]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
18194a5dc407e70128ed34651b2be1bbe49c66f7
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/sunddi.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/spa_boot.h>
58 #include <sys/zpl.h>
59 #include <linux/vfs_compat.h>
60 #include "zfs_comutil.h"
61
62 enum {
63 TOKEN_RO,
64 TOKEN_RW,
65 TOKEN_SETUID,
66 TOKEN_NOSETUID,
67 TOKEN_EXEC,
68 TOKEN_NOEXEC,
69 TOKEN_DEVICES,
70 TOKEN_NODEVICES,
71 TOKEN_DIRXATTR,
72 TOKEN_SAXATTR,
73 TOKEN_XATTR,
74 TOKEN_NOXATTR,
75 TOKEN_ATIME,
76 TOKEN_NOATIME,
77 TOKEN_RELATIME,
78 TOKEN_NORELATIME,
79 TOKEN_NBMAND,
80 TOKEN_NONBMAND,
81 TOKEN_MNTPOINT,
82 TOKEN_LAST,
83 };
84
85 static const match_table_t zpl_tokens = {
86 { TOKEN_RO, MNTOPT_RO },
87 { TOKEN_RW, MNTOPT_RW },
88 { TOKEN_SETUID, MNTOPT_SETUID },
89 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
90 { TOKEN_EXEC, MNTOPT_EXEC },
91 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
92 { TOKEN_DEVICES, MNTOPT_DEVICES },
93 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
94 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
95 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
96 { TOKEN_XATTR, MNTOPT_XATTR },
97 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
98 { TOKEN_ATIME, MNTOPT_ATIME },
99 { TOKEN_NOATIME, MNTOPT_NOATIME },
100 { TOKEN_RELATIME, MNTOPT_RELATIME },
101 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
102 { TOKEN_NBMAND, MNTOPT_NBMAND },
103 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
104 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
105 { TOKEN_LAST, NULL },
106 };
107
108 static void
109 zfsvfs_vfs_free(vfs_t *vfsp)
110 {
111 if (vfsp != NULL) {
112 if (vfsp->vfs_mntpoint != NULL)
113 strfree(vfsp->vfs_mntpoint);
114
115 kmem_free(vfsp, sizeof (vfs_t));
116 }
117 }
118
119 static int
120 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
121 {
122 switch (token) {
123 case TOKEN_RO:
124 vfsp->vfs_readonly = B_TRUE;
125 vfsp->vfs_do_readonly = B_TRUE;
126 break;
127 case TOKEN_RW:
128 vfsp->vfs_readonly = B_FALSE;
129 vfsp->vfs_do_readonly = B_TRUE;
130 break;
131 case TOKEN_SETUID:
132 vfsp->vfs_setuid = B_TRUE;
133 vfsp->vfs_do_setuid = B_TRUE;
134 break;
135 case TOKEN_NOSETUID:
136 vfsp->vfs_setuid = B_FALSE;
137 vfsp->vfs_do_setuid = B_TRUE;
138 break;
139 case TOKEN_EXEC:
140 vfsp->vfs_exec = B_TRUE;
141 vfsp->vfs_do_exec = B_TRUE;
142 break;
143 case TOKEN_NOEXEC:
144 vfsp->vfs_exec = B_FALSE;
145 vfsp->vfs_do_exec = B_TRUE;
146 break;
147 case TOKEN_DEVICES:
148 vfsp->vfs_devices = B_TRUE;
149 vfsp->vfs_do_devices = B_TRUE;
150 break;
151 case TOKEN_NODEVICES:
152 vfsp->vfs_devices = B_FALSE;
153 vfsp->vfs_do_devices = B_TRUE;
154 break;
155 case TOKEN_DIRXATTR:
156 vfsp->vfs_xattr = ZFS_XATTR_DIR;
157 vfsp->vfs_do_xattr = B_TRUE;
158 break;
159 case TOKEN_SAXATTR:
160 vfsp->vfs_xattr = ZFS_XATTR_SA;
161 vfsp->vfs_do_xattr = B_TRUE;
162 break;
163 case TOKEN_XATTR:
164 vfsp->vfs_xattr = ZFS_XATTR_DIR;
165 vfsp->vfs_do_xattr = B_TRUE;
166 break;
167 case TOKEN_NOXATTR:
168 vfsp->vfs_xattr = ZFS_XATTR_OFF;
169 vfsp->vfs_do_xattr = B_TRUE;
170 break;
171 case TOKEN_ATIME:
172 vfsp->vfs_atime = B_TRUE;
173 vfsp->vfs_do_atime = B_TRUE;
174 break;
175 case TOKEN_NOATIME:
176 vfsp->vfs_atime = B_FALSE;
177 vfsp->vfs_do_atime = B_TRUE;
178 break;
179 case TOKEN_RELATIME:
180 vfsp->vfs_relatime = B_TRUE;
181 vfsp->vfs_do_relatime = B_TRUE;
182 break;
183 case TOKEN_NORELATIME:
184 vfsp->vfs_relatime = B_FALSE;
185 vfsp->vfs_do_relatime = B_TRUE;
186 break;
187 case TOKEN_NBMAND:
188 vfsp->vfs_nbmand = B_TRUE;
189 vfsp->vfs_do_nbmand = B_TRUE;
190 break;
191 case TOKEN_NONBMAND:
192 vfsp->vfs_nbmand = B_FALSE;
193 vfsp->vfs_do_nbmand = B_TRUE;
194 break;
195 case TOKEN_MNTPOINT:
196 vfsp->vfs_mntpoint = match_strdup(&args[0]);
197 if (vfsp->vfs_mntpoint == NULL)
198 return (SET_ERROR(ENOMEM));
199
200 break;
201 default:
202 break;
203 }
204
205 return (0);
206 }
207
208 /*
209 * Parse the raw mntopts and return a vfs_t describing the options.
210 */
211 static int
212 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
213 {
214 vfs_t *tmp_vfsp;
215 int error;
216
217 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
218
219 if (mntopts != NULL) {
220 substring_t args[MAX_OPT_ARGS];
221 char *tmp_mntopts, *p, *t;
222 int token;
223
224 tmp_mntopts = t = strdup(mntopts);
225 if (tmp_mntopts == NULL)
226 return (SET_ERROR(ENOMEM));
227
228 while ((p = strsep(&t, ",")) != NULL) {
229 if (!*p)
230 continue;
231
232 args[0].to = args[0].from = NULL;
233 token = match_token(p, zpl_tokens, args);
234 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
235 if (error) {
236 strfree(tmp_mntopts);
237 zfsvfs_vfs_free(tmp_vfsp);
238 return (error);
239 }
240 }
241
242 strfree(tmp_mntopts);
243 }
244
245 *vfsp = tmp_vfsp;
246
247 return (0);
248 }
249
250 boolean_t
251 zfs_is_readonly(zfsvfs_t *zfsvfs)
252 {
253 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
254 }
255
256 /*ARGSUSED*/
257 int
258 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
259 {
260 zfsvfs_t *zfsvfs = sb->s_fs_info;
261
262 /*
263 * Semantically, the only requirement is that the sync be initiated.
264 * The DMU syncs out txgs frequently, so there's nothing to do.
265 */
266 if (!wait)
267 return (0);
268
269 if (zfsvfs != NULL) {
270 /*
271 * Sync a specific filesystem.
272 */
273 dsl_pool_t *dp;
274
275 ZFS_ENTER(zfsvfs);
276 dp = dmu_objset_pool(zfsvfs->z_os);
277
278 /*
279 * If the system is shutting down, then skip any
280 * filesystems which may exist on a suspended pool.
281 */
282 if (spa_suspended(dp->dp_spa)) {
283 ZFS_EXIT(zfsvfs);
284 return (0);
285 }
286
287 if (zfsvfs->z_log != NULL)
288 zil_commit(zfsvfs->z_log, 0);
289
290 ZFS_EXIT(zfsvfs);
291 } else {
292 /*
293 * Sync all ZFS filesystems. This is what happens when you
294 * run sync(1M). Unlike other filesystems, ZFS honors the
295 * request by waiting for all pools to commit all dirty data.
296 */
297 spa_sync_allpools();
298 }
299
300 return (0);
301 }
302
303 static void
304 atime_changed_cb(void *arg, uint64_t newval)
305 {
306 zfsvfs_t *zfsvfs = arg;
307 struct super_block *sb = zfsvfs->z_sb;
308
309 if (sb == NULL)
310 return;
311 /*
312 * Update SB_NOATIME bit in VFS super block. Since atime update is
313 * determined by atime_needs_update(), atime_needs_update() needs to
314 * return false if atime is turned off, and not unconditionally return
315 * false if atime is turned on.
