]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_indirect.c
d0725add8922ed0d7ac1ce15df1d0b9a89bfdd92
[mirror_zfs.git] / module / zfs / vdev_indirect.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18 */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
53 *
54 * - frees and claims to this vdev use the callback to free or claim
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61 /*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127 /*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
174 int zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
191 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
215 */
216 int zfs_reconstruct_indirect_combinations_max = 256;
217
218
219 /*
220 * Enable to simulate damaged segments and validate reconstruction. This
221 * is intentionally not exposed as a module parameter.
222 */
223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
224
225 /*
226 * The indirect_child_t represents the vdev that we will read from, when we
227 * need to read all copies of the data (e.g. for scrub or reconstruction).
228 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
230 * ic_vdev is a child of the mirror.
231 */
232 typedef struct indirect_child {
233 abd_t *ic_data;
234 vdev_t *ic_vdev;
235
236 /*
237 * ic_duplicate is NULL when the ic_data contents are unique, when it
238 * is determined to be a duplicate it references the primary child.
239 */
240 struct indirect_child *ic_duplicate;
241 list_node_t ic_node; /* node on is_unique_child */
242 } indirect_child_t;
243
244 /*
245 * The indirect_split_t represents one mapped segment of an i/o to the
246 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
247 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
248 * For split blocks, there will be several of these.
249 */
250 typedef struct indirect_split {
251 list_node_t is_node; /* link on iv_splits */
252
253 /*
254 * is_split_offset is the offset into the i/o.
255 * This is the sum of the previous splits' is_size's.
256 */
257 uint64_t is_split_offset;
258
259 vdev_t *is_vdev; /* top-level vdev */
260 uint64_t is_target_offset; /* offset on is_vdev */
261 uint64_t is_size;
262 int is_children; /* number of entries in is_child[] */
263 int is_unique_children; /* number of entries in is_unique_child */
264 list_t is_unique_child;
265
266 /*
267 * is_good_child is the child that we are currently using to
268 * attempt reconstruction.
269 */
270 indirect_child_t *is_good_child;
271
272 indirect_child_t is_child[1]; /* variable-length */
273 } indirect_split_t;
274
275 /*
276 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
277 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
278 */
279 typedef struct indirect_vsd {
280 boolean_t iv_split_block;
281 boolean_t iv_reconstruct;
282 uint64_t iv_unique_combinations;
283 uint64_t iv_attempts;
284 uint64_t iv_attempts_max;
285
286 list_t iv_splits; /* list of indirect_split_t's */
287 } indirect_vsd_t;
288
289 static void
290 vdev_indirect_map_free(zio_t *zio)
291 {
292 indirect_vsd_t *iv = zio->io_vsd;
293
294 indirect_split_t *is;
295 while ((is = list_head(&iv->iv_splits)) != NULL) {
296 for (int c = 0; c < is->is_children; c++) {
297 indirect_child_t *ic = &is->is_child[c];
298 if (ic->ic_data != NULL)
299 abd_free(ic->ic_data);
300 }
301 list_remove(&iv->iv_splits, is);
302
303 indirect_child_t *ic;
304 while ((ic = list_head(&is->is_unique_child)) != NULL)
305 list_remove(&is->is_unique_child, ic);
306
307 list_destroy(&is->is_unique_child);
308
309 kmem_free(is,
310 offsetof(indirect_split_t, is_child[is->is_children]));
311 }
312 kmem_free(iv, sizeof (*iv));
313 }
314
315 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
316 .vsd_free = vdev_indirect_map_free,
317 .vsd_cksum_report = zio_vsd_default_cksum_report
318 };
319
320 /*
321 * Mark the given offset and size as being obsolete.
322 */
323 void
324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
325 {
326 spa_t *spa = vd->vdev_spa;
327
328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 ASSERT(size > 0);
331 VERIFY(vdev_indirect_mapping_entry_for_offset(
332 vd->vdev_indirect_mapping, offset) != NULL);
333
334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 mutex_enter(&vd->vdev_obsolete_lock);
336 range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 mutex_exit(&vd->vdev_obsolete_lock);
338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
339 }
340 }
341
342 /*
343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344 * wrapper is provided because the DMU does not know about vdev_t's and
345 * cannot directly call vdev_indirect_mark_obsolete.
346 */
347 void
348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349 uint64_t size, dmu_tx_t *tx)
350 {
351 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 ASSERT(dmu_tx_is_syncing(tx));
353
354 /* The DMU can only remap indirect vdevs. */
355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
356 vdev_indirect_mark_obsolete(vd, offset, size);
357 }
358
359 static spa_condensing_indirect_t *
360 spa_condensing_indirect_create(spa_t *spa)
361 {
362 spa_condensing_indirect_phys_t *scip =
363 &spa->spa_condensing_indirect_phys;
364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 objset_t *mos = spa->spa_meta_objset;
366
367 for (int i = 0; i < TXG_SIZE; i++) {
368 list_create(&sci->sci_new_mapping_entries[i],
369 sizeof (vdev_indirect_mapping_entry_t),
370 offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 }
372
373 sci->sci_new_mapping =
374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375
376 return (sci);
377 }
378
379 static void
380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381 {
382 for (int i = 0; i < TXG_SIZE; i++)
383 list_destroy(&sci->sci_new_mapping_entries[i]);
384
385 if (sci->sci_new_mapping != NULL)
386 vdev_indirect_mapping_close(sci->sci_new_mapping);
387
388 kmem_free(sci, sizeof (*sci));
389 }
390
391 boolean_t
392 vdev_indirect_should_condense(vdev_t *vd)
393 {
394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 spa_t *spa = vd->vdev_spa;
396
397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398
399 if (!zfs_condense_indirect_vdevs_enable)
400 return (B_FALSE);
401
402 /*
403 * We can only condense one indirect vdev at a time.
404 */
405 if (spa->spa_condensing_indirect != NULL)
406 return (B_FALSE);
407
408 if (spa_shutting_down(spa))
409 return (B_FALSE);
410
411 /*
412 * The mapping object size must not change while we are
413 * condensing, so we can only condense indirect vdevs
414 * (not vdevs that are still in the middle of being removed).
415 */
416 if (vd->vdev_ops != &vdev_indirect_ops)
417 return (B_FALSE);
418
419 /*
420 * If nothing new has been marked obsolete, there is no
421 * point in condensing.
