &vd->vdev_ms_shift);
926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
927 &vd->vdev_asize);
928 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
929 &vd->vdev_noalloc);
930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
931 &vd->vdev_removing);
932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
933 &vd->vdev_top_zap);
934 vd->vdev_rz_expanding = nvlist_exists(nv,
935 ZPOOL_CONFIG_RAIDZ_EXPANDING);
936 } else {
937 ASSERT0(vd->vdev_top_zap);
938 }
939
940 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
941 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
942 alloctype == VDEV_ALLOC_ADD ||
943 alloctype == VDEV_ALLOC_SPLIT ||
944 alloctype == VDEV_ALLOC_ROOTPOOL);
945 /* Note: metaslab_group_create() is now deferred */
946 }
947
948 if (vd->vdev_ops->vdev_op_leaf &&
949 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
950 (void) nvlist_lookup_uint64(nv,
951 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
952 } else {
953 ASSERT0(vd->vdev_leaf_zap);
954 }
955
956 /*
957 * If we're a leaf vdev, try to load the DTL object and other state.
958 */
959
960 if (vd->vdev_ops->vdev_op_leaf &&
961 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
962 alloctype == VDEV_ALLOC_ROOTPOOL)) {
963 if (alloctype == VDEV_ALLOC_LOAD) {
964 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
965 &vd->vdev_dtl_object);
966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
967 &vd->vdev_unspare);
968 }
969
970 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
971 uint64_t spare = 0;
972
973 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
974 &spare) == 0 && spare)
975 spa_spare_add(vd);
976 }
977
978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
979 &vd->vdev_offline);
980
981 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
982 &vd->vdev_resilver_txg);
983
984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
985 &vd->vdev_rebuild_txg);
986
987 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
988 vdev_defer_resilver(vd);
989
990 /*
991 * In general, when importing a pool we want to ignore the
992 * persistent fault state, as the diagnosis made on another
993 * system may not be valid in the current context. The only
994 * exception is if we forced a vdev to a persistently faulted
995 * state with 'zpool offline -f'. The persistent fault will
996 * remain across imports until cleared.
997 *
998 * Local vdevs will remain in the faulted state.
999 */
1000 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1001 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1002 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1003 &vd->vdev_faulted);
1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1005 &vd->vdev_degraded);
1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1007 &vd->vdev_removed);
1008
1009 if (vd->vdev_faulted || vd->vdev_degraded) {
1010 const char *aux;
1011
1012 vd->vdev_label_aux =
1013 VDEV_AUX_ERR_EXCEEDED;
1014 if (nvlist_lookup_string(nv,
1015 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1016 strcmp(aux, "external") == 0)
1017 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1018 else
1019 vd->vdev_faulted = 0ULL;
1020 }
1021 }
1022 }
1023
1024 /*
1025 * Add ourselves to the parent's list of children.
1026 */
1027 vdev_add_child(parent, vd);
1028
1029 *vdp = vd;
1030
1031 return (0);
1032 }
1033
1034 void
1035 vdev_free(vdev_t *vd)
1036 {
1037 spa_t *spa = vd->vdev_spa;
1038
1039 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1040 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1041 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1042 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1043
1044 /*
1045 * Scan queues are normally destroyed at the end of a scan. If the
1046 * queue exists here, that implies the vdev is being removed while
1047 * the scan is still running.
1048 */
1049 if (vd->vdev_scan_io_queue != NULL) {
1050 mutex_enter(&vd->vdev_scan_io_queue_lock);
1051 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1052 vd->vdev_scan_io_queue = NULL;
1053 mutex_exit(&vd->vdev_scan_io_queue_lock);
1054 }
1055
1056 /*
1057 * vdev_free() implies closing the vdev first. This is simpler than
1058 * trying to ensure complicated semantics for all callers.
1059 */
1060 vdev_close(vd);
1061
1062 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1063 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1064
1065 /*
1066 * Free all children.
1067 */
1068 for (int c = 0; c < vd->vdev_children; c++)
1069 vdev_free(vd->vdev_child[c]);
1070
1071 ASSERT(vd->vdev_child == NULL);
1072 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1073
1074 if (vd->vdev_ops->vdev_op_fini != NULL)
1075 vd->vdev_ops->vdev_op_fini(vd);
1076
1077 /*
1078 * Discard allocation state.
1079 */
1080 if (vd->vdev_mg != NULL) {
1081 vdev_metaslab_fini(vd);
1082 metaslab_group_destroy(vd->vdev_mg);
1083 vd->vdev_mg = NULL;
1084 }
1085 if (vd->vdev_log_mg != NULL) {
1086 ASSERT0(vd->vdev_ms_count);
1087 metaslab_group_destroy(vd->vdev_log_mg);
1088 vd->vdev_log_mg = NULL;
1089 }
1090
1091 ASSERT0(vd->vdev_stat.vs_space);
1092 ASSERT0(vd->vdev_stat.vs_dspace);
1093 ASSERT0(vd->vdev_stat.vs_alloc);
1094
1095 /*
1096 * Remove this vdev from its parent's child list.
1097 */
1098 vdev_remove_child(vd->vdev_parent, vd);
1099
1100 ASSERT(vd->vdev_parent == NULL);
1101 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1102
1103 /*
1104 * Clean up vdev structure.
1105 */
1106 vdev_queue_fini(vd);
1107
1108 if (vd->vdev_path)
1109 spa_strfree(vd->vdev_path);
1110 if (vd->vdev_devid)
1111 spa_strfree(vd->vdev_devid);
1112 if (vd->vdev_physpath)
1113 spa_strfree(vd->vdev_physpath);
1114
1115 if (vd->vdev_enc_sysfs_path)
1116 spa_strfree(vd->vdev_enc_sysfs_path);
1117
1118 if (vd->vdev_fru)
1119 spa_strfree(vd->vdev_fru);
1120
1121 if (vd->vdev_isspare)
1122 spa_spare_remove(vd);
1123 if (vd->vdev_isl2cache)
1124 spa_l2cache_remove(vd);
1125
1126 txg_list_destroy(&vd->vdev_ms_list);
1127 txg_list_destroy(&vd->vdev_dtl_list);
1128
1129 mutex_enter(&vd->vdev_dtl_lock);
1130 space_map_close(vd->vdev_dtl_sm);
1131 for (int t = 0; t < DTL_TYPES; t++) {
1132 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1133 range_tree_destroy(vd->vdev_dtl[t]);
1134 }
1135 mutex_exit(&vd->vdev_dtl_lock);
1136
1137 EQUIV(vd->vdev_indirect_births != NULL,
1138 vd->vdev_indirect_mapping != NULL);
1139 if (vd->vdev_indirect_births != NULL) {
1140 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1141 vdev_indirect_births_close(vd->vdev_indirect_births);
1142 }
1143
1144 if (vd->vdev_obsolete_sm != NULL) {
1145 ASSERT(vd->vdev_removing ||
1146 vd->vdev_ops == &vdev_indirect_ops);
1147 space_map_close(vd->vdev_obsolete_sm);
1148 vd->vdev_obsolete_sm = NULL;
1149 }
1150 range_tree_destroy(vd->vdev_obsolete_segments);
1151 rw_destroy(&vd->vdev_indirect_rwlock);
1152 mutex_destroy(&vd->vdev_obsolete_lock);
1153
1154 mutex_destroy(&vd->vdev_dtl_lock);
1155 mutex_destroy(&vd->vdev_stat_lock);
1156 mutex_destroy(&vd->vdev_probe_lock);
1157 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1158
1159 mutex_destroy(&vd->vdev_initialize_lock);
1160 mutex_destroy(&vd->vdev_initialize_io_lock);
1161 cv_destroy(&vd->vdev_initialize_io_cv);
1162 cv_destroy(&vd->vdev_initialize_cv);
1163
1164 mutex_destroy(&vd->vdev_trim_lock);
1165 mutex_destroy(&vd->vdev_autotrim_lock);
1166 mutex_destroy(&vd->vdev_trim_io_lock);
1167 cv_destroy(&vd->vdev_trim_cv);
1168 cv_destroy(&vd->vdev_autotrim_cv);
1169 cv_destroy(&vd->vdev_autotrim_kick_cv);
1170 cv_destroy(&vd->vdev_trim_io_cv);
1171
1172 mutex_destroy(&vd->vdev_rebuild_lock);
1173 cv_destroy(&vd->vdev_rebuild_cv);
1174
1175 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1176 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1177 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1178
1179 if (vd == spa->spa_root_vdev)
1180 spa->spa_root_vdev = NULL;
1181
1182 kmem_free(vd, sizeof (vdev_t));
1183 }
1184
1185 /*
1186 * Transfer top-level vdev state from svd to tvd.
1187 */
1188 static void
1189 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1190 {
1191 spa_t *spa = svd->vdev_spa;
1192 metaslab_t *msp;
1193 vdev_t *vd;
1194 int t;
1195
1196 ASSERT(tvd == tvd->vdev_top);
1197
1198 tvd->vdev_ms_array = svd->vdev_ms_array;
1199 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1200 tvd->vdev_ms_count = svd->vdev_ms_count;
1201 tvd->vdev_top_zap = svd->vdev_top_zap;
1202
1203 svd->vdev_ms_array = 0;
1204 svd->vdev_ms_shift = 0;
1205 svd->vdev_ms_count = 0;
1206 svd->vdev_top_zap = 0;
1207
1208 if (tvd->vdev_mg)
1209 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1210 if (tvd->vdev_log_mg)
1211 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1212 tvd->vdev_mg = svd->vdev_mg;
1213 tvd->vdev_log_mg = svd->vdev_log_mg;
1214 tvd->vdev_ms = svd->vdev_ms;
1215
1216 svd->vdev_mg = NULL;
1217 svd->vdev_log_mg = NULL;
1218 svd->vdev_ms = NULL;
1219
1220 if (tvd->vdev_mg != NULL)
1221 tvd->vdev_mg->mg_vd = tvd;
1222 if (tvd->vdev_log_mg != NULL)
1223 tvd->vdev_log_mg->mg_vd = tvd;
1224
1225 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1226 svd->vdev_checkpoint_sm = NULL;
1227
1228 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1229 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1230
1231 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1232 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1233 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1234
1235 svd->vdev_stat.vs_alloc = 0;
1236 svd->vdev_stat.vs_space = 0;
1237 svd->vdev_stat.vs_dspace = 0;
1238
1239 /*
1240 * State which may be set on a top-level vdev that's in the
1241 * process of being removed.
1242 */
1243 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1244 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1245 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1246 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1247 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1248 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1249 ASSERT0(tvd->vdev_noalloc);
1250 ASSERT0(tvd->vdev_removing);
1251 ASSERT0(tvd->vdev_rebuilding);
1252 tvd->vdev_noalloc = svd->vdev_noalloc;
1253 tvd->vdev_removing = svd->vdev_removing;
1254 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1255 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1256 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1257 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1258 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1259 range_tree_swap(&svd->vdev_obsolete_segments,
1260 &tvd->vdev_obsolete_segments);
1261 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1262 svd->vdev_indirect_config.vic_mapping_object = 0;
1263 svd->vdev_indirect_config.vic_births_object = 0;
1264 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1265 svd->vdev_indirect_mapping = NULL;
1266 svd->vdev_indirect_births = NULL;
1267 svd->vdev_obsolete_sm = NULL;
1268 svd->vdev_noalloc = 0;
1269 svd->vdev_removing = 0;
1270 svd->vdev_rebuilding = 0;
1271
1272 for (t = 0; t < TXG_SIZE; t++) {
1273 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1274 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1275 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1276 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1277 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1278 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1279 }
1280
1281 if (list_link_active(&svd->vdev_config_dirty_node)) {
1282 vdev_config_clean(svd);
1283 vdev_config_dirty(tvd);
1284 }
1285
1286 if (list_link_active(&svd->vdev_state_dirty_node)) {
1287 vdev_state_clean(svd);
1288 vdev_state_dirty(tvd);
1289 }
1290
1291 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1292 svd->vdev_deflate_ratio = 0;
1293
1294 tvd->vdev_islog = svd->vdev_islog;
1295 svd->vdev_islog = 0;
1296
1297 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1298 }
1299
1300 static void
1301 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1302 {
1303 if (vd == NULL)
1304 return;
1305
1306 vd->vdev_top = tvd;
1307
1308 for (int c = 0; c < vd->vdev_children; c++)
1309 vdev_top_update(tvd, vd->vdev_child[c]);
1310 }
1311
1312 /*
1313 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1314 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1315 */
1316 vdev_t *
1317 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1318 {
1319 spa_t *spa = cvd->vdev_spa;
1320 vdev_t *pvd = cvd->vdev_parent;
1321 vdev_t *mvd;
1322
1323 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1324
1325 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1326
1327 mvd->vdev_asize = cvd->vdev_asize;
1328 mvd->vdev_min_asize = cvd->vdev_min_asize;
1329 mvd->vdev_max_asize = cvd->vdev_max_asize;
1330 mvd->vdev_psize = cvd->vdev_psize;
1331 mvd->vdev_ashift = cvd->vdev_ashift;
1332 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1333 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1334 mvd->vdev_state = cvd->vdev_state;
1335 mvd->vdev_crtxg = cvd->vdev_crtxg;
1336
1337 vdev_remove_child(pvd, cvd);
1338 vdev_add_child(pvd, mvd);
1339 cvd->vdev_id = mvd->vdev_children;
1340 vdev_add_child(mvd, cvd);
1341 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1342
1343 if (mvd == mvd->vdev_top)
1344 vdev_top_transfer(cvd, mvd);
1345
1346 return (mvd);
1347 }
1348
1349 /*
1350 * Remove a 1-way mirror/replacing vdev from the tree.
1351 */
1352 void
1353 vdev_remove_parent(vdev_t *cvd)
1354 {
1355 vdev_t *mvd = cvd->vdev_parent;
1356 vdev_t *pvd = mvd->vdev_parent;
1357
1358 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1359
1360 ASSERT(mvd->vdev_children == 1);
1361 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1362 mvd->vdev_ops == &vdev_replacing_ops ||
1363 mvd->vdev_ops == &vdev_spare_ops);
1364 cvd->vdev_ashift = mvd->vdev_ashift;
1365 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1366 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1367 vdev_remove_child(mvd, cvd);
1368 vdev_remove_child(pvd, mvd);
1369
1370 /*
1371 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1372 * Otherwise, we could have detached an offline device, and when we
1373 * go to import the pool we'll think we have two top-level vdevs,
1374 * instead of a different version of the same top-level vdev.
1375 */
1376 if (mvd->vdev_top == mvd) {
1377 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1378 cvd->vdev_orig_guid = cvd->vdev_guid;
1379 cvd->vdev_guid += guid_delta;
1380 cvd->vdev_guid_sum += guid_delta;
1381
1382 /*
1383 * If pool not set for autoexpand, we need to also preserve
1384 * mvd's asize to prevent automatic expansion of cvd.
1385 * Otherwise if we are adjusting the mirror by attaching and
1386 * detaching children of non-uniform sizes, the mirror could
1387 * autoexpand, unexpectedly requiring larger devices to
1388 * re-establish the mirror.
1389 */
1390 if (!cvd->vdev_spa->spa_autoexpand)
1391 cvd->vdev_asize = mvd->vdev_asize;
1392 }
1393 cvd->vdev_id = mvd->vdev_id;
1394 vdev_add_child(pvd, cvd);
1395 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1396
1397 if (cvd == cvd->vdev_top)
1398 vdev_top_transfer(mvd, cvd);
1399
1400 ASSERT(mvd->vdev_children == 0);
1401 vdev_free(mvd);
1402 }
1403
1404 /*
1405 * Choose GCD for spa_gcd_alloc.
1406 */
1407 static uint64_t
1408 vdev_gcd(uint64_t a, uint64_t b)
1409 {
1410 while (b != 0) {
1411 uint64_t t = b;
1412 b = a % b;
1413 a = t;
1414 }
1415 return (a);
1416 }
1417
1418 /*
1419 * Set spa_min_alloc and spa_gcd_alloc.
1420 */
1421 static void
1422 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1423 {
1424 if (min_alloc < spa->spa_min_alloc)
1425 spa->spa_min_alloc = min_alloc;
1426 if (spa->spa_gcd_alloc == INT_MAX) {
1427 spa->spa_gcd_alloc = min_alloc;
1428 } else {
1429 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1430 spa->spa_gcd_alloc);
1431 }
1432 }
1433
1434 void
1435 vdev_metaslab_group_create(vdev_t *vd)
1436 {
1437 spa_t *spa = vd->vdev_spa;
1438
1439 /*
1440 * metaslab_group_create was delayed until allocation bias was available
1441 */
1442 if (vd->vdev_mg == NULL) {
1443 metaslab_class_t *mc;
1444
1445 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1446 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1447
1448 ASSERT3U(vd->vdev_islog, ==,
1449 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1450
1451 switch (vd->vdev_alloc_bias) {
1452 case VDEV_BIAS_LOG:
1453 mc = spa_log_class(spa);
1454 break;
1455 case VDEV_BIAS_SPECIAL:
1456 mc = spa_special_class(spa);
1457 break;
1458 case VDEV_BIAS_DEDUP:
1459 mc = spa_dedup_class(spa);
1460 break;
1461 default:
1462 mc = spa_normal_class(spa);
1463 }
1464
1465 vd->vdev_mg = metaslab_group_create(mc, vd,
1466 spa->spa_alloc_count);
1467
1468 if (!vd->vdev_islog) {
1469 vd->vdev_log_mg = metaslab_group_create(
1470 spa_embedded_log_class(spa), vd, 1);
1471 }
1472
1473 /*
1474 * The spa ashift min/max only apply for the normal metaslab
1475 * class. Class destination is late binding so ashift boundary
1476 * setting had to wait until now.
1477 */
1478 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1479 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1480 if (vd->vdev_ashift > spa->spa_max_ashift)
1481 spa->spa_max_ashift = vd->vdev_ashift;
1482 if (vd->vdev_ashift < spa->spa_min_ashift)
1483 spa->spa_min_ashift = vd->vdev_ashift;
1484
1485 uint64_t min_alloc = vdev_get_min_alloc(vd);
1486 vdev_spa_set_alloc(spa, min_alloc);
1487 }
1488 }
1489 }
1490
1491 int
1492 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1493 {
1494 spa_t *spa = vd->vdev_spa;
1495 uint64_t oldc = vd->vdev_ms_count;
1496 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1497 metaslab_t **mspp;
1498 int error;
1499 boolean_t expanding = (oldc != 0);
1500
1501 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1502
1503 /*
1504 * This vdev is not being allocated from yet or is a hole.
1505 */
1506 if (vd->vdev_ms_shift == 0)
1507 return (0);
1508
1509 ASSERT(!vd->vdev_ishole);
1510
1511 ASSERT(oldc <= newc);
1512
1513 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1514
1515 if (expanding) {
1516 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1517 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1518 }
1519
1520 vd->vdev_ms = mspp;
1521 vd->vdev_ms_count = newc;
1522
1523 for (uint64_t m = oldc; m < newc; m++) {
1524 uint64_t object = 0;
1525 /*
1526 * vdev_ms_array may be 0 if we are creating the "fake"
1527 * metaslabs for an indirect vdev for zdb's leak detection.
1528 * See zdb_leak_init().
1529 */
1530 if (txg == 0 && vd->vdev_ms_array != 0) {
1531 error = dmu_read(spa->spa_meta_objset,
1532 vd->vdev_ms_array,
1533 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1534 DMU_READ_PREFETCH);
1535 if (error != 0) {
1536 vdev_dbgmsg(vd, "unable to read the metaslab "
1537 "array [error=%d]", error);
1538 return (error);
1539 }
1540 }
1541
1542 error = metaslab_init(vd->vdev_mg, m, object, txg,
1543 &(vd->vdev_ms[m]));
1544 if (error != 0) {
1545 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1546 error);
1547 return (error);
1548 }
1549 }
1550
1551 /*
1552 * Find the emptiest metaslab on the vdev and mark it for use for
1553 * embedded slog by moving it from the regular to the log metaslab
1554 * group.
1555 */
1556 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1557 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1558 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1559 uint64_t slog_msid = 0;
1560 uint64_t smallest = UINT64_MAX;
1561
1562 /*
1563 * Note, we only search the new metaslabs, because the old
1564 * (pre-existing) ones may be active (e.g. have non-empty
1565 * range_tree's), and we don't move them to the new
1566 * metaslab_t.
1567 */
1568 for (uint64_t m = oldc; m < newc; m++) {
1569 uint64_t alloc =
1570 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1571 if (alloc < smallest) {
1572 slog_msid = m;
1573 smallest = alloc;
1574 }
1575 }
1576 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1577 /*
1578 * The metaslab was marked as dirty at the end of
1579 * metaslab_init(). Remove it from the dirty list so that we
1580 * can uninitialize and reinitialize it to the new class.
1581 */
1582 if (txg != 0) {
1583 (void) txg_list_remove_this(&vd->vdev_ms_list,
1584 slog_ms, txg);
1585 }
1586 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1587 metaslab_fini(slog_ms);
1588 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1589 &vd->vdev_ms[slog_msid]));
1590 }
1591
1592 if (txg == 0)
1593 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1594
1595 /*
1596 * If the vdev is marked as non-allocating then don't
1597 * activate the metaslabs since we want to ensure that
1598 * no allocations are performed on this device.
