]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
b2b7e36645b5597f37270ed9e68ecfe7ac1773af
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/dsl_crypt.h>
51 #include <sys/spa.h>
52 #include <sys/txg.h>
53 #include <sys/dbuf.h>
54 #include <sys/policy.h>
55 #include <sys/zfeature.h>
56 #include <sys/zfs_vnops.h>
57 #include <sys/zfs_quota.h>
58 #include <sys/zfs_vfsops.h>
59 #include <sys/zfs_znode.h>
60
61
62 int
63 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
64 {
65 int error = 0;
66 zfsvfs_t *zfsvfs = ZTOZSB(zp);
67
68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
70 return (error);
71 atomic_inc_32(&zp->z_sync_writes_cnt);
72 zil_commit(zfsvfs->z_log, zp->z_id);
73 atomic_dec_32(&zp->z_sync_writes_cnt);
74 zfs_exit(zfsvfs, FTAG);
75 }
76 return (error);
77 }
78
79
80 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
81 /*
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84 */
85 static int
86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87 {
88 zfs_locked_range_t *lr;
89 uint64_t noff = (uint64_t)*off; /* new offset */
90 uint64_t file_sz;
91 int error;
92 boolean_t hole;
93
94 file_sz = zp->z_size;
95 if (noff >= file_sz) {
96 return (SET_ERROR(ENXIO));
97 }
98
99 if (cmd == F_SEEK_HOLE)
100 hole = B_TRUE;
101 else
102 hole = B_FALSE;
103
104 /* Flush any mmap()'d data to disk */
105 if (zn_has_cached_data(zp, 0, file_sz - 1))
106 zn_flush_cached_data(zp, B_FALSE);
107
108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
110 zfs_rangelock_exit(lr);
111
112 if (error == ESRCH)
113 return (SET_ERROR(ENXIO));
114
115 /* File was dirty, so fall back to using generic logic */
116 if (error == EBUSY) {
117 if (hole)
118 *off = file_sz;
119
120 return (0);
121 }
122
123 /*
124 * We could find a hole that begins after the logical end-of-file,
125 * because dmu_offset_next() only works on whole blocks. If the
126 * EOF falls mid-block, then indicate that the "virtual hole"
127 * at the end of the file begins at the logical EOF, rather than
128 * at the end of the last block.
129 */
130 if (noff > file_sz) {
131 ASSERT(hole);
132 noff = file_sz;
133 }
134
135 if (noff < *off)
136 return (error);
137 *off = noff;
138 return (error);
139 }
140
141 int
142 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
143 {
144 zfsvfs_t *zfsvfs = ZTOZSB(zp);
145 int error;
146
147 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
148 return (error);
149
150 error = zfs_holey_common(zp, cmd, off);
151
152 zfs_exit(zfsvfs, FTAG);
153 return (error);
154 }
155 #endif /* SEEK_HOLE && SEEK_DATA */
156
157 int
158 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
159 {
160 zfsvfs_t *zfsvfs = ZTOZSB(zp);
161 int error;
162
163 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
164 return (error);
165
166 if (flag & V_ACE_MASK)
167 #if defined(__linux__)
168 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
169 zfs_init_idmap);
170 #else
171 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
172 NULL);
173 #endif
174 else
175 #if defined(__linux__)
176 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
177 #else
178 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
179 #endif
180
181 zfs_exit(zfsvfs, FTAG);
182 return (error);
183 }
184
185 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
186
187 /*
188 * Read bytes from specified file into supplied buffer.
189 *
190 * IN: zp - inode of file to be read from.
191 * uio - structure supplying read location, range info,
192 * and return buffer.
193 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
194 * O_DIRECT flag; used to bypass page cache.
195 * cr - credentials of caller.
196 *
197 * OUT: uio - updated offset and range, buffer filled.
198 *
199 * RETURN: 0 on success, error code on failure.