422 */
423 ASSERTV(uint64_t obsolete_sm_obj);
424 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
425 if (vd->vdev_obsolete_sm == NULL) {
426 ASSERT0(obsolete_sm_obj);
427 return (B_FALSE);
428 }
429
430 ASSERT(vd->vdev_obsolete_sm != NULL);
431
432 ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
433
434 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
435 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
436 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
437 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
438
439 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
440
441 /*
442 * If a high percentage of the bytes that are mapped have become
443 * obsolete, condense (unless the mapping is already small enough).
444 * This has a good chance of reducing the amount of memory used
445 * by the mapping.
446 */
447 if (bytes_obsolete * 100 / bytes_mapped >=
448 zfs_indirect_condense_obsolete_pct &&
449 mapping_size > zfs_condense_min_mapping_bytes) {
450 zfs_dbgmsg("should condense vdev %llu because obsolete "
451 "spacemap covers %d%% of %lluMB mapping",
452 (u_longlong_t)vd->vdev_id,
453 (int)(bytes_obsolete * 100 / bytes_mapped),
454 (u_longlong_t)bytes_mapped / 1024 / 1024);
455 return (B_TRUE);
456 }
457
458 /*
459 * If the obsolete space map takes up too much space on disk,
460 * condense in order to free up this disk space.
461 */
462 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
463 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
464 "length %lluMB >= max size %lluMB",
465 (u_longlong_t)vd->vdev_id,
466 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
467 (u_longlong_t)zfs_condense_max_obsolete_bytes /
468 1024 / 1024);
469 return (B_TRUE);
470 }
471
472 return (B_FALSE);
473 }
474
475 /*
476 * This sync task completes (finishes) a condense, deleting the old
477 * mapping and replacing it with the new one.
478 */
479 static void
480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
481 {
482 spa_condensing_indirect_t *sci = arg;
483 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
484 spa_condensing_indirect_phys_t *scip =
485 &spa->spa_condensing_indirect_phys;
486 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
487 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
488 objset_t *mos = spa->spa_meta_objset;
489 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
490 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
491 uint64_t new_count =
492 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
493
494 ASSERT(dmu_tx_is_syncing(tx));
495 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
496 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
497 for (int i = 0; i < TXG_SIZE; i++) {
498 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
499 }
500 ASSERT(vic->vic_mapping_object != 0);
501 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
502 ASSERT(scip->scip_next_mapping_object != 0);
503 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
504
505 /*
506 * Reset vdev_indirect_mapping to refer to the new object.
507 */
508 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
509 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
510 vd->vdev_indirect_mapping = sci->sci_new_mapping;
511 rw_exit(&vd->vdev_indirect_rwlock);
512
513 sci->sci_new_mapping = NULL;
514 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
515 vic->vic_mapping_object = scip->scip_next_mapping_object;
516 scip->scip_next_mapping_object = 0;
517
518 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
519 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
520 scip->scip_prev_obsolete_sm_object = 0;
521
522 scip->scip_vdev = 0;
523
524 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
525 DMU_POOL_CONDENSING_INDIRECT, tx));
526 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
527 spa->spa_condensing_indirect = NULL;
528
529 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
530 "new mapping object %llu has %llu entries "
531 "(was %llu entries)",
532 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
533 new_count, old_count);
534
535 vdev_config_dirty(spa->spa_root_vdev);
536 }
537
538 /*
539 * This sync task appends entries to the new mapping object.
540 */
541 static void
542 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
543 {
544 spa_condensing_indirect_t *sci = arg;
545 uint64_t txg = dmu_tx_get_txg(tx);
546 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
547
548 ASSERT(dmu_tx_is_syncing(tx));
549 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
550
551 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
552 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
553 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
554 }
555
556 /*
557 * Open-context function to add one entry to the new mapping. The new
558 * entry will be remembered and written from syncing context.
559 */
560 static void
561 spa_condense_indirect_commit_entry(spa_t *spa,
562 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
563 {
564 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
565
566 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
567
568 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
569 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
570 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
571 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
572
573 /*
574 * If we are the first entry committed this txg, kick off the sync
575 * task to write to the MOS on our behalf.
576 */
577 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
578 dsl_sync_task_nowait(dmu_tx_pool(tx),
579 spa_condense_indirect_commit_sync, sci,
580 0, ZFS_SPACE_CHECK_NONE, tx);
581 }
582
583 vdev_indirect_mapping_entry_t *vime =
584 kmem_alloc(sizeof (*vime), KM_SLEEP);
585 vime->vime_mapping = *vimep;
586 vime->vime_obsolete_count = count;
587 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
588
589 dmu_tx_commit(tx);
590 }
591
592 static void
593 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
594 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
595 {
596 spa_t *spa = vd->vdev_spa;
597 uint64_t mapi = start_index;
598 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
599 uint64_t old_num_entries =
600 vdev_indirect_mapping_num_entries(old_mapping);
601
602 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
603 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
604
605 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
606 (u_longlong_t)vd->vdev_id,
607 (u_longlong_t)mapi);
608
609 while (mapi < old_num_entries) {
610
611 if (zthr_iscancelled(zthr)) {
612 zfs_dbgmsg("pausing condense of vdev %llu "
613 "at index %llu", (u_longlong_t)vd->vdev_id,
614 (u_longlong_t)mapi);
615 break;
616 }
617
618 vdev_indirect_mapping_entry_phys_t *entry =
619 &old_mapping->vim_entries[mapi];
620 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
621 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
622 if (obsolete_counts[mapi] < entry_size) {
623 spa_condense_indirect_commit_entry(spa, entry,
624 obsolete_counts[mapi]);
625
626 /*
627 * This delay may be requested for testing, debugging,
628 * or performance reasons.
629 */
630 hrtime_t now = gethrtime();
631 hrtime_t sleep_until = now + MSEC2NSEC(
632 zfs_condense_indirect_commit_entry_delay_ms);
633 zfs_sleep_until(sleep_until);
634 }
635
636 mapi++;
637 }
638 }
639
640 /* ARGSUSED */
641 static boolean_t
642 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
643 {
644 spa_t *spa = arg;
645
646 return (spa->spa_condensing_indirect != NULL);
647 }
648
649 /* ARGSUSED */
650 static void
651 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
652 {
653 spa_t *spa = arg;
654 vdev_t *vd;
655
656 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
657 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
658 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
659 ASSERT3P(vd, !=, NULL);
660 spa_config_exit(spa, SCL_VDEV, FTAG);
661
662 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
663 spa_condensing_indirect_phys_t *scip =
664 &spa->spa_condensing_indirect_phys;
665 uint32_t *counts;
666 uint64_t start_index;
667 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
668 space_map_t *prev_obsolete_sm = NULL;
669
670 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
671 ASSERT(scip->scip_next_mapping_object != 0);
672 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
673 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
674
675 for (int i = 0; i < TXG_SIZE; i++) {
676 /*
677 * The list must start out empty in order for the
678 * _commit_sync() sync task to be properly registered
679 * on the first call to _commit_entry(); so it's wise
680 * to double check and ensure we actually are starting
681 * with empty lists.