1599 */
1600 if (vd->vdev_noalloc) {
1601 /* track non-allocating vdev space */
1602 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1603 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1604 } else if (!expanding) {
1605 metaslab_group_activate(vd->vdev_mg);
1606 if (vd->vdev_log_mg != NULL)
1607 metaslab_group_activate(vd->vdev_log_mg);
1608 }
1609
1610 if (txg == 0)
1611 spa_config_exit(spa, SCL_ALLOC, FTAG);
1612
1613 return (0);
1614 }
1615
1616 void
1617 vdev_metaslab_fini(vdev_t *vd)
1618 {
1619 if (vd->vdev_checkpoint_sm != NULL) {
1620 ASSERT(spa_feature_is_active(vd->vdev_spa,
1621 SPA_FEATURE_POOL_CHECKPOINT));
1622 space_map_close(vd->vdev_checkpoint_sm);
1623 /*
1624 * Even though we close the space map, we need to set its
1625 * pointer to NULL. The reason is that vdev_metaslab_fini()
1626 * may be called multiple times for certain operations
1627 * (i.e. when destroying a pool) so we need to ensure that
1628 * this clause never executes twice. This logic is similar
1629 * to the one used for the vdev_ms clause below.
1630 */
1631 vd->vdev_checkpoint_sm = NULL;
1632 }
1633
1634 if (vd->vdev_ms != NULL) {
1635 metaslab_group_t *mg = vd->vdev_mg;
1636
1637 metaslab_group_passivate(mg);
1638 if (vd->vdev_log_mg != NULL) {
1639 ASSERT(!vd->vdev_islog);
1640 metaslab_group_passivate(vd->vdev_log_mg);
1641 }
1642
1643 uint64_t count = vd->vdev_ms_count;
1644 for (uint64_t m = 0; m < count; m++) {
1645 metaslab_t *msp = vd->vdev_ms[m];
1646 if (msp != NULL)
1647 metaslab_fini(msp);
1648 }
1649 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1650 vd->vdev_ms = NULL;
1651 vd->vdev_ms_count = 0;
1652
1653 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1654 ASSERT0(mg->mg_histogram[i]);
1655 if (vd->vdev_log_mg != NULL)
1656 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1657 }
1658 }
1659 ASSERT0(vd->vdev_ms_count);
1660 }
1661
1662 typedef struct vdev_probe_stats {
1663 boolean_t vps_readable;
1664 boolean_t vps_writeable;
1665 int vps_flags;
1666 } vdev_probe_stats_t;
1667
1668 static void
1669 vdev_probe_done(zio_t *zio)
1670 {
1671 spa_t *spa = zio->io_spa;
1672 vdev_t *vd = zio->io_vd;
1673 vdev_probe_stats_t *vps = zio->io_private;
1674
1675 ASSERT(vd->vdev_probe_zio != NULL);
1676
1677 if (zio->io_type == ZIO_TYPE_READ) {
1678 if (zio->io_error == 0)
1679 vps->vps_readable = 1;
1680 if (zio->io_error == 0 && spa_writeable(spa)) {
1681 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1682 zio->io_offset, zio->io_size, zio->io_abd,
1683 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1684 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1685 } else {
1686 abd_free(zio->io_abd);
1687 }
1688 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1689 if (zio->io_error == 0)
1690 vps->vps_writeable = 1;
1691 abd_free(zio->io_abd);
1692 } else if (zio->io_type == ZIO_TYPE_NULL) {
1693 zio_t *pio;
1694 zio_link_t *zl;
1695
1696 vd->vdev_cant_read |= !vps->vps_readable;
1697 vd->vdev_cant_write |= !vps->vps_writeable;
1698 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1699 vd->vdev_cant_read, vd->vdev_cant_write);
1700
1701 if (vdev_readable(vd) &&
1702 (vdev_writeable(vd) || !spa_writeable(spa))) {
1703 zio->io_error = 0;
1704 } else {
1705 ASSERT(zio->io_error != 0);
1706 vdev_dbgmsg(vd, "failed probe");
1707 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1708 spa, vd, NULL, NULL, 0);
1709 zio->io_error = SET_ERROR(ENXIO);
1710 }
1711
1712 mutex_enter(&vd->vdev_probe_lock);
1713 ASSERT(vd->vdev_probe_zio == zio);
1714 vd->vdev_probe_zio = NULL;
1715 mutex_exit(&vd->vdev_probe_lock);
1716
1717 zl = NULL;
1718 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1719 if (!vdev_accessible(vd, pio))
1720 pio->io_error = SET_ERROR(ENXIO);
1721
1722 kmem_free(vps, sizeof (*vps));
1723 }
1724 }
1725
1726 /*
1727 * Determine whether this device is accessible.
1728 *
1729 * Read and write to several known locations: the pad regions of each
1730 * vdev label but the first, which we leave alone in case it contains
1731 * a VTOC.
1732 */
1733 zio_t *
1734 vdev_probe(vdev_t *vd, zio_t *zio)
1735 {
1736 spa_t *spa = vd->vdev_spa;
1737 vdev_probe_stats_t *vps = NULL;
1738 zio_t *pio;
1739
1740 ASSERT(vd->vdev_ops->vdev_op_leaf);
1741
1742 /*
1743 * Don't probe the probe.
1744 */
1745 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1746 return (NULL);
1747
1748 /*
1749 * To prevent 'probe storms' when a device fails, we create
1750 * just one probe i/o at a time. All zios that want to probe
1751 * this vdev will become parents of the probe io.
1752 */
1753 mutex_enter(&vd->vdev_probe_lock);
1754
1755 if ((pio = vd->vdev_probe_zio) == NULL) {
1756 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1757
1758 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1759 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1760
1761 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1762 /*
1763 * vdev_cant_read and vdev_cant_write can only
1764 * transition from TRUE to FALSE when we have the
1765 * SCL_ZIO lock as writer; otherwise they can only
1766 * transition from FALSE to TRUE. This ensures that
1767 * any zio looking at these values can assume that
1768 * failures persist for the life of the I/O. That's
1769 * important because when a device has intermittent
1770 * connectivity problems, we want to ensure that
1771 * they're ascribed to the device (ENXIO) and not
1772 * the zio (EIO).
1773 *
1774 * Since we hold SCL_ZIO as writer here, clear both
1775 * values so the probe can reevaluate from first
1776 * principles.
1777 */
1778 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1779 vd->vdev_cant_read = B_FALSE;
1780 vd->vdev_cant_write = B_FALSE;
1781 }
1782
1783 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1784 vdev_probe_done, vps,
1785 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1786
1787 /*
1788 * We can't change the vdev state in this context, so we
1789 * kick off an async task to do it on our behalf.
1790 */
1791 if (zio != NULL) {
1792 vd->vdev_probe_wanted = B_TRUE;
1793 spa_async_request(spa, SPA_ASYNC_PROBE);
1794 }
1795 }
1796
1797 if (zio != NULL)
1798 zio_add_child(zio, pio);
1799
1800 mutex_exit(&vd->vdev_probe_lock);
1801
1802 if (vps == NULL) {
1803 ASSERT(zio != NULL);
1804 return (NULL);
1805 }
1806
1807 for (int l = 1; l < VDEV_LABELS; l++) {
1808 zio_nowait(zio_read_phys(pio, vd,
1809 vdev_label_offset(vd->vdev_psize, l,
1810 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1811 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1812 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1813 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1814 }
1815
1816 if (zio == NULL)
1817 return (pio);
1818
1819 zio_nowait(pio);
1820 return (NULL);
1821 }
1822
1823 static void
1824 vdev_load_child(void *arg)
1825 {
1826 vdev_t *vd = arg;
1827
1828 vd->vdev_load_error = vdev_load(vd);
1829 }
1830
1831 static void
1832 vdev_open_child(void *arg)
1833 {
1834 vdev_t *vd = arg;
1835
1836 vd->vdev_open_thread = curthread;
1837 vd->vdev_open_error = vdev_open(vd);
1838 vd->vdev_open_thread = NULL;
1839 }
1840
1841 static boolean_t
1842 vdev_uses_zvols(vdev_t *vd)
1843 {
1844 #ifdef _KERNEL
1845 if (zvol_is_zvol(vd->vdev_path))
1846 return (B_TRUE);
1847 #endif
1848
1849 for (int c = 0; c < vd->vdev_children; c++)
1850 if (vdev_uses_zvols(vd->vdev_child[c]))
1851 return (B_TRUE);
1852
1853 return (B_FALSE);
1854 }
1855
1856 /*
1857 * Returns B_TRUE if the passed child should be opened.
1858 */
1859 static boolean_t
1860 vdev_default_open_children_func(vdev_t *vd)
1861 {
1862 (void) vd;
1863 return (B_TRUE);
1864 }
1865
1866 /*
1867 * Open the requested child vdevs. If any of the leaf vdevs are using
1868 * a ZFS volume then do the opens in a single thread. This avoids a
1869 * deadlock when the current thread is holding the spa_namespace_lock.
1870 */
1871 static void
1872 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1873 {
1874 int children = vd->vdev_children;
1875
1876 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1877 children, children, TASKQ_PREPOPULATE);
1878 vd->vdev_nonrot = B_TRUE;
1879
1880 for (int c = 0; c < children; c++) {
1881 vdev_t *cvd = vd->vdev_child[c];
1882
1883 if (open_func(cvd) == B_FALSE)
1884 continue;
1885
1886 if (tq == NULL || vdev_uses_zvols(vd)) {
1887 cvd->vdev_open_error = vdev_open(cvd);
1888 } else {
1889 VERIFY(taskq_dispatch(tq, vdev_open_child,
1890 cvd, TQ_SLEEP) != TASKQID_INVALID);
1891 }
1892
1893 vd->vdev_nonrot &= cvd->vdev_nonrot;
1894 }
1895
1896 if (tq != NULL) {
1897 taskq_wait(tq);
1898 taskq_destroy(tq);
1899 }
1900 }
1901
1902 /*
1903 * Open all child vdevs.
1904 */
1905 void
1906 vdev_open_children(vdev_t *vd)
1907 {
1908 vdev_open_children_impl(vd, vdev_default_open_children_func);
1909 }
1910
1911 /*
1912 * Conditionally open a subset of child vdevs.
1913 */
1914 void
1915 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1916 {
1917 vdev_open_children_impl(vd, open_func);
1918 }
1919
1920 /*
1921 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
1922 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
1923 * changed, this algorithm can not change, otherwise it would inconsistently
1924 * account for existing bp's. We also hard-code txg 0 for the same reason
1925 * since expanded RAIDZ vdevs can use a different asize for different birth
1926 * txg's.
1927 */
1928 static void
1929 vdev_set_deflate_ratio(vdev_t *vd)
1930 {
1931 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1932 vd->vdev_deflate_ratio = (1 << 17) /
1933 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1934 SPA_MINBLOCKSHIFT);
1935 }
1936 }
1937
1938 /*
1939 * Choose the best of two ashifts, preferring one between logical ashift
1940 * (absolute minimum) and administrator defined maximum, otherwise take
1941 * the biggest of the two.
1942 */
1943 uint64_t
1944 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1945 {
1946 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1947 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1948 return (a);
1949 else
1950 return (MAX(a, b));
1951 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1952 return (MAX(a, b));
1953 return (b);
1954 }
1955
1956 /*
1957 * Maximize performance by inflating the configured ashift for top level
1958 * vdevs to be as close to the physical ashift as possible while maintaining
1959 * administrator defined limits and ensuring it doesn't go below the
1960 * logical ashift.
1961 */
1962 static void
1963 vdev_ashift_optimize(vdev_t *vd)
1964 {
1965 ASSERT(vd == vd->vdev_top);
1966
1967 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1968 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1969 vd->vdev_ashift = MIN(
1970 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1971 MAX(zfs_vdev_min_auto_ashift,
1972 vd->vdev_physical_ashift));
1973 } else {
1974 /*
1975 * If the logical and physical ashifts are the same, then
1976 * we ensure that the top-level vdev's ashift is not smaller
1977 * than our minimum ashift value. For the unusual case
1978 * where logical ashift > physical ashift, we can't cap
1979 * the calculated ashift based on max ashift as that
1980 * would cause failures.
1981 * We still check if we need to increase it to match
1982 * the min ashift.
1983 */
1984 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1985 vd->vdev_ashift);
1986 }
1987 }
1988
1989 /*
1990 * Prepare a virtual device for access.
1991 */
1992 int
1993 vdev_open(vdev_t *vd)
1994 {
1995 spa_t *spa = vd->vdev_spa;
1996 int error;
1997 uint64_t osize = 0;
1998 uint64_t max_osize = 0;
1999 uint64_t asize, max_asize, psize;
2000 uint64_t logical_ashift = 0;
2001 uint64_t physical_ashift = 0;
2002
2003 ASSERT(vd->vdev_open_thread == curthread ||
2004 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2005 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2006 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2007 vd->vdev_state == VDEV_STATE_OFFLINE);
2008
2009 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2010 vd->vdev_cant_read = B_FALSE;
2011 vd->vdev_cant_write = B_FALSE;
2012 vd->vdev_min_asize = vdev_get_min_asize(vd);
2013
2014 /*
2015 * If this vdev is not removed, check its fault status. If it's
2016 * faulted, bail out of the open.
2017 */
2018 if (!vd->vdev_removed && vd->vdev_faulted) {
2019 ASSERT(vd->vdev_children == 0);
2020 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2021 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2022 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2023 vd->vdev_label_aux);
2024 return (SET_ERROR(ENXIO));
2025 } else if (vd->vdev_offline) {
2026 ASSERT(vd->vdev_children == 0);
2027 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2028 return (SET_ERROR(ENXIO));
2029 }
2030
2031 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2032 &logical_ashift, &physical_ashift);
2033
2034 /* Keep the device in removed state if unplugged */
2035 if (error == ENOENT && vd->vdev_removed) {
2036 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2037 VDEV_AUX_NONE);
2038 return (error);
2039 }
2040
2041 /*
2042 * Physical volume size should never be larger than its max size, unless
2043 * the disk has shrunk while we were reading it or the device is buggy
2044 * or damaged: either way it's not safe for use, bail out of the open.
2045 */
2046 if (osize > max_osize) {
2047 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2048 VDEV_AUX_OPEN_FAILED);
2049 return (SET_ERROR(ENXIO));
2050 }
2051
2052 /*
2053 * Reset the vdev_reopening flag so that we actually close
2054 * the vdev on error.
2055 */
2056 vd->vdev_reopening = B_FALSE;
2057 if (zio_injection_enabled && error == 0)
2058 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2059
2060 if (error) {
2061 if (vd->vdev_removed &&
2062 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2063 vd->vdev_removed = B_FALSE;
2064
2065 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2066 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2067 vd->vdev_stat.vs_aux);
2068 } else {
2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2070 vd->vdev_stat.vs_aux);
2071 }
2072 return (error);
2073 }
2074
2075 vd->vdev_removed = B_FALSE;
2076
2077 /*
2078 * Recheck the faulted flag now that we have confirmed that
2079 * the vdev is accessible. If we're faulted, bail.
2080 */
2081 if (vd->vdev_faulted) {
2082 ASSERT(vd->vdev_children == 0);
2083 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2084 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2086 vd->vdev_label_aux);
2087 return (SET_ERROR(ENXIO));
2088 }
2089
2090 if (vd->vdev_degraded) {
2091 ASSERT(vd->vdev_children == 0);
2092 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2093 VDEV_AUX_ERR_EXCEEDED);
2094 } else {
2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2096 }
2097
2098 /*
2099 * For hole or missing vdevs we just return success.
2100 */
2101 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2102 return (0);
2103
2104 for (int c = 0; c < vd->vdev_children; c++) {
2105 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2106 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2107 VDEV_AUX_NONE);
2108 break;
2109 }
2110 }
2111
2112 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2113 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2114
2115 if (vd->vdev_children == 0) {
2116 if (osize < SPA_MINDEVSIZE) {
2117 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2118 VDEV_AUX_TOO_SMALL);
2119 return (SET_ERROR(EOVERFLOW));
2120 }
2121 psize = osize;
2122 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2123 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2124 VDEV_LABEL_END_SIZE);
2125 } else {
2126 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2127 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2129 VDEV_AUX_TOO_SMALL);
2130 return (SET_ERROR(EOVERFLOW));
2131 }
2132 psize = 0;
2133 asize = osize;
2134 max_asize = max_osize;
2135 }
2136
2137 /*
2138 * If the vdev was expanded, record this so that we can re-create the
2139 * uberblock rings in labels {2,3}, during the next sync.
2140 */
2141 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2142 vd->vdev_copy_uberblocks = B_TRUE;
2143
2144 vd->vdev_psize = psize;
2145
2146 /*
2147 * Make sure the allocatable size hasn't shrunk too much.
2148 */
2149 if (asize < vd->vdev_min_asize) {
2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2151 VDEV_AUX_BAD_LABEL);
2152 return (SET_ERROR(EINVAL));
2153 }
2154
2155 /*
2156 * We can always set the logical/physical ashift members since
2157 * their values are only used to calculate the vdev_ashift when
2158 * the device is first added to the config. These values should
2159 * not be used for anything else since they may change whenever
2160 * the device is reopened and we don't store them in the label.
2161 */
2162 vd->vdev_physical_ashift =
2163 MAX(physical_ashift, vd->vdev_physical_ashift);
2164 vd->vdev_logical_ashift = MAX(logical_ashift,
2165 vd->vdev_logical_ashift);
2166
2167 if (vd->vdev_asize == 0) {
2168 /*
2169 * This is the first-ever open, so use the computed values.
2170 * For compatibility, a different ashift can be requested.
2171 */
2172 vd->vdev_asize = asize;
2173 vd->vdev_max_asize = max_asize;
2174
2175 /*
2176 * If the vdev_ashift was not overridden at creation time,
2177 * then set it the logical ashift and optimize the ashift.
2178 */
2179 if (vd->vdev_ashift == 0) {
2180 vd->vdev_ashift = vd->vdev_logical_ashift;
2181
2182 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2184 VDEV_AUX_ASHIFT_TOO_BIG);
2185 return (SET_ERROR(EDOM));
2186 }
2187
2188 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2189 vdev_ashift_optimize(vd);
2190 vd->vdev_attaching = B_FALSE;
2191 }
2192 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2193 vd->vdev_ashift > ASHIFT_MAX)) {
2194 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2195 VDEV_AUX_BAD_ASHIFT);
2196 return (SET_ERROR(EDOM));
2197 }
2198 } else {
2199 /*
2200 * Make sure the alignment required hasn't increased.
2201 */
2202 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2203 vd->vdev_ops->vdev_op_leaf) {
2204 (void) zfs_ereport_post(
2205 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2206 spa, vd, NULL, NULL, 0);
2207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2208 VDEV_AUX_BAD_LABEL);
2209 return (SET_ERROR(EDOM));
2210 }
2211 vd->vdev_max_asize = max_asize;
2212 }
2213
2214 /*
2215 * If all children are healthy we update asize if either:
2216 * The asize has increased, due to a device expansion caused by dynamic
2217 * LUN growth or vdev replacement, and automatic expansion is enabled;
2218 * making the additional space available.
2219 *
2220 * The asize has decreased, due to a device shrink usually caused by a
2221 * vdev replace with a smaller device. This ensures that calculations
2222 * based of max_asize and asize e.g. esize are always valid. It's safe
2223 * to do this as we've already validated that asize is greater than
2224 * vdev_min_asize.
2225 */
2226 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2227 ((asize > vd->vdev_asize &&
2228 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2229 (asize < vd->vdev_asize)))
2230 vd->vdev_asize = asize;
2231
2232 vdev_set_min_asize(vd);
2233
2234 /*
2235 * Ensure we can issue some IO before declaring the
2236 * vdev open for business.
2237 */
2238 if (vd->vdev_ops->vdev_op_leaf &&
2239 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2240 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2241 VDEV_AUX_ERR_EXCEEDED);
2242 return (error);
2243 }
2244
2245 /*
2246 * Track the minimum allocation size.
2247 */
2248 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2249 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2250 uint64_t min_alloc = vdev_get_min_alloc(vd);
2251 vdev_spa_set_alloc(spa, min_alloc);
2252 }
2253
2254 /*
2255 * If this is a leaf vdev, assess whether a resilver is needed.
2256 * But don't do this if we are doing a reopen for a scrub, since
2257 * this would just restart the scrub we are already doing.
2258 */
2259 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2260 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2261
2262 return (0);
2263 }
2264
2265 static void
2266 vdev_validate_child(void *arg)
2267 {
2268 vdev_t *vd = arg;
2269
2270 vd->vdev_validate_thread = curthread;
2271 vd->vdev_validate_error = vdev_validate(vd);
2272 vd->vdev_validate_thread = NULL;
2273 }
2274
2275 /*
2276 * Called once the vdevs are all opened, this routine validates the label
2277 * contents. This needs to be done before vdev_load() so that we don't
2278 * inadvertently do repair I/Os to the wrong device.