200 *
201 * Side Effects:
202 * inode - atime updated if byte count > 0
203 */
204 int
205 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
206 {
207 (void) cr;
208 int error = 0;
209 boolean_t frsync = B_FALSE;
210
211 zfsvfs_t *zfsvfs = ZTOZSB(zp);
212 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
213 return (error);
214
215 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
216 zfs_exit(zfsvfs, FTAG);
217 return (SET_ERROR(EACCES));
218 }
219
220 /* We don't copy out anything useful for directories. */
221 if (Z_ISDIR(ZTOTYPE(zp))) {
222 zfs_exit(zfsvfs, FTAG);
223 return (SET_ERROR(EISDIR));
224 }
225
226 /*
227 * Validate file offset
228 */
229 if (zfs_uio_offset(uio) < (offset_t)0) {
230 zfs_exit(zfsvfs, FTAG);
231 return (SET_ERROR(EINVAL));
232 }
233
234 /*
235 * Fasttrack empty reads
236 */
237 if (zfs_uio_resid(uio) == 0) {
238 zfs_exit(zfsvfs, FTAG);
239 return (0);
240 }
241
242 #ifdef FRSYNC
243 /*
244 * If we're in FRSYNC mode, sync out this znode before reading it.
245 * Only do this for non-snapshots.
246 *
247 * Some platforms do not support FRSYNC and instead map it
248 * to O_SYNC, which results in unnecessary calls to zil_commit. We
249 * only honor FRSYNC requests on platforms which support it.
250 */
251 frsync = !!(ioflag & FRSYNC);
252 #endif
253 if (zfsvfs->z_log &&
254 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
255 zil_commit(zfsvfs->z_log, zp->z_id);
256
257 /*
258 * Lock the range against changes.
259 */
260 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
261 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
262
263 /*
264 * If we are reading past end-of-file we can skip
265 * to the end; but we might still need to set atime.
266 */
267 if (zfs_uio_offset(uio) >= zp->z_size) {
268 error = 0;
269 goto out;
270 }
271
272 ASSERT(zfs_uio_offset(uio) < zp->z_size);
273 #if defined(__linux__)
274 ssize_t start_offset = zfs_uio_offset(uio);
275 #endif
276 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
277 ssize_t start_resid = n;
278
279 while (n > 0) {
280 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
281 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
282 #ifdef UIO_NOCOPY
283 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
284 error = mappedread_sf(zp, nbytes, uio);
285 else
286 #endif
287 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
288 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
289 error = mappedread(zp, nbytes, uio);
290 } else {
291 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
292 uio, nbytes);
293 }
294
295 if (error) {
296 /* convert checksum errors into IO errors */
297 if (error == ECKSUM)
298 error = SET_ERROR(EIO);
299
300 #if defined(__linux__)
301 /*
302 * if we actually read some bytes, bubbling EFAULT
303 * up to become EAGAIN isn't what we want here...
304 *
305 * ...on Linux, at least. On FBSD, doing this breaks.
306 */
307 if (error == EFAULT &&
308 (zfs_uio_offset(uio) - start_offset) != 0)
309 error = 0;
310 #endif
311 break;
312 }
313
314 n -= nbytes;
315 }
316
317 int64_t nread = start_resid - n;
318 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
319 task_io_account_read(nread);
320 out:
321 zfs_rangelock_exit(lr);
322
323 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
324 zfs_exit(zfsvfs, FTAG);
325 return (error);
326 }
327
328 static void
329 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
330 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
331 {
332 zilog_t *zilog = zfsvfs->z_log;
333 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
334
335 ASSERT(clear_setid_bits_txgp != NULL);
336 ASSERT(tx != NULL);
337
338 /*
339 * Clear Set-UID/Set-GID bits on successful write if not
340 * privileged and at least one of the execute bits is set.
341 *
342 * It would be nice to do this after all writes have
343 * been done, but that would still expose the ISUID/ISGID
344 * to another app after the partial write is committed.
345 *
346 * Note: we don't call zfs_fuid_map_id() here because
347 * user 0 is not an ephemeral uid.