316 */
317 if (newval)
318 sb->s_flags &= ~SB_NOATIME;
319 else
320 sb->s_flags |= SB_NOATIME;
321 }
322
323 static void
324 relatime_changed_cb(void *arg, uint64_t newval)
325 {
326 ((zfsvfs_t *)arg)->z_relatime = newval;
327 }
328
329 static void
330 xattr_changed_cb(void *arg, uint64_t newval)
331 {
332 zfsvfs_t *zfsvfs = arg;
333
334 if (newval == ZFS_XATTR_OFF) {
335 zfsvfs->z_flags &= ~ZSB_XATTR;
336 } else {
337 zfsvfs->z_flags |= ZSB_XATTR;
338
339 if (newval == ZFS_XATTR_SA)
340 zfsvfs->z_xattr_sa = B_TRUE;
341 else
342 zfsvfs->z_xattr_sa = B_FALSE;
343 }
344 }
345
346 static void
347 acltype_changed_cb(void *arg, uint64_t newval)
348 {
349 zfsvfs_t *zfsvfs = arg;
350
351 switch (newval) {
352 case ZFS_ACLTYPE_OFF:
353 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
354 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
355 break;
356 case ZFS_ACLTYPE_POSIXACL:
357 #ifdef CONFIG_FS_POSIX_ACL
358 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIXACL;
359 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
360 #else
361 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
362 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
363 #endif /* CONFIG_FS_POSIX_ACL */
364 break;
365 default:
366 break;
367 }
368 }
369
370 static void
371 blksz_changed_cb(void *arg, uint64_t newval)
372 {
373 zfsvfs_t *zfsvfs = arg;
374 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
375 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
376 ASSERT(ISP2(newval));
377
378 zfsvfs->z_max_blksz = newval;
379 }
380
381 static void
382 readonly_changed_cb(void *arg, uint64_t newval)
383 {
384 zfsvfs_t *zfsvfs = arg;
385 struct super_block *sb = zfsvfs->z_sb;
386
387 if (sb == NULL)
388 return;
389
390 if (newval)
391 sb->s_flags |= SB_RDONLY;
392 else
393 sb->s_flags &= ~SB_RDONLY;
394 }
395
396 static void
397 devices_changed_cb(void *arg, uint64_t newval)
398 {
399 }
400
401 static void
402 setuid_changed_cb(void *arg, uint64_t newval)
403 {
404 }
405
406 static void
407 exec_changed_cb(void *arg, uint64_t newval)
408 {
409 }
410
411 static void
412 nbmand_changed_cb(void *arg, uint64_t newval)
413 {
414 zfsvfs_t *zfsvfs = arg;
415 struct super_block *sb = zfsvfs->z_sb;
416
417 if (sb == NULL)
418 return;
419
420 if (newval == TRUE)
421 sb->s_flags |= SB_MANDLOCK;
422 else
423 sb->s_flags &= ~SB_MANDLOCK;
424 }
425
426 static void
427 snapdir_changed_cb(void *arg, uint64_t newval)
428 {
429 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
430 }
431
432 static void
433 vscan_changed_cb(void *arg, uint64_t newval)
434 {
435 ((zfsvfs_t *)arg)->z_vscan = newval;
436 }
437
438 static void
439 acl_inherit_changed_cb(void *arg, uint64_t newval)
440 {
441 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
442 }
443
444 static int
445 zfs_register_callbacks(vfs_t *vfsp)
446 {
447 struct dsl_dataset *ds = NULL;
448 objset_t *os = NULL;
449 zfsvfs_t *zfsvfs = NULL;
450 int error = 0;
451
452 ASSERT(vfsp);
453 zfsvfs = vfsp->vfs_data;
454 ASSERT(zfsvfs);
455 os = zfsvfs->z_os;
456
457 /*
458 * The act of registering our callbacks will destroy any mount
459 * options we may have. In order to enable temporary overrides
460 * of mount options, we stash away the current values and
461 * restore them after we register the callbacks.
462 */
463 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
464 vfsp->vfs_do_readonly = B_TRUE;
465 vfsp->vfs_readonly = B_TRUE;
466 }
467
468 /*
469 * Register property callbacks.
470 *
471 * It would probably be fine to just check for i/o error from
472 * the first prop_register(), but I guess I like to go
473 * overboard...
474 */
475 ds = dmu_objset_ds(os);
476 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
477 error = dsl_prop_register(ds,
478 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
479 error = error ? error : dsl_prop_register(ds,
480 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
481 error = error ? error : dsl_prop_register(ds,
482 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
483 error = error ? error : dsl_prop_register(ds,
484 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
485 error = error ? error : dsl_prop_register(ds,
486 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
487 error = error ? error : dsl_prop_register(ds,
488 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
489 error = error ? error : dsl_prop_register(ds,
490 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
491 error = error ? error : dsl_prop_register(ds,
492 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
493 error = error ? error : dsl_prop_register(ds,
494 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
495 error = error ? error : dsl_prop_register(ds,
496 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
497 error = error ? error : dsl_prop_register(ds,
498 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
499 zfsvfs);
500 error = error ? error : dsl_prop_register(ds,
501 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
504 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
505 if (error)
506 goto unregister;
507
508 /*
509 * Invoke our callbacks to restore temporary mount options.
510 */
511 if (vfsp->vfs_do_readonly)
512 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
513 if (vfsp->vfs_do_setuid)
514 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
515 if (vfsp->vfs_do_exec)
516 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
517 if (vfsp->vfs_do_devices)
518 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
519 if (vfsp->vfs_do_xattr)
520 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
521 if (vfsp->vfs_do_atime)
522 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
523 if (vfsp->vfs_do_relatime)
524 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
525 if (vfsp->vfs_do_nbmand)
526 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
527
528 return (0);
529
530 unregister:
531 dsl_prop_unregister_all(ds, zfsvfs);
532 return (error);
533 }
534
535 static int
536 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
537 uint64_t *userp, uint64_t *groupp, uint64_t *projectp)
538 {
539 sa_hdr_phys_t sa;
540 sa_hdr_phys_t *sap = data;
541 uint64_t flags;
542 int hdrsize;
543 boolean_t swap = B_FALSE;
544
545 /*
546 * Is it a valid type of object to track?
547 */
548 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
549 return (SET_ERROR(ENOENT));
550
551 /*
552 * If we have a NULL data pointer
553 * then assume the id's aren't changing and
554 * return EEXIST to the dmu to let it know to
555 * use the same ids
556 */
557 if (data == NULL)
558 return (SET_ERROR(EEXIST));
559
560 if (bonustype == DMU_OT_ZNODE) {
561 znode_phys_t *znp = data;
562 *userp = znp->zp_uid;
563 *groupp = znp->zp_gid;
564 *projectp = ZFS_DEFAULT_PROJID;
565 return (0);
566 }
567
568 if (sap->sa_magic == 0) {
569 /*
570 * This should only happen for newly created files
571 * that haven't had the znode data filled in yet.
572 */
573 *userp = 0;
574 *groupp = 0;
575 *projectp = ZFS_DEFAULT_PROJID;
576 return (0);
577 }
578
579 sa = *sap;
580 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
581 sa.sa_magic = SA_MAGIC;
582 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
583 swap = B_TRUE;
584 } else {
585 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
586 }
587
588 hdrsize = sa_hdrsize(&sa);
589 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
590
591 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET));
592 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET));
593 flags = *((uint64_t *)((uintptr_t)data + hdrsize + SA_FLAGS_OFFSET));
594 if (swap)
595 flags = BSWAP_64(flags);
596
597 if (flags & ZFS_PROJID)
598 *projectp = *((uint64_t *)((uintptr_t)data + hdrsize +
599 SA_PROJID_OFFSET));
600 else
601 *projectp = ZFS_DEFAULT_PROJID;
602
603 if (swap) {
604 *userp = BSWAP_64(*userp);
605 *groupp = BSWAP_64(*groupp);
606 *projectp = BSWAP_64(*projectp);
607 }
608 return (0);
609 }
610
611 static void
612 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
613 char *domainbuf, int buflen, uid_t *ridp)
614 {
615 uint64_t fuid;
616 const char *domain;
617
618 fuid = zfs_strtonum(fuidstr, NULL);
619
620 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
621 if (domain)
622 (void) strlcpy(domainbuf, domain, buflen);
623 else
624 domainbuf[0] = '\0';
625 *ridp = FUID_RID(fuid);
626 }
627
628 static uint64_t
629 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
630 {
631 switch (type) {
632 case ZFS_PROP_USERUSED:
633 case ZFS_PROP_USEROBJUSED:
634 return (DMU_USERUSED_OBJECT);
635 case ZFS_PROP_GROUPUSED:
636 case ZFS_PROP_GROUPOBJUSED:
637 return (DMU_GROUPUSED_OBJECT);
638 case ZFS_PROP_PROJECTUSED:
639 case ZFS_PROP_PROJECTOBJUSED:
640 return (DMU_PROJECTUSED_OBJECT);
641 case ZFS_PROP_USERQUOTA:
642 return (zfsvfs->z_userquota_obj);
643 case ZFS_PROP_GROUPQUOTA:
644 return (zfsvfs->z_groupquota_obj);
645 case ZFS_PROP_USEROBJQUOTA:
646 return (zfsvfs->z_userobjquota_obj);
647 case ZFS_PROP_GROUPOBJQUOTA:
648 return (zfsvfs->z_groupobjquota_obj);
649 case ZFS_PROP_PROJECTQUOTA:
650 return (zfsvfs->z_projectquota_obj);
651 case ZFS_PROP_PROJECTOBJQUOTA:
652 return (zfsvfs->z_projectobjquota_obj);
653 default:
654 return (ZFS_NO_OBJECT);
655 }
656 }
657
658 int
659 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
660 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
661 {
662 int error;
663 zap_cursor_t zc;
664 zap_attribute_t za;
665 zfs_useracct_t *buf = vbuf;
666 uint64_t obj;
667 int offset = 0;
668
669 if (!dmu_objset_userspace_present(zfsvfs->z_os))
670 return (SET_ERROR(ENOTSUP));
671
672 if ((type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
673 type == ZFS_PROP_PROJECTOBJQUOTA ||
674 type == ZFS_PROP_PROJECTOBJUSED) &&
675 !dmu_objset_projectquota_present(zfsvfs->z_os))
676 return (SET_ERROR(ENOTSUP));
677
678 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
679 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
680 type == ZFS_PROP_PROJECTOBJUSED ||
681 type == ZFS_PROP_PROJECTOBJQUOTA) &&
682 !dmu_objset_userobjspace_present(zfsvfs->z_os))
683 return (SET_ERROR(ENOTSUP));
684
685 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
686 if (obj == ZFS_NO_OBJECT) {
687 *bufsizep = 0;
688 return (0);
689 }
690
691 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
692 type == ZFS_PROP_PROJECTOBJUSED)
693 offset = DMU_OBJACCT_PREFIX_LEN;
694
695 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
696 (error = zap_cursor_retrieve(&zc, &za)) == 0;
697 zap_cursor_advance(&zc)) {
698 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
699 *bufsizep)
700 break;
701
702 /*
703 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX)
704 * when dealing with block quota and vice versa.