2279 *
2280 * This function will only return failure if one of the vdevs indicates that it
2281 * has since been destroyed or exported. This is only possible if
2282 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2283 * will be updated but the function will return 0.
2284 */
2285 int
2286 vdev_validate(vdev_t *vd)
2287 {
2288 spa_t *spa = vd->vdev_spa;
2289 taskq_t *tq = NULL;
2290 nvlist_t *label;
2291 uint64_t guid = 0, aux_guid = 0, top_guid;
2292 uint64_t state;
2293 nvlist_t *nvl;
2294 uint64_t txg;
2295 int children = vd->vdev_children;
2296
2297 if (vdev_validate_skip)
2298 return (0);
2299
2300 if (children > 0) {
2301 tq = taskq_create("vdev_validate", children, minclsyspri,
2302 children, children, TASKQ_PREPOPULATE);
2303 }
2304
2305 for (uint64_t c = 0; c < children; c++) {
2306 vdev_t *cvd = vd->vdev_child[c];
2307
2308 if (tq == NULL || vdev_uses_zvols(cvd)) {
2309 vdev_validate_child(cvd);
2310 } else {
2311 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2312 TQ_SLEEP) != TASKQID_INVALID);
2313 }
2314 }
2315 if (tq != NULL) {
2316 taskq_wait(tq);
2317 taskq_destroy(tq);
2318 }
2319 for (int c = 0; c < children; c++) {
2320 int error = vd->vdev_child[c]->vdev_validate_error;
2321
2322 if (error != 0)
2323 return (SET_ERROR(EBADF));
2324 }
2325
2326
2327 /*
2328 * If the device has already failed, or was marked offline, don't do
2329 * any further validation. Otherwise, label I/O will fail and we will
2330 * overwrite the previous state.
2331 */
2332 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2333 return (0);
2334
2335 /*
2336 * If we are performing an extreme rewind, we allow for a label that
2337 * was modified at a point after the current txg.
2338 * If config lock is not held do not check for the txg. spa_sync could
2339 * be updating the vdev's label before updating spa_last_synced_txg.
2340 */
2341 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2342 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2343 txg = UINT64_MAX;
2344 else
2345 txg = spa_last_synced_txg(spa);
2346
2347 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2349 VDEV_AUX_BAD_LABEL);
2350 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2351 "txg %llu", (u_longlong_t)txg);
2352 return (0);
2353 }
2354
2355 /*
2356 * Determine if this vdev has been split off into another
2357 * pool. If so, then refuse to open it.
2358 */
2359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2360 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2362 VDEV_AUX_SPLIT_POOL);
2363 nvlist_free(label);
2364 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2365 return (0);
2366 }
2367
2368 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2370 VDEV_AUX_CORRUPT_DATA);
2371 nvlist_free(label);
2372 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2373 ZPOOL_CONFIG_POOL_GUID);
2374 return (0);
2375 }
2376
2377 /*
2378 * If config is not trusted then ignore the spa guid check. This is
2379 * necessary because if the machine crashed during a re-guid the new
2380 * guid might have been written to all of the vdev labels, but not the
2381 * cached config. The check will be performed again once we have the
2382 * trusted config from the MOS.
2383 */
2384 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2386 VDEV_AUX_CORRUPT_DATA);
2387 nvlist_free(label);
2388 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2389 "match config (%llu != %llu)", (u_longlong_t)guid,
2390 (u_longlong_t)spa_guid(spa));
2391 return (0);
2392 }
2393
2394 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2395 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2396 &aux_guid) != 0)
2397 aux_guid = 0;
2398
2399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2400 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2401 VDEV_AUX_CORRUPT_DATA);
2402 nvlist_free(label);
2403 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2404 ZPOOL_CONFIG_GUID);
2405 return (0);
2406 }
2407
2408 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2409 != 0) {
2410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2411 VDEV_AUX_CORRUPT_DATA);
2412 nvlist_free(label);
2413 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2414 ZPOOL_CONFIG_TOP_GUID);
2415 return (0);
2416 }
2417
2418 /*
2419 * If this vdev just became a top-level vdev because its sibling was
2420 * detached, it will have adopted the parent's vdev guid -- but the
2421 * label may or may not be on disk yet. Fortunately, either version
2422 * of the label will have the same top guid, so if we're a top-level
2423 * vdev, we can safely compare to that instead.
2424 * However, if the config comes from a cachefile that failed to update
2425 * after the detach, a top-level vdev will appear as a non top-level
2426 * vdev in the config. Also relax the constraints if we perform an
2427 * extreme rewind.
2428 *
2429 * If we split this vdev off instead, then we also check the
2430 * original pool's guid. We don't want to consider the vdev
2431 * corrupt if it is partway through a split operation.
2432 */
2433 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2434 boolean_t mismatch = B_FALSE;
2435 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2436 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2437 mismatch = B_TRUE;
2438 } else {
2439 if (vd->vdev_guid != top_guid &&
2440 vd->vdev_top->vdev_guid != guid)
2441 mismatch = B_TRUE;
2442 }
2443
2444 if (mismatch) {
2445 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2446 VDEV_AUX_CORRUPT_DATA);
2447 nvlist_free(label);
2448 vdev_dbgmsg(vd, "vdev_validate: config guid "
2449 "doesn't match label guid");
2450 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2451 (u_longlong_t)vd->vdev_guid,
2452 (u_longlong_t)vd->vdev_top->vdev_guid);
2453 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2454 "aux_guid %llu", (u_longlong_t)guid,
2455 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2456 return (0);
2457 }
2458 }
2459
2460 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2461 &state) != 0) {
2462 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2463 VDEV_AUX_CORRUPT_DATA);
2464 nvlist_free(label);
2465 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2466 ZPOOL_CONFIG_POOL_STATE);
2467 return (0);
2468 }
2469
2470 nvlist_free(label);
2471
2472 /*
2473 * If this is a verbatim import, no need to check the
2474 * state of the pool.
2475 */
2476 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2477 spa_load_state(spa) == SPA_LOAD_OPEN &&
2478 state != POOL_STATE_ACTIVE) {
2479 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2480 "for spa %s", (u_longlong_t)state, spa->spa_name);
2481 return (SET_ERROR(EBADF));
2482 }
2483
2484 /*
2485 * If we were able to open and validate a vdev that was
2486 * previously marked permanently unavailable, clear that state
2487 * now.
2488 */
2489 if (vd->vdev_not_present)
2490 vd->vdev_not_present = 0;
2491
2492 return (0);
2493 }
2494
2495 static void
2496 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2497 {
2498 char *old, *new;
2499 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2500 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2501 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2502 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2503 dvd->vdev_path, svd->vdev_path);
2504 spa_strfree(dvd->vdev_path);
2505 dvd->vdev_path = spa_strdup(svd->vdev_path);
2506 }
2507 } else if (svd->vdev_path != NULL) {
2508 dvd->vdev_path = spa_strdup(svd->vdev_path);
2509 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2510 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2511 }
2512
2513 /*
2514 * Our enclosure sysfs path may have changed between imports
2515 */
2516 old = dvd->vdev_enc_sysfs_path;
2517 new = svd->vdev_enc_sysfs_path;
2518 if ((old != NULL && new == NULL) ||
2519 (old == NULL && new != NULL) ||
2520 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2521 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2522 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2523 old, new);
2524
2525 if (dvd->vdev_enc_sysfs_path)
2526 spa_strfree(dvd->vdev_enc_sysfs_path);
2527
2528 if (svd->vdev_enc_sysfs_path) {
2529 dvd->vdev_enc_sysfs_path = spa_strdup(
2530 svd->vdev_enc_sysfs_path);
2531 } else {
2532 dvd->vdev_enc_sysfs_path = NULL;
2533 }
2534 }
2535 }
2536
2537 /*
2538 * Recursively copy vdev paths from one vdev to another. Source and destination
2539 * vdev trees must have same geometry otherwise return error. Intended to copy
2540 * paths from userland config into MOS config.
2541 */
2542 int
2543 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2544 {
2545 if ((svd->vdev_ops == &vdev_missing_ops) ||
2546 (svd->vdev_ishole && dvd->vdev_ishole) ||
2547 (dvd->vdev_ops == &vdev_indirect_ops))
2548 return (0);
2549
2550 if (svd->vdev_ops != dvd->vdev_ops) {
2551 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2552 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2553 return (SET_ERROR(EINVAL));
2554 }
2555
2556 if (svd->vdev_guid != dvd->vdev_guid) {
2557 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2558 "%llu)", (u_longlong_t)svd->vdev_guid,
2559 (u_longlong_t)dvd->vdev_guid);
2560 return (SET_ERROR(EINVAL));
2561 }
2562
2563 if (svd->vdev_children != dvd->vdev_children) {
2564 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2565 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2566 (u_longlong_t)dvd->vdev_children);
2567 return (SET_ERROR(EINVAL));
2568 }
2569
2570 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2571 int error = vdev_copy_path_strict(svd->vdev_child[i],
2572 dvd->vdev_child[i]);
2573 if (error != 0)
2574 return (error);
2575 }
2576
2577 if (svd->vdev_ops->vdev_op_leaf)
2578 vdev_copy_path_impl(svd, dvd);
2579
2580 return (0);
2581 }
2582
2583 static void
2584 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2585 {
2586 ASSERT(stvd->vdev_top == stvd);
2587 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2588
2589 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2590 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2591 }
2592
2593 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2594 return;
2595
2596 /*
2597 * The idea here is that while a vdev can shift positions within
2598 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2599 * step outside of it.
2600 */
2601 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2602
2603 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2604 return;
2605
2606 ASSERT(vd->vdev_ops->vdev_op_leaf);
2607
2608 vdev_copy_path_impl(vd, dvd);
2609 }
2610
2611 /*
2612 * Recursively copy vdev paths from one root vdev to another. Source and
2613 * destination vdev trees may differ in geometry. For each destination leaf
2614 * vdev, search a vdev with the same guid and top vdev id in the source.
2615 * Intended to copy paths from userland config into MOS config.
2616 */
2617 void
2618 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2619 {
2620 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2621 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2622 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2623
2624 for (uint64_t i = 0; i < children; i++) {
2625 vdev_copy_path_search(srvd->vdev_child[i],
2626 drvd->vdev_child[i]);
2627 }
2628 }
2629
2630 /*
2631 * Close a virtual device.
2632 */
2633 void
2634 vdev_close(vdev_t *vd)
2635 {
2636 vdev_t *pvd = vd->vdev_parent;
2637 spa_t *spa __maybe_unused = vd->vdev_spa;
2638
2639 ASSERT(vd != NULL);
2640 ASSERT(vd->vdev_open_thread == curthread ||
2641 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2642
2643 /*
2644 * If our parent is reopening, then we are as well, unless we are
2645 * going offline.
2646 */
2647 if (pvd != NULL && pvd->vdev_reopening)
2648 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2649
2650 vd->vdev_ops->vdev_op_close(vd);
2651
2652 /*
2653 * We record the previous state before we close it, so that if we are
2654 * doing a reopen(), we don't generate FMA ereports if we notice that
2655 * it's still faulted.
2656 */
2657 vd->vdev_prevstate = vd->vdev_state;
2658
2659 if (vd->vdev_offline)
2660 vd->vdev_state = VDEV_STATE_OFFLINE;
2661 else
2662 vd->vdev_state = VDEV_STATE_CLOSED;
2663 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2664 }
2665
2666 void
2667 vdev_hold(vdev_t *vd)
2668 {
2669 spa_t *spa = vd->vdev_spa;
2670
2671 ASSERT(spa_is_root(spa));
2672 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2673 return;
2674
2675 for (int c = 0; c < vd->vdev_children; c++)
2676 vdev_hold(vd->vdev_child[c]);
2677
2678 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2679 vd->vdev_ops->vdev_op_hold(vd);
2680 }
2681
2682 void
2683 vdev_rele(vdev_t *vd)
2684 {
2685 ASSERT(spa_is_root(vd->vdev_spa));
2686 for (int c = 0; c < vd->vdev_children; c++)
2687 vdev_rele(vd->vdev_child[c]);
2688
2689 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2690 vd->vdev_ops->vdev_op_rele(vd);
2691 }
2692
2693 /*
2694 * Reopen all interior vdevs and any unopened leaves. We don't actually
2695 * reopen leaf vdevs which had previously been opened as they might deadlock
2696 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2697 * If the leaf has never been opened then open it, as usual.
2698 */
2699 void
2700 vdev_reopen(vdev_t *vd)
2701 {
2702 spa_t *spa = vd->vdev_spa;
2703
2704 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2705
2706 /* set the reopening flag unless we're taking the vdev offline */
2707 vd->vdev_reopening = !vd->vdev_offline;
2708 vdev_close(vd);
2709 (void) vdev_open(vd);
2710
2711 /*
2712 * Call vdev_validate() here to make sure we have the same device.
2713 * Otherwise, a device with an invalid label could be successfully
2714 * opened in response to vdev_reopen().
2715 */
2716 if (vd->vdev_aux) {
2717 (void) vdev_validate_aux(vd);
2718 if (vdev_readable(vd) && vdev_writeable(vd) &&
2719 vd->vdev_aux == &spa->spa_l2cache) {
2720 /*
2721 * In case the vdev is present we should evict all ARC
2722 * buffers and pointers to log blocks and reclaim their
2723 * space before restoring its contents to L2ARC.
2724 */
2725 if (l2arc_vdev_present(vd)) {
2726 l2arc_rebuild_vdev(vd, B_TRUE);
2727 } else {
2728 l2arc_add_vdev(spa, vd);
2729 }
2730 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2731 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2732 }
2733 } else {
2734 (void) vdev_validate(vd);
2735 }
2736
2737 /*
2738 * Recheck if resilver is still needed and cancel any
2739 * scheduled resilver if resilver is unneeded.
2740 */
2741 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2742 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2743 mutex_enter(&spa->spa_async_lock);
2744 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2745 mutex_exit(&spa->spa_async_lock);
2746 }
2747
2748 /*
2749 * Reassess parent vdev's health.
2750 */
2751 vdev_propagate_state(vd);
2752 }
2753
2754 int
2755 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2756 {
2757 int error;
2758
2759 /*
2760 * Normally, partial opens (e.g. of a mirror) are allowed.
2761 * For a create, however, we want to fail the request if
2762 * there are any components we can't open.
2763 */
2764 error = vdev_open(vd);
2765
2766 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2767 vdev_close(vd);
2768 return (error ? error : SET_ERROR(ENXIO));
2769 }
2770
2771 /*
2772 * Recursively load DTLs and initialize all labels.
2773 */
2774 if ((error = vdev_dtl_load(vd)) != 0 ||
2775 (error = vdev_label_init(vd, txg, isreplacing ?
2776 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2777 vdev_close(vd);
2778 return (error);
2779 }
2780
2781 return (0);
2782 }
2783
2784 void
2785 vdev_metaslab_set_size(vdev_t *vd)
2786 {
2787 uint64_t asize = vd->vdev_asize;
2788 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2789 uint64_t ms_shift;
2790
2791 /*
2792 * There are two dimensions to the metaslab sizing calculation:
2793 * the size of the metaslab and the count of metaslabs per vdev.
2794 *
2795 * The default values used below are a good balance between memory
2796 * usage (larger metaslab size means more memory needed for loaded
2797 * metaslabs; more metaslabs means more memory needed for the
2798 * metaslab_t structs), metaslab load time (larger metaslabs take
2799 * longer to load), and metaslab sync time (more metaslabs means
2800 * more time spent syncing all of them).
2801 *
2802 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2803 * The range of the dimensions are as follows:
2804 *
2805 * 2^29 <= ms_size <= 2^34
2806 * 16 <= ms_count <= 131,072
2807 *
2808 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2809 * at least 512MB (2^29) to minimize fragmentation effects when
2810 * testing with smaller devices. However, the count constraint
2811 * of at least 16 metaslabs will override this minimum size goal.
2812 *
2813 * On the upper end of vdev sizes, we aim for a maximum metaslab
2814 * size of 16GB. However, we will cap the total count to 2^17
2815 * metaslabs to keep our memory footprint in check and let the
2816 * metaslab size grow from there if that limit is hit.
2817 *
2818 * The net effect of applying above constrains is summarized below.
2819 *
2820 * vdev size metaslab count
2821 * --------------|-----------------
2822 * < 8GB ~16
2823 * 8GB - 100GB one per 512MB
2824 * 100GB - 3TB ~200
2825 * 3TB - 2PB one per 16GB
2826 * > 2PB ~131,072
2827 * --------------------------------
2828 *
2829 * Finally, note that all of the above calculate the initial
2830 * number of metaslabs. Expanding a top-level vdev will result
2831 * in additional metaslabs being allocated making it possible
2832 * to exceed the zfs_vdev_ms_count_limit.
2833 */
2834
2835 if (ms_count < zfs_vdev_min_ms_count)
2836 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2837 else if (ms_count > zfs_vdev_default_ms_count)
2838 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2839 else
2840 ms_shift = zfs_vdev_default_ms_shift;
2841
2842 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2843 ms_shift = SPA_MAXBLOCKSHIFT;
2844 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2845 ms_shift = zfs_vdev_max_ms_shift;
2846 /* cap the total count to constrain memory footprint */
2847 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2848 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2849 }
2850
2851 vd->vdev_ms_shift = ms_shift;
2852 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2853 }
2854
2855 void
2856 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2857 {
2858 ASSERT(vd == vd->vdev_top);
2859 /* indirect vdevs don't have metaslabs or dtls */
2860 ASSERT(vdev_is_concrete(vd) || flags == 0);
2861 ASSERT(ISP2(flags));
2862 ASSERT(spa_writeable(vd->vdev_spa));
2863
2864 if (flags & VDD_METASLAB)
2865 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2866
2867 if (flags & VDD_DTL)
2868 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2869
2870 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2871 }
2872
2873 void
2874 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2875 {
2876 for (int c = 0; c < vd->vdev_children; c++)
2877 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2878
2879 if (vd->vdev_ops->vdev_op_leaf)
2880 vdev_dirty(vd->vdev_top, flags, vd, txg);
2881 }
2882
2883 /*
2884 * DTLs.
2885 *
2886 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2887 * the vdev has less than perfect replication. There are four kinds of DTL:
2888 *
2889 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2890 *
2891 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2892 *
2893 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2894 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2895 * txgs that was scrubbed.
2896 *
2897 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2898 * persistent errors or just some device being offline.
2899 * Unlike the other three, the DTL_OUTAGE map is not generally
2900 * maintained; it's only computed when needed, typically to
2901 * determine whether a device can be detached.
2902 *
2903 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2904 * either has the data or it doesn't.
2905 *
2906 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2907 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2908 * if any child is less than fully replicated, then so is its parent.
2909 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2910 * comprising only those txgs which appear in 'maxfaults' or more children;
2911 * those are the txgs we don't have enough replication to read. For example,
2912 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2913 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2914 * two child DTL_MISSING maps.
2915 *
2916 * It should be clear from the above that to compute the DTLs and outage maps
2917 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2918 * Therefore, that is all we keep on disk. When loading the pool, or after
2919 * a configuration change, we generate all other DTLs from first principles.
2920 */
2921 void
2922 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2923 {
2924 range_tree_t *rt = vd->vdev_dtl[t];
2925
2926 ASSERT(t < DTL_TYPES);
2927 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2928 ASSERT(spa_writeable(vd->vdev_spa));
2929
2930 mutex_enter(&vd->vdev_dtl_lock);
2931 if (!range_tree_contains(rt, txg, size))
2932 range_tree_add(rt, txg, size);
2933 mutex_exit(&vd->vdev_dtl_lock);
2934 }
2935
2936 boolean_t
2937 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2938 {
2939 range_tree_t *rt = vd->vdev_dtl[t];
2940 boolean_t dirty = B_FALSE;
2941
2942 ASSERT(t < DTL_TYPES);
2943 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2944
2945 /*
2946 * While we are loading the pool, the DTLs have not been loaded yet.
2947 * This isn't a problem but it can result in devices being tried
2948 * which are known to not have the data. In which case, the import
2949 * is relying on the checksum to ensure that we get the right data.
2950 * Note that while importing we are only reading the MOS, which is
2951 * always checksummed.
2952 */
2953 mutex_enter(&vd->vdev_dtl_lock);
2954 if (!range_tree_is_empty(rt))
2955 dirty = range_tree_contains(rt, txg, size);
2956 mutex_exit(&vd->vdev_dtl_lock);
2957
2958 return (dirty);
2959 }
2960
2961 boolean_t
2962 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2963 {
2964 range_tree_t *rt = vd->vdev_dtl[t];
2965 boolean_t empty;
2966
2967 mutex_enter(&vd->vdev_dtl_lock);
2968 empty = range_tree_is_empty(rt);
2969 mutex_exit(&vd->vdev_dtl_lock);
2970
2971 return (empty);
2972 }
2973
2974 /*
2975 * Check if the txg falls within the range which must be
2976 * resilvered. DVAs outside this range can always be skipped.