348 */
349 mutex_enter(&zp->z_acl_lock);
350 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
351 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
352 secpolicy_vnode_setid_retain(zp, cr,
353 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
354 uint64_t newmode;
355
356 zp->z_mode &= ~(S_ISUID | S_ISGID);
357 newmode = zp->z_mode;
358 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
359 (void *)&newmode, sizeof (uint64_t), tx);
360
361 mutex_exit(&zp->z_acl_lock);
362
363 /*
364 * Make sure SUID/SGID bits will be removed when we replay the
365 * log. If the setid bits are keep coming back, don't log more
366 * than one TX_SETATTR per transaction group.
367 */
368 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
369 vattr_t va = {0};
370
371 va.va_mask = ATTR_MODE;
372 va.va_nodeid = zp->z_id;
373 va.va_mode = newmode;
374 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
375 ATTR_MODE, NULL);
376 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
377 }
378 } else {
379 mutex_exit(&zp->z_acl_lock);
380 }
381 }
382
383 /*
384 * Write the bytes to a file.
385 *
386 * IN: zp - znode of file to be written to.
387 * uio - structure supplying write location, range info,
388 * and data buffer.
389 * ioflag - O_APPEND flag set if in append mode.
390 * O_DIRECT flag; used to bypass page cache.
391 * cr - credentials of caller.
392 *
393 * OUT: uio - updated offset and range.
394 *
395 * RETURN: 0 if success
396 * error code if failure
397 *
398 * Timestamps:
399 * ip - ctime|mtime updated if byte count > 0
400 */
401 int
402 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
403 {
404 int error = 0, error1;
405 ssize_t start_resid = zfs_uio_resid(uio);
406 uint64_t clear_setid_bits_txg = 0;
407
408 /*
409 * Fasttrack empty write
410 */
411 ssize_t n = start_resid;
412 if (n == 0)
413 return (0);
414
415 zfsvfs_t *zfsvfs = ZTOZSB(zp);
416 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
417 return (error);
418
419 sa_bulk_attr_t bulk[4];
420 int count = 0;
421 uint64_t mtime[2], ctime[2];
422 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
423 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
424 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
425 &zp->z_size, 8);
426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
427 &zp->z_pflags, 8);
428
429 /*
430 * Callers might not be able to detect properly that we are read-only,
431 * so check it explicitly here.
432 */
433 if (zfs_is_readonly(zfsvfs)) {
434 zfs_exit(zfsvfs, FTAG);
435 return (SET_ERROR(EROFS));
436 }
437
438 /*
439 * If immutable or not appending then return EPERM.
440 * Intentionally allow ZFS_READONLY through here.
441 * See zfs_zaccess_common()
442 */
443 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
444 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
445 (zfs_uio_offset(uio) < zp->z_size))) {
446 zfs_exit(zfsvfs, FTAG);
447 return (SET_ERROR(EPERM));
448 }
449
450 /*
451 * Validate file offset
452 */
453 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
454 if (woff < 0) {
455 zfs_exit(zfsvfs, FTAG);
456 return (SET_ERROR(EINVAL));
457 }
458
459 /*
460 * Pre-fault the pages to ensure slow (eg NFS) pages
461 * don't hold up txg.
462 */
463 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
464 if (zfs_uio_prefaultpages(pfbytes, uio)) {
465 zfs_exit(zfsvfs, FTAG);
466 return (SET_ERROR(EFAULT));
467 }
468
469 /*
470 * If in append mode, set the io offset pointer to eof.
471 */
472 zfs_locked_range_t *lr;
473 if (ioflag & O_APPEND) {
474 /*
475 * Obtain an appending range lock to guarantee file append
476 * semantics. We reset the write offset once we have the lock.
477 */
478 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
479 woff = lr->lr_offset;
480 if (lr->lr_length == UINT64_MAX) {
481 /*
482 * We overlocked the file because this write will cause
483 * the file block size to increase.
484 * Note that zp_size cannot change with this lock held.
485 */
486 woff = zp->z_size;
487 }
488 zfs_uio_setoffset(uio, woff);
489 } else {
490 /*
491 * Note that if the file block size will change as a result of
492 * this write, then this range lock will lock the entire file
493 * so that we can re-write the block safely.