682 */
683 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
684 }
685
686 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
687 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
688 space_map_update(prev_obsolete_sm);
689 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
690 if (prev_obsolete_sm != NULL) {
691 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
692 counts, prev_obsolete_sm);
693 }
694 space_map_close(prev_obsolete_sm);
695
696 /*
697 * Generate new mapping. Determine what index to continue from
698 * based on the max offset that we've already written in the
699 * new mapping.
700 */
701 uint64_t max_offset =
702 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
703 if (max_offset == 0) {
704 /* We haven't written anything to the new mapping yet. */
705 start_index = 0;
706 } else {
707 /*
708 * Pick up from where we left off. _entry_for_offset()
709 * returns a pointer into the vim_entries array. If
710 * max_offset is greater than any of the mappings
711 * contained in the table NULL will be returned and
712 * that indicates we've exhausted our iteration of the
713 * old_mapping.
714 */
715
716 vdev_indirect_mapping_entry_phys_t *entry =
717 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
718 max_offset);
719
720 if (entry == NULL) {
721 /*
722 * We've already written the whole new mapping.
723 * This special value will cause us to skip the
724 * generate_new_mapping step and just do the sync
725 * task to complete the condense.
726 */
727 start_index = UINT64_MAX;
728 } else {
729 start_index = entry - old_mapping->vim_entries;
730 ASSERT3U(start_index, <,
731 vdev_indirect_mapping_num_entries(old_mapping));
732 }
733 }
734
735 spa_condense_indirect_generate_new_mapping(vd, counts,
736 start_index, zthr);
737
738 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
739
740 /*
741 * If the zthr has received a cancellation signal while running
742 * in generate_new_mapping() or at any point after that, then bail
743 * early. We don't want to complete the condense if the spa is
744 * shutting down.
745 */
746 if (zthr_iscancelled(zthr))
747 return;
748
749 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
750 spa_condense_indirect_complete_sync, sci, 0,
751 ZFS_SPACE_CHECK_EXTRA_RESERVED));
752 }
753
754 /*
755 * Sync task to begin the condensing process.
756 */
757 void
758 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
759 {
760 spa_t *spa = vd->vdev_spa;
761 spa_condensing_indirect_phys_t *scip =
762 &spa->spa_condensing_indirect_phys;
763
764 ASSERT0(scip->scip_next_mapping_object);
765 ASSERT0(scip->scip_prev_obsolete_sm_object);
766 ASSERT0(scip->scip_vdev);
767 ASSERT(dmu_tx_is_syncing(tx));
768 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
769 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
770 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
771
772 uint64_t obsolete_sm_obj;
773 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
774 ASSERT3U(obsolete_sm_obj, !=, 0);
775
776 scip->scip_vdev = vd->vdev_id;
777 scip->scip_next_mapping_object =
778 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
779
780 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
781
782 /*
783 * We don't need to allocate a new space map object, since
784 * vdev_indirect_sync_obsolete will allocate one when needed.
785 */
786 space_map_close(vd->vdev_obsolete_sm);
787 vd->vdev_obsolete_sm = NULL;
788 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
789 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
790
791 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
792 DMU_POOL_DIRECTORY_OBJECT,
793 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
794 sizeof (*scip) / sizeof (uint64_t), scip, tx));
795
796 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
797 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
798
799 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
800 "posm=%llu nm=%llu",
801 vd->vdev_id, dmu_tx_get_txg(tx),
802 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
803 (u_longlong_t)scip->scip_next_mapping_object);
804
805 zthr_wakeup(spa->spa_condense_zthr);
806 }
807
808 /*
809 * Sync to the given vdev's obsolete space map any segments that are no longer
810 * referenced as of the given txg.
811 *
812 * If the obsolete space map doesn't exist yet, create and open it.
813 */
814 void
815 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
816 {
817 spa_t *spa = vd->vdev_spa;
818 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
819
820 ASSERT3U(vic->vic_mapping_object, !=, 0);
821 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
822 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
823 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
824
825 uint64_t obsolete_sm_object;
826 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
827 if (obsolete_sm_object == 0) {
828 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
829 vdev_standard_sm_blksz, tx);
830
831 ASSERT(vd->vdev_top_zap != 0);
832 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
833 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
834 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
835 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
836 ASSERT3U(obsolete_sm_object, !=, 0);
837
838 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
839 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
840 spa->spa_meta_objset, obsolete_sm_object,
841 0, vd->vdev_asize, 0));
842 space_map_update(vd->vdev_obsolete_sm);
843 }
844
845 ASSERT(vd->vdev_obsolete_sm != NULL);
846 ASSERT3U(obsolete_sm_object, ==,
847 space_map_object(vd->vdev_obsolete_sm));
848
849 space_map_write(vd->vdev_obsolete_sm,
850 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
851 space_map_update(vd->vdev_obsolete_sm);
852 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
853 }
854
855 int
856 spa_condense_init(spa_t *spa)
857 {
858 int error = zap_lookup(spa->spa_meta_objset,
859 DMU_POOL_DIRECTORY_OBJECT,
860 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
861 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
862 &spa->spa_condensing_indirect_phys);
863 if (error == 0) {
864 if (spa_writeable(spa)) {
865 spa->spa_condensing_indirect =
866 spa_condensing_indirect_create(spa);
867 }
868 return (0);
869 } else if (error == ENOENT) {
870 return (0);
871 } else {
872 return (error);
873 }
874 }
875
876 void
877 spa_condense_fini(spa_t *spa)
878 {
879 if (spa->spa_condensing_indirect != NULL) {
880 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
881 spa->spa_condensing_indirect = NULL;
882 }
883 }
884
885 void
886 spa_start_indirect_condensing_thread(spa_t *spa)
887 {
888 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
889 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
890 spa_condense_indirect_thread, spa);
891 }
892
893 /*
894 * Gets the obsolete spacemap object from the vdev's ZAP. On success sm_obj
895 * will contain either the obsolete spacemap object or zero if none exists.
896 * All other errors are returned to the caller.