2977 */
2978 boolean_t
2979 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2980 uint64_t phys_birth)
2981 {
2982 (void) dva, (void) psize;
2983
2984 /* Set by sequential resilver. */
2985 if (phys_birth == TXG_UNKNOWN)
2986 return (B_TRUE);
2987
2988 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2989 }
2990
2991 /*
2992 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2993 */
2994 boolean_t
2995 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2996 uint64_t phys_birth)
2997 {
2998 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2999
3000 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3001 vd->vdev_ops->vdev_op_leaf)
3002 return (B_TRUE);
3003
3004 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3005 phys_birth));
3006 }
3007
3008 /*
3009 * Returns the lowest txg in the DTL range.
3010 */
3011 static uint64_t
3012 vdev_dtl_min(vdev_t *vd)
3013 {
3014 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3015 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3016 ASSERT0(vd->vdev_children);
3017
3018 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3019 }
3020
3021 /*
3022 * Returns the highest txg in the DTL.
3023 */
3024 static uint64_t
3025 vdev_dtl_max(vdev_t *vd)
3026 {
3027 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3028 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3029 ASSERT0(vd->vdev_children);
3030
3031 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3032 }
3033
3034 /*
3035 * Determine if a resilvering vdev should remove any DTL entries from
3036 * its range. If the vdev was resilvering for the entire duration of the
3037 * scan then it should excise that range from its DTLs. Otherwise, this
3038 * vdev is considered partially resilvered and should leave its DTL
3039 * entries intact. The comment in vdev_dtl_reassess() describes how we
3040 * excise the DTLs.
3041 */
3042 static boolean_t
3043 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3044 {
3045 ASSERT0(vd->vdev_children);
3046
3047 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3048 return (B_FALSE);
3049
3050 if (vd->vdev_resilver_deferred)
3051 return (B_FALSE);
3052
3053 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3054 return (B_TRUE);
3055
3056 if (rebuild_done) {
3057 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3058 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3059
3060 /* Rebuild not initiated by attach */
3061 if (vd->vdev_rebuild_txg == 0)
3062 return (B_TRUE);
3063
3064 /*
3065 * When a rebuild completes without error then all missing data
3066 * up to the rebuild max txg has been reconstructed and the DTL
3067 * is eligible for excision.
3068 */
3069 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3070 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3071 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3072 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3073 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3074 return (B_TRUE);
3075 }
3076 } else {
3077 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3078 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3079
3080 /* Resilver not initiated by attach */
3081 if (vd->vdev_resilver_txg == 0)
3082 return (B_TRUE);
3083
3084 /*
3085 * When a resilver is initiated the scan will assign the
3086 * scn_max_txg value to the highest txg value that exists
3087 * in all DTLs. If this device's max DTL is not part of this
3088 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3089 * then it is not eligible for excision.
3090 */
3091 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3092 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3093 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3094 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3095 return (B_TRUE);
3096 }
3097 }
3098
3099 return (B_FALSE);
3100 }
3101
3102 /*
3103 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3104 * write operations will be issued to the pool.
3105 */
3106 void
3107 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3108 boolean_t scrub_done, boolean_t rebuild_done)
3109 {
3110 spa_t *spa = vd->vdev_spa;
3111 avl_tree_t reftree;
3112 int minref;
3113
3114 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3115
3116 for (int c = 0; c < vd->vdev_children; c++)
3117 vdev_dtl_reassess(vd->vdev_child[c], txg,
3118 scrub_txg, scrub_done, rebuild_done);
3119
3120 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3121 return;
3122
3123 if (vd->vdev_ops->vdev_op_leaf) {
3124 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3125 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3126 boolean_t check_excise = B_FALSE;
3127 boolean_t wasempty = B_TRUE;
3128
3129 mutex_enter(&vd->vdev_dtl_lock);
3130
3131 /*
3132 * If requested, pretend the scan or rebuild completed cleanly.
3133 */
3134 if (zfs_scan_ignore_errors) {
3135 if (scn != NULL)
3136 scn->scn_phys.scn_errors = 0;
3137 if (vr != NULL)
3138 vr->vr_rebuild_phys.vrp_errors = 0;
3139 }
3140
3141 if (scrub_txg != 0 &&
3142 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3143 wasempty = B_FALSE;
3144 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3145 "dtl:%llu/%llu errors:%llu",
3146 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3147 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3148 (u_longlong_t)vdev_dtl_min(vd),
3149 (u_longlong_t)vdev_dtl_max(vd),
3150 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3151 }
3152
3153 /*
3154 * If we've completed a scrub/resilver or a rebuild cleanly
3155 * then determine if this vdev should remove any DTLs. We
3156 * only want to excise regions on vdevs that were available
3157 * during the entire duration of this scan.
3158 */
3159 if (rebuild_done &&
3160 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3161 check_excise = B_TRUE;
3162 } else {
3163 if (spa->spa_scrub_started ||
3164 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3165 check_excise = B_TRUE;
3166 }
3167 }
3168
3169 if (scrub_txg && check_excise &&
3170 vdev_dtl_should_excise(vd, rebuild_done)) {
3171 /*
3172 * We completed a scrub, resilver or rebuild up to
3173 * scrub_txg. If we did it without rebooting, then
3174 * the scrub dtl will be valid, so excise the old
3175 * region and fold in the scrub dtl. Otherwise,
3176 * leave the dtl as-is if there was an error.
3177 *
3178 * There's little trick here: to excise the beginning
3179 * of the DTL_MISSING map, we put it into a reference
3180 * tree and then add a segment with refcnt -1 that
3181 * covers the range [0, scrub_txg). This means
3182 * that each txg in that range has refcnt -1 or 0.
3183 * We then add DTL_SCRUB with a refcnt of 2, so that
3184 * entries in the range [0, scrub_txg) will have a
3185 * positive refcnt -- either 1 or 2. We then convert
3186 * the reference tree into the new DTL_MISSING map.
3187 */
3188 space_reftree_create(&reftree);
3189 space_reftree_add_map(&reftree,
3190 vd->vdev_dtl[DTL_MISSING], 1);
3191 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3192 space_reftree_add_map(&reftree,
3193 vd->vdev_dtl[DTL_SCRUB], 2);
3194 space_reftree_generate_map(&reftree,
3195 vd->vdev_dtl[DTL_MISSING], 1);
3196 space_reftree_destroy(&reftree);
3197
3198 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3199 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3200 (u_longlong_t)vdev_dtl_min(vd),
3201 (u_longlong_t)vdev_dtl_max(vd));
3202 } else if (!wasempty) {
3203 zfs_dbgmsg("DTL_MISSING is now empty");
3204 }
3205 }
3206 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3207 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3208 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3209 if (scrub_done)
3210 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3211 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3212 if (!vdev_readable(vd))
3213 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3214 else
3215 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3216 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3217
3218 /*
3219 * If the vdev was resilvering or rebuilding and no longer
3220 * has any DTLs then reset the appropriate flag and dirty
3221 * the top level so that we persist the change.
3222 */
3223 if (txg != 0 &&
3224 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3225 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3226 if (vd->vdev_rebuild_txg != 0) {
3227 vd->vdev_rebuild_txg = 0;
3228 vdev_config_dirty(vd->vdev_top);
3229 } else if (vd->vdev_resilver_txg != 0) {
3230 vd->vdev_resilver_txg = 0;
3231 vdev_config_dirty(vd->vdev_top);
3232 }
3233 }
3234
3235 mutex_exit(&vd->vdev_dtl_lock);
3236
3237 if (txg != 0)
3238 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3239 } else {
3240 mutex_enter(&vd->vdev_dtl_lock);
3241 for (int t = 0; t < DTL_TYPES; t++) {
3242 /* account for child's outage in parent's missing map */
3243 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3244 if (t == DTL_SCRUB) {
3245 /* leaf vdevs only */
3246 continue;
3247 }
3248 if (t == DTL_PARTIAL) {
3249 /* i.e. non-zero */
3250 minref = 1;
3251 } else if (vdev_get_nparity(vd) != 0) {
3252 /* RAIDZ, DRAID */
3253 minref = vdev_get_nparity(vd) + 1;
3254 } else {
3255 /* any kind of mirror */
3256 minref = vd->vdev_children;
3257 }
3258 space_reftree_create(&reftree);
3259 for (int c = 0; c < vd->vdev_children; c++) {
3260 vdev_t *cvd = vd->vdev_child[c];
3261 mutex_enter(&cvd->vdev_dtl_lock);
3262 space_reftree_add_map(&reftree,
3263 cvd->vdev_dtl[s], 1);
3264 mutex_exit(&cvd->vdev_dtl_lock);
3265 }
3266 space_reftree_generate_map(&reftree,
3267 vd->vdev_dtl[t], minref);
3268 space_reftree_destroy(&reftree);
3269 }
3270 mutex_exit(&vd->vdev_dtl_lock);
3271 }
3272
3273 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3274 raidz_dtl_reassessed(vd);
3275 }
3276 }
3277
3278 /*
3279 * Iterate over all the vdevs except spare, and post kobj events
3280 */
3281 void
3282 vdev_post_kobj_evt(vdev_t *vd)
3283 {
3284 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3285 vd->vdev_kobj_flag == B_FALSE) {
3286 vd->vdev_kobj_flag = B_TRUE;
3287 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3288 }
3289
3290 for (int c = 0; c < vd->vdev_children; c++)
3291 vdev_post_kobj_evt(vd->vdev_child[c]);
3292 }
3293
3294 /*
3295 * Iterate over all the vdevs except spare, and clear kobj events
3296 */
3297 void
3298 vdev_clear_kobj_evt(vdev_t *vd)
3299 {
3300 vd->vdev_kobj_flag = B_FALSE;
3301
3302 for (int c = 0; c < vd->vdev_children; c++)
3303 vdev_clear_kobj_evt(vd->vdev_child[c]);
3304 }
3305
3306 int
3307 vdev_dtl_load(vdev_t *vd)
3308 {
3309 spa_t *spa = vd->vdev_spa;
3310 objset_t *mos = spa->spa_meta_objset;
3311 range_tree_t *rt;
3312 int error = 0;
3313
3314 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3315 ASSERT(vdev_is_concrete(vd));
3316
3317 /*
3318 * If the dtl cannot be sync'd there is no need to open it.
3319 */
3320 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3321 return (0);
3322
3323 error = space_map_open(&vd->vdev_dtl_sm, mos,
3324 vd->vdev_dtl_object, 0, -1ULL, 0);
3325 if (error)
3326 return (error);
3327 ASSERT(vd->vdev_dtl_sm != NULL);
3328
3329 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3330 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3331 if (error == 0) {
3332 mutex_enter(&vd->vdev_dtl_lock);
3333 range_tree_walk(rt, range_tree_add,
3334 vd->vdev_dtl[DTL_MISSING]);
3335 mutex_exit(&vd->vdev_dtl_lock);
3336 }
3337
3338 range_tree_vacate(rt, NULL, NULL);
3339 range_tree_destroy(rt);
3340
3341 return (error);
3342 }
3343
3344 for (int c = 0; c < vd->vdev_children; c++) {
3345 error = vdev_dtl_load(vd->vdev_child[c]);
3346 if (error != 0)
3347 break;
3348 }
3349
3350 return (error);
3351 }
3352
3353 static void
3354 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3355 {
3356 spa_t *spa = vd->vdev_spa;
3357 objset_t *mos = spa->spa_meta_objset;
3358 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3359 const char *string;
3360
3361 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3362
3363 string =
3364 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3365 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3366 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3367
3368 ASSERT(string != NULL);
3369 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3370 1, strlen(string) + 1, string, tx));
3371
3372 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3373 spa_activate_allocation_classes(spa, tx);
3374 }
3375 }
3376
3377 void
3378 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3379 {
3380 spa_t *spa = vd->vdev_spa;
3381
3382 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3383 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3384 zapobj, tx));
3385 }
3386
3387 uint64_t
3388 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3389 {
3390 spa_t *spa = vd->vdev_spa;
3391 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3392 DMU_OT_NONE, 0, tx);
3393
3394 ASSERT(zap != 0);
3395 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3396 zap, tx));
3397
3398 return (zap);
3399 }
3400
3401 void
3402 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3403 {
3404 if (vd->vdev_ops != &vdev_hole_ops &&
3405 vd->vdev_ops != &vdev_missing_ops &&
3406 vd->vdev_ops != &vdev_root_ops &&
3407 !vd->vdev_top->vdev_removing) {
3408 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3409 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3410 }
3411 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3412 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3413 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3414 vdev_zap_allocation_data(vd, tx);
3415 }
3416 }
3417 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3418 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3419 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3420 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3421 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3422 }
3423
3424 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3425 vdev_construct_zaps(vd->vdev_child[i], tx);
3426 }
3427 }
3428
3429 static void
3430 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3431 {
3432 spa_t *spa = vd->vdev_spa;
3433 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3434 objset_t *mos = spa->spa_meta_objset;
3435 range_tree_t *rtsync;
3436 dmu_tx_t *tx;
3437 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3438
3439 ASSERT(vdev_is_concrete(vd));
3440 ASSERT(vd->vdev_ops->vdev_op_leaf);
3441
3442 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3443
3444 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3445 mutex_enter(&vd->vdev_dtl_lock);
3446 space_map_free(vd->vdev_dtl_sm, tx);
3447 space_map_close(vd->vdev_dtl_sm);
3448 vd->vdev_dtl_sm = NULL;
3449 mutex_exit(&vd->vdev_dtl_lock);
3450
3451 /*
3452 * We only destroy the leaf ZAP for detached leaves or for
3453 * removed log devices. Removed data devices handle leaf ZAP
3454 * cleanup later, once cancellation is no longer possible.
3455 */
3456 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3457 vd->vdev_top->vdev_islog)) {
3458 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3459 vd->vdev_leaf_zap = 0;
3460 }
3461
3462 dmu_tx_commit(tx);
3463 return;
3464 }
3465
3466 if (vd->vdev_dtl_sm == NULL) {
3467 uint64_t new_object;
3468
3469 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3470 VERIFY3U(new_object, !=, 0);
3471
3472 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3473 0, -1ULL, 0));
3474 ASSERT(vd->vdev_dtl_sm != NULL);
3475 }
3476
3477 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3478
3479 mutex_enter(&vd->vdev_dtl_lock);
3480 range_tree_walk(rt, range_tree_add, rtsync);
3481 mutex_exit(&vd->vdev_dtl_lock);
3482
3483 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3484 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3485 range_tree_vacate(rtsync, NULL, NULL);
3486
3487 range_tree_destroy(rtsync);
3488
3489 /*
3490 * If the object for the space map has changed then dirty
3491 * the top level so that we update the config.
3492 */
3493 if (object != space_map_object(vd->vdev_dtl_sm)) {
3494 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3495 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3496 (u_longlong_t)object,
3497 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3498 vdev_config_dirty(vd->vdev_top);
3499 }
3500
3501 dmu_tx_commit(tx);
3502 }
3503
3504 /*
3505 * Determine whether the specified vdev can be offlined/detached/removed
3506 * without losing data.
3507 */
3508 boolean_t
3509 vdev_dtl_required(vdev_t *vd)
3510 {
3511 spa_t *spa = vd->vdev_spa;
3512 vdev_t *tvd = vd->vdev_top;
3513 uint8_t cant_read = vd->vdev_cant_read;
3514 boolean_t required;
3515
3516 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3517
3518 if (vd == spa->spa_root_vdev || vd == tvd)
3519 return (B_TRUE);
3520
3521 /*
3522 * Temporarily mark the device as unreadable, and then determine
3523 * whether this results in any DTL outages in the top-level vdev.
3524 * If not, we can safely offline/detach/remove the device.
3525 */
3526 vd->vdev_cant_read = B_TRUE;
3527 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3528 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3529 vd->vdev_cant_read = cant_read;
3530 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3531
3532 if (!required && zio_injection_enabled) {
3533 required = !!zio_handle_device_injection(vd, NULL,
3534 SET_ERROR(ECHILD));
3535 }
3536
3537 return (required);
3538 }
3539
3540 /*
3541 * Determine if resilver is needed, and if so the txg range.
3542 */
3543 boolean_t
3544 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3545 {
3546 boolean_t needed = B_FALSE;
3547 uint64_t thismin = UINT64_MAX;
3548 uint64_t thismax = 0;
3549
3550 if (vd->vdev_children == 0) {
3551 mutex_enter(&vd->vdev_dtl_lock);
3552 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3553 vdev_writeable(vd)) {
3554
3555 thismin = vdev_dtl_min(vd);
3556 thismax = vdev_dtl_max(vd);
3557 needed = B_TRUE;
3558 }
3559 mutex_exit(&vd->vdev_dtl_lock);
3560 } else {
3561 for (int c = 0; c < vd->vdev_children; c++) {
3562 vdev_t *cvd = vd->vdev_child[c];
3563 uint64_t cmin, cmax;
3564
3565 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3566 thismin = MIN(thismin, cmin);
3567 thismax = MAX(thismax, cmax);
3568 needed = B_TRUE;
3569 }
3570 }
3571 }
3572
3573 if (needed && minp) {
3574 *minp = thismin;
3575 *maxp = thismax;
3576 }
3577 return (needed);
3578 }
3579
3580 /*
3581 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3582 * will contain either the checkpoint spacemap object or zero if none exists.
3583 * All other errors are returned to the caller.
3584 */
3585 int
3586 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3587 {
3588 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3589
3590 if (vd->vdev_top_zap == 0) {
3591 *sm_obj = 0;
3592 return (0);
3593 }
3594
3595 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3596 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3597 if (error == ENOENT) {
3598 *sm_obj = 0;
3599 error = 0;
3600 }
3601
3602 return (error);
3603 }
3604
3605 int
3606 vdev_load(vdev_t *vd)
3607 {
3608 int children = vd->vdev_children;
3609 int error = 0;
3610 taskq_t *tq = NULL;
3611
3612 /*
3613 * It's only worthwhile to use the taskq for the root vdev, because the
3614 * slow part is metaslab_init, and that only happens for top-level
3615 * vdevs.
3616 */
3617 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3618 tq = taskq_create("vdev_load", children, minclsyspri,
3619 children, children, TASKQ_PREPOPULATE);
3620 }
3621
3622 /*
3623 * Recursively load all children.
3624 */
3625 for (int c = 0; c < vd->vdev_children; c++) {
3626 vdev_t *cvd = vd->vdev_child[c];
3627
3628 if (tq == NULL || vdev_uses_zvols(cvd)) {
3629 cvd->vdev_load_error = vdev_load(cvd);
3630 } else {
3631 VERIFY(taskq_dispatch(tq, vdev_load_child,
3632 cvd, TQ_SLEEP) != TASKQID_INVALID);
3633 }
3634 }
3635
3636 if (tq != NULL) {
3637 taskq_wait(tq);
3638 taskq_destroy(tq);
3639 }
3640
3641 for (int c = 0; c < vd->vdev_children; c++) {
3642 int error = vd->vdev_child[c]->vdev_load_error;
3643
3644 if (error != 0)
3645 return (error);
3646 }
3647
3648 vdev_set_deflate_ratio(vd);
3649
3650 if (vd->vdev_ops == &vdev_raidz_ops) {
3651 error = vdev_raidz_load(vd);
3652 if (error != 0)
3653 return (error);
3654 }
3655
3656 /*
3657 * On spa_load path, grab the allocation bias from our zap
3658 */
3659 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3660 spa_t *spa = vd->vdev_spa;
3661 char bias_str[64];
3662
3663 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3664 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3665 bias_str);
3666 if (error == 0) {
3667 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3668 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3669 } else if (error != ENOENT) {
3670 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3671 VDEV_AUX_CORRUPT_DATA);
3672 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3673 "failed [error=%d]",
3674 (u_longlong_t)vd->vdev_top_zap, error);
3675 return (error);
3676 }
3677 }
3678
3679 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3680 spa_t *spa = vd->vdev_spa;
3681 uint64_t failfast;
3682
3683 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3684 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3685 1, &failfast);
3686 if (error == 0) {
3687 vd->vdev_failfast = failfast & 1;
3688 } else if (error == ENOENT) {
3689 vd->vdev_failfast = vdev_prop_default_numeric(
3690 VDEV_PROP_FAILFAST);
3691 } else {
3692 vdev_dbgmsg(vd,
3693 "vdev_load: zap_lookup(top_zap=%llu) "
3694 "failed [error=%d]",
3695 (u_longlong_t)vd->vdev_top_zap, error);
3696 }
3697 }
3698
3699 /*
3700 * Load any rebuild state from the top-level vdev zap.
3701 */
3702 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3703 error = vdev_rebuild_load(vd);
3704 if (error && error != ENOTSUP) {
3705 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3706 VDEV_AUX_CORRUPT_DATA);
3707 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3708 "failed [error=%d]", error);
3709 return (error);
3710 }
3711 }
3712
3713 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3714 uint64_t zapobj;
3715
3716 if (vd->vdev_top_zap != 0)
3717 zapobj = vd->vdev_top_zap;
3718 else
3719 zapobj = vd->vdev_leaf_zap;
3720
3721 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3722 &vd->vdev_checksum_n);
3723 if (error && error != ENOENT)
3724 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3725 "failed [error=%d]", (u_longlong_t)zapobj, error);
3726
3727 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3728 &vd->vdev_checksum_t);
3729 if (error && error != ENOENT)
3730 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3731 "failed [error=%d]", (u_longlong_t)zapobj, error);
3732
3733 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3734 &vd->vdev_io_n);
3735 if (error && error != ENOENT)
3736 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3737 "failed [error=%d]", (u_longlong_t)zapobj, error);
3738
3739 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3740 &vd->vdev_io_t);
3741 if (error && error != ENOENT)
3742 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3743 "failed [error=%d]", (u_longlong_t)zapobj, error);
3744 }
3745
3746 /*
3747 * If this is a top-level vdev, initialize its metaslabs.