705 */
706 if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX,
707 DMU_OBJACCT_PREFIX_LEN) == 0))
708 continue;
709
710 fuidstr_to_sid(zfsvfs, za.za_name + offset,
711 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
712
713 buf->zu_space = za.za_first_integer;
714 buf++;
715 }
716 if (error == ENOENT)
717 error = 0;
718
719 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
720 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
721 *cookiep = zap_cursor_serialize(&zc);
722 zap_cursor_fini(&zc);
723 return (error);
724 }
725
726 /*
727 * buf must be big enough (eg, 32 bytes)
728 */
729 static int
730 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
731 char *buf, boolean_t addok)
732 {
733 uint64_t fuid;
734 int domainid = 0;
735
736 if (domain && domain[0]) {
737 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
738 if (domainid == -1)
739 return (SET_ERROR(ENOENT));
740 }
741 fuid = FUID_ENCODE(domainid, rid);
742 (void) sprintf(buf, "%llx", (longlong_t)fuid);
743 return (0);
744 }
745
746 int
747 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
748 const char *domain, uint64_t rid, uint64_t *valp)
749 {
750 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
751 int offset = 0;
752 int err;
753 uint64_t obj;
754
755 *valp = 0;
756
757 if (!dmu_objset_userspace_present(zfsvfs->z_os))
758 return (SET_ERROR(ENOTSUP));
759
760 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
761 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
762 type == ZFS_PROP_PROJECTOBJUSED ||
763 type == ZFS_PROP_PROJECTOBJQUOTA) &&
764 !dmu_objset_userobjspace_present(zfsvfs->z_os))
765 return (SET_ERROR(ENOTSUP));
766
767 if (type == ZFS_PROP_PROJECTQUOTA || type == ZFS_PROP_PROJECTUSED ||
768 type == ZFS_PROP_PROJECTOBJQUOTA ||
769 type == ZFS_PROP_PROJECTOBJUSED) {
770 if (!dmu_objset_projectquota_present(zfsvfs->z_os))
771 return (SET_ERROR(ENOTSUP));
772 if (!zpl_is_valid_projid(rid))
773 return (SET_ERROR(EINVAL));
774 }
775
776 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
777 if (obj == ZFS_NO_OBJECT)
778 return (0);
779
780 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
781 type == ZFS_PROP_PROJECTOBJUSED) {
782 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
783 offset = DMU_OBJACCT_PREFIX_LEN;
784 }
785
786 err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE);
787 if (err)
788 return (err);
789
790 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
791 if (err == ENOENT)
792 err = 0;
793 return (err);
794 }
795
796 int
797 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
798 const char *domain, uint64_t rid, uint64_t quota)
799 {
800 char buf[32];
801 int err;
802 dmu_tx_t *tx;
803 uint64_t *objp;
804 boolean_t fuid_dirtied;
805
806 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
807 return (SET_ERROR(ENOTSUP));
808
809 switch (type) {
810 case ZFS_PROP_USERQUOTA:
811 objp = &zfsvfs->z_userquota_obj;
812 break;
813 case ZFS_PROP_GROUPQUOTA:
814 objp = &zfsvfs->z_groupquota_obj;
815 break;
816 case ZFS_PROP_USEROBJQUOTA:
817 objp = &zfsvfs->z_userobjquota_obj;
818 break;
819 case ZFS_PROP_GROUPOBJQUOTA:
820 objp = &zfsvfs->z_groupobjquota_obj;
821 break;
822 case ZFS_PROP_PROJECTQUOTA:
823 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
824 return (SET_ERROR(ENOTSUP));
825 if (!zpl_is_valid_projid(rid))
826 return (SET_ERROR(EINVAL));
827
828 objp = &zfsvfs->z_projectquota_obj;
829 break;
830 case ZFS_PROP_PROJECTOBJQUOTA:
831 if (!dmu_objset_projectquota_enabled(zfsvfs->z_os))
832 return (SET_ERROR(ENOTSUP));
833 if (!zpl_is_valid_projid(rid))
834 return (SET_ERROR(EINVAL));
835
836 objp = &zfsvfs->z_projectobjquota_obj;
837 break;
838 default:
839 return (SET_ERROR(EINVAL));
840 }
841
842 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
843 if (err)
844 return (err);
845 fuid_dirtied = zfsvfs->z_fuid_dirty;
846
847 tx = dmu_tx_create(zfsvfs->z_os);
848 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
849 if (*objp == 0) {
850 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
851 zfs_userquota_prop_prefixes[type]);
852 }
853 if (fuid_dirtied)
854 zfs_fuid_txhold(zfsvfs, tx);
855 err = dmu_tx_assign(tx, TXG_WAIT);
856 if (err) {
857 dmu_tx_abort(tx);
858 return (err);
859 }
860
861 mutex_enter(&zfsvfs->z_lock);
862 if (*objp == 0) {
863 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
864 DMU_OT_NONE, 0, tx);
865 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
866 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
867 }
868 mutex_exit(&zfsvfs->z_lock);
869
870 if (quota == 0) {
871 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
872 if (err == ENOENT)
873 err = 0;
874 } else {
875 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
876 }
877 ASSERT(err == 0);
878 if (fuid_dirtied)
879 zfs_fuid_sync(zfsvfs, tx);
880 dmu_tx_commit(tx);
881 return (err);
882 }
883
884 boolean_t
885 zfs_id_overobjquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
886 {
887 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
888 uint64_t used, quota, quotaobj;
889 int err;
890
891 if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) {
892 if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os)) {
893 dsl_pool_config_enter(
894 dmu_objset_pool(zfsvfs->z_os), FTAG);
895 dmu_objset_id_quota_upgrade(zfsvfs->z_os);
896 dsl_pool_config_exit(
897 dmu_objset_pool(zfsvfs->z_os), FTAG);
898 }
899 return (B_FALSE);
900 }
901
902 if (usedobj == DMU_PROJECTUSED_OBJECT) {
903 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
904 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
905 dsl_pool_config_enter(
906 dmu_objset_pool(zfsvfs->z_os), FTAG);
907 dmu_objset_id_quota_upgrade(zfsvfs->z_os);
908 dsl_pool_config_exit(
909 dmu_objset_pool(zfsvfs->z_os), FTAG);
910 }
911 return (B_FALSE);
912 }
913 quotaobj = zfsvfs->z_projectobjquota_obj;
914 } else if (usedobj == DMU_USERUSED_OBJECT) {
915 quotaobj = zfsvfs->z_userobjquota_obj;
916 } else if (usedobj == DMU_GROUPUSED_OBJECT) {
917 quotaobj = zfsvfs->z_groupobjquota_obj;
918 } else {
919 return (B_FALSE);
920 }
921 if (quotaobj == 0 || zfsvfs->z_replay)
922 return (B_FALSE);
923
924 (void) sprintf(buf, "%llx", (longlong_t)id);
925 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
926 if (err != 0)
927 return (B_FALSE);
928
929 (void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)id);
930 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
931 if (err != 0)
932 return (B_FALSE);
933 return (used >= quota);
934 }
935
936 boolean_t
937 zfs_id_overblockquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
938 {
939 char buf[20];
940 uint64_t used, quota, quotaobj;
941 int err;
942
943 if (usedobj == DMU_PROJECTUSED_OBJECT) {
944 if (!dmu_objset_projectquota_present(zfsvfs->z_os)) {
945 if (dmu_objset_projectquota_upgradable(zfsvfs->z_os)) {
946 dsl_pool_config_enter(
947 dmu_objset_pool(zfsvfs->z_os), FTAG);
948 dmu_objset_id_quota_upgrade(zfsvfs->z_os);
949 dsl_pool_config_exit(
950 dmu_objset_pool(zfsvfs->z_os), FTAG);
951 }
952 return (B_FALSE);
953 }
954 quotaobj = zfsvfs->z_projectquota_obj;
955 } else if (usedobj == DMU_USERUSED_OBJECT) {
956 quotaobj = zfsvfs->z_userquota_obj;
957 } else if (usedobj == DMU_GROUPUSED_OBJECT) {
958 quotaobj = zfsvfs->z_groupquota_obj;
959 } else {
960 return (B_FALSE);
961 }
962 if (quotaobj == 0 || zfsvfs->z_replay)
963 return (B_FALSE);
964
965 (void) sprintf(buf, "%llx", (longlong_t)id);
966 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
967 if (err != 0)
968 return (B_FALSE);
969
970 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
971 if (err != 0)
972 return (B_FALSE);
973 return (used >= quota);
974 }
975
976 boolean_t
977 zfs_id_overquota(zfsvfs_t *zfsvfs, uint64_t usedobj, uint64_t id)
978 {
979 return (zfs_id_overblockquota(zfsvfs, usedobj, id) ||
980 zfs_id_overobjquota(zfsvfs, usedobj, id));
981 }
982
983 /*
984 * Associate this zfsvfs with the given objset, which must be owned.