494 */
495 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
496 }
497
498 if (zn_rlimit_fsize_uio(zp, uio)) {
499 zfs_rangelock_exit(lr);
500 zfs_exit(zfsvfs, FTAG);
501 return (SET_ERROR(EFBIG));
502 }
503
504 const rlim64_t limit = MAXOFFSET_T;
505
506 if (woff >= limit) {
507 zfs_rangelock_exit(lr);
508 zfs_exit(zfsvfs, FTAG);
509 return (SET_ERROR(EFBIG));
510 }
511
512 if (n > limit - woff)
513 n = limit - woff;
514
515 uint64_t end_size = MAX(zp->z_size, woff + n);
516 zilog_t *zilog = zfsvfs->z_log;
517 boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
518 (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
519
520 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
521 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
522 const uint64_t projid = zp->z_projid;
523
524 /*
525 * Write the file in reasonable size chunks. Each chunk is written
526 * in a separate transaction; this keeps the intent log records small
527 * and allows us to do more fine-grained space accounting.
528 */
529 while (n > 0) {
530 woff = zfs_uio_offset(uio);
531
532 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
533 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
534 (projid != ZFS_DEFAULT_PROJID &&
535 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
536 projid))) {
537 error = SET_ERROR(EDQUOT);
538 break;
539 }
540
541 uint64_t blksz;
542 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
543 if (zp->z_blksz > zfsvfs->z_max_blksz &&
544 !ISP2(zp->z_blksz)) {
545 /*
546 * File's blocksize is already larger than the
547 * "recordsize" property. Only let it grow to
548 * the next power of 2.
549 */
550 blksz = 1 << highbit64(zp->z_blksz);
551 } else {
552 blksz = zfsvfs->z_max_blksz;
553 }
554 blksz = MIN(blksz, P2ROUNDUP(end_size,
555 SPA_MINBLOCKSIZE));
556 blksz = MAX(blksz, zp->z_blksz);
557 } else {
558 blksz = zp->z_blksz;
559 }
560
561 arc_buf_t *abuf = NULL;
562 ssize_t nbytes = n;
563 if (n >= blksz && woff >= zp->z_size &&
564 P2PHASE(woff, blksz) == 0 &&
565 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
566 /*
567 * This write covers a full block. "Borrow" a buffer
568 * from the dmu so that we can fill it before we enter
569 * a transaction. This avoids the possibility of
570 * holding up the transaction if the data copy hangs
571 * up on a pagefault (e.g., from an NFS server mapping).
572 */
573 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
574 blksz);
575 ASSERT(abuf != NULL);
576 ASSERT(arc_buf_size(abuf) == blksz);
577 if ((error = zfs_uiocopy(abuf->b_data, blksz,
578 UIO_WRITE, uio, &nbytes))) {
579 dmu_return_arcbuf(abuf);
580 break;
581 }
582 ASSERT3S(nbytes, ==, blksz);
583 } else {
584 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
585 P2PHASE(woff, blksz));
586 if (pfbytes < nbytes) {
587 if (zfs_uio_prefaultpages(nbytes, uio)) {
588 error = SET_ERROR(EFAULT);
589 break;
590 }
591 pfbytes = nbytes;
592 }
593 }
594
595 /*
596 * Start a transaction.
597 */
598 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
599 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
600 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
601 DB_DNODE_ENTER(db);
602 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
603 DB_DNODE_EXIT(db);
604 zfs_sa_upgrade_txholds(tx, zp);
605 error = dmu_tx_assign(tx, TXG_WAIT);
606 if (error) {
607 dmu_tx_abort(tx);
608 if (abuf != NULL)
609 dmu_return_arcbuf(abuf);
610 break;
611 }
612
613 /*
614 * NB: We must call zfs_clear_setid_bits_if_necessary before
615 * committing the transaction!
616 */
617
618 /*
619 * If rangelock_enter() over-locked we grow the blocksize
620 * and then reduce the lock range. This will only happen
621 * on the first iteration since rangelock_reduce() will
622 * shrink down lr_length to the appropriate size.