3748 */
3749 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3750 vdev_metaslab_group_create(vd);
3751
3752 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3753 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3754 VDEV_AUX_CORRUPT_DATA);
3755 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3756 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3757 (u_longlong_t)vd->vdev_asize);
3758 return (SET_ERROR(ENXIO));
3759 }
3760
3761 error = vdev_metaslab_init(vd, 0);
3762 if (error != 0) {
3763 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3764 "[error=%d]", error);
3765 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3766 VDEV_AUX_CORRUPT_DATA);
3767 return (error);
3768 }
3769
3770 uint64_t checkpoint_sm_obj;
3771 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3772 if (error == 0 && checkpoint_sm_obj != 0) {
3773 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3774 ASSERT(vd->vdev_asize != 0);
3775 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3776
3777 error = space_map_open(&vd->vdev_checkpoint_sm,
3778 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3779 vd->vdev_ashift);
3780 if (error != 0) {
3781 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3782 "failed for checkpoint spacemap (obj %llu) "
3783 "[error=%d]",
3784 (u_longlong_t)checkpoint_sm_obj, error);
3785 return (error);
3786 }
3787 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3788
3789 /*
3790 * Since the checkpoint_sm contains free entries
3791 * exclusively we can use space_map_allocated() to
3792 * indicate the cumulative checkpointed space that
3793 * has been freed.
3794 */
3795 vd->vdev_stat.vs_checkpoint_space =
3796 -space_map_allocated(vd->vdev_checkpoint_sm);
3797 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3798 vd->vdev_stat.vs_checkpoint_space;
3799 } else if (error != 0) {
3800 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3801 "checkpoint space map object from vdev ZAP "
3802 "[error=%d]", error);
3803 return (error);
3804 }
3805 }
3806
3807 /*
3808 * If this is a leaf vdev, load its DTL.
3809 */
3810 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3811 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3812 VDEV_AUX_CORRUPT_DATA);
3813 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3814 "[error=%d]", error);
3815 return (error);
3816 }
3817
3818 uint64_t obsolete_sm_object;
3819 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3820 if (error == 0 && obsolete_sm_object != 0) {
3821 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3822 ASSERT(vd->vdev_asize != 0);
3823 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3824
3825 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3826 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3827 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3828 VDEV_AUX_CORRUPT_DATA);
3829 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3830 "obsolete spacemap (obj %llu) [error=%d]",
3831 (u_longlong_t)obsolete_sm_object, error);
3832 return (error);
3833 }
3834 } else if (error != 0) {
3835 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3836 "space map object from vdev ZAP [error=%d]", error);
3837 return (error);
3838 }
3839
3840 return (0);
3841 }
3842
3843 /*
3844 * The special vdev case is used for hot spares and l2cache devices. Its
3845 * sole purpose it to set the vdev state for the associated vdev. To do this,
3846 * we make sure that we can open the underlying device, then try to read the
3847 * label, and make sure that the label is sane and that it hasn't been
3848 * repurposed to another pool.
3849 */
3850 int
3851 vdev_validate_aux(vdev_t *vd)
3852 {
3853 nvlist_t *label;
3854 uint64_t guid, version;
3855 uint64_t state;
3856
3857 if (!vdev_readable(vd))
3858 return (0);
3859
3860 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3861 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3862 VDEV_AUX_CORRUPT_DATA);
3863 return (-1);
3864 }
3865
3866 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3867 !SPA_VERSION_IS_SUPPORTED(version) ||
3868 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3869 guid != vd->vdev_guid ||
3870 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3871 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3872 VDEV_AUX_CORRUPT_DATA);
3873 nvlist_free(label);
3874 return (-1);
3875 }
3876
3877 /*
3878 * We don't actually check the pool state here. If it's in fact in
3879 * use by another pool, we update this fact on the fly when requested.
3880 */
3881 nvlist_free(label);
3882 return (0);
3883 }
3884
3885 static void
3886 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3887 {
3888 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3889
3890 if (vd->vdev_top_zap == 0)
3891 return;
3892
3893 uint64_t object = 0;
3894 int err = zap_lookup(mos, vd->vdev_top_zap,
3895 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3896 if (err == ENOENT)
3897 return;
3898 VERIFY0(err);
3899
3900 VERIFY0(dmu_object_free(mos, object, tx));
3901 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3902 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3903 }
3904
3905 /*
3906 * Free the objects used to store this vdev's spacemaps, and the array
3907 * that points to them.
3908 */
3909 void
3910 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3911 {
3912 if (vd->vdev_ms_array == 0)
3913 return;
3914
3915 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3916 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3917 size_t array_bytes = array_count * sizeof (uint64_t);
3918 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3919 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3920 array_bytes, smobj_array, 0));
3921
3922 for (uint64_t i = 0; i < array_count; i++) {
3923 uint64_t smobj = smobj_array[i];
3924 if (smobj == 0)
3925 continue;
3926
3927 space_map_free_obj(mos, smobj, tx);
3928 }
3929
3930 kmem_free(smobj_array, array_bytes);
3931 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3932 vdev_destroy_ms_flush_data(vd, tx);
3933 vd->vdev_ms_array = 0;
3934 }
3935
3936 static void
3937 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3938 {
3939 spa_t *spa = vd->vdev_spa;
3940
3941 ASSERT(vd->vdev_islog);
3942 ASSERT(vd == vd->vdev_top);
3943 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3944
3945 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3946
3947 vdev_destroy_spacemaps(vd, tx);
3948 if (vd->vdev_top_zap != 0) {
3949 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3950 vd->vdev_top_zap = 0;
3951 }
3952
3953 dmu_tx_commit(tx);
3954 }
3955
3956 void
3957 vdev_sync_done(vdev_t *vd, uint64_t txg)
3958 {
3959 metaslab_t *msp;
3960 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3961
3962 ASSERT(vdev_is_concrete(vd));
3963
3964 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3965 != NULL)
3966 metaslab_sync_done(msp, txg);
3967
3968 if (reassess) {
3969 metaslab_sync_reassess(vd->vdev_mg);
3970 if (vd->vdev_log_mg != NULL)
3971 metaslab_sync_reassess(vd->vdev_log_mg);
3972 }
3973 }
3974
3975 void
3976 vdev_sync(vdev_t *vd, uint64_t txg)
3977 {
3978 spa_t *spa = vd->vdev_spa;
3979 vdev_t *lvd;
3980 metaslab_t *msp;
3981
3982 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3983 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3984 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3985 ASSERT(vd->vdev_removing ||
3986 vd->vdev_ops == &vdev_indirect_ops);
3987
3988 vdev_indirect_sync_obsolete(vd, tx);
3989
3990 /*
3991 * If the vdev is indirect, it can't have dirty
3992 * metaslabs or DTLs.
3993 */
3994 if (vd->vdev_ops == &vdev_indirect_ops) {
3995 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3996 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3997 dmu_tx_commit(tx);
3998 return;
3999 }
4000 }
4001
4002 ASSERT(vdev_is_concrete(vd));
4003
4004 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4005 !vd->vdev_removing) {
4006 ASSERT(vd == vd->vdev_top);
4007 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4008 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4009 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4010 ASSERT(vd->vdev_ms_array != 0);
4011 vdev_config_dirty(vd);
4012 }
4013
4014 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4015 metaslab_sync(msp, txg);
4016 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4017 }
4018
4019 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4020 vdev_dtl_sync(lvd, txg);
4021
4022 /*
4023 * If this is an empty log device being removed, destroy the
4024 * metadata associated with it.
4025 */
4026 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4027 vdev_remove_empty_log(vd, txg);
4028
4029 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4030 dmu_tx_commit(tx);
4031 }
4032
4033 /*
4034 * Return the amount of space that should be (or was) allocated for the given
4035 * psize (compressed block size) in the given TXG. Note that for expanded
4036 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4037 * vdev_raidz_asize().
4038 */
4039 uint64_t
4040 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4041 {
4042 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4043 }
4044
4045 uint64_t
4046 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4047 {
4048 return (vdev_psize_to_asize_txg(vd, psize, 0));
4049 }
4050
4051 /*
4052 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4053 * not be opened, and no I/O is attempted.
4054 */
4055 int
4056 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4057 {
4058 vdev_t *vd, *tvd;
4059
4060 spa_vdev_state_enter(spa, SCL_NONE);
4061
4062 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4063 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4064
4065 if (!vd->vdev_ops->vdev_op_leaf)
4066 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4067
4068 tvd = vd->vdev_top;
4069
4070 /*
4071 * If user did a 'zpool offline -f' then make the fault persist across
4072 * reboots.
4073 */
4074 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4075 /*
4076 * There are two kinds of forced faults: temporary and
4077 * persistent. Temporary faults go away at pool import, while
4078 * persistent faults stay set. Both types of faults can be
4079 * cleared with a zpool clear.
4080 *
4081 * We tell if a vdev is persistently faulted by looking at the
4082 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4083 * import then it's a persistent fault. Otherwise, it's
4084 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4085 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4086 * tells vdev_config_generate() (which gets run later) to set
4087 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4088 */
4089 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4090 vd->vdev_tmpoffline = B_FALSE;
4091 aux = VDEV_AUX_EXTERNAL;
4092 } else {
4093 vd->vdev_tmpoffline = B_TRUE;
4094 }
4095
4096 /*
4097 * We don't directly use the aux state here, but if we do a
4098 * vdev_reopen(), we need this value to be present to remember why we
4099 * were faulted.
4100 */
4101 vd->vdev_label_aux = aux;
4102
4103 /*
4104 * Faulted state takes precedence over degraded.
4105 */
4106 vd->vdev_delayed_close = B_FALSE;
4107 vd->vdev_faulted = 1ULL;
4108 vd->vdev_degraded = 0ULL;
4109 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4110
4111 /*
4112 * If this device has the only valid copy of the data, then
4113 * back off and simply mark the vdev as degraded instead.
4114 */
4115 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4116 vd->vdev_degraded = 1ULL;
4117 vd->vdev_faulted = 0ULL;
4118
4119 /*
4120 * If we reopen the device and it's not dead, only then do we
4121 * mark it degraded.
4122 */
4123 vdev_reopen(tvd);
4124
4125 if (vdev_readable(vd))
4126 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4127 }
4128
4129 return (spa_vdev_state_exit(spa, vd, 0));
4130 }
4131
4132 /*
4133 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4134 * user that something is wrong. The vdev continues to operate as normal as far
4135 * as I/O is concerned.
4136 */
4137 int
4138 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4139 {
4140 vdev_t *vd;
4141
4142 spa_vdev_state_enter(spa, SCL_NONE);
4143
4144 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4145 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4146
4147 if (!vd->vdev_ops->vdev_op_leaf)
4148 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4149
4150 /*
4151 * If the vdev is already faulted, then don't do anything.
4152 */
4153 if (vd->vdev_faulted || vd->vdev_degraded)
4154 return (spa_vdev_state_exit(spa, NULL, 0));
4155
4156 vd->vdev_degraded = 1ULL;
4157 if (!vdev_is_dead(vd))
4158 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4159 aux);
4160
4161 return (spa_vdev_state_exit(spa, vd, 0));
4162 }
4163
4164 int
4165 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4166 {
4167 vdev_t *vd;
4168
4169 spa_vdev_state_enter(spa, SCL_NONE);
4170
4171 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4172 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4173
4174 /*
4175 * If the vdev is already removed, or expanding which can trigger
4176 * repartition add/remove events, then don't do anything.
4177 */
4178 if (vd->vdev_removed || vd->vdev_expanding)
4179 return (spa_vdev_state_exit(spa, NULL, 0));
4180
4181 /*
4182 * Confirm the vdev has been removed, otherwise don't do anything.
4183 */
4184 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4185 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4186
4187 vd->vdev_remove_wanted = B_TRUE;
4188 spa_async_request(spa, SPA_ASYNC_REMOVE);
4189
4190 return (spa_vdev_state_exit(spa, vd, 0));
4191 }
4192
4193
4194 /*
4195 * Online the given vdev.
4196 *
4197 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4198 * spare device should be detached when the device finishes resilvering.
4199 * Second, the online should be treated like a 'test' online case, so no FMA
4200 * events are generated if the device fails to open.
4201 */
4202 int
4203 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4204 {
4205 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4206 boolean_t wasoffline;
4207 vdev_state_t oldstate;
4208
4209 spa_vdev_state_enter(spa, SCL_NONE);
4210
4211 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4212 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4213
4214 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4215 oldstate = vd->vdev_state;
4216
4217 tvd = vd->vdev_top;
4218 vd->vdev_offline = B_FALSE;
4219 vd->vdev_tmpoffline = B_FALSE;
4220 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4221 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4222
4223 /* XXX - L2ARC 1.0 does not support expansion */
4224 if (!vd->vdev_aux) {
4225 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4226 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4227 spa->spa_autoexpand);
4228 vd->vdev_expansion_time = gethrestime_sec();
4229 }
4230
4231 vdev_reopen(tvd);
4232 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4233
4234 if (!vd->vdev_aux) {
4235 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4236 pvd->vdev_expanding = B_FALSE;
4237 }
4238
4239 if (newstate)
4240 *newstate = vd->vdev_state;
4241 if ((flags & ZFS_ONLINE_UNSPARE) &&
4242 !vdev_is_dead(vd) && vd->vdev_parent &&
4243 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4244 vd->vdev_parent->vdev_child[0] == vd)
4245 vd->vdev_unspare = B_TRUE;
4246
4247 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4248
4249 /* XXX - L2ARC 1.0 does not support expansion */
4250 if (vd->vdev_aux)
4251 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4252 spa->spa_ccw_fail_time = 0;
4253 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4254 }
4255
4256 /* Restart initializing if necessary */
4257 mutex_enter(&vd->vdev_initialize_lock);
4258 if (vdev_writeable(vd) &&
4259 vd->vdev_initialize_thread == NULL &&
4260 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4261 (void) vdev_initialize(vd);
4262 }
4263 mutex_exit(&vd->vdev_initialize_lock);
4264
4265 /*
4266 * Restart trimming if necessary. We do not restart trimming for cache
4267 * devices here. This is triggered by l2arc_rebuild_vdev()
4268 * asynchronously for the whole device or in l2arc_evict() as it evicts
4269 * space for upcoming writes.
4270 */
4271 mutex_enter(&vd->vdev_trim_lock);
4272 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4273 vd->vdev_trim_thread == NULL &&
4274 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4275 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4276 vd->vdev_trim_secure);
4277 }
4278 mutex_exit(&vd->vdev_trim_lock);
4279
4280 if (wasoffline ||
4281 (oldstate < VDEV_STATE_DEGRADED &&
4282 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4283 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4284
4285 /*
4286 * Asynchronously detach spare vdev if resilver or
4287 * rebuild is not required
4288 */
4289 if (vd->vdev_unspare &&
4290 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4291 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4292 !vdev_rebuild_active(tvd))
4293 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4294 }
4295 return (spa_vdev_state_exit(spa, vd, 0));
4296 }
4297
4298 static int
4299 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4300 {
4301 vdev_t *vd, *tvd;
4302 int error = 0;
4303 uint64_t generation;
4304 metaslab_group_t *mg;
4305
4306 top:
4307 spa_vdev_state_enter(spa, SCL_ALLOC);
4308
4309 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4310 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4311
4312 if (!vd->vdev_ops->vdev_op_leaf)
4313 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4314
4315 if (vd->vdev_ops == &vdev_draid_spare_ops)
4316 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4317
4318 tvd = vd->vdev_top;
4319 mg = tvd->vdev_mg;
4320 generation = spa->spa_config_generation + 1;
4321
4322 /*
4323 * If the device isn't already offline, try to offline it.
4324 */
4325 if (!vd->vdev_offline) {
4326 /*
4327 * If this device has the only valid copy of some data,
4328 * don't allow it to be offlined. Log devices are always
4329 * expendable.
4330 */
4331 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4332 vdev_dtl_required(vd))
4333 return (spa_vdev_state_exit(spa, NULL,
4334 SET_ERROR(EBUSY)));
4335
4336 /*
4337 * If the top-level is a slog and it has had allocations
4338 * then proceed. We check that the vdev's metaslab group
4339 * is not NULL since it's possible that we may have just
4340 * added this vdev but not yet initialized its metaslabs.
4341 */
4342 if (tvd->vdev_islog && mg != NULL) {
4343 /*
4344 * Prevent any future allocations.
4345 */
4346 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4347 metaslab_group_passivate(mg);
4348 (void) spa_vdev_state_exit(spa, vd, 0);
4349
4350 error = spa_reset_logs(spa);
4351
4352 /*
4353 * If the log device was successfully reset but has
4354 * checkpointed data, do not offline it.
4355 */
4356 if (error == 0 &&
4357 tvd->vdev_checkpoint_sm != NULL) {
4358 ASSERT3U(space_map_allocated(
4359 tvd->vdev_checkpoint_sm), !=, 0);
4360 error = ZFS_ERR_CHECKPOINT_EXISTS;
4361 }
4362
4363 spa_vdev_state_enter(spa, SCL_ALLOC);
4364
4365 /*
4366 * Check to see if the config has changed.
4367 */
4368 if (error || generation != spa->spa_config_generation) {
4369 metaslab_group_activate(mg);
4370 if (error)
4371 return (spa_vdev_state_exit(spa,
4372 vd, error));
4373 (void) spa_vdev_state_exit(spa, vd, 0);
4374 goto top;
4375 }
4376 ASSERT0(tvd->vdev_stat.vs_alloc);
4377 }
4378
4379 /*
4380 * Offline this device and reopen its top-level vdev.
4381 * If the top-level vdev is a log device then just offline
4382 * it. Otherwise, if this action results in the top-level
4383 * vdev becoming unusable, undo it and fail the request.
4384 */
4385 vd->vdev_offline = B_TRUE;
4386 vdev_reopen(tvd);
4387
4388 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4389 vdev_is_dead(tvd)) {
4390 vd->vdev_offline = B_FALSE;
4391 vdev_reopen(tvd);
4392 return (spa_vdev_state_exit(spa, NULL,
4393 SET_ERROR(EBUSY)));
4394 }
4395
4396 /*
4397 * Add the device back into the metaslab rotor so that
4398 * once we online the device it's open for business.
4399 */
4400 if (tvd->vdev_islog && mg != NULL)
4401 metaslab_group_activate(mg);
4402 }
4403
4404 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4405
4406 return (spa_vdev_state_exit(spa, vd, 0));
4407 }
4408
4409 int
4410 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4411 {
4412 int error;
4413
4414 mutex_enter(&spa->spa_vdev_top_lock);
4415 error = vdev_offline_locked(spa, guid, flags);
4416 mutex_exit(&spa->spa_vdev_top_lock);
4417
4418 return (error);
4419 }
4420
4421 /*
4422 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4423 * vdev_offline(), we assume the spa config is locked. We also clear all
4424 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4425 */
4426 void
4427 vdev_clear(spa_t *spa, vdev_t *vd)
4428 {
4429 vdev_t *rvd = spa->spa_root_vdev;
4430
4431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4432
4433 if (vd == NULL)
4434 vd = rvd;
4435
4436 vd->vdev_stat.vs_read_errors = 0;
4437 vd->vdev_stat.vs_write_errors = 0;
4438 vd->vdev_stat.vs_checksum_errors = 0;
4439 vd->vdev_stat.vs_slow_ios = 0;
4440
4441 for (int c = 0; c < vd->vdev_children; c++)
4442 vdev_clear(spa, vd->vdev_child[c]);
4443
4444 /*
4445 * It makes no sense to "clear" an indirect or removed vdev.
4446 */
4447 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4448 return;
4449
4450 /*
4451 * If we're in the FAULTED state or have experienced failed I/O, then
4452 * clear the persistent state and attempt to reopen the device. We
4453 * also mark the vdev config dirty, so that the new faulted state is
4454 * written out to disk.
4455 */
4456 if (vd->vdev_faulted || vd->vdev_degraded ||
4457 !vdev_readable(vd) || !vdev_writeable(vd)) {
4458 /*
4459 * When reopening in response to a clear event, it may be due to
4460 * a fmadm repair request. In this case, if the device is
4461 * still broken, we want to still post the ereport again.
4462 */
4463 vd->vdev_forcefault = B_TRUE;
4464
4465 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4466 vd->vdev_cant_read = B_FALSE;
4467 vd->vdev_cant_write = B_FALSE;
4468 vd->vdev_stat.vs_aux = 0;
4469
4470 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4471
4472 vd->vdev_forcefault = B_FALSE;
4473
4474 if (vd != rvd && vdev_writeable(vd->vdev_top))
4475 vdev_state_dirty(vd->vdev_top);
4476
4477 /* If a resilver isn't required, check if vdevs can be culled */
4478 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4479 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4480 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4481 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4482
4483 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4484 }
4485
4486 /*
4487 * When clearing a FMA-diagnosed fault, we always want to
4488 * unspare the device, as we assume that the original spare was
4489 * done in response to the FMA fault.