985 * This will cache a bunch of on-disk state from the objset in the
986 * zfsvfs.
987 */
988 static int
989 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
990 {
991 int error;
992 uint64_t val;
993
994 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
995 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
996 zfsvfs->z_os = os;
997
998 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
999 if (error != 0)
1000 return (error);
1001 if (zfsvfs->z_version >
1002 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
1003 (void) printk("Can't mount a version %lld file system "
1004 "on a version %lld pool\n. Pool must be upgraded to mount "
1005 "this file system.", (u_longlong_t)zfsvfs->z_version,
1006 (u_longlong_t)spa_version(dmu_objset_spa(os)));
1007 return (SET_ERROR(ENOTSUP));
1008 }
1009 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
1010 if (error != 0)
1011 return (error);
1012 zfsvfs->z_norm = (int)val;
1013
1014 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
1015 if (error != 0)
1016 return (error);
1017 zfsvfs->z_utf8 = (val != 0);
1018
1019 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
1020 if (error != 0)
1021 return (error);
1022 zfsvfs->z_case = (uint_t)val;
1023
1024 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
1025 return (error);
1026 zfsvfs->z_acl_type = (uint_t)val;
1027
1028 /*
1029 * Fold case on file systems that are always or sometimes case
1030 * insensitive.
1031 */
1032 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
1033 zfsvfs->z_case == ZFS_CASE_MIXED)
1034 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
1035
1036 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1037 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1038
1039 uint64_t sa_obj = 0;
1040 if (zfsvfs->z_use_sa) {
1041 /* should either have both of these objects or none */
1042 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
1043 &sa_obj);
1044 if (error != 0)
1045 return (error);
1046
1047 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
1048 if ((error == 0) && (val == ZFS_XATTR_SA))
1049 zfsvfs->z_xattr_sa = B_TRUE;
1050 }
1051
1052 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
1053 &zfsvfs->z_root);
1054 if (error != 0)
1055 return (error);
1056 ASSERT(zfsvfs->z_root != 0);
1057
1058 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
1059 &zfsvfs->z_unlinkedobj);
1060 if (error != 0)
1061 return (error);
1062
1063 error = zap_lookup(os, MASTER_NODE_OBJ,
1064 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1065 8, 1, &zfsvfs->z_userquota_obj);
1066 if (error == ENOENT)
1067 zfsvfs->z_userquota_obj = 0;
1068 else if (error != 0)
1069 return (error);
1070
1071 error = zap_lookup(os, MASTER_NODE_OBJ,
1072 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1073 8, 1, &zfsvfs->z_groupquota_obj);
1074 if (error == ENOENT)
1075 zfsvfs->z_groupquota_obj = 0;
1076 else if (error != 0)
1077 return (error);
1078
1079 error = zap_lookup(os, MASTER_NODE_OBJ,
1080 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
1081 8, 1, &zfsvfs->z_projectquota_obj);
1082 if (error == ENOENT)
1083 zfsvfs->z_projectquota_obj = 0;
1084 else if (error != 0)
1085 return (error);
1086
1087 error = zap_lookup(os, MASTER_NODE_OBJ,
1088 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
1089 8, 1, &zfsvfs->z_userobjquota_obj);
1090 if (error == ENOENT)
1091 zfsvfs->z_userobjquota_obj = 0;
1092 else if (error != 0)
1093 return (error);
1094
1095 error = zap_lookup(os, MASTER_NODE_OBJ,
1096 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
1097 8, 1, &zfsvfs->z_groupobjquota_obj);
1098 if (error == ENOENT)
1099 zfsvfs->z_groupobjquota_obj = 0;
1100 else if (error != 0)
1101 return (error);
1102
1103 error = zap_lookup(os, MASTER_NODE_OBJ,
1104 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
1105 8, 1, &zfsvfs->z_projectobjquota_obj);
1106 if (error == ENOENT)
1107 zfsvfs->z_projectobjquota_obj = 0;
1108 else if (error != 0)
1109 return (error);
1110
1111 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1112 &zfsvfs->z_fuid_obj);
1113 if (error == ENOENT)
1114 zfsvfs->z_fuid_obj = 0;
1115 else if (error != 0)
1116 return (error);
1117
1118 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1119 &zfsvfs->z_shares_dir);
1120 if (error == ENOENT)
1121 zfsvfs->z_shares_dir = 0;
1122 else if (error != 0)
1123 return (error);
1124
1125 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1126 &zfsvfs->z_attr_table);
1127 if (error != 0)
1128 return (error);
1129
1130 if (zfsvfs->z_version >= ZPL_VERSION_SA)
1131 sa_register_update_callback(os, zfs_sa_upgrade);
1132
1133 return (0);
1134 }
1135
1136 int
1137 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
1138 {
1139 objset_t *os;
1140 zfsvfs_t *zfsvfs;
1141 int error;
1142 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
1143
1144 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
1145
1146 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
1147 if (error != 0) {
1148 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1149 return (error);
1150 }
1151
1152 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
1153 if (error != 0) {
1154 dmu_objset_disown(os, B_TRUE, zfsvfs);
1155 }
1156 return (error);
1157 }
1158
1159
1160 /*
1161 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
1162 * on a failure. Do not pass in a statically allocated zfsvfs.
1163 */
1164 int
1165 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
1166 {
1167 int error;
1168
1169 zfsvfs->z_vfs = NULL;
1170 zfsvfs->z_sb = NULL;
1171 zfsvfs->z_parent = zfsvfs;
1172
1173 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1174 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1175 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1176 offsetof(znode_t, z_link_node));
1177 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1178 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1179 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1180
1181 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
1182 ZFS_OBJ_MTX_MAX);
1183 zfsvfs->z_hold_size = size;
1184 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1185 KM_SLEEP);
1186 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1187 for (int i = 0; i != size; i++) {
1188 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1189 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1190 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1191 }
1192
1193 error = zfsvfs_init(zfsvfs, os);
1194 if (error != 0) {
1195 *zfvp = NULL;
1196 zfsvfs_free(zfsvfs);
1197 return (error);
1198 }
1199
1200 zfsvfs->z_drain_task = TASKQID_INVALID;
1201 zfsvfs->z_draining = B_FALSE;
1202 zfsvfs->z_drain_cancel = B_TRUE;
1203
1204 *zfvp = zfsvfs;
1205 return (0);
1206 }
1207
1208 static int
1209 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1210 {
1211 int error;
1212 boolean_t readonly = zfs_is_readonly(zfsvfs);
1213
1214 error = zfs_register_callbacks(zfsvfs->z_vfs);
1215 if (error)
1216 return (error);
1217
1218 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1219
1220 /*
1221 * If we are not mounting (ie: online recv), then we don't
1222 * have to worry about replaying the log as we blocked all
1223 * operations out since we closed the ZIL.
1224 */
1225 if (mounting) {
1226 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
1227 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
1228
1229 /*
1230 * During replay we remove the read only flag to
1231 * allow replays to succeed.
1232 */
1233 if (readonly != 0) {
1234 readonly_changed_cb(zfsvfs, B_FALSE);
1235 } else {
1236 zap_stats_t zs;
1237 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
1238 &zs) == 0) {
1239 dataset_kstats_update_nunlinks_kstat(
1240 &zfsvfs->z_kstat, zs.zs_num_entries);
1241 }
1242 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1243 "num_entries in unlinked set: %llu",
1244 zs.zs_num_entries);
1245 zfs_unlinked_drain(zfsvfs);
1246 }
1247
1248 /*
1249 * Parse and replay the intent log.
1250 *
1251 * Because of ziltest, this must be done after
1252 * zfs_unlinked_drain(). (Further note: ziltest
1253 * doesn't use readonly mounts, where
1254 * zfs_unlinked_drain() isn't called.) This is because
1255 * ziltest causes spa_sync() to think it's committed,
1256 * but actually it is not, so the intent log contains
1257 * many txg's worth of changes.