623 */
624 if (lr->lr_length == UINT64_MAX) {
625 zfs_grow_blocksize(zp, blksz, tx);
626 zfs_rangelock_reduce(lr, woff, n);
627 }
628
629 ssize_t tx_bytes;
630 if (abuf == NULL) {
631 tx_bytes = zfs_uio_resid(uio);
632 zfs_uio_fault_disable(uio, B_TRUE);
633 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
634 uio, nbytes, tx);
635 zfs_uio_fault_disable(uio, B_FALSE);
636 #ifdef __linux__
637 if (error == EFAULT) {
638 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
639 cr, &clear_setid_bits_txg, tx);
640 dmu_tx_commit(tx);
641 /*
642 * Account for partial writes before
643 * continuing the loop.
644 * Update needs to occur before the next
645 * zfs_uio_prefaultpages, or prefaultpages may
646 * error, and we may break the loop early.
647 */
648 n -= tx_bytes - zfs_uio_resid(uio);
649 pfbytes -= tx_bytes - zfs_uio_resid(uio);
650 continue;
651 }
652 #endif
653 /*
654 * On FreeBSD, EFAULT should be propagated back to the
655 * VFS, which will handle faulting and will retry.
656 */
657 if (error != 0 && error != EFAULT) {
658 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
659 cr, &clear_setid_bits_txg, tx);
660 dmu_tx_commit(tx);
661 break;
662 }
663 tx_bytes -= zfs_uio_resid(uio);
664 } else {
665 /*
666 * Thus, we're writing a full block at a block-aligned
667 * offset and extending the file past EOF.
668 *
669 * dmu_assign_arcbuf_by_dbuf() will directly assign the
670 * arc buffer to a dbuf.
671 */
672 error = dmu_assign_arcbuf_by_dbuf(
673 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
674 if (error != 0) {
675 /*
676 * XXX This might not be necessary if
677 * dmu_assign_arcbuf_by_dbuf is guaranteed
678 * to be atomic.
679 */
680 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
681 cr, &clear_setid_bits_txg, tx);
682 dmu_return_arcbuf(abuf);
683 dmu_tx_commit(tx);
684 break;
685 }
686 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
687 zfs_uioskip(uio, nbytes);
688 tx_bytes = nbytes;
689 }
690 if (tx_bytes &&
691 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
692 !(ioflag & O_DIRECT)) {
693 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
694 }
695
696 /*
697 * If we made no progress, we're done. If we made even
698 * partial progress, update the znode and ZIL accordingly.
699 */
700 if (tx_bytes == 0) {
701 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
702 (void *)&zp->z_size, sizeof (uint64_t), tx);
703 dmu_tx_commit(tx);
704 ASSERT(error != 0);
705 break;
706 }
707
708 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
709 &clear_setid_bits_txg, tx);
710
711 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
712
713 /*
714 * Update the file size (zp_size) if it has changed;
715 * account for possible concurrent updates.
716 */
717 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
718 (void) atomic_cas_64(&zp->z_size, end_size,
719 zfs_uio_offset(uio));
720 ASSERT(error == 0 || error == EFAULT);
721 }
722 /*
723 * If we are replaying and eof is non zero then force
724 * the file size to the specified eof. Note, there's no
725 * concurrency during replay.
726 */
727 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
728 zp->z_size = zfsvfs->z_replay_eof;
729
730 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
731 if (error1 != 0)
732 /* Avoid clobbering EFAULT. */
733 error = error1;
734
735 /*
736 * NB: During replay, the TX_SETATTR record logged by
737 * zfs_clear_setid_bits_if_necessary must precede any of
738 * the TX_WRITE records logged here.
739 */
740 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
741 NULL, NULL);
742
743 dmu_tx_commit(tx);
744
745 if (error != 0)
746 break;
747 ASSERT3S(tx_bytes, ==, nbytes);
748 n -= nbytes;
749 pfbytes -= nbytes;
750 }
751
752 zfs_znode_update_vfs(zp);
753 zfs_rangelock_exit(lr);
754
755 /*
756 * If we're in replay mode, or we made no progress, or the
757 * uio data is inaccessible return an error. Otherwise, it's
758 * at least a partial write, so it's successful.