897 */
898 int
899 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
900 {
901 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
902
903 if (vd->vdev_top_zap == 0) {
904 *sm_obj = 0;
905 return (0);
906 }
907
908 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
909 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
910 if (error == ENOENT) {
911 *sm_obj = 0;
912 error = 0;
913 }
914
915 return (error);
916 }
917
918 /*
919 * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
920 * On success are_precise will be set to reflect if the counts are precise.
921 * All other errors are returned to the caller.
922 */
923 int
924 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
925 {
926 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
927
928 if (vd->vdev_top_zap == 0) {
929 *are_precise = B_FALSE;
930 return (0);
931 }
932
933 uint64_t val = 0;
934 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
935 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
936 if (error == 0) {
937 *are_precise = (val != 0);
938 } else if (error == ENOENT) {
939 *are_precise = B_FALSE;
940 error = 0;
941 }
942
943 return (error);
944 }
945
946 /* ARGSUSED */
947 static void
948 vdev_indirect_close(vdev_t *vd)
949 {
950 }
951
952 /* ARGSUSED */
953 static int
954 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
955 uint64_t *ashift)
956 {
957 *psize = *max_psize = vd->vdev_asize +
958 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
959 *ashift = vd->vdev_ashift;
960 return (0);
961 }
962
963 typedef struct remap_segment {
964 vdev_t *rs_vd;
965 uint64_t rs_offset;
966 uint64_t rs_asize;
967 uint64_t rs_split_offset;
968 list_node_t rs_node;
969 } remap_segment_t;
970
971 remap_segment_t *
972 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
973 {
974 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
975 rs->rs_vd = vd;
976 rs->rs_offset = offset;
977 rs->rs_asize = asize;
978 rs->rs_split_offset = split_offset;
979 return (rs);
980 }
981
982 /*
983 * Given an indirect vdev and an extent on that vdev, it duplicates the
984 * physical entries of the indirect mapping that correspond to the extent
985 * to a new array and returns a pointer to it. In addition, copied_entries
986 * is populated with the number of mapping entries that were duplicated.
987 *
988 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
989 * This ensures that the mapping won't change due to condensing as we
990 * copy over its contents.
991 *
992 * Finally, since we are doing an allocation, it is up to the caller to
993 * free the array allocated in this function.
994 */
995 vdev_indirect_mapping_entry_phys_t *
996 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
997 uint64_t asize, uint64_t *copied_entries)
998 {
999 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
1000 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1001 uint64_t entries = 0;
1002
1003 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1004
1005 vdev_indirect_mapping_entry_phys_t *first_mapping =
1006 vdev_indirect_mapping_entry_for_offset(vim, offset);
1007 ASSERT3P(first_mapping, !=, NULL);
1008
1009 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1010 while (asize > 0) {
1011 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1012
1013 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1014 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1015
1016 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1017 uint64_t inner_size = MIN(asize, size - inner_offset);
1018
1019 offset += inner_size;
1020 asize -= inner_size;
1021 entries++;
1022 m++;
1023 }
1024
1025 size_t copy_length = entries * sizeof (*first_mapping);
1026 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1027 bcopy(first_mapping, duplicate_mappings, copy_length);
1028 *copied_entries = entries;
1029
1030 return (duplicate_mappings);
1031 }
1032
1033 /*
1034 * Goes through the relevant indirect mappings until it hits a concrete vdev
1035 * and issues the callback. On the way to the concrete vdev, if any other
1036 * indirect vdevs are encountered, then the callback will also be called on
1037 * each of those indirect vdevs. For example, if the segment is mapped to
1038 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1039 * mapped to segment B on concrete vdev 2, then the callback will be called on
1040 * both vdev 1 and vdev 2.
1041 *
1042 * While the callback passed to vdev_indirect_remap() is called on every vdev
1043 * the function encounters, certain callbacks only care about concrete vdevs.
1044 * These types of callbacks should return immediately and explicitly when they
1045 * are called on an indirect vdev.
1046 *
1047 * Because there is a possibility that a DVA section in the indirect device
1048 * has been split into multiple sections in our mapping, we keep track
1049 * of the relevant contiguous segments of the new location (remap_segment_t)
1050 * in a stack. This way we can call the callback for each of the new sections
1051 * created by a single section of the indirect device. Note though, that in
1052 * this scenario the callbacks in each split block won't occur in-order in
1053 * terms of offset, so callers should not make any assumptions about that.
1054 *
1055 * For callbacks that don't handle split blocks and immediately return when
1056 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1057 * assume that its callback will be applied from the first indirect vdev
1058 * encountered to the last one and then the concrete vdev, in that order.
1059 */
1060 static void
1061 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1062 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1063 {
1064 list_t stack;
1065 spa_t *spa = vd->vdev_spa;
1066
1067 list_create(&stack, sizeof (remap_segment_t),
1068 offsetof(remap_segment_t, rs_node));
1069
1070 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1071 rs != NULL; rs = list_remove_head(&stack)) {
1072 vdev_t *v = rs->rs_vd;
1073 uint64_t num_entries = 0;
1074
1075 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1076 ASSERT(rs->rs_asize > 0);
1077
1078 /*
1079 * Note: As this function can be called from open context
1080 * (e.g. zio_read()), we need the following rwlock to
1081 * prevent the mapping from being changed by condensing.
1082 *
1083 * So we grab the lock and we make a copy of the entries
1084 * that are relevant to the extent that we are working on.
1085 * Once that is done, we drop the lock and iterate over
1086 * our copy of the mapping. Once we are done with the with
1087 * the remap segment and we free it, we also free our copy
1088 * of the indirect mapping entries that are relevant to it.
1089 *
1090 * This way we don't need to wait until the function is
1091 * finished with a segment, to condense it. In addition, we
1092 * don't need a recursive rwlock for the case that a call to
1093 * vdev_indirect_remap() needs to call itself (through the
1094 * codepath of its callback) for the same vdev in the middle
1095 * of its execution.
1096 */
1097 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1098 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1099
1100 vdev_indirect_mapping_entry_phys_t *mapping =
1101 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1102 rs->rs_offset, rs->rs_asize, &num_entries);
1103 ASSERT3P(mapping, !=, NULL);
1104 ASSERT3U(num_entries, >, 0);
1105 rw_exit(&v->vdev_indirect_rwlock);
1106
1107 for (uint64_t i = 0; i < num_entries; i++) {
1108 /*
1109 * Note: the vdev_indirect_mapping can not change
1110 * while we are running. It only changes while the
1111 * removal is in progress, and then only from syncing
1112 * context. While a removal is in progress, this
1113 * function is only called for frees, which also only
1114 * happen from syncing context.