1258 *
1259 * In particular, if object N is in the unlinked set in
1260 * the last txg to actually sync, then it could be
1261 * actually freed in a later txg and then reallocated
1262 * in a yet later txg. This would write a "create
1263 * object N" record to the intent log. Normally, this
1264 * would be fine because the spa_sync() would have
1265 * written out the fact that object N is free, before
1266 * we could write the "create object N" intent log
1267 * record.
1268 *
1269 * But when we are in ziltest mode, we advance the "open
1270 * txg" without actually spa_sync()-ing the changes to
1271 * disk. So we would see that object N is still
1272 * allocated and in the unlinked set, and there is an
1273 * intent log record saying to allocate it.
1274 */
1275 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1276 if (zil_replay_disable) {
1277 zil_destroy(zfsvfs->z_log, B_FALSE);
1278 } else {
1279 zfsvfs->z_replay = B_TRUE;
1280 zil_replay(zfsvfs->z_os, zfsvfs,
1281 zfs_replay_vector);
1282 zfsvfs->z_replay = B_FALSE;
1283 }
1284 }
1285
1286 /* restore readonly bit */
1287 if (readonly != 0)
1288 readonly_changed_cb(zfsvfs, B_TRUE);
1289 }
1290
1291 /*
1292 * Set the objset user_ptr to track its zfsvfs.
1293 */
1294 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1295 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1296 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1297
1298 return (0);
1299 }
1300
1301 void
1302 zfsvfs_free(zfsvfs_t *zfsvfs)
1303 {
1304 int i, size = zfsvfs->z_hold_size;
1305
1306 zfs_fuid_destroy(zfsvfs);
1307
1308 mutex_destroy(&zfsvfs->z_znodes_lock);
1309 mutex_destroy(&zfsvfs->z_lock);
1310 list_destroy(&zfsvfs->z_all_znodes);
1311 rrm_destroy(&zfsvfs->z_teardown_lock);
1312 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1313 rw_destroy(&zfsvfs->z_fuid_lock);
1314 for (i = 0; i != size; i++) {
1315 avl_destroy(&zfsvfs->z_hold_trees[i]);
1316 mutex_destroy(&zfsvfs->z_hold_locks[i]);
1317 }
1318 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1319 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1320 zfsvfs_vfs_free(zfsvfs->z_vfs);
1321 dataset_kstats_destroy(&zfsvfs->z_kstat);
1322 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1323 }
1324
1325 static void
1326 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1327 {
1328 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1329 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1330 }
1331
1332 void
1333 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1334 {
1335 objset_t *os = zfsvfs->z_os;
1336
1337 if (!dmu_objset_is_snapshot(os))
1338 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1339 }
1340
1341 #ifdef HAVE_MLSLABEL
1342 /*
1343 * Check that the hex label string is appropriate for the dataset being
1344 * mounted into the global_zone proper.
1345 *
1346 * Return an error if the hex label string is not default or
1347 * admin_low/admin_high. For admin_low labels, the corresponding
1348 * dataset must be readonly.
1349 */
1350 int
1351 zfs_check_global_label(const char *dsname, const char *hexsl)
1352 {
1353 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1354 return (0);
1355 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1356 return (0);
1357 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1358 /* must be readonly */
1359 uint64_t rdonly;
1360
1361 if (dsl_prop_get_integer(dsname,
1362 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1363 return (SET_ERROR(EACCES));
1364 return (rdonly ? 0 : EACCES);
1365 }
1366 return (SET_ERROR(EACCES));
1367 }
1368 #endif /* HAVE_MLSLABEL */
1369
1370 static int
1371 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1372 uint32_t bshift)
1373 {
1374 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1375 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1376 uint64_t quota;
1377 uint64_t used;
1378 int err;
1379
1380 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1381 err = id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, B_FALSE);
1382 if (err)
1383 return (err);
1384
1385 if (zfsvfs->z_projectquota_obj == 0)
1386 goto objs;
1387
1388 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1389 buf + offset, 8, 1, &quota);
1390 if (err == ENOENT)
1391 goto objs;
1392 else if (err)
1393 return (err);
1394
1395 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1396 buf + offset, 8, 1, &used);
1397 if (unlikely(err == ENOENT)) {
1398 uint32_t blksize;
1399 u_longlong_t nblocks;
1400
1401 /*
1402 * Quota accounting is async, so it is possible race case.
1403 * There is at least one object with the given project ID.
1404 */
1405 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1406 if (unlikely(zp->z_blksz == 0))
1407 blksize = zfsvfs->z_max_blksz;
1408
1409 used = blksize * nblocks;
1410 } else if (err) {
1411 return (err);
1412 }
1413
1414 statp->f_blocks = quota >> bshift;
1415 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1416 statp->f_bavail = statp->f_bfree;
1417
1418 objs:
1419 if (zfsvfs->z_projectobjquota_obj == 0)
1420 return (0);
1421
1422 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1423 buf + offset, 8, 1, &quota);
1424 if (err == ENOENT)
1425 return (0);
1426 else if (err)
1427 return (err);
1428
1429 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1430 buf, 8, 1, &used);
1431 if (unlikely(err == ENOENT)) {
1432 /*
1433 * Quota accounting is async, so it is possible race case.
1434 * There is at least one object with the given project ID.
1435 */
1436 used = 1;
1437 } else if (err) {
1438 return (err);
1439 }
1440
1441 statp->f_files = quota;
1442 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1443
1444 return (0);
1445 }
1446
1447 int
1448 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
1449 {
1450 zfsvfs_t *zfsvfs = dentry->d_sb->s_fs_info;
1451 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1452 int err = 0;
1453
1454 ZFS_ENTER(zfsvfs);
1455
1456 dmu_objset_space(zfsvfs->z_os,
1457 &refdbytes, &availbytes, &usedobjs, &availobjs);
1458
1459 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1460 /*
1461 * The underlying storage pool actually uses multiple block
1462 * size. Under Solaris frsize (fragment size) is reported as
1463 * the smallest block size we support, and bsize (block size)
1464 * as the filesystem's maximum block size. Unfortunately,
1465 * under Linux the fragment size and block size are often used
1466 * interchangeably. Thus we are forced to report both of them
1467 * as the filesystem's maximum block size.
1468 */
1469 statp->f_frsize = zfsvfs->z_max_blksz;
1470 statp->f_bsize = zfsvfs->z_max_blksz;
1471 uint32_t bshift = fls(statp->f_bsize) - 1;
1472
1473 /*
1474 * The following report "total" blocks of various kinds in
1475 * the file system, but reported in terms of f_bsize - the
1476 * "preferred" size.
1477 */
1478
1479 /* Round up so we never have a filesytem using 0 blocks. */
1480 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1481 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1482 statp->f_bfree = availbytes >> bshift;
1483 statp->f_bavail = statp->f_bfree; /* no root reservation */
1484
1485 /*
1486 * statvfs() should really be called statufs(), because it assumes
1487 * static metadata. ZFS doesn't preallocate files, so the best
1488 * we can do is report the max that could possibly fit in f_files,
1489 * and that minus the number actually used in f_ffree.
1490 * For f_ffree, report the smaller of the number of objects available
1491 * and the number of blocks (each object will take at least a block).
1492 */
1493 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1494 statp->f_files = statp->f_ffree + usedobjs;
1495 statp->f_fsid.val[0] = (uint32_t)fsid;
1496 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1497 statp->f_type = ZFS_SUPER_MAGIC;
1498 statp->f_namelen = MAXNAMELEN - 1;
1499
1500 /*
1501 * We have all of 40 characters to stuff a string here.
1502 * Is there anything useful we could/should provide?
1503 */
1504 bzero(statp->f_spare, sizeof (statp->f_spare));
1505
1506 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1507 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1508 znode_t *zp = ITOZ(dentry->d_inode);
1509
1510 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1511 zpl_is_valid_projid(zp->z_projid))
1512 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1513 }
1514
1515 ZFS_EXIT(zfsvfs);
1516 return (err);
1517 }
1518
1519 int
1520 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1521 {
1522 znode_t *rootzp;
1523 int error;
1524
1525 ZFS_ENTER(zfsvfs);
1526
1527 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1528 if (error == 0)
1529 *ipp = ZTOI(rootzp);
1530
1531 ZFS_EXIT(zfsvfs);
1532 return (error);
1533 }
1534
1535 #ifdef HAVE_D_PRUNE_ALIASES
1536 /*
1537 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1538 * To accommodate this we must improvise and manually walk the list of znodes
1539 * attempting to prune dentries in order to be able to drop the inodes.
1540 *
1541 * To avoid scanning the same znodes multiple times they are always rotated
1542 * to the end of the z_all_znodes list. New znodes are inserted at the
1543 * end of the list so we're always scanning the oldest znodes first.