4490 */
4491 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4492 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4493 vd->vdev_parent->vdev_child[0] == vd)
4494 vd->vdev_unspare = B_TRUE;
4495
4496 /* Clear recent error events cache (i.e. duplicate events tracking) */
4497 zfs_ereport_clear(spa, vd);
4498 }
4499
4500 boolean_t
4501 vdev_is_dead(vdev_t *vd)
4502 {
4503 /*
4504 * Holes and missing devices are always considered "dead".
4505 * This simplifies the code since we don't have to check for
4506 * these types of devices in the various code paths.
4507 * Instead we rely on the fact that we skip over dead devices
4508 * before issuing I/O to them.
4509 */
4510 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4511 vd->vdev_ops == &vdev_hole_ops ||
4512 vd->vdev_ops == &vdev_missing_ops);
4513 }
4514
4515 boolean_t
4516 vdev_readable(vdev_t *vd)
4517 {
4518 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4519 }
4520
4521 boolean_t
4522 vdev_writeable(vdev_t *vd)
4523 {
4524 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4525 vdev_is_concrete(vd));
4526 }
4527
4528 boolean_t
4529 vdev_allocatable(vdev_t *vd)
4530 {
4531 uint64_t state = vd->vdev_state;
4532
4533 /*
4534 * We currently allow allocations from vdevs which may be in the
4535 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4536 * fails to reopen then we'll catch it later when we're holding
4537 * the proper locks. Note that we have to get the vdev state
4538 * in a local variable because although it changes atomically,
4539 * we're asking two separate questions about it.
4540 */
4541 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4542 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4543 vd->vdev_mg->mg_initialized);
4544 }
4545
4546 boolean_t
4547 vdev_accessible(vdev_t *vd, zio_t *zio)
4548 {
4549 ASSERT(zio->io_vd == vd);
4550
4551 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4552 return (B_FALSE);
4553
4554 if (zio->io_type == ZIO_TYPE_READ)
4555 return (!vd->vdev_cant_read);
4556
4557 if (zio->io_type == ZIO_TYPE_WRITE)
4558 return (!vd->vdev_cant_write);
4559
4560 return (B_TRUE);
4561 }
4562
4563 static void
4564 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4565 {
4566 /*
4567 * Exclude the dRAID spare when aggregating to avoid double counting
4568 * the ops and bytes. These IOs are counted by the physical leaves.
4569 */
4570 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4571 return;
4572
4573 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4574 vs->vs_ops[t] += cvs->vs_ops[t];
4575 vs->vs_bytes[t] += cvs->vs_bytes[t];
4576 }
4577
4578 cvs->vs_scan_removing = cvd->vdev_removing;
4579 }
4580
4581 /*
4582 * Get extended stats
4583 */
4584 static void
4585 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4586 {
4587 (void) cvd;
4588
4589 int t, b;
4590 for (t = 0; t < ZIO_TYPES; t++) {
4591 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4592 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4593
4594 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4595 vsx->vsx_total_histo[t][b] +=
4596 cvsx->vsx_total_histo[t][b];
4597 }
4598 }
4599
4600 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4601 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4602 vsx->vsx_queue_histo[t][b] +=
4603 cvsx->vsx_queue_histo[t][b];
4604 }
4605 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4606 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4607
4608 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4609 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4610
4611 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4612 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4613 }
4614
4615 }
4616
4617 boolean_t
4618 vdev_is_spacemap_addressable(vdev_t *vd)
4619 {
4620 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4621 return (B_TRUE);
4622
4623 /*
4624 * If double-word space map entries are not enabled we assume
4625 * 47 bits of the space map entry are dedicated to the entry's
4626 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4627 * to calculate the maximum address that can be described by a
4628 * space map entry for the given device.
4629 */
4630 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4631
4632 if (shift >= 63) /* detect potential overflow */
4633 return (B_TRUE);
4634
4635 return (vd->vdev_asize < (1ULL << shift));
4636 }
4637
4638 /*
4639 * Get statistics for the given vdev.
4640 */
4641 static void
4642 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4643 {
4644 int t;
4645 /*
4646 * If we're getting stats on the root vdev, aggregate the I/O counts
4647 * over all top-level vdevs (i.e. the direct children of the root).
4648 */
4649 if (!vd->vdev_ops->vdev_op_leaf) {
4650 if (vs) {
4651 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4652 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4653 }
4654 if (vsx)
4655 memset(vsx, 0, sizeof (*vsx));
4656
4657 for (int c = 0; c < vd->vdev_children; c++) {
4658 vdev_t *cvd = vd->vdev_child[c];
4659 vdev_stat_t *cvs = &cvd->vdev_stat;
4660 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4661
4662 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4663 if (vs)
4664 vdev_get_child_stat(cvd, vs, cvs);
4665 if (vsx)
4666 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4667 }
4668 } else {
4669 /*
4670 * We're a leaf. Just copy our ZIO active queue stats in. The
4671 * other leaf stats are updated in vdev_stat_update().
4672 */
4673 if (!vsx)
4674 return;
4675
4676 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4677
4678 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4679 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4680 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4681 }
4682 }
4683 }
4684
4685 void
4686 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4687 {
4688 vdev_t *tvd = vd->vdev_top;
4689 mutex_enter(&vd->vdev_stat_lock);
4690 if (vs) {
4691 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4692 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4693 vs->vs_state = vd->vdev_state;
4694 vs->vs_rsize = vdev_get_min_asize(vd);
4695
4696 if (vd->vdev_ops->vdev_op_leaf) {
4697 vs->vs_pspace = vd->vdev_psize;
4698 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4699 VDEV_LABEL_END_SIZE;
4700 /*
4701 * Report initializing progress. Since we don't
4702 * have the initializing locks held, this is only
4703 * an estimate (although a fairly accurate one).
4704 */
4705 vs->vs_initialize_bytes_done =
4706 vd->vdev_initialize_bytes_done;
4707 vs->vs_initialize_bytes_est =
4708 vd->vdev_initialize_bytes_est;
4709 vs->vs_initialize_state = vd->vdev_initialize_state;
4710 vs->vs_initialize_action_time =
4711 vd->vdev_initialize_action_time;
4712
4713 /*
4714 * Report manual TRIM progress. Since we don't have
4715 * the manual TRIM locks held, this is only an
4716 * estimate (although fairly accurate one).
4717 */
4718 vs->vs_trim_notsup = !vd->vdev_has_trim;
4719 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4720 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4721 vs->vs_trim_state = vd->vdev_trim_state;
4722 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4723
4724 /* Set when there is a deferred resilver. */
4725 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4726 }
4727
4728 /*
4729 * Report expandable space on top-level, non-auxiliary devices
4730 * only. The expandable space is reported in terms of metaslab
4731 * sized units since that determines how much space the pool
4732 * can expand.
4733 */
4734 if (vd->vdev_aux == NULL && tvd != NULL) {
4735 vs->vs_esize = P2ALIGN(
4736 vd->vdev_max_asize - vd->vdev_asize,
4737 1ULL << tvd->vdev_ms_shift);
4738 }
4739
4740 vs->vs_configured_ashift = vd->vdev_top != NULL
4741 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4742 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4743 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4744 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4745 else
4746 vs->vs_physical_ashift = 0;
4747
4748 /*
4749 * Report fragmentation and rebuild progress for top-level,
4750 * non-auxiliary, concrete devices.
4751 */
4752 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4753 vdev_is_concrete(vd)) {
4754 /*
4755 * The vdev fragmentation rating doesn't take into
4756 * account the embedded slog metaslab (vdev_log_mg).
4757 * Since it's only one metaslab, it would have a tiny
4758 * impact on the overall fragmentation.
4759 */
4760 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4761 vd->vdev_mg->mg_fragmentation : 0;
4762 }
4763 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4764 tvd ? tvd->vdev_noalloc : 0);
4765 }
4766
4767 vdev_get_stats_ex_impl(vd, vs, vsx);
4768 mutex_exit(&vd->vdev_stat_lock);
4769 }
4770
4771 void
4772 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4773 {
4774 return (vdev_get_stats_ex(vd, vs, NULL));
4775 }
4776
4777 void
4778 vdev_clear_stats(vdev_t *vd)
4779 {
4780 mutex_enter(&vd->vdev_stat_lock);
4781 vd->vdev_stat.vs_space = 0;
4782 vd->vdev_stat.vs_dspace = 0;
4783 vd->vdev_stat.vs_alloc = 0;
4784 mutex_exit(&vd->vdev_stat_lock);
4785 }
4786
4787 void
4788 vdev_scan_stat_init(vdev_t *vd)
4789 {
4790 vdev_stat_t *vs = &vd->vdev_stat;
4791
4792 for (int c = 0; c < vd->vdev_children; c++)
4793 vdev_scan_stat_init(vd->vdev_child[c]);
4794
4795 mutex_enter(&vd->vdev_stat_lock);
4796 vs->vs_scan_processed = 0;
4797 mutex_exit(&vd->vdev_stat_lock);
4798 }
4799
4800 void
4801 vdev_stat_update(zio_t *zio, uint64_t psize)
4802 {
4803 spa_t *spa = zio->io_spa;
4804 vdev_t *rvd = spa->spa_root_vdev;
4805 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4806 vdev_t *pvd;
4807 uint64_t txg = zio->io_txg;
4808 /* Suppress ASAN false positive */
4809 #ifdef __SANITIZE_ADDRESS__
4810 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4811 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4812 #else
4813 vdev_stat_t *vs = &vd->vdev_stat;
4814 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4815 #endif
4816 zio_type_t type = zio->io_type;
4817 int flags = zio->io_flags;
4818
4819 /*
4820 * If this i/o is a gang leader, it didn't do any actual work.
4821 */
4822 if (zio->io_gang_tree)
4823 return;
4824
4825 if (zio->io_error == 0) {
4826 /*
4827 * If this is a root i/o, don't count it -- we've already
4828 * counted the top-level vdevs, and vdev_get_stats() will
4829 * aggregate them when asked. This reduces contention on
4830 * the root vdev_stat_lock and implicitly handles blocks
4831 * that compress away to holes, for which there is no i/o.
4832 * (Holes never create vdev children, so all the counters
4833 * remain zero, which is what we want.)
4834 *
4835 * Note: this only applies to successful i/o (io_error == 0)
4836 * because unlike i/o counts, errors are not additive.
4837 * When reading a ditto block, for example, failure of
4838 * one top-level vdev does not imply a root-level error.
4839 */
4840 if (vd == rvd)
4841 return;
4842
4843 ASSERT(vd == zio->io_vd);
4844
4845 if (flags & ZIO_FLAG_IO_BYPASS)
4846 return;
4847
4848 mutex_enter(&vd->vdev_stat_lock);
4849
4850 if (flags & ZIO_FLAG_IO_REPAIR) {
4851 /*
4852 * Repair is the result of a resilver issued by the
4853 * scan thread (spa_sync).
4854 */
4855 if (flags & ZIO_FLAG_SCAN_THREAD) {
4856 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4857 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4858 uint64_t *processed = &scn_phys->scn_processed;
4859
4860 if (vd->vdev_ops->vdev_op_leaf)
4861 atomic_add_64(processed, psize);
4862 vs->vs_scan_processed += psize;
4863 }
4864
4865 /*
4866 * Repair is the result of a rebuild issued by the
4867 * rebuild thread (vdev_rebuild_thread). To avoid
4868 * double counting repaired bytes the virtual dRAID
4869 * spare vdev is excluded from the processed bytes.
4870 */
4871 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4872 vdev_t *tvd = vd->vdev_top;
4873 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4874 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4875 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4876
4877 if (vd->vdev_ops->vdev_op_leaf &&
4878 vd->vdev_ops != &vdev_draid_spare_ops) {
4879 atomic_add_64(rebuilt, psize);
4880 }
4881 vs->vs_rebuild_processed += psize;
4882 }
4883
4884 if (flags & ZIO_FLAG_SELF_HEAL)
4885 vs->vs_self_healed += psize;
4886 }
4887
4888 /*
4889 * The bytes/ops/histograms are recorded at the leaf level and
4890 * aggregated into the higher level vdevs in vdev_get_stats().
4891 */
4892 if (vd->vdev_ops->vdev_op_leaf &&
4893 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4894 zio_type_t vs_type = type;
4895 zio_priority_t priority = zio->io_priority;
4896
4897 /*
4898 * TRIM ops and bytes are reported to user space as
4899 * ZIO_TYPE_IOCTL. This is done to preserve the
4900 * vdev_stat_t structure layout for user space.
4901 */
4902 if (type == ZIO_TYPE_TRIM)
4903 vs_type = ZIO_TYPE_IOCTL;
4904
4905 /*
4906 * Solely for the purposes of 'zpool iostat -lqrw'
4907 * reporting use the priority to categorize the IO.
4908 * Only the following are reported to user space:
4909 *
4910 * ZIO_PRIORITY_SYNC_READ,
4911 * ZIO_PRIORITY_SYNC_WRITE,
4912 * ZIO_PRIORITY_ASYNC_READ,
4913 * ZIO_PRIORITY_ASYNC_WRITE,
4914 * ZIO_PRIORITY_SCRUB,
4915 * ZIO_PRIORITY_TRIM,
4916 * ZIO_PRIORITY_REBUILD.
4917 */
4918 if (priority == ZIO_PRIORITY_INITIALIZING) {
4919 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4920 priority = ZIO_PRIORITY_ASYNC_WRITE;
4921 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4922 priority = ((type == ZIO_TYPE_WRITE) ?
4923 ZIO_PRIORITY_ASYNC_WRITE :
4924 ZIO_PRIORITY_ASYNC_READ);
4925 }
4926
4927 vs->vs_ops[vs_type]++;
4928 vs->vs_bytes[vs_type] += psize;
4929
4930 if (flags & ZIO_FLAG_DELEGATED) {
4931 vsx->vsx_agg_histo[priority]
4932 [RQ_HISTO(zio->io_size)]++;
4933 } else {
4934 vsx->vsx_ind_histo[priority]
4935 [RQ_HISTO(zio->io_size)]++;
4936 }
4937
4938 if (zio->io_delta && zio->io_delay) {
4939 vsx->vsx_queue_histo[priority]
4940 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4941 vsx->vsx_disk_histo[type]
4942 [L_HISTO(zio->io_delay)]++;
4943 vsx->vsx_total_histo[type]
4944 [L_HISTO(zio->io_delta)]++;
4945 }
4946 }
4947
4948 mutex_exit(&vd->vdev_stat_lock);
4949 return;
4950 }
4951
4952 if (flags & ZIO_FLAG_SPECULATIVE)
4953 return;
4954
4955 /*
4956 * If this is an I/O error that is going to be retried, then ignore the
4957 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4958 * hard errors, when in reality they can happen for any number of
4959 * innocuous reasons (bus resets, MPxIO link failure, etc).
4960 */
4961 if (zio->io_error == EIO &&
4962 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4963 return;
4964
4965 /*
4966 * Intent logs writes won't propagate their error to the root
4967 * I/O so don't mark these types of failures as pool-level
4968 * errors.
4969 */
4970 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4971 return;
4972
4973 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4974 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4975 (flags & ZIO_FLAG_SCAN_THREAD) ||
4976 spa->spa_claiming)) {
4977 /*
4978 * This is either a normal write (not a repair), or it's
4979 * a repair induced by the scrub thread, or it's a repair
4980 * made by zil_claim() during spa_load() in the first txg.
4981 * In the normal case, we commit the DTL change in the same
4982 * txg as the block was born. In the scrub-induced repair
4983 * case, we know that scrubs run in first-pass syncing context,
4984 * so we commit the DTL change in spa_syncing_txg(spa).
4985 * In the zil_claim() case, we commit in spa_first_txg(spa).
4986 *
4987 * We currently do not make DTL entries for failed spontaneous
4988 * self-healing writes triggered by normal (non-scrubbing)
4989 * reads, because we have no transactional context in which to
4990 * do so -- and it's not clear that it'd be desirable anyway.
4991 */
4992 if (vd->vdev_ops->vdev_op_leaf) {
4993 uint64_t commit_txg = txg;
4994 if (flags & ZIO_FLAG_SCAN_THREAD) {
4995 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4996 ASSERT(spa_sync_pass(spa) == 1);
4997 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4998 commit_txg = spa_syncing_txg(spa);
4999 } else if (spa->spa_claiming) {
5000 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5001 commit_txg = spa_first_txg(spa);
5002 }
5003 ASSERT(commit_txg >= spa_syncing_txg(spa));
5004 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5005 return;
5006 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5007 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5008 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5009 }
5010 if (vd != rvd)
5011 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5012 }
5013 }
5014
5015 int64_t
5016 vdev_deflated_space(vdev_t *vd, int64_t space)
5017 {
5018 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5019 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5020
5021 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5022 }
5023
5024 /*
5025 * Update the in-core space usage stats for this vdev, its metaslab class,
5026 * and the root vdev.
5027 */
5028 void
5029 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5030 int64_t space_delta)
5031 {
5032 (void) defer_delta;
5033 int64_t dspace_delta;
5034 spa_t *spa = vd->vdev_spa;
5035 vdev_t *rvd = spa->spa_root_vdev;
5036
5037 ASSERT(vd == vd->vdev_top);
5038
5039 /*
5040 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5041 * factor. We must calculate this here and not at the root vdev
5042 * because the root vdev's psize-to-asize is simply the max of its
5043 * children's, thus not accurate enough for us.
5044 */
5045 dspace_delta = vdev_deflated_space(vd, space_delta);
5046
5047 mutex_enter(&vd->vdev_stat_lock);
5048 /* ensure we won't underflow */
5049 if (alloc_delta < 0) {
5050 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5051 }
5052
5053 vd->vdev_stat.vs_alloc += alloc_delta;
5054 vd->vdev_stat.vs_space += space_delta;
5055 vd->vdev_stat.vs_dspace += dspace_delta;
5056 mutex_exit(&vd->vdev_stat_lock);
5057
5058 /* every class but log contributes to root space stats */
5059 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5060 ASSERT(!vd->vdev_isl2cache);
5061 mutex_enter(&rvd->vdev_stat_lock);
5062 rvd->vdev_stat.vs_alloc += alloc_delta;
5063 rvd->vdev_stat.vs_space += space_delta;
5064 rvd->vdev_stat.vs_dspace += dspace_delta;
5065 mutex_exit(&rvd->vdev_stat_lock);
5066 }
5067 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5068 }
5069
5070 /*
5071 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5072 * so that it will be written out next time the vdev configuration is synced.
5073 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5074 */
5075 void
5076 vdev_config_dirty(vdev_t *vd)
5077 {
5078 spa_t *spa = vd->vdev_spa;
5079 vdev_t *rvd = spa->spa_root_vdev;
5080 int c;
5081
5082 ASSERT(spa_writeable(spa));
5083
5084 /*
5085 * If this is an aux vdev (as with l2cache and spare devices), then we
5086 * update the vdev config manually and set the sync flag.
5087 */
5088 if (vd->vdev_aux != NULL) {
5089 spa_aux_vdev_t *sav = vd->vdev_aux;
5090 nvlist_t **aux;
5091 uint_t naux;
5092
5093 for (c = 0; c < sav->sav_count; c++) {
5094 if (sav->sav_vdevs[c] == vd)
5095 break;
5096 }
5097
5098 if (c == sav->sav_count) {
5099 /*
5100 * We're being removed. There's nothing more to do.
5101 */
5102 ASSERT(sav->sav_sync == B_TRUE);
5103 return;
5104 }
5105
5106 sav->sav_sync = B_TRUE;
5107
5108 if (nvlist_lookup_nvlist_array(sav->sav_config,
5109 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5110 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5111 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5112 }
5113
5114 ASSERT(c < naux);
5115
5116 /*
5117 * Setting the nvlist in the middle if the array is a little
5118 * sketchy, but it will work.
5119 */
5120 nvlist_free(aux[c]);
5121 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5122
5123 return;
5124 }
5125
5126 /*
5127 * The dirty list is protected by the SCL_CONFIG lock. The caller
5128 * must either hold SCL_CONFIG as writer, or must be the sync thread
5129 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5130 * so this is sufficient to ensure mutual exclusion.
5131 */
5132 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5133 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5134 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5135
5136 if (vd == rvd) {
5137 for (c = 0; c < rvd->vdev_children; c++)
5138 vdev_config_dirty(rvd->vdev_child[c]);
5139 } else {
5140 ASSERT(vd == vd->vdev_top);
5141
5142 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5143 vdev_is_concrete(vd)) {
5144 list_insert_head(&spa->spa_config_dirty_list, vd);
5145 }
5146 }
5147 }
5148
5149 void
5150 vdev_config_clean(vdev_t *vd)
5151 {
5152 spa_t *spa = vd->vdev_spa;
5153
5154 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5155 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5156 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5157
5158 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5159 list_remove(&spa->spa_config_dirty_list, vd);
5160 }
5161
5162 /*
5163 * Mark a top-level vdev's state as dirty, so that the next pass of
5164 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5165 * the state changes from larger config changes because they require
5166 * much less locking, and are often needed for administrative actions.