1115 */
1116 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1117
1118 ASSERT3P(m, !=, NULL);
1119 ASSERT3U(rs->rs_asize, >, 0);
1120
1121 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1122 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1123 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1124
1125 ASSERT3U(rs->rs_offset, >=,
1126 DVA_MAPPING_GET_SRC_OFFSET(m));
1127 ASSERT3U(rs->rs_offset, <,
1128 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1129 ASSERT3U(dst_vdev, !=, v->vdev_id);
1130
1131 uint64_t inner_offset = rs->rs_offset -
1132 DVA_MAPPING_GET_SRC_OFFSET(m);
1133 uint64_t inner_size =
1134 MIN(rs->rs_asize, size - inner_offset);
1135
1136 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1137 ASSERT3P(dst_v, !=, NULL);
1138
1139 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1140 list_insert_head(&stack,
1141 rs_alloc(dst_v, dst_offset + inner_offset,
1142 inner_size, rs->rs_split_offset));
1143
1144 }
1145
1146 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1147 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1148 /*
1149 * Note: This clause exists only solely for
1150 * testing purposes. We use it to ensure that
1151 * split blocks work and that the callbacks
1152 * using them yield the same result if issued
1153 * in reverse order.
1154 */
1155 uint64_t inner_half = inner_size / 2;
1156
1157 func(rs->rs_split_offset + inner_half, dst_v,
1158 dst_offset + inner_offset + inner_half,
1159 inner_half, arg);
1160
1161 func(rs->rs_split_offset, dst_v,
1162 dst_offset + inner_offset,
1163 inner_half, arg);
1164 } else {
1165 func(rs->rs_split_offset, dst_v,
1166 dst_offset + inner_offset,
1167 inner_size, arg);
1168 }
1169
1170 rs->rs_offset += inner_size;
1171 rs->rs_asize -= inner_size;
1172 rs->rs_split_offset += inner_size;
1173 }
1174 VERIFY0(rs->rs_asize);
1175
1176 kmem_free(mapping, num_entries * sizeof (*mapping));
1177 kmem_free(rs, sizeof (remap_segment_t));
1178 }
1179 list_destroy(&stack);
1180 }
1181
1182 static void
1183 vdev_indirect_child_io_done(zio_t *zio)
1184 {
1185 zio_t *pio = zio->io_private;
1186
1187 mutex_enter(&pio->io_lock);
1188 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1189 mutex_exit(&pio->io_lock);
1190
1191 abd_put(zio->io_abd);
1192 }
1193
1194 /*
1195 * This is a callback for vdev_indirect_remap() which allocates an
1196 * indirect_split_t for each split segment and adds it to iv_splits.
1197 */
1198 static void
1199 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1200 uint64_t size, void *arg)
1201 {
1202 zio_t *zio = arg;
1203 indirect_vsd_t *iv = zio->io_vsd;
1204
1205 ASSERT3P(vd, !=, NULL);
1206
1207 if (vd->vdev_ops == &vdev_indirect_ops)
1208 return;
1209
1210 int n = 1;
1211 if (vd->vdev_ops == &vdev_mirror_ops)
1212 n = vd->vdev_children;
1213
1214 indirect_split_t *is =
1215 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1216
1217 is->is_children = n;
1218 is->is_size = size;
1219 is->is_split_offset = split_offset;
1220 is->is_target_offset = offset;
1221 is->is_vdev = vd;
1222 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1223 offsetof(indirect_child_t, ic_node));
1224
1225 /*
1226 * Note that we only consider multiple copies of the data for
1227 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1228 * though they use the same ops as mirror, because there's only one
1229 * "good" copy under the replacing/spare.
1230 */
1231 if (vd->vdev_ops == &vdev_mirror_ops) {
1232 for (int i = 0; i < n; i++) {
1233 is->is_child[i].ic_vdev = vd->vdev_child[i];
1234 list_link_init(&is->is_child[i].ic_node);
1235 }
1236 } else {
1237 is->is_child[0].ic_vdev = vd;
1238 }
1239
1240 list_insert_tail(&iv->iv_splits, is);
1241 }
1242
1243 static void
1244 vdev_indirect_read_split_done(zio_t *zio)
1245 {
1246 indirect_child_t *ic = zio->io_private;
1247
1248 if (zio->io_error != 0) {
1249 /*
1250 * Clear ic_data to indicate that we do not have data for this
1251 * child.
1252 */
1253 abd_free(ic->ic_data);
1254 ic->ic_data = NULL;
1255 }
1256 }
1257
1258 /*
1259 * Issue reads for all copies (mirror children) of all splits.
1260 */
1261 static void
1262 vdev_indirect_read_all(zio_t *zio)
1263 {
1264 indirect_vsd_t *iv = zio->io_vsd;
1265
1266 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1267
1268 for (indirect_split_t *is = list_head(&iv->iv_splits);
1269 is != NULL; is = list_next(&iv->iv_splits, is)) {
1270 for (int i = 0; i < is->is_children; i++) {
1271 indirect_child_t *ic = &is->is_child[i];
1272
1273 if (!vdev_readable(ic->ic_vdev))
1274 continue;
1275
1276 /*
1277 * Note, we may read from a child whose DTL
1278 * indicates that the data may not be present here.
1279 * While this might result in a few i/os that will
1280 * likely return incorrect data, it simplifies the
1281 * code since we can treat scrub and resilver
1282 * identically. (The incorrect data will be
1283 * detected and ignored when we verify the
1284 * checksum.)
1285 */
1286
1287 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1288 is->is_size);
1289 ic->ic_duplicate = NULL;
1290
1291 zio_nowait(zio_vdev_child_io(zio, NULL,
1292 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1293 is->is_size, zio->io_type, zio->io_priority, 0,
1294 vdev_indirect_read_split_done, ic));
1295 }
1296 }
1297 iv->iv_reconstruct = B_TRUE;
1298 }
1299
1300 static void
1301 vdev_indirect_io_start(zio_t *zio)
1302 {
1303 ASSERTV(spa_t *spa = zio->io_spa);
1304 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1305 list_create(&iv->iv_splits,
1306 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1307
1308 zio->io_vsd = iv;
1309 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1310
1311 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1312 if (zio->io_type != ZIO_TYPE_READ) {
1313 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1314 /*
1315 * Note: this code can handle other kinds of writes,
1316 * but we don't expect them.