1544 */
1545 static int
1546 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1547 {
1548 znode_t **zp_array, *zp;
1549 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1550 int objects = 0;
1551 int i = 0, j = 0;
1552
1553 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1554
1555 mutex_enter(&zfsvfs->z_znodes_lock);
1556 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1557
1558 if ((i++ > nr_to_scan) || (j >= max_array))
1559 break;
1560
1561 ASSERT(list_link_active(&zp->z_link_node));
1562 list_remove(&zfsvfs->z_all_znodes, zp);
1563 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1564
1565 /* Skip active znodes and .zfs entries */
1566 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1567 continue;
1568
1569 if (igrab(ZTOI(zp)) == NULL)
1570 continue;
1571
1572 zp_array[j] = zp;
1573 j++;
1574 }
1575 mutex_exit(&zfsvfs->z_znodes_lock);
1576
1577 for (i = 0; i < j; i++) {
1578 zp = zp_array[i];
1579
1580 ASSERT3P(zp, !=, NULL);
1581 d_prune_aliases(ZTOI(zp));
1582
1583 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1584 objects++;
1585
1586 iput(ZTOI(zp));
1587 }
1588
1589 kmem_free(zp_array, max_array * sizeof (znode_t *));
1590
1591 return (objects);
1592 }
1593 #endif /* HAVE_D_PRUNE_ALIASES */
1594
1595 /*
1596 * The ARC has requested that the filesystem drop entries from the dentry
1597 * and inode caches. This can occur when the ARC needs to free meta data
1598 * blocks but can't because they are all pinned by entries in these caches.
1599 */
1600 int
1601 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1602 {
1603 zfsvfs_t *zfsvfs = sb->s_fs_info;
1604 int error = 0;
1605 #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1606 struct shrinker *shrinker = &sb->s_shrink;
1607 struct shrink_control sc = {
1608 .nr_to_scan = nr_to_scan,
1609 .gfp_mask = GFP_KERNEL,
1610 };
1611 #endif
1612
1613 ZFS_ENTER(zfsvfs);
1614
1615 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1616 defined(SHRINK_CONTROL_HAS_NID) && \
1617 defined(SHRINKER_NUMA_AWARE)
1618 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1619 *objects = 0;
1620 for_each_online_node(sc.nid) {
1621 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1622 }
1623 } else {
1624 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1625 }
1626
1627 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1628 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1629 #elif defined(HAVE_SHRINK)
1630 *objects = (*shrinker->shrink)(shrinker, &sc);
1631 #elif defined(HAVE_D_PRUNE_ALIASES)
1632 #define D_PRUNE_ALIASES_IS_DEFAULT
1633 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1634 #else
1635 #error "No available dentry and inode cache pruning mechanism."
1636 #endif
1637
1638 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1639 #undef D_PRUNE_ALIASES_IS_DEFAULT
1640 /*
1641 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1642 * shrinker couldn't free anything, possibly due to the inodes being
1643 * allocated in a different memcg.
1644 */
1645 if (*objects == 0)
1646 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1647 #endif
1648
1649 ZFS_EXIT(zfsvfs);
1650
1651 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1652 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1653 nr_to_scan, *objects, error);
1654
1655 return (error);
1656 }
1657
1658 /*
1659 * Teardown the zfsvfs_t.
1660 *
1661 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1662 * and 'z_teardown_inactive_lock' held.
1663 */
1664 static int
1665 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1666 {
1667 znode_t *zp;
1668
1669 zfs_unlinked_drain_stop_wait(zfsvfs);
1670
1671 /*
1672 * If someone has not already unmounted this file system,
1673 * drain the iput_taskq to ensure all active references to the
1674 * zfsvfs_t have been handled only then can it be safely destroyed.
1675 */
1676 if (zfsvfs->z_os) {
1677 /*
1678 * If we're unmounting we have to wait for the list to
1679 * drain completely.
1680 *
1681 * If we're not unmounting there's no guarantee the list
1682 * will drain completely, but iputs run from the taskq
1683 * may add the parents of dir-based xattrs to the taskq
1684 * so we want to wait for these.
1685 *
1686 * We can safely read z_nr_znodes without locking because the
1687 * VFS has already blocked operations which add to the
1688 * z_all_znodes list and thus increment z_nr_znodes.
1689 */
1690 int round = 0;
1691 while (zfsvfs->z_nr_znodes > 0) {
1692 taskq_wait_outstanding(dsl_pool_iput_taskq(
1693 dmu_objset_pool(zfsvfs->z_os)), 0);
1694 if (++round > 1 && !unmounting)
1695 break;
1696 }
1697 }
1698
1699 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1700
1701 if (!unmounting) {
1702 /*
1703 * We purge the parent filesystem's super block as the
1704 * parent filesystem and all of its snapshots have their
1705 * inode's super block set to the parent's filesystem's
1706 * super block. Note, 'z_parent' is self referential
1707 * for non-snapshots.
1708 */
1709 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1710 }
1711
1712 /*
1713 * Close the zil. NB: Can't close the zil while zfs_inactive
1714 * threads are blocked as zil_close can call zfs_inactive.
1715 */
1716 if (zfsvfs->z_log) {
1717 zil_close(zfsvfs->z_log);
1718 zfsvfs->z_log = NULL;
1719 }
1720
1721 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1722
1723 /*
1724 * If we are not unmounting (ie: online recv) and someone already
1725 * unmounted this file system while we were doing the switcheroo,
1726 * or a reopen of z_os failed then just bail out now.
1727 */
1728 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1729 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1730 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1731 return (SET_ERROR(EIO));
1732 }
1733
1734 /*
1735 * At this point there are no VFS ops active, and any new VFS ops
1736 * will fail with EIO since we have z_teardown_lock for writer (only
1737 * relevant for forced unmount).
1738 *
1739 * Release all holds on dbufs.
1740 */
1741 if (!unmounting) {
1742 mutex_enter(&zfsvfs->z_znodes_lock);
1743 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1744 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1745 if (zp->z_sa_hdl)
1746 zfs_znode_dmu_fini(zp);
1747 }
1748 mutex_exit(&zfsvfs->z_znodes_lock);
1749 }
1750
1751 /*
1752 * If we are unmounting, set the unmounted flag and let new VFS ops
1753 * unblock. zfs_inactive will have the unmounted behavior, and all
1754 * other VFS ops will fail with EIO.
1755 */
1756 if (unmounting) {
1757 zfsvfs->z_unmounted = B_TRUE;
1758 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1759 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1760 }
1761
1762 /*
1763 * z_os will be NULL if there was an error in attempting to reopen
1764 * zfsvfs, so just return as the properties had already been
1765 *
1766 * unregistered and cached data had been evicted before.
1767 */
1768 if (zfsvfs->z_os == NULL)
1769 return (0);
1770
1771 /*
1772 * Unregister properties.
1773 */
1774 zfs_unregister_callbacks(zfsvfs);
1775
1776 /*
1777 * Evict cached data. We must write out any dirty data before
1778 * disowning the dataset.
1779 */
1780 if (!zfs_is_readonly(zfsvfs))
1781 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1782 dmu_objset_evict_dbufs(zfsvfs->z_os);
1783
1784 return (0);
1785 }
1786
1787 #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
1788 !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
1789 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1790 #endif
1791
1792 int
1793 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1794 {
1795 const char *osname = zm->mnt_osname;
1796 struct inode *root_inode;
1797 uint64_t recordsize;
1798 int error = 0;
1799 zfsvfs_t *zfsvfs = NULL;
1800 vfs_t *vfs = NULL;
1801
1802 ASSERT(zm);
1803 ASSERT(osname);
1804
1805 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1806 if (error)
1807 return (error);
1808
1809 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1810 if (error) {
1811 zfsvfs_vfs_free(vfs);
1812 goto out;
1813 }
1814
1815 if ((error = dsl_prop_get_integer(osname, "recordsize",
1816 &recordsize, NULL))) {
1817 zfsvfs_vfs_free(vfs);
1818 goto out;
1819 }
1820
1821 vfs->vfs_data = zfsvfs;
1822 zfsvfs->z_vfs = vfs;
1823 zfsvfs->z_sb = sb;
1824 sb->s_fs_info = zfsvfs;
1825 sb->s_magic = ZFS_SUPER_MAGIC;
1826 sb->s_maxbytes = MAX_LFS_FILESIZE;
1827 sb->s_time_gran = 1;
1828 sb->s_blocksize = recordsize;
1829 sb->s_blocksize_bits = ilog2(recordsize);
1830
1831 error = -zpl_bdi_setup(sb, "zfs");
1832 if (error)
1833 goto out;
1834
1835 sb->s_bdi->ra_pages = 0;
1836
1837 /* Set callback operations for the file system. */
1838 sb->s_op = &zpl_super_operations;
1839 sb->s_xattr = zpl_xattr_handlers;
1840 sb->s_export_op = &zpl_export_operations;
1841 #ifdef HAVE_S_D_OP
1842 sb->s_d_op = &zpl_dentry_operations;
1843 #endif /* HAVE_S_D_OP */
1844
1845 /* Set features for file system. */
1846 zfs_set_fuid_feature(zfsvfs);
1847
1848 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1849 uint64_t pval;
1850
1851 atime_changed_cb(zfsvfs, B_FALSE);
1852 readonly_changed_cb(zfsvfs, B_TRUE);
1853 if ((error = dsl_prop_get_integer(osname,
1854 "xattr", &pval, NULL)))
1855 goto out;
1856 xattr_changed_cb(zfsvfs, pval);
1857 if ((error = dsl_prop_get_integer(osname,
1858 "acltype", &pval, NULL)))
1859 goto out;
1860 acltype_changed_cb(zfsvfs, pval);
1861 zfsvfs->z_issnap = B_TRUE;
1862 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1863 zfsvfs->z_snap_defer_time = jiffies;
1864
1865 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1866 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1867 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1868 } else {
1869 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1870 goto out;
1871 }
1872
1873 /* Allocate a root inode for the filesystem. */
1874 error = zfs_root(zfsvfs, &root_inode);
1875 if (error) {
1876 (void) zfs_umount(sb);
1877 goto out;
1878 }
1879
1880 /* Allocate a root dentry for the filesystem */
1881 sb->s_root = d_make_root(root_inode);
1882 if (sb->s_root == NULL) {
1883 (void) zfs_umount(sb);
1884 error = SET_ERROR(ENOMEM);
1885 goto out;
1886 }
1887
1888 if (!zfsvfs->z_issnap)
1889 zfsctl_create(zfsvfs);
1890
1891 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1892 out:
1893 if (error) {
1894 if (zfsvfs != NULL) {
1895 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1896 zfsvfs_free(zfsvfs);
1897 }
1898 /*
1899 * make sure we don't have dangling sb->s_fs_info which
1900 * zfs_preumount will use.