5167 */
5168 void
5169 vdev_state_dirty(vdev_t *vd)
5170 {
5171 spa_t *spa = vd->vdev_spa;
5172
5173 ASSERT(spa_writeable(spa));
5174 ASSERT(vd == vd->vdev_top);
5175
5176 /*
5177 * The state list is protected by the SCL_STATE lock. The caller
5178 * must either hold SCL_STATE as writer, or must be the sync thread
5179 * (which holds SCL_STATE as reader). There's only one sync thread,
5180 * so this is sufficient to ensure mutual exclusion.
5181 */
5182 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5183 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5184 spa_config_held(spa, SCL_STATE, RW_READER)));
5185
5186 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5187 vdev_is_concrete(vd))
5188 list_insert_head(&spa->spa_state_dirty_list, vd);
5189 }
5190
5191 void
5192 vdev_state_clean(vdev_t *vd)
5193 {
5194 spa_t *spa = vd->vdev_spa;
5195
5196 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5197 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5198 spa_config_held(spa, SCL_STATE, RW_READER)));
5199
5200 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5201 list_remove(&spa->spa_state_dirty_list, vd);
5202 }
5203
5204 /*
5205 * Propagate vdev state up from children to parent.
5206 */
5207 void
5208 vdev_propagate_state(vdev_t *vd)
5209 {
5210 spa_t *spa = vd->vdev_spa;
5211 vdev_t *rvd = spa->spa_root_vdev;
5212 int degraded = 0, faulted = 0;
5213 int corrupted = 0;
5214 vdev_t *child;
5215
5216 if (vd->vdev_children > 0) {
5217 for (int c = 0; c < vd->vdev_children; c++) {
5218 child = vd->vdev_child[c];
5219
5220 /*
5221 * Don't factor holes or indirect vdevs into the
5222 * decision.
5223 */
5224 if (!vdev_is_concrete(child))
5225 continue;
5226
5227 if (!vdev_readable(child) ||
5228 (!vdev_writeable(child) && spa_writeable(spa))) {
5229 /*
5230 * Root special: if there is a top-level log
5231 * device, treat the root vdev as if it were
5232 * degraded.
5233 */
5234 if (child->vdev_islog && vd == rvd)
5235 degraded++;
5236 else
5237 faulted++;
5238 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5239 degraded++;
5240 }
5241
5242 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5243 corrupted++;
5244 }
5245
5246 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5247
5248 /*
5249 * Root special: if there is a top-level vdev that cannot be
5250 * opened due to corrupted metadata, then propagate the root
5251 * vdev's aux state as 'corrupt' rather than 'insufficient
5252 * replicas'.
5253 */
5254 if (corrupted && vd == rvd &&
5255 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5256 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5257 VDEV_AUX_CORRUPT_DATA);
5258 }
5259
5260 if (vd->vdev_parent)
5261 vdev_propagate_state(vd->vdev_parent);
5262 }
5263
5264 /*
5265 * Set a vdev's state. If this is during an open, we don't update the parent
5266 * state, because we're in the process of opening children depth-first.
5267 * Otherwise, we propagate the change to the parent.
5268 *
5269 * If this routine places a device in a faulted state, an appropriate ereport is
5270 * generated.
5271 */
5272 void
5273 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5274 {
5275 uint64_t save_state;
5276 spa_t *spa = vd->vdev_spa;
5277
5278 if (state == vd->vdev_state) {
5279 /*
5280 * Since vdev_offline() code path is already in an offline
5281 * state we can miss a statechange event to OFFLINE. Check
5282 * the previous state to catch this condition.
5283 */
5284 if (vd->vdev_ops->vdev_op_leaf &&
5285 (state == VDEV_STATE_OFFLINE) &&
5286 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5287 /* post an offline state change */
5288 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5289 }
5290 vd->vdev_stat.vs_aux = aux;
5291 return;
5292 }
5293
5294 save_state = vd->vdev_state;
5295
5296 vd->vdev_state = state;
5297 vd->vdev_stat.vs_aux = aux;
5298
5299 /*
5300 * If we are setting the vdev state to anything but an open state, then
5301 * always close the underlying device unless the device has requested
5302 * a delayed close (i.e. we're about to remove or fault the device).
5303 * Otherwise, we keep accessible but invalid devices open forever.
5304 * We don't call vdev_close() itself, because that implies some extra
5305 * checks (offline, etc) that we don't want here. This is limited to
5306 * leaf devices, because otherwise closing the device will affect other
5307 * children.
5308 */
5309 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5310 vd->vdev_ops->vdev_op_leaf)
5311 vd->vdev_ops->vdev_op_close(vd);
5312
5313 if (vd->vdev_removed &&
5314 state == VDEV_STATE_CANT_OPEN &&
5315 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5316 /*
5317 * If the previous state is set to VDEV_STATE_REMOVED, then this
5318 * device was previously marked removed and someone attempted to
5319 * reopen it. If this failed due to a nonexistent device, then
5320 * keep the device in the REMOVED state. We also let this be if
5321 * it is one of our special test online cases, which is only
5322 * attempting to online the device and shouldn't generate an FMA
5323 * fault.
5324 */
5325 vd->vdev_state = VDEV_STATE_REMOVED;
5326 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5327 } else if (state == VDEV_STATE_REMOVED) {
5328 vd->vdev_removed = B_TRUE;
5329 } else if (state == VDEV_STATE_CANT_OPEN) {
5330 /*
5331 * If we fail to open a vdev during an import or recovery, we
5332 * mark it as "not available", which signifies that it was
5333 * never there to begin with. Failure to open such a device
5334 * is not considered an error.
5335 */
5336 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5337 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5338 vd->vdev_ops->vdev_op_leaf)
5339 vd->vdev_not_present = 1;
5340
5341 /*
5342 * Post the appropriate ereport. If the 'prevstate' field is
5343 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5344 * that this is part of a vdev_reopen(). In this case, we don't
5345 * want to post the ereport if the device was already in the
5346 * CANT_OPEN state beforehand.
5347 *
5348 * If the 'checkremove' flag is set, then this is an attempt to
5349 * online the device in response to an insertion event. If we
5350 * hit this case, then we have detected an insertion event for a
5351 * faulted or offline device that wasn't in the removed state.
5352 * In this scenario, we don't post an ereport because we are
5353 * about to replace the device, or attempt an online with
5354 * vdev_forcefault, which will generate the fault for us.
5355 */
5356 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5357 !vd->vdev_not_present && !vd->vdev_checkremove &&
5358 vd != spa->spa_root_vdev) {
5359 const char *class;
5360
5361 switch (aux) {
5362 case VDEV_AUX_OPEN_FAILED:
5363 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5364 break;
5365 case VDEV_AUX_CORRUPT_DATA:
5366 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5367 break;
5368 case VDEV_AUX_NO_REPLICAS:
5369 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5370 break;
5371 case VDEV_AUX_BAD_GUID_SUM:
5372 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5373 break;
5374 case VDEV_AUX_TOO_SMALL:
5375 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5376 break;
5377 case VDEV_AUX_BAD_LABEL:
5378 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5379 break;
5380 case VDEV_AUX_BAD_ASHIFT:
5381 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5382 break;
5383 default:
5384 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5385 }
5386
5387 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5388 save_state);
5389 }
5390
5391 /* Erase any notion of persistent removed state */
5392 vd->vdev_removed = B_FALSE;
5393 } else {
5394 vd->vdev_removed = B_FALSE;
5395 }
5396
5397 /*
5398 * Notify ZED of any significant state-change on a leaf vdev.
5399 *
5400 */
5401 if (vd->vdev_ops->vdev_op_leaf) {
5402 /* preserve original state from a vdev_reopen() */
5403 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5404 (vd->vdev_prevstate != vd->vdev_state) &&
5405 (save_state <= VDEV_STATE_CLOSED))
5406 save_state = vd->vdev_prevstate;
5407
5408 /* filter out state change due to initial vdev_open */
5409 if (save_state > VDEV_STATE_CLOSED)
5410 zfs_post_state_change(spa, vd, save_state);
5411 }
5412
5413 if (!isopen && vd->vdev_parent)
5414 vdev_propagate_state(vd->vdev_parent);
5415 }
5416
5417 boolean_t
5418 vdev_children_are_offline(vdev_t *vd)
5419 {
5420 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5421
5422 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5423 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5424 return (B_FALSE);
5425 }
5426
5427 return (B_TRUE);
5428 }
5429
5430 /*
5431 * Check the vdev configuration to ensure that it's capable of supporting
5432 * a root pool. We do not support partial configuration.
5433 */
5434 boolean_t
5435 vdev_is_bootable(vdev_t *vd)
5436 {
5437 if (!vd->vdev_ops->vdev_op_leaf) {
5438 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5439
5440 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5441 return (B_FALSE);
5442 }
5443
5444 for (int c = 0; c < vd->vdev_children; c++) {
5445 if (!vdev_is_bootable(vd->vdev_child[c]))
5446 return (B_FALSE);
5447 }
5448 return (B_TRUE);
5449 }
5450
5451 boolean_t
5452 vdev_is_concrete(vdev_t *vd)
5453 {
5454 vdev_ops_t *ops = vd->vdev_ops;
5455 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5456 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5457 return (B_FALSE);
5458 } else {
5459 return (B_TRUE);
5460 }
5461 }
5462
5463 /*
5464 * Determine if a log device has valid content. If the vdev was
5465 * removed or faulted in the MOS config then we know that
5466 * the content on the log device has already been written to the pool.
5467 */
5468 boolean_t
5469 vdev_log_state_valid(vdev_t *vd)
5470 {
5471 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5472 !vd->vdev_removed)
5473 return (B_TRUE);
5474
5475 for (int c = 0; c < vd->vdev_children; c++)
5476 if (vdev_log_state_valid(vd->vdev_child[c]))
5477 return (B_TRUE);
5478
5479 return (B_FALSE);
5480 }
5481
5482 /*
5483 * Expand a vdev if possible.
5484 */
5485 void
5486 vdev_expand(vdev_t *vd, uint64_t txg)
5487 {
5488 ASSERT(vd->vdev_top == vd);
5489 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5490 ASSERT(vdev_is_concrete(vd));
5491
5492 vdev_set_deflate_ratio(vd);
5493
5494 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5495 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5496 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5497 vdev_is_concrete(vd)) {
5498 vdev_metaslab_group_create(vd);
5499 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5500 vdev_config_dirty(vd);
5501 }
5502 }
5503
5504 /*
5505 * Split a vdev.
5506 */
5507 void
5508 vdev_split(vdev_t *vd)
5509 {
5510 vdev_t *cvd, *pvd = vd->vdev_parent;
5511
5512 VERIFY3U(pvd->vdev_children, >, 1);
5513
5514 vdev_remove_child(pvd, vd);
5515 vdev_compact_children(pvd);
5516
5517 ASSERT3P(pvd->vdev_child, !=, NULL);
5518
5519 cvd = pvd->vdev_child[0];
5520 if (pvd->vdev_children == 1) {
5521 vdev_remove_parent(cvd);
5522 cvd->vdev_splitting = B_TRUE;
5523 }
5524 vdev_propagate_state(cvd);
5525 }
5526
5527 void
5528 vdev_deadman(vdev_t *vd, const char *tag)
5529 {
5530 for (int c = 0; c < vd->vdev_children; c++) {
5531 vdev_t *cvd = vd->vdev_child[c];
5532
5533 vdev_deadman(cvd, tag);
5534 }
5535
5536 if (vd->vdev_ops->vdev_op_leaf) {
5537 vdev_queue_t *vq = &vd->vdev_queue;
5538
5539 mutex_enter(&vq->vq_lock);
5540 if (vq->vq_active > 0) {
5541 spa_t *spa = vd->vdev_spa;
5542 zio_t *fio;
5543 uint64_t delta;
5544
5545 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5546 vd->vdev_path, vq->vq_active);
5547
5548 /*
5549 * Look at the head of all the pending queues,
5550 * if any I/O has been outstanding for longer than
5551 * the spa_deadman_synctime invoke the deadman logic.
5552 */
5553 fio = list_head(&vq->vq_active_list);
5554 delta = gethrtime() - fio->io_timestamp;
5555 if (delta > spa_deadman_synctime(spa))
5556 zio_deadman(fio, tag);
5557 }
5558 mutex_exit(&vq->vq_lock);
5559 }
5560 }
5561
5562 void
5563 vdev_defer_resilver(vdev_t *vd)
5564 {
5565 ASSERT(vd->vdev_ops->vdev_op_leaf);
5566
5567 vd->vdev_resilver_deferred = B_TRUE;
5568 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5569 }
5570
5571 /*
5572 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5573 * B_TRUE if we have devices that need to be resilvered and are available to
5574 * accept resilver I/Os.
5575 */
5576 boolean_t
5577 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5578 {
5579 boolean_t resilver_needed = B_FALSE;
5580 spa_t *spa = vd->vdev_spa;
5581
5582 for (int c = 0; c < vd->vdev_children; c++) {
5583 vdev_t *cvd = vd->vdev_child[c];
5584 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5585 }
5586
5587 if (vd == spa->spa_root_vdev &&
5588 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5589 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5590 vdev_config_dirty(vd);
5591 spa->spa_resilver_deferred = B_FALSE;
5592 return (resilver_needed);
5593 }
5594
5595 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5596 !vd->vdev_ops->vdev_op_leaf)
5597 return (resilver_needed);
5598
5599 vd->vdev_resilver_deferred = B_FALSE;
5600
5601 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5602 vdev_resilver_needed(vd, NULL, NULL));
5603 }
5604
5605 boolean_t
5606 vdev_xlate_is_empty(range_seg64_t *rs)
5607 {
5608 return (rs->rs_start == rs->rs_end);
5609 }
5610
5611 /*
5612 * Translate a logical range to the first contiguous physical range for the
5613 * specified vdev_t. This function is initially called with a leaf vdev and
5614 * will walk each parent vdev until it reaches a top-level vdev. Once the
5615 * top-level is reached the physical range is initialized and the recursive
5616 * function begins to unwind. As it unwinds it calls the parent's vdev
5617 * specific translation function to do the real conversion.
5618 */
5619 void
5620 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5621 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5622 {
5623 /*
5624 * Walk up the vdev tree
5625 */
5626 if (vd != vd->vdev_top) {
5627 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5628 remain_rs);
5629 } else {
5630 /*
5631 * We've reached the top-level vdev, initialize the physical
5632 * range to the logical range and set an empty remaining
5633 * range then start to unwind.
5634 */
5635 physical_rs->rs_start = logical_rs->rs_start;
5636 physical_rs->rs_end = logical_rs->rs_end;
5637
5638 remain_rs->rs_start = logical_rs->rs_start;
5639 remain_rs->rs_end = logical_rs->rs_start;
5640
5641 return;
5642 }
5643
5644 vdev_t *pvd = vd->vdev_parent;
5645 ASSERT3P(pvd, !=, NULL);
5646 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5647
5648 /*
5649 * As this recursive function unwinds, translate the logical
5650 * range into its physical and any remaining components by calling
5651 * the vdev specific translate function.
5652 */
5653 range_seg64_t intermediate = { 0 };
5654 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5655
5656 physical_rs->rs_start = intermediate.rs_start;
5657 physical_rs->rs_end = intermediate.rs_end;
5658 }
5659
5660 void
5661 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5662 vdev_xlate_func_t *func, void *arg)
5663 {
5664 range_seg64_t iter_rs = *logical_rs;
5665 range_seg64_t physical_rs;
5666 range_seg64_t remain_rs;
5667
5668 while (!vdev_xlate_is_empty(&iter_rs)) {
5669
5670 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5671
5672 /*
5673 * With raidz and dRAID, it's possible that the logical range
5674 * does not live on this leaf vdev. Only when there is a non-
5675 * zero physical size call the provided function.
5676 */
5677 if (!vdev_xlate_is_empty(&physical_rs))
5678 func(arg, &physical_rs);
5679
5680 iter_rs = remain_rs;
5681 }
5682 }
5683
5684 static char *
5685 vdev_name(vdev_t *vd, char *buf, int buflen)
5686 {
5687 if (vd->vdev_path == NULL) {
5688 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5689 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5690 } else if (!vd->vdev_ops->vdev_op_leaf) {
5691 snprintf(buf, buflen, "%s-%llu",
5692 vd->vdev_ops->vdev_op_type,
5693 (u_longlong_t)vd->vdev_id);
5694 }
5695 } else {
5696 strlcpy(buf, vd->vdev_path, buflen);
5697 }
5698 return (buf);
5699 }
5700
5701 /*
5702 * Look at the vdev tree and determine whether any devices are currently being
5703 * replaced.
5704 */
5705 boolean_t
5706 vdev_replace_in_progress(vdev_t *vdev)
5707 {
5708 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5709
5710 if (vdev->vdev_ops == &vdev_replacing_ops)
5711 return (B_TRUE);
5712
5713 /*
5714 * A 'spare' vdev indicates that we have a replace in progress, unless
5715 * it has exactly two children, and the second, the hot spare, has
5716 * finished being resilvered.
5717 */
5718 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5719 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5720 return (B_TRUE);
5721
5722 for (int i = 0; i < vdev->vdev_children; i++) {
5723 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5724 return (B_TRUE);
5725 }
5726
5727 return (B_FALSE);
5728 }
5729
5730 /*
5731 * Add a (source=src, propname=propval) list to an nvlist.
5732 */
5733 static void
5734 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5735 uint64_t intval, zprop_source_t src)
5736 {
5737 nvlist_t *propval;
5738
5739 propval = fnvlist_alloc();
5740 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5741
5742 if (strval != NULL)
5743 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5744 else
5745 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5746
5747 fnvlist_add_nvlist(nvl, propname, propval);
5748 nvlist_free(propval);
5749 }
5750
5751 static void
5752 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5753 {
5754 vdev_t *vd;
5755 nvlist_t *nvp = arg;
5756 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5757 objset_t *mos = spa->spa_meta_objset;
5758 nvpair_t *elem = NULL;
5759 uint64_t vdev_guid;
5760 uint64_t objid;
5761 nvlist_t *nvprops;
5762
5763 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5764 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5765 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5766
5767 /* this vdev could get removed while waiting for this sync task */
5768 if (vd == NULL)
5769 return;
5770
5771 /*
5772 * Set vdev property values in the vdev props mos object.