1317 */
1318 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1319 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1320 }
1321
1322 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1323 vdev_indirect_gather_splits, zio);
1324
1325 indirect_split_t *first = list_head(&iv->iv_splits);
1326 if (first->is_size == zio->io_size) {
1327 /*
1328 * This is not a split block; we are pointing to the entire
1329 * data, which will checksum the same as the original data.
1330 * Pass the BP down so that the child i/o can verify the
1331 * checksum, and try a different location if available
1332 * (e.g. on a mirror).
1333 *
1334 * While this special case could be handled the same as the
1335 * general (split block) case, doing it this way ensures
1336 * that the vast majority of blocks on indirect vdevs
1337 * (which are not split) are handled identically to blocks
1338 * on non-indirect vdevs. This allows us to be less strict
1339 * about performance in the general (but rare) case.
1340 */
1341 ASSERT0(first->is_split_offset);
1342 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1343 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1344 first->is_vdev, first->is_target_offset,
1345 abd_get_offset(zio->io_abd, 0),
1346 zio->io_size, zio->io_type, zio->io_priority, 0,
1347 vdev_indirect_child_io_done, zio));
1348 } else {
1349 iv->iv_split_block = B_TRUE;
1350 if (zio->io_type == ZIO_TYPE_READ &&
1351 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1352 /*
1353 * Read all copies. Note that for simplicity,
1354 * we don't bother consulting the DTL in the
1355 * resilver case.
1356 */
1357 vdev_indirect_read_all(zio);
1358 } else {
1359 /*
1360 * If this is a read zio, we read one copy of each
1361 * split segment, from the top-level vdev. Since
1362 * we don't know the checksum of each split
1363 * individually, the child zio can't ensure that
1364 * we get the right data. E.g. if it's a mirror,
1365 * it will just read from a random (healthy) leaf
1366 * vdev. We have to verify the checksum in
1367 * vdev_indirect_io_done().
1368 *
1369 * For write zios, the vdev code will ensure we write
1370 * to all children.
1371 */
1372 for (indirect_split_t *is = list_head(&iv->iv_splits);
1373 is != NULL; is = list_next(&iv->iv_splits, is)) {
1374 zio_nowait(zio_vdev_child_io(zio, NULL,
1375 is->is_vdev, is->is_target_offset,
1376 abd_get_offset(zio->io_abd,
1377 is->is_split_offset), is->is_size,
1378 zio->io_type, zio->io_priority, 0,
1379 vdev_indirect_child_io_done, zio));
1380 }
1381
1382 }
1383 }
1384
1385 zio_execute(zio);
1386 }
1387
1388 /*
1389 * Report a checksum error for a child.
1390 */
1391 static void
1392 vdev_indirect_checksum_error(zio_t *zio,
1393 indirect_split_t *is, indirect_child_t *ic)
1394 {
1395 vdev_t *vd = ic->ic_vdev;
1396
1397 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1398 return;
1399
1400 mutex_enter(&vd->vdev_stat_lock);
1401 vd->vdev_stat.vs_checksum_errors++;
1402 mutex_exit(&vd->vdev_stat_lock);
1403
1404 zio_bad_cksum_t zbc = {{{ 0 }}};
1405 abd_t *bad_abd = ic->ic_data;
1406 abd_t *good_abd = is->is_good_child->ic_data;
1407 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1408 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1409 }
1410
1411 /*
1412 * Issue repair i/os for any incorrect copies. We do this by comparing
1413 * each split segment's correct data (is_good_child's ic_data) with each
1414 * other copy of the data. If they differ, then we overwrite the bad data
1415 * with the good copy. Note that we do this without regard for the DTL's,
1416 * which simplifies this code and also issues the optimal number of writes
1417 * (based on which copies actually read bad data, as opposed to which we
1418 * think might be wrong). For the same reason, we always use
1419 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1420 */
1421 static void
1422 vdev_indirect_repair(zio_t *zio)
1423 {
1424 indirect_vsd_t *iv = zio->io_vsd;
1425
1426 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1427
1428 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1429 flags |= ZIO_FLAG_SELF_HEAL;
1430
1431 if (!spa_writeable(zio->io_spa))
1432 return;
1433
1434 for (indirect_split_t *is = list_head(&iv->iv_splits);
1435 is != NULL; is = list_next(&iv->iv_splits, is)) {
1436 for (int c = 0; c < is->is_children; c++) {
1437 indirect_child_t *ic = &is->is_child[c];
1438 if (ic == is->is_good_child)
1439 continue;
1440 if (ic->ic_data == NULL)
1441 continue;
1442 if (ic->ic_duplicate == is->is_good_child)
1443 continue;
1444
1445 zio_nowait(zio_vdev_child_io(zio, NULL,
1446 ic->ic_vdev, is->is_target_offset,
1447 is->is_good_child->ic_data, is->is_size,
1448 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1449 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1450 NULL, NULL));
1451
1452 vdev_indirect_checksum_error(zio, is, ic);
1453 }
1454 }
1455 }
1456
1457 /*
1458 * Report checksum errors on all children that we read from.
1459 */
1460 static void
1461 vdev_indirect_all_checksum_errors(zio_t *zio)
1462 {
1463 indirect_vsd_t *iv = zio->io_vsd;
1464
1465 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1466 return;
1467
1468 for (indirect_split_t *is = list_head(&iv->iv_splits);
1469 is != NULL; is = list_next(&iv->iv_splits, is)) {
1470 for (int c = 0; c < is->is_children; c++) {
1471 indirect_child_t *ic = &is->is_child[c];
1472
1473 if (ic->ic_data == NULL)
1474 continue;
1475
1476 vdev_t *vd = ic->ic_vdev;
1477
1478 mutex_enter(&vd->vdev_stat_lock);
1479 vd->vdev_stat.vs_checksum_errors++;
1480 mutex_exit(&vd->vdev_stat_lock);
1481
1482 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1483 is->is_target_offset, is->is_size,
1484 NULL, NULL, NULL);
1485 }
1486 }
1487 }
1488
1489 /*
1490 * Copy data from all the splits to a main zio then validate the checksum.
1491 * If then checksum is successfully validated return success.
1492 */
1493 static int
1494 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1495 {
1496 zio_bad_cksum_t zbc;
1497
1498 for (indirect_split_t *is = list_head(&iv->iv_splits);
1499 is != NULL; is = list_next(&iv->iv_splits, is)) {
1500
1501 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1502 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1503
1504 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1505 is->is_split_offset, 0, is->is_size);
1506 }
1507
1508 return (zio_checksum_error(zio, &zbc));
1509 }
1510
1511 /*
1512 * There are relatively few possible combinations making it feasible to
1513 * deterministically check them all. We do this by setting the good_child
1514 * to the next unique split version. If we reach the end of the list then
1515 * "carry over" to the next unique split version (like counting in base
1516 * is_unique_children, but each digit can have a different base).