1901 */
1902 sb->s_fs_info = NULL;
1903 }
1904
1905 return (error);
1906 }
1907
1908 /*
1909 * Called when an unmount is requested and certain sanity checks have
1910 * already passed. At this point no dentries or inodes have been reclaimed
1911 * from their respective caches. We drop the extra reference on the .zfs
1912 * control directory to allow everything to be reclaimed. All snapshots
1913 * must already have been unmounted to reach this point.
1914 */
1915 void
1916 zfs_preumount(struct super_block *sb)
1917 {
1918 zfsvfs_t *zfsvfs = sb->s_fs_info;
1919
1920 /* zfsvfs is NULL when zfs_domount fails during mount */
1921 if (zfsvfs) {
1922 zfs_unlinked_drain_stop_wait(zfsvfs);
1923 zfsctl_destroy(sb->s_fs_info);
1924 /*
1925 * Wait for iput_async before entering evict_inodes in
1926 * generic_shutdown_super. The reason we must finish before
1927 * evict_inodes is when lazytime is on, or when zfs_purgedir
1928 * calls zfs_zget, iput would bump i_count from 0 to 1. This
1929 * would race with the i_count check in evict_inodes. This means
1930 * it could destroy the inode while we are still using it.
1931 *
1932 * We wait for two passes. xattr directories in the first pass
1933 * may add xattr entries in zfs_purgedir, so in the second pass
1934 * we wait for them. We don't use taskq_wait here because it is
1935 * a pool wide taskq. Other mounted filesystems can constantly
1936 * do iput_async and there's no guarantee when taskq will be
1937 * empty.
1938 */
1939 taskq_wait_outstanding(dsl_pool_iput_taskq(
1940 dmu_objset_pool(zfsvfs->z_os)), 0);
1941 taskq_wait_outstanding(dsl_pool_iput_taskq(
1942 dmu_objset_pool(zfsvfs->z_os)), 0);
1943 }
1944 }
1945
1946 /*
1947 * Called once all other unmount released tear down has occurred.
1948 * It is our responsibility to release any remaining infrastructure.
1949 */
1950 /*ARGSUSED*/
1951 int
1952 zfs_umount(struct super_block *sb)
1953 {
1954 zfsvfs_t *zfsvfs = sb->s_fs_info;
1955 objset_t *os;
1956
1957 if (zfsvfs->z_arc_prune != NULL)
1958 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1959 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1960 os = zfsvfs->z_os;
1961 zpl_bdi_destroy(sb);
1962
1963 /*
1964 * z_os will be NULL if there was an error in
1965 * attempting to reopen zfsvfs.
1966 */
1967 if (os != NULL) {
1968 /*
1969 * Unset the objset user_ptr.
1970 */
1971 mutex_enter(&os->os_user_ptr_lock);
1972 dmu_objset_set_user(os, NULL);
1973 mutex_exit(&os->os_user_ptr_lock);
1974
1975 /*
1976 * Finally release the objset
1977 */
1978 dmu_objset_disown(os, B_TRUE, zfsvfs);
1979 }
1980
1981 zfsvfs_free(zfsvfs);
1982 return (0);
1983 }
1984
1985 int
1986 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1987 {
1988 zfsvfs_t *zfsvfs = sb->s_fs_info;
1989 vfs_t *vfsp;
1990 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1991 int error;
1992
1993 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1994 !(*flags & SB_RDONLY)) {
1995 *flags |= SB_RDONLY;
1996 return (EROFS);
1997 }
1998
1999 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
2000 if (error)
2001 return (error);
2002
2003 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
2004 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
2005
2006 zfs_unregister_callbacks(zfsvfs);
2007 zfsvfs_vfs_free(zfsvfs->z_vfs);
2008
2009 vfsp->vfs_data = zfsvfs;
2010 zfsvfs->z_vfs = vfsp;
2011 if (!issnap)
2012 (void) zfs_register_callbacks(vfsp);
2013
2014 return (error);
2015 }
2016
2017 int
2018 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
2019 {
2020 zfsvfs_t *zfsvfs = sb->s_fs_info;
2021 znode_t *zp;
2022 uint64_t object = 0;
2023 uint64_t fid_gen = 0;
2024 uint64_t gen_mask;
2025 uint64_t zp_gen;
2026 int i, err;
2027
2028 *ipp = NULL;
2029
2030 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2031 zfid_short_t *zfid = (zfid_short_t *)fidp;
2032
2033 for (i = 0; i < sizeof (zfid->zf_object); i++)
2034 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2035
2036 for (i = 0; i < sizeof (zfid->zf_gen); i++)
2037 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2038 } else {
2039 return (SET_ERROR(EINVAL));
2040 }
2041
2042 /* LONG_FID_LEN means snapdirs */
2043 if (fidp->fid_len == LONG_FID_LEN) {
2044 zfid_long_t *zlfid = (zfid_long_t *)fidp;
2045 uint64_t objsetid = 0;
2046 uint64_t setgen = 0;
2047
2048 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2049 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2050
2051 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2052 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2053
2054 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
2055 dprintf("snapdir fid: objsetid (%llu) != "
2056 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
2057 objsetid, ZFSCTL_INO_SNAPDIRS, object);
2058
2059 return (SET_ERROR(EINVAL));
2060 }
2061
2062 if (fid_gen > 1 || setgen != 0) {
2063 dprintf("snapdir fid: fid_gen (%llu) and setgen "
2064 "(%llu)\n", fid_gen, setgen);
2065 return (SET_ERROR(EINVAL));
2066 }
2067
2068 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
2069 }
2070
2071 ZFS_ENTER(zfsvfs);
2072 /* A zero fid_gen means we are in the .zfs control directories */
2073 if (fid_gen == 0 &&
2074 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2075 *ipp = zfsvfs->z_ctldir;
2076 ASSERT(*ipp != NULL);
2077 if (object == ZFSCTL_INO_SNAPDIR) {
2078 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
2079 0, kcred, NULL, NULL) == 0);
2080 } else {
2081 igrab(*ipp);
2082 }
2083 ZFS_EXIT(zfsvfs);
2084 return (0);
2085 }
2086
2087 gen_mask = -1ULL >> (64 - 8 * i);
2088
2089 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
2090 if ((err = zfs_zget(zfsvfs, object, &zp))) {
2091 ZFS_EXIT(zfsvfs);
2092 return (err);
2093 }
2094
2095 /* Don't export xattr stuff */
2096 if (zp->z_pflags & ZFS_XATTR) {
2097 iput(ZTOI(zp));
2098 ZFS_EXIT(zfsvfs);
2099 return (SET_ERROR(ENOENT));
2100 }
2101
2102 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2103 sizeof (uint64_t));
2104 zp_gen = zp_gen & gen_mask;
2105 if (zp_gen == 0)
2106 zp_gen = 1;
2107 if ((fid_gen == 0) && (zfsvfs->z_root == object))
2108 fid_gen = zp_gen;
2109 if (zp->z_unlinked || zp_gen != fid_gen) {
2110 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
2111 fid_gen);
2112 iput(ZTOI(zp));
2113 ZFS_EXIT(zfsvfs);
2114 return (SET_ERROR(ENOENT));
2115 }
2116
2117 *ipp = ZTOI(zp);
2118 if (*ipp)
2119 zfs_inode_update(ITOZ(*ipp));
2120
2121 ZFS_EXIT(zfsvfs);
2122 return (0);
2123 }
2124
2125 /*
2126 * Block out VFS ops and close zfsvfs_t
2127 *
2128 * Note, if successful, then we return with the 'z_teardown_lock' and
2129 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
2130 * dataset and objset intact so that they can be atomically handed off during
2131 * a subsequent rollback or recv operation and the resume thereafter.