759 */
760 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
761 error == EFAULT) {
762 zfs_exit(zfsvfs, FTAG);
763 return (error);
764 }
765
766 if (commit)
767 zil_commit(zilog, zp->z_id);
768
769 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
770 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
771 task_io_account_write(nwritten);
772
773 zfs_exit(zfsvfs, FTAG);
774 return (0);
775 }
776
777 int
778 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
779 {
780 zfsvfs_t *zfsvfs = ZTOZSB(zp);
781 int error;
782 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
783
784 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
785 return (error);
786 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
787 zfs_exit(zfsvfs, FTAG);
788
789 return (error);
790 }
791
792 int
793 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
794 {
795 zfsvfs_t *zfsvfs = ZTOZSB(zp);
796 int error;
797 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
798 zilog_t *zilog = zfsvfs->z_log;
799
800 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
801 return (error);
802
803 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
804
805 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
806 zil_commit(zilog, 0);
807
808 zfs_exit(zfsvfs, FTAG);
809 return (error);
810 }
811
812 #ifdef ZFS_DEBUG
813 static int zil_fault_io = 0;
814 #endif
815
816 static void zfs_get_done(zgd_t *zgd, int error);
817
818 /*
819 * Get data to generate a TX_WRITE intent log record.
820 */
821 int
822 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
823 struct lwb *lwb, zio_t *zio)
824 {
825 zfsvfs_t *zfsvfs = arg;
826 objset_t *os = zfsvfs->z_os;
827 znode_t *zp;
828 uint64_t object = lr->lr_foid;
829 uint64_t offset = lr->lr_offset;
830 uint64_t size = lr->lr_length;
831 dmu_buf_t *db;
832 zgd_t *zgd;
833 int error = 0;
834 uint64_t zp_gen;
835
836 ASSERT3P(lwb, !=, NULL);
837 ASSERT3U(size, !=, 0);
838
839 /*
840 * Nothing to do if the file has been removed
841 */
842 if (zfs_zget(zfsvfs, object, &zp) != 0)
843 return (SET_ERROR(ENOENT));
844 if (zp->z_unlinked) {
845 /*
846 * Release the vnode asynchronously as we currently have the
847 * txg stopped from syncing.
848 */
849 zfs_zrele_async(zp);
850 return (SET_ERROR(ENOENT));
851 }
852 /* check if generation number matches */
853 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
854 sizeof (zp_gen)) != 0) {
855 zfs_zrele_async(zp);
856 return (SET_ERROR(EIO));
857 }
858 if (zp_gen != gen) {
859 zfs_zrele_async(zp);
860 return (SET_ERROR(ENOENT));
861 }
862
863 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
864 zgd->zgd_lwb = lwb;
865 zgd->zgd_private = zp;
866
867 /*
868 * Write records come in two flavors: immediate and indirect.
869 * For small writes it's cheaper to store the data with the
870 * log record (immediate); for large writes it's cheaper to
871 * sync the data and get a pointer to it (indirect) so that
872 * we don't have to write the data twice.
873 */
874 if (buf != NULL) { /* immediate write */
875 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
876 offset, size, RL_READER);
877 /* test for truncation needs to be done while range locked */
878 if (offset >= zp->z_size) {
879 error = SET_ERROR(ENOENT);
880 } else {
881 error = dmu_read(os, object, offset, size, buf,
882 DMU_READ_NO_PREFETCH);
883 }
884 ASSERT(error == 0 || error == ENOENT);
885 } else { /* indirect write */
886 ASSERT3P(zio, !=, NULL);
887 /*
888 * Have to lock the whole block to ensure when it's
889 * written out and its checksum is being calculated
890 * that no one can change the data. We need to re-check
891 * blocksize after we get the lock in case it's changed!