1517 */
1518 static int
1519 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1520 {
1521 boolean_t more = B_TRUE;
1522
1523 iv->iv_attempts = 0;
1524
1525 for (indirect_split_t *is = list_head(&iv->iv_splits);
1526 is != NULL; is = list_next(&iv->iv_splits, is))
1527 is->is_good_child = list_head(&is->is_unique_child);
1528
1529 while (more == B_TRUE) {
1530 iv->iv_attempts++;
1531 more = B_FALSE;
1532
1533 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1534 return (0);
1535
1536 for (indirect_split_t *is = list_head(&iv->iv_splits);
1537 is != NULL; is = list_next(&iv->iv_splits, is)) {
1538 is->is_good_child = list_next(&is->is_unique_child,
1539 is->is_good_child);
1540 if (is->is_good_child != NULL) {
1541 more = B_TRUE;
1542 break;
1543 }
1544
1545 is->is_good_child = list_head(&is->is_unique_child);
1546 }
1547 }
1548
1549 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1550
1551 return (SET_ERROR(ECKSUM));
1552 }
1553
1554 /*
1555 * There are too many combinations to try all of them in a reasonable amount
1556 * of time. So try a fixed number of random combinations from the unique
1557 * split versions, after which we'll consider the block unrecoverable.
1558 */
1559 static int
1560 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1561 {
1562 iv->iv_attempts = 0;
1563
1564 while (iv->iv_attempts < iv->iv_attempts_max) {
1565 iv->iv_attempts++;
1566
1567 for (indirect_split_t *is = list_head(&iv->iv_splits);
1568 is != NULL; is = list_next(&iv->iv_splits, is)) {
1569 indirect_child_t *ic = list_head(&is->is_unique_child);
1570 int children = is->is_unique_children;
1571
1572 for (int i = spa_get_random(children); i > 0; i--)
1573 ic = list_next(&is->is_unique_child, ic);
1574
1575 ASSERT3P(ic, !=, NULL);
1576 is->is_good_child = ic;
1577 }
1578
1579 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1580 return (0);
1581 }
1582
1583 return (SET_ERROR(ECKSUM));
1584 }
1585
1586 /*
1587 * This is a validation function for reconstruction. It randomly selects
1588 * a good combination, if one can be found, and then it intentionally
1589 * damages all other segment copes by zeroing them. This forces the
1590 * reconstruction algorithm to locate the one remaining known good copy.
1591 */
1592 static int
1593 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1594 {
1595 int error;
1596
1597 /* Presume all the copies are unique for initial selection. */
1598 for (indirect_split_t *is = list_head(&iv->iv_splits);
1599 is != NULL; is = list_next(&iv->iv_splits, is)) {
1600 is->is_unique_children = 0;
1601
1602 for (int i = 0; i < is->is_children; i++) {
1603 indirect_child_t *ic = &is->is_child[i];
1604 if (ic->ic_data != NULL) {
1605 is->is_unique_children++;
1606 list_insert_tail(&is->is_unique_child, ic);
1607 }
1608 }
1609
1610 if (list_is_empty(&is->is_unique_child)) {
1611 error = SET_ERROR(EIO);
1612 goto out;
1613 }
1614 }
1615
1616 /*
1617 * Set each is_good_child to a randomly-selected child which
1618 * is known to contain validated data.
1619 */
1620 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1621 if (error)
1622 goto out;
1623
1624 /*
1625 * Damage all but the known good copy by zeroing it. This will
1626 * result in two or less unique copies per indirect_child_t.
1627 * Both may need to be checked in order to reconstruct the block.
1628 * Set iv->iv_attempts_max such that all unique combinations will
1629 * enumerated, but limit the damage to at most 12 indirect splits.
1630 */
1631 iv->iv_attempts_max = 1;
1632
1633 for (indirect_split_t *is = list_head(&iv->iv_splits);
1634 is != NULL; is = list_next(&iv->iv_splits, is)) {
1635 for (int c = 0; c < is->is_children; c++) {
1636 indirect_child_t *ic = &is->is_child[c];
1637
1638 if (ic == is->is_good_child)
1639 continue;
1640 if (ic->ic_data == NULL)
1641 continue;
1642
1643 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1644 }
1645
1646 iv->iv_attempts_max *= 2;
1647 if (iv->iv_attempts_max >= (1ULL << 12)) {
1648 iv->iv_attempts_max = UINT64_MAX;
1649 break;
1650 }
1651 }
1652
1653 out:
1654 /* Empty the unique children lists so they can be reconstructed. */
1655 for (indirect_split_t *is = list_head(&iv->iv_splits);
1656 is != NULL; is = list_next(&iv->iv_splits, is)) {
1657 indirect_child_t *ic;
1658 while ((ic = list_head(&is->is_unique_child)) != NULL)
1659 list_remove(&is->is_unique_child, ic);
1660
1661 is->is_unique_children = 0;
1662 }
1663
1664 return (error);
1665 }
1666
1667 /*
1668 * This function is called when we have read all copies of the data and need
1669 * to try to find a combination of copies that gives us the right checksum.
1670 *
1671 * If we pointed to any mirror vdevs, this effectively does the job of the
1672 * mirror. The mirror vdev code can't do its own job because we don't know
1673 * the checksum of each split segment individually.
1674 *
1675 * We have to try every unique combination of copies of split segments, until
1676 * we find one that checksums correctly. Duplicate segment copies are first
1677 * identified and latter skipped during reconstruction. This optimization
1678 * reduces the search space and ensures that of the remaining combinations
1679 * at most one is correct.
1680 *
1681 * When the total number of combinations is small they can all be checked.
1682 * For example, if we have 3 segments in the split, and each points to a
1683 * 2-way mirror with unique copies, we will have the following pieces of data:
1684 *
1685 * | mirror child
1686 * split | [0] [1]
1687 * ======|=====================
1688 * A | data_A_0 data_A_1
1689 * B | data_B_0 data_B_1
1690 * C | data_C_0 data_C_1
1691 *
1692 * We will try the following (mirror children)^(number of splits) (2^3=8)
1693 * combinations, which is similar to bitwise-little-endian counting in
1694 * binary. In general each "digit" corresponds to a split segment, and the
1695 * base of each digit is is_children, which can be different for each
1696 * digit.