2132 */
2133 int
2134 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2135 {
2136 int error;
2137
2138 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2139 return (error);
2140
2141 return (0);
2142 }
2143
2144 /*
2145 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
2146 * is an invariant across any of the operations that can be performed while the
2147 * filesystem was suspended. Whether it succeeded or failed, the preconditions
2148 * are the same: the relevant objset and associated dataset are owned by
2149 * zfsvfs, held, and long held on entry.
2150 */
2151 int
2152 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2153 {
2154 int err, err2;
2155 znode_t *zp;
2156
2157 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2158 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2159
2160 /*
2161 * We already own this, so just update the objset_t, as the one we
2162 * had before may have been evicted.
2163 */
2164 objset_t *os;
2165 VERIFY3P(ds->ds_owner, ==, zfsvfs);
2166 VERIFY(dsl_dataset_long_held(ds));
2167 VERIFY0(dmu_objset_from_ds(ds, &os));
2168
2169 err = zfsvfs_init(zfsvfs, os);
2170 if (err != 0)
2171 goto bail;
2172
2173 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2174
2175 zfs_set_fuid_feature(zfsvfs);
2176 zfsvfs->z_rollback_time = jiffies;
2177
2178 /*
2179 * Attempt to re-establish all the active inodes with their
2180 * dbufs. If a zfs_rezget() fails, then we unhash the inode
2181 * and mark it stale. This prevents a collision if a new
2182 * inode/object is created which must use the same inode
2183 * number. The stale inode will be be released when the
2184 * VFS prunes the dentry holding the remaining references
2185 * on the stale inode.
2186 */
2187 mutex_enter(&zfsvfs->z_znodes_lock);
2188 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2189 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2190 err2 = zfs_rezget(zp);
2191 if (err2) {
2192 remove_inode_hash(ZTOI(zp));
2193 zp->z_is_stale = B_TRUE;
2194 }
2195 }
2196 mutex_exit(&zfsvfs->z_znodes_lock);
2197
2198 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
2199 /*
2200 * zfs_suspend_fs() could have interrupted freeing
2201 * of dnodes. We need to restart this freeing so
2202 * that we don't "leak" the space.
2203 */
2204 zfs_unlinked_drain(zfsvfs);
2205 }
2206
2207 bail:
2208 /* release the VFS ops */
2209 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2210 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2211
2212 if (err) {
2213 /*
2214 * Since we couldn't setup the sa framework, try to force
2215 * unmount this file system.
2216 */
2217 if (zfsvfs->z_os)
2218 (void) zfs_umount(zfsvfs->z_sb);
2219 }
2220 return (err);
2221 }
2222
2223 int
2224 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2225 {
2226 int error;
2227 objset_t *os = zfsvfs->z_os;
2228 dmu_tx_t *tx;
2229
2230 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2231 return (SET_ERROR(EINVAL));
2232
2233 if (newvers < zfsvfs->z_version)
2234 return (SET_ERROR(EINVAL));
2235
2236 if (zfs_spa_version_map(newvers) >
2237 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2238 return (SET_ERROR(ENOTSUP));
2239
2240 tx = dmu_tx_create(os);
2241 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2242 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2243 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2244 ZFS_SA_ATTRS);
2245 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2246 }
2247 error = dmu_tx_assign(tx, TXG_WAIT);
2248 if (error) {
2249 dmu_tx_abort(tx);
2250 return (error);
2251 }
2252
2253 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2254 8, 1, &newvers, tx);
2255
2256 if (error) {
2257 dmu_tx_commit(tx);
2258 return (error);
2259 }
2260
2261 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2262 uint64_t sa_obj;
2263
2264 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2265 SPA_VERSION_SA);
2266 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2267 DMU_OT_NONE, 0, tx);
2268
2269 error = zap_add(os, MASTER_NODE_OBJ,
2270 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2271 ASSERT0(error);
2272
2273 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2274 sa_register_update_callback(os, zfs_sa_upgrade);
2275 }
2276
2277 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2278 "from %llu to %llu", zfsvfs->z_version, newvers);
2279
2280 dmu_tx_commit(tx);
2281
2282 zfsvfs->z_version = newvers;
2283 os->os_version = newvers;
2284
2285 zfs_set_fuid_feature(zfsvfs);
2286
2287 return (0);
2288 }
2289
2290 /*
2291 * Read a property stored within the master node.
2292 */
2293 int
2294 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2295 {
2296 uint64_t *cached_copy = NULL;
2297
2298 /*
2299 * Figure out where in the objset_t the cached copy would live, if it
2300 * is available for the requested property.
2301 */
2302 if (os != NULL) {
2303 switch (prop) {
2304 case ZFS_PROP_VERSION:
2305 cached_copy = &os->os_version;
2306 break;
2307 case ZFS_PROP_NORMALIZE:
2308 cached_copy = &os->os_normalization;
2309 break;
2310 case ZFS_PROP_UTF8ONLY:
2311 cached_copy = &os->os_utf8only;
2312 break;
2313 case ZFS_PROP_CASE:
2314 cached_copy = &os->os_casesensitivity;
2315 break;
2316 default:
2317 break;
2318 }
2319 }
2320 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2321 *value = *cached_copy;
2322 return (0);
2323 }
2324
2325 /*
2326 * If the property wasn't cached, look up the file system's value for
2327 * the property. For the version property, we look up a slightly
2328 * different string.
2329 */
2330 const char *pname;
2331 int error = ENOENT;
2332 if (prop == ZFS_PROP_VERSION)
2333 pname = ZPL_VERSION_STR;
2334 else
2335 pname = zfs_prop_to_name(prop);
2336
2337 if (os != NULL) {
2338 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2339 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2340 }
2341
2342 if (error == ENOENT) {
2343 /* No value set, use the default value */
2344 switch (prop) {
2345 case ZFS_PROP_VERSION:
2346 *value = ZPL_VERSION;
2347 break;
2348 case ZFS_PROP_NORMALIZE:
2349 case ZFS_PROP_UTF8ONLY:
2350 *value = 0;
2351 break;
2352 case ZFS_PROP_CASE:
2353 *value = ZFS_CASE_SENSITIVE;
2354 break;
2355 case ZFS_PROP_ACLTYPE:
2356 *value = ZFS_ACLTYPE_OFF;
2357 break;
2358 default:
2359 return (error);
2360 }
2361 error = 0;
2362 }
2363
2364 /*
2365 * If one of the methods for getting the property value above worked,
2366 * copy it into the objset_t's cache.
2367 */
2368 if (error == 0 && cached_copy != NULL) {
2369 *cached_copy = *value;
2370 }
2371
2372 return (error);
2373 }
2374
2375 /*
2376 * Return true if the coresponding vfs's unmounted flag is set.
2377 * Otherwise return false.
2378 * If this function returns true we know VFS unmount has been initiated.
2379 */
2380 boolean_t
2381 zfs_get_vfs_flag_unmounted(objset_t *os)
2382 {
2383 zfsvfs_t *zfvp;
2384 boolean_t unmounted = B_FALSE;
2385
2386 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2387
2388 mutex_enter(&os->os_user_ptr_lock);
2389 zfvp = dmu_objset_get_user(os);
2390 if (zfvp != NULL && zfvp->z_unmounted)
2391 unmounted = B_TRUE;
2392 mutex_exit(&os->os_user_ptr_lock);
2393
2394 return (unmounted);
2395 }
2396
2397 void
2398 zfs_init(void)
2399 {
2400 zfsctl_init();
2401 zfs_znode_init();
2402 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2403 register_filesystem(&zpl_fs_type);
2404 }
2405
2406 void
2407 zfs_fini(void)
2408 {
2409 /*
2410 * we don't use outstanding because zpl_posix_acl_free might add more.
2411 */
2412 taskq_wait(system_delay_taskq);
2413 taskq_wait(system_taskq);
2414 unregister_filesystem(&zpl_fs_type);
2415 zfs_znode_fini();
2416 zfsctl_fini();
2417 }
2418
2419 #if defined(_KERNEL)
2420 EXPORT_SYMBOL(zfs_suspend_fs);
2421 EXPORT_SYMBOL(zfs_resume_fs);
2422 EXPORT_SYMBOL(zfs_userspace_one);
2423 EXPORT_SYMBOL(zfs_userspace_many);
2424 EXPORT_SYMBOL(zfs_set_userquota);
2425 EXPORT_SYMBOL(zfs_id_overblockquota);
2426 EXPORT_SYMBOL(zfs_id_overobjquota);
2427 EXPORT_SYMBOL(zfs_id_overquota);
2428 EXPORT_SYMBOL(zfs_set_version);
2429 EXPORT_SYMBOL(zfsvfs_create);
2430 EXPORT_SYMBOL(zfsvfs_free);
2431 EXPORT_SYMBOL(zfs_is_readonly);
2432 EXPORT_SYMBOL(zfs_domount);
2433 EXPORT_SYMBOL(zfs_preumount);
2434 EXPORT_SYMBOL(zfs_umount);
2435 EXPORT_SYMBOL(zfs_remount);
2436 EXPORT_SYMBOL(zfs_statvfs);
2437 EXPORT_SYMBOL(zfs_vget);
2438 EXPORT_SYMBOL(zfs_prune);
2439 #endif