5773 */
5774 if (vd->vdev_root_zap != 0) {
5775 objid = vd->vdev_root_zap;
5776 } else if (vd->vdev_top_zap != 0) {
5777 objid = vd->vdev_top_zap;
5778 } else if (vd->vdev_leaf_zap != 0) {
5779 objid = vd->vdev_leaf_zap;
5780 } else {
5781 panic("unexpected vdev type");
5782 }
5783
5784 mutex_enter(&spa->spa_props_lock);
5785
5786 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5787 uint64_t intval;
5788 const char *strval;
5789 vdev_prop_t prop;
5790 const char *propname = nvpair_name(elem);
5791 zprop_type_t proptype;
5792
5793 switch (prop = vdev_name_to_prop(propname)) {
5794 case VDEV_PROP_USERPROP:
5795 if (vdev_prop_user(propname)) {
5796 strval = fnvpair_value_string(elem);
5797 if (strlen(strval) == 0) {
5798 /* remove the property if value == "" */
5799 (void) zap_remove(mos, objid, propname,
5800 tx);
5801 } else {
5802 VERIFY0(zap_update(mos, objid, propname,
5803 1, strlen(strval) + 1, strval, tx));
5804 }
5805 spa_history_log_internal(spa, "vdev set", tx,
5806 "vdev_guid=%llu: %s=%s",
5807 (u_longlong_t)vdev_guid, nvpair_name(elem),
5808 strval);
5809 }
5810 break;
5811 default:
5812 /* normalize the property name */
5813 propname = vdev_prop_to_name(prop);
5814 proptype = vdev_prop_get_type(prop);
5815
5816 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5817 ASSERT(proptype == PROP_TYPE_STRING);
5818 strval = fnvpair_value_string(elem);
5819 VERIFY0(zap_update(mos, objid, propname,
5820 1, strlen(strval) + 1, strval, tx));
5821 spa_history_log_internal(spa, "vdev set", tx,
5822 "vdev_guid=%llu: %s=%s",
5823 (u_longlong_t)vdev_guid, nvpair_name(elem),
5824 strval);
5825 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5826 intval = fnvpair_value_uint64(elem);
5827
5828 if (proptype == PROP_TYPE_INDEX) {
5829 const char *unused;
5830 VERIFY0(vdev_prop_index_to_string(
5831 prop, intval, &unused));
5832 }
5833 VERIFY0(zap_update(mos, objid, propname,
5834 sizeof (uint64_t), 1, &intval, tx));
5835 spa_history_log_internal(spa, "vdev set", tx,
5836 "vdev_guid=%llu: %s=%lld",
5837 (u_longlong_t)vdev_guid,
5838 nvpair_name(elem), (longlong_t)intval);
5839 } else {
5840 panic("invalid vdev property type %u",
5841 nvpair_type(elem));
5842 }
5843 }
5844
5845 }
5846
5847 mutex_exit(&spa->spa_props_lock);
5848 }
5849
5850 int
5851 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5852 {
5853 spa_t *spa = vd->vdev_spa;
5854 nvpair_t *elem = NULL;
5855 uint64_t vdev_guid;
5856 nvlist_t *nvprops;
5857 int error = 0;
5858
5859 ASSERT(vd != NULL);
5860
5861 /* Check that vdev has a zap we can use */
5862 if (vd->vdev_root_zap == 0 &&
5863 vd->vdev_top_zap == 0 &&
5864 vd->vdev_leaf_zap == 0)
5865 return (SET_ERROR(EINVAL));
5866
5867 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5868 &vdev_guid) != 0)
5869 return (SET_ERROR(EINVAL));
5870
5871 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5872 &nvprops) != 0)
5873 return (SET_ERROR(EINVAL));
5874
5875 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5876 return (SET_ERROR(EINVAL));
5877
5878 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5879 const char *propname = nvpair_name(elem);
5880 vdev_prop_t prop = vdev_name_to_prop(propname);
5881 uint64_t intval = 0;
5882 const char *strval = NULL;
5883
5884 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5885 error = EINVAL;
5886 goto end;
5887 }
5888
5889 if (vdev_prop_readonly(prop)) {
5890 error = EROFS;
5891 goto end;
5892 }
5893
5894 /* Special Processing */
5895 switch (prop) {
5896 case VDEV_PROP_PATH:
5897 if (vd->vdev_path == NULL) {
5898 error = EROFS;
5899 break;
5900 }
5901 if (nvpair_value_string(elem, &strval) != 0) {
5902 error = EINVAL;
5903 break;
5904 }
5905 /* New path must start with /dev/ */
5906 if (strncmp(strval, "/dev/", 5)) {
5907 error = EINVAL;
5908 break;
5909 }
5910 error = spa_vdev_setpath(spa, vdev_guid, strval);
5911 break;
5912 case VDEV_PROP_ALLOCATING:
5913 if (nvpair_value_uint64(elem, &intval) != 0) {
5914 error = EINVAL;
5915 break;
5916 }
5917 if (intval != vd->vdev_noalloc)
5918 break;
5919 if (intval == 0)
5920 error = spa_vdev_noalloc(spa, vdev_guid);
5921 else
5922 error = spa_vdev_alloc(spa, vdev_guid);
5923 break;
5924 case VDEV_PROP_FAILFAST:
5925 if (nvpair_value_uint64(elem, &intval) != 0) {
5926 error = EINVAL;
5927 break;
5928 }
5929 vd->vdev_failfast = intval & 1;
5930 break;
5931 case VDEV_PROP_CHECKSUM_N:
5932 if (nvpair_value_uint64(elem, &intval) != 0) {
5933 error = EINVAL;
5934 break;
5935 }
5936 vd->vdev_checksum_n = intval;
5937 break;
5938 case VDEV_PROP_CHECKSUM_T:
5939 if (nvpair_value_uint64(elem, &intval) != 0) {
5940 error = EINVAL;
5941 break;
5942 }
5943 vd->vdev_checksum_t = intval;
5944 break;
5945 case VDEV_PROP_IO_N:
5946 if (nvpair_value_uint64(elem, &intval) != 0) {
5947 error = EINVAL;
5948 break;
5949 }
5950 vd->vdev_io_n = intval;
5951 break;
5952 case VDEV_PROP_IO_T:
5953 if (nvpair_value_uint64(elem, &intval) != 0) {
5954 error = EINVAL;
5955 break;
5956 }
5957 vd->vdev_io_t = intval;
5958 break;
5959 default:
5960 /* Most processing is done in vdev_props_set_sync */
5961 break;
5962 }
5963 end:
5964 if (error != 0) {
5965 intval = error;
5966 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5967 return (error);
5968 }
5969 }
5970
5971 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5972 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5973 }
5974
5975 int
5976 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5977 {
5978 spa_t *spa = vd->vdev_spa;
5979 objset_t *mos = spa->spa_meta_objset;
5980 int err = 0;
5981 uint64_t objid;
5982 uint64_t vdev_guid;
5983 nvpair_t *elem = NULL;
5984 nvlist_t *nvprops = NULL;
5985 uint64_t intval = 0;
5986 char *strval = NULL;
5987 const char *propname = NULL;
5988 vdev_prop_t prop;
5989
5990 ASSERT(vd != NULL);
5991 ASSERT(mos != NULL);
5992
5993 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5994 &vdev_guid) != 0)
5995 return (SET_ERROR(EINVAL));
5996
5997 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5998
5999 if (vd->vdev_root_zap != 0) {
6000 objid = vd->vdev_root_zap;
6001 } else if (vd->vdev_top_zap != 0) {
6002 objid = vd->vdev_top_zap;
6003 } else if (vd->vdev_leaf_zap != 0) {
6004 objid = vd->vdev_leaf_zap;
6005 } else {
6006 return (SET_ERROR(EINVAL));
6007 }
6008 ASSERT(objid != 0);
6009
6010 mutex_enter(&spa->spa_props_lock);
6011
6012 if (nvprops != NULL) {
6013 char namebuf[64] = { 0 };
6014
6015 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6016 intval = 0;
6017 strval = NULL;
6018 propname = nvpair_name(elem);
6019 prop = vdev_name_to_prop(propname);
6020 zprop_source_t src = ZPROP_SRC_DEFAULT;
6021 uint64_t integer_size, num_integers;
6022
6023 switch (prop) {
6024 /* Special Read-only Properties */
6025 case VDEV_PROP_NAME:
6026 strval = vdev_name(vd, namebuf,
6027 sizeof (namebuf));
6028 if (strval == NULL)
6029 continue;
6030 vdev_prop_add_list(outnvl, propname, strval, 0,
6031 ZPROP_SRC_NONE);
6032 continue;
6033 case VDEV_PROP_CAPACITY:
6034 /* percent used */
6035 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6036 (vd->vdev_stat.vs_alloc * 100 /
6037 vd->vdev_stat.vs_dspace);
6038 vdev_prop_add_list(outnvl, propname, NULL,
6039 intval, ZPROP_SRC_NONE);
6040 continue;
6041 case VDEV_PROP_STATE:
6042 vdev_prop_add_list(outnvl, propname, NULL,
6043 vd->vdev_state, ZPROP_SRC_NONE);
6044 continue;
6045 case VDEV_PROP_GUID:
6046 vdev_prop_add_list(outnvl, propname, NULL,
6047 vd->vdev_guid, ZPROP_SRC_NONE);
6048 continue;
6049 case VDEV_PROP_ASIZE:
6050 vdev_prop_add_list(outnvl, propname, NULL,
6051 vd->vdev_asize, ZPROP_SRC_NONE);
6052 continue;
6053 case VDEV_PROP_PSIZE:
6054 vdev_prop_add_list(outnvl, propname, NULL,
6055 vd->vdev_psize, ZPROP_SRC_NONE);
6056 continue;
6057 case VDEV_PROP_ASHIFT:
6058 vdev_prop_add_list(outnvl, propname, NULL,
6059 vd->vdev_ashift, ZPROP_SRC_NONE);
6060 continue;
6061 case VDEV_PROP_SIZE:
6062 vdev_prop_add_list(outnvl, propname, NULL,
6063 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6064 continue;
6065 case VDEV_PROP_FREE:
6066 vdev_prop_add_list(outnvl, propname, NULL,
6067 vd->vdev_stat.vs_dspace -
6068 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6069 continue;
6070 case VDEV_PROP_ALLOCATED:
6071 vdev_prop_add_list(outnvl, propname, NULL,
6072 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6073 continue;
6074 case VDEV_PROP_EXPANDSZ:
6075 vdev_prop_add_list(outnvl, propname, NULL,
6076 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6077 continue;
6078 case VDEV_PROP_FRAGMENTATION:
6079 vdev_prop_add_list(outnvl, propname, NULL,
6080 vd->vdev_stat.vs_fragmentation,
6081 ZPROP_SRC_NONE);
6082 continue;
6083 case VDEV_PROP_PARITY:
6084 vdev_prop_add_list(outnvl, propname, NULL,
6085 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6086 continue;
6087 case VDEV_PROP_PATH:
6088 if (vd->vdev_path == NULL)
6089 continue;
6090 vdev_prop_add_list(outnvl, propname,
6091 vd->vdev_path, 0, ZPROP_SRC_NONE);
6092 continue;
6093 case VDEV_PROP_DEVID:
6094 if (vd->vdev_devid == NULL)
6095 continue;
6096 vdev_prop_add_list(outnvl, propname,
6097 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6098 continue;
6099 case VDEV_PROP_PHYS_PATH:
6100 if (vd->vdev_physpath == NULL)
6101 continue;
6102 vdev_prop_add_list(outnvl, propname,
6103 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6104 continue;
6105 case VDEV_PROP_ENC_PATH:
6106 if (vd->vdev_enc_sysfs_path == NULL)
6107 continue;
6108 vdev_prop_add_list(outnvl, propname,
6109 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6110 continue;
6111 case VDEV_PROP_FRU:
6112 if (vd->vdev_fru == NULL)
6113 continue;
6114 vdev_prop_add_list(outnvl, propname,
6115 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6116 continue;
6117 case VDEV_PROP_PARENT:
6118 if (vd->vdev_parent != NULL) {
6119 strval = vdev_name(vd->vdev_parent,
6120 namebuf, sizeof (namebuf));
6121 vdev_prop_add_list(outnvl, propname,
6122 strval, 0, ZPROP_SRC_NONE);
6123 }
6124 continue;
6125 case VDEV_PROP_CHILDREN:
6126 if (vd->vdev_children > 0)
6127 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6128 KM_SLEEP);
6129 for (uint64_t i = 0; i < vd->vdev_children;
6130 i++) {
6131 const char *vname;
6132
6133 vname = vdev_name(vd->vdev_child[i],
6134 namebuf, sizeof (namebuf));
6135 if (vname == NULL)
6136 vname = "(unknown)";
6137 if (strlen(strval) > 0)
6138 strlcat(strval, ",",
6139 ZAP_MAXVALUELEN);
6140 strlcat(strval, vname, ZAP_MAXVALUELEN);
6141 }
6142 if (strval != NULL) {
6143 vdev_prop_add_list(outnvl, propname,
6144 strval, 0, ZPROP_SRC_NONE);
6145 kmem_free(strval, ZAP_MAXVALUELEN);
6146 }
6147 continue;
6148 case VDEV_PROP_NUMCHILDREN:
6149 vdev_prop_add_list(outnvl, propname, NULL,
6150 vd->vdev_children, ZPROP_SRC_NONE);
6151 continue;
6152 case VDEV_PROP_READ_ERRORS:
6153 vdev_prop_add_list(outnvl, propname, NULL,
6154 vd->vdev_stat.vs_read_errors,
6155 ZPROP_SRC_NONE);
6156 continue;
6157 case VDEV_PROP_WRITE_ERRORS:
6158 vdev_prop_add_list(outnvl, propname, NULL,
6159 vd->vdev_stat.vs_write_errors,
6160 ZPROP_SRC_NONE);
6161 continue;
6162 case VDEV_PROP_CHECKSUM_ERRORS:
6163 vdev_prop_add_list(outnvl, propname, NULL,
6164 vd->vdev_stat.vs_checksum_errors,
6165 ZPROP_SRC_NONE);
6166 continue;
6167 case VDEV_PROP_INITIALIZE_ERRORS:
6168 vdev_prop_add_list(outnvl, propname, NULL,
6169 vd->vdev_stat.vs_initialize_errors,
6170 ZPROP_SRC_NONE);
6171 continue;
6172 case VDEV_PROP_OPS_NULL:
6173 vdev_prop_add_list(outnvl, propname, NULL,
6174 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6175 ZPROP_SRC_NONE);
6176 continue;
6177 case VDEV_PROP_OPS_READ:
6178 vdev_prop_add_list(outnvl, propname, NULL,
6179 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6180 ZPROP_SRC_NONE);
6181 continue;
6182 case VDEV_PROP_OPS_WRITE:
6183 vdev_prop_add_list(outnvl, propname, NULL,
6184 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6185 ZPROP_SRC_NONE);
6186 continue;
6187 case VDEV_PROP_OPS_FREE:
6188 vdev_prop_add_list(outnvl, propname, NULL,
6189 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6190 ZPROP_SRC_NONE);
6191 continue;
6192 case VDEV_PROP_OPS_CLAIM:
6193 vdev_prop_add_list(outnvl, propname, NULL,
6194 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6195 ZPROP_SRC_NONE);
6196 continue;
6197 case VDEV_PROP_OPS_TRIM:
6198 /*
6199 * TRIM ops and bytes are reported to user
6200 * space as ZIO_TYPE_IOCTL. This is done to
6201 * preserve the vdev_stat_t structure layout
6202 * for user space.
6203 */
6204 vdev_prop_add_list(outnvl, propname, NULL,
6205 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6206 ZPROP_SRC_NONE);
6207 continue;
6208 case VDEV_PROP_BYTES_NULL:
6209 vdev_prop_add_list(outnvl, propname, NULL,
6210 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6211 ZPROP_SRC_NONE);
6212 continue;
6213 case VDEV_PROP_BYTES_READ:
6214 vdev_prop_add_list(outnvl, propname, NULL,
6215 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6216 ZPROP_SRC_NONE);
6217 continue;
6218 case VDEV_PROP_BYTES_WRITE:
6219 vdev_prop_add_list(outnvl, propname, NULL,
6220 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6221 ZPROP_SRC_NONE);
6222 continue;
6223 case VDEV_PROP_BYTES_FREE:
6224 vdev_prop_add_list(outnvl, propname, NULL,
6225 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6226 ZPROP_SRC_NONE);
6227 continue;
6228 case VDEV_PROP_BYTES_CLAIM:
6229 vdev_prop_add_list(outnvl, propname, NULL,
6230 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6231 ZPROP_SRC_NONE);
6232 continue;
6233 case VDEV_PROP_BYTES_TRIM:
6234 /*
6235 * TRIM ops and bytes are reported to user
6236 * space as ZIO_TYPE_IOCTL. This is done to
6237 * preserve the vdev_stat_t structure layout
6238 * for user space.
6239 */
6240 vdev_prop_add_list(outnvl, propname, NULL,
6241 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6242 ZPROP_SRC_NONE);
6243 continue;
6244 case VDEV_PROP_REMOVING:
6245 vdev_prop_add_list(outnvl, propname, NULL,
6246 vd->vdev_removing, ZPROP_SRC_NONE);
6247 continue;
6248 case VDEV_PROP_RAIDZ_EXPANDING:
6249 /* Only expose this for raidz */
6250 if (vd->vdev_ops == &vdev_raidz_ops) {
6251 vdev_prop_add_list(outnvl, propname,
6252 NULL, vd->vdev_rz_expanding,
6253 ZPROP_SRC_NONE);
6254 }
6255 continue;
6256 /* Numeric Properites */
6257 case VDEV_PROP_ALLOCATING:
6258 /* Leaf vdevs cannot have this property */
6259 if (vd->vdev_mg == NULL &&
6260 vd->vdev_top != NULL) {
6261 src = ZPROP_SRC_NONE;
6262 intval = ZPROP_BOOLEAN_NA;
6263 } else {
6264 err = vdev_prop_get_int(vd, prop,
6265 &intval);
6266 if (err && err != ENOENT)
6267 break;
6268
6269 if (intval ==
6270 vdev_prop_default_numeric(prop))
6271 src = ZPROP_SRC_DEFAULT;
6272 else
6273 src = ZPROP_SRC_LOCAL;
6274 }
6275
6276 vdev_prop_add_list(outnvl, propname, NULL,
6277 intval, src);
6278 break;
6279 case VDEV_PROP_FAILFAST:
6280 src = ZPROP_SRC_LOCAL;
6281 strval = NULL;
6282
6283 err = zap_lookup(mos, objid, nvpair_name(elem),
6284 sizeof (uint64_t), 1, &intval);
6285 if (err == ENOENT) {
6286 intval = vdev_prop_default_numeric(
6287 prop);
6288 err = 0;
6289 } else if (err) {
6290 break;
6291 }
6292 if (intval == vdev_prop_default_numeric(prop))
6293 src = ZPROP_SRC_DEFAULT;
6294
6295 vdev_prop_add_list(outnvl, propname, strval,
6296 intval, src);
6297 break;
6298 case VDEV_PROP_CHECKSUM_N:
6299 case VDEV_PROP_CHECKSUM_T:
6300 case VDEV_PROP_IO_N:
6301 case VDEV_PROP_IO_T:
6302 err = vdev_prop_get_int(vd, prop, &intval);
6303 if (err && err != ENOENT)
6304 break;
6305
6306 if (intval == vdev_prop_default_numeric(prop))
6307 src = ZPROP_SRC_DEFAULT;
6308 else
6309 src = ZPROP_SRC_LOCAL;
6310
6311 vdev_prop_add_list(outnvl, propname, NULL,
6312 intval, src);
6313 break;
6314 /* Text Properties */
6315 case VDEV_PROP_COMMENT:
6316 /* Exists in the ZAP below */
6317 /* FALLTHRU */
6318 case VDEV_PROP_USERPROP:
6319 /* User Properites */
6320 src = ZPROP_SRC_LOCAL;
6321
6322 err = zap_length(mos, objid, nvpair_name(elem),
6323 &integer_size, &num_integers);
6324 if (err)
6325 break;
6326
6327 switch (integer_size) {
6328 case 8:
6329 /* User properties cannot be integers */
6330 err = EINVAL;
6331 break;
6332 case 1:
6333 /* string property */
6334 strval = kmem_alloc(num_integers,
6335 KM_SLEEP);
6336 err = zap_lookup(mos, objid,
6337 nvpair_name(elem), 1,
6338 num_integers, strval);
6339 if (err) {
6340 kmem_free(strval,
6341 num_integers);
6342 break;
6343 }
6344 vdev_prop_add_list(outnvl, propname,
6345 strval, 0, src);
6346 kmem_free(strval, num_integers);
6347 break;
6348 }
6349 break;
6350 default:
6351 err = ENOENT;
6352 break;
6353 }
6354 if (err)
6355 break;
6356 }
6357 } else {
6358 /*
6359 * Get all properties from the MOS vdev property object.
6360 */
6361 zap_cursor_t zc;
6362 zap_attribute_t za;
6363 for (zap_cursor_init(&zc, mos, objid);
6364 (err = zap_cursor_retrieve(&zc, &za)) == 0;
6365 zap_cursor_advance(&zc)) {
6366 intval = 0;
6367 strval = NULL;
6368 zprop_source_t src = ZPROP_SRC_DEFAULT;
6369 propname = za.za_name;
6370
6371 switch (za.za_integer_length) {
6372 case 8:
6373 /* We do not allow integer user properties */
6374 /* This is likely an internal value */
6375 break;
6376 case 1:
6377 /* string property */
6378 strval = kmem_alloc(za.za_num_integers,
6379 KM_SLEEP);
6380 err = zap_lookup(mos, objid, za.za_name, 1,
6381 za.za_num_integers, strval);
6382 if (err) {
6383 kmem_free(strval, za.za_num_integers);
6384 break;
6385 }
6386 vdev_prop_add_list(outnvl, propname, strval, 0,
6387 src);
6388 kmem_free(strval, za.za_num_integers);
6389 break;
6390
6391 default:
6392 break;
6393 }
6394 }
6395 zap_cursor_fini(&zc);
6396 }
6397
6398 mutex_exit(&spa->spa_props_lock);
6399 if (err && err != ENOENT) {
6400 return (err);
6401 }
6402
6403 return (0);
6404 }
6405
6406 EXPORT_SYMBOL(vdev_fault);
6407 EXPORT_SYMBOL(vdev_degrade);
6408 EXPORT_SYMBOL(vdev_online);
6409 EXPORT_SYMBOL(vdev_offline);
6410 EXPORT_SYMBOL(vdev_clear);
6411
6412 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6413 "Target number of metaslabs per top-level vdev");
6414
6415 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6416 "Default lower limit for metaslab size");
6417
6418 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6419 "Default upper limit for metaslab size");
6420
6421 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6422 "Minimum number of metaslabs per top-level vdev");
6423
6424 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6425 "Practical upper limit of total metaslabs per top-level vdev");
6426
6427 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6428 "Rate limit slow IO (delay) events to this many per second");
6429
6430 /* BEGIN CSTYLED */
6431 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6432 "Rate limit checksum events to this many checksum errors per second "
6433 "(do not set below ZED threshold).");
6434 /* END CSTYLED */
6435
6436 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6437 "Ignore errors during resilver/scrub");
6438
6439 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6440 "Bypass vdev_validate()");
6441
6442 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6443 "Disable cache flushes");
6444
6445 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6446 "Minimum number of metaslabs required to dedicate one for log blocks");
6447
6448 /* BEGIN CSTYLED */
6449 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6450 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6451 "Minimum ashift used when creating new top-level vdevs");
6452
6453 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6454 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6455 "Maximum ashift used when optimizing for logical -> physical sector "
6456 "size on new top-level vdevs");
6457 /* END CSTYLED */