1697 *
1698 * "low bit" "high bit"
1699 * v v
1700 * data_A_0 data_B_0 data_C_0
1701 * data_A_1 data_B_0 data_C_0
1702 * data_A_0 data_B_1 data_C_0
1703 * data_A_1 data_B_1 data_C_0
1704 * data_A_0 data_B_0 data_C_1
1705 * data_A_1 data_B_0 data_C_1
1706 * data_A_0 data_B_1 data_C_1
1707 * data_A_1 data_B_1 data_C_1
1708 *
1709 * Note that the split segments may be on the same or different top-level
1710 * vdevs. In either case, we may need to try lots of combinations (see
1711 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1712 * has small silent errors on all of its children, we can still reconstruct
1713 * the correct data, as long as those errors are at sufficiently-separated
1714 * offsets (specifically, separated by the largest block size - default of
1715 * 128KB, but up to 16MB).
1716 */
1717 static void
1718 vdev_indirect_reconstruct_io_done(zio_t *zio)
1719 {
1720 indirect_vsd_t *iv = zio->io_vsd;
1721 boolean_t known_good = B_FALSE;
1722 int error;
1723
1724 iv->iv_unique_combinations = 1;
1725 iv->iv_attempts_max = UINT64_MAX;
1726
1727 if (zfs_reconstruct_indirect_combinations_max > 0)
1728 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1729
1730 /*
1731 * If nonzero, every 1/x blocks will be damaged, in order to validate
1732 * reconstruction when there are split segments with damaged copies.
1733 * Known_good will be TRUE when reconstruction is known to be possible.
1734 */
1735 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1736 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1737 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1738
1739 /*
1740 * Determine the unique children for a split segment and add them
1741 * to the is_unique_child list. By restricting reconstruction
1742 * to these children, only unique combinations will be considered.
1743 * This can vastly reduce the search space when there are a large
1744 * number of indirect splits.
1745 */
1746 for (indirect_split_t *is = list_head(&iv->iv_splits);
1747 is != NULL; is = list_next(&iv->iv_splits, is)) {
1748 is->is_unique_children = 0;
1749
1750 for (int i = 0; i < is->is_children; i++) {
1751 indirect_child_t *ic_i = &is->is_child[i];
1752
1753 if (ic_i->ic_data == NULL ||
1754 ic_i->ic_duplicate != NULL)
1755 continue;
1756
1757 for (int j = i + 1; j < is->is_children; j++) {
1758 indirect_child_t *ic_j = &is->is_child[j];
1759
1760 if (ic_j->ic_data == NULL ||
1761 ic_j->ic_duplicate != NULL)
1762 continue;
1763
1764 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1765 ic_j->ic_duplicate = ic_i;
1766 }
1767
1768 is->is_unique_children++;
1769 list_insert_tail(&is->is_unique_child, ic_i);
1770 }
1771
1772 /* Reconstruction is impossible, no valid children */
1773 EQUIV(list_is_empty(&is->is_unique_child),
1774 is->is_unique_children == 0);
1775 if (list_is_empty(&is->is_unique_child)) {
1776 zio->io_error = EIO;
1777 vdev_indirect_all_checksum_errors(zio);
1778 zio_checksum_verified(zio);
1779 return;
1780 }
1781
1782 iv->iv_unique_combinations *= is->is_unique_children;
1783 }
1784
1785 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1786 error = vdev_indirect_splits_enumerate_all(iv, zio);
1787 else
1788 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1789
1790 if (error != 0) {
1791 /* All attempted combinations failed. */
1792 ASSERT3B(known_good, ==, B_FALSE);
1793 zio->io_error = error;
1794 vdev_indirect_all_checksum_errors(zio);
1795 } else {
1796 /*
1797 * The checksum has been successfully validated. Issue
1798 * repair I/Os to any copies of splits which don't match
1799 * the validated version.
1800 */
1801 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1802 vdev_indirect_repair(zio);
1803 zio_checksum_verified(zio);
1804 }
1805 }
1806
1807 static void
1808 vdev_indirect_io_done(zio_t *zio)
1809 {
1810 indirect_vsd_t *iv = zio->io_vsd;
1811
1812 if (iv->iv_reconstruct) {
1813 /*
1814 * We have read all copies of the data (e.g. from mirrors),
1815 * either because this was a scrub/resilver, or because the
1816 * one-copy read didn't checksum correctly.
1817 */
1818 vdev_indirect_reconstruct_io_done(zio);
1819 return;
1820 }
1821
1822 if (!iv->iv_split_block) {
1823 /*
1824 * This was not a split block, so we passed the BP down,
1825 * and the checksum was handled by the (one) child zio.
1826 */
1827 return;
1828 }
1829
1830 zio_bad_cksum_t zbc;
1831 int ret = zio_checksum_error(zio, &zbc);
1832 if (ret == 0) {
1833 zio_checksum_verified(zio);
1834 return;
1835 }
1836
1837 /*
1838 * The checksum didn't match. Read all copies of all splits, and
1839 * then we will try to reconstruct. The next time
1840 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1841 */
1842 vdev_indirect_read_all(zio);
1843
1844 zio_vdev_io_redone(zio);
1845 }
1846
1847 vdev_ops_t vdev_indirect_ops = {
1848 vdev_indirect_open,
1849 vdev_indirect_close,
1850 vdev_default_asize,
1851 vdev_indirect_io_start,
1852 vdev_indirect_io_done,
1853 NULL,
1854 NULL,
1855 NULL,
1856 NULL,
1857 vdev_indirect_remap,
1858 NULL,
1859 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1860 B_FALSE /* leaf vdev */
1861 };
1862
1863 #if defined(_KERNEL)
1864 EXPORT_SYMBOL(rs_alloc);
1865 EXPORT_SYMBOL(spa_condense_fini);
1866 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1867 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1868 EXPORT_SYMBOL(spa_condense_init);
1869 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1870 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1871 EXPORT_SYMBOL(vdev_indirect_should_condense);
1872 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1873 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1874 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1875
1876 module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1877 MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1878 "Whether to attempt condensing indirect vdev mappings");
1879
1880 /* CSTYLED */
1881 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1882 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1883 "Minimum size of vdev mapping to condense");
1884
1885 /* CSTYLED */
1886 module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1887 MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1888 "Minimum size obsolete spacemap to attempt condensing");
1889
1890 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1891 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1892 "Delay while condensing vdev mapping");
1893
1894 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1895 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1896 "Maximum number of combinations when reconstructing split segments");
1897 #endif