892 */
893 for (;;) {
894 uint64_t blkoff;
895 size = zp->z_blksz;
896 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
897 offset -= blkoff;
898 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
899 offset, size, RL_READER);
900 if (zp->z_blksz == size)
901 break;
902 offset += blkoff;
903 zfs_rangelock_exit(zgd->zgd_lr);
904 }
905 /* test for truncation needs to be done while range locked */
906 if (lr->lr_offset >= zp->z_size)
907 error = SET_ERROR(ENOENT);
908 #ifdef ZFS_DEBUG
909 if (zil_fault_io) {
910 error = SET_ERROR(EIO);
911 zil_fault_io = 0;
912 }
913 #endif
914 if (error == 0)
915 error = dmu_buf_hold_noread(os, object, offset, zgd,
916 &db);
917
918 if (error == 0) {
919 blkptr_t *bp = &lr->lr_blkptr;
920
921 zgd->zgd_db = db;
922 zgd->zgd_bp = bp;
923
924 ASSERT(db->db_offset == offset);
925 ASSERT(db->db_size == size);
926
927 error = dmu_sync(zio, lr->lr_common.lrc_txg,
928 zfs_get_done, zgd);
929 ASSERT(error || lr->lr_length <= size);
930
931 /*
932 * On success, we need to wait for the write I/O
933 * initiated by dmu_sync() to complete before we can
934 * release this dbuf. We will finish everything up
935 * in the zfs_get_done() callback.
936 */
937 if (error == 0)
938 return (0);
939
940 if (error == EALREADY) {
941 lr->lr_common.lrc_txtype = TX_WRITE2;
942 /*
943 * TX_WRITE2 relies on the data previously
944 * written by the TX_WRITE that caused
945 * EALREADY. We zero out the BP because
946 * it is the old, currently-on-disk BP.
947 */
948 zgd->zgd_bp = NULL;
949 BP_ZERO(bp);
950 error = 0;
951 }
952 }
953 }
954
955 zfs_get_done(zgd, error);
956
957 return (error);
958 }
959
960
961 static void
962 zfs_get_done(zgd_t *zgd, int error)
963 {
964 (void) error;
965 znode_t *zp = zgd->zgd_private;
966
967 if (zgd->zgd_db)
968 dmu_buf_rele(zgd->zgd_db, zgd);
969
970 zfs_rangelock_exit(zgd->zgd_lr);
971
972 /*
973 * Release the vnode asynchronously as we currently have the
974 * txg stopped from syncing.
975 */
976 zfs_zrele_async(zp);
977
978 kmem_free(zgd, sizeof (zgd_t));
979 }
980
981 static int
982 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
983 {
984 int error;
985
986 /* Swap. Not sure if the order of zfs_enter()s is important. */
987 if (zfsvfs1 > zfsvfs2) {
988 zfsvfs_t *tmpzfsvfs;
989
990 tmpzfsvfs = zfsvfs2;
991 zfsvfs2 = zfsvfs1;
992 zfsvfs1 = tmpzfsvfs;
993 }
994
995 error = zfs_enter(zfsvfs1, tag);
996 if (error != 0)
997 return (error);
998 if (zfsvfs1 != zfsvfs2) {
999 error = zfs_enter(zfsvfs2, tag);
1000 if (error != 0) {
1001 zfs_exit(zfsvfs1, tag);
1002 return (error);
1003 }
1004 }
1005
1006 return (0);
1007 }
1008
1009 static void
1010 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1011 {
1012
1013 zfs_exit(zfsvfs1, tag);
1014 if (zfsvfs1 != zfsvfs2)
1015 zfs_exit(zfsvfs2, tag);
1016 }
1017
1018 /*
1019 * We split each clone request in chunks that can fit into a single ZIL
1020 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1021 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1022 * us room for storing 1022 block pointers.
1023 *
1024 * On success, the function return the number of bytes copied in *lenp.
1025 * Note, it doesn't return how much bytes are left to be copied.
1026 * On errors which are caused by any file system limitations or
1027 * brt limitations `EINVAL` is returned. In the most cases a user
1028 * requested bad parameters, it could be possible to clone the file but
1029 * some parameters don't match the requirements.
1030 */
1031 int
1032 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1033 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1034 {
1035 zfsvfs_t *inzfsvfs, *outzfsvfs;
1036 objset_t *inos, *outos;
1037 zfs_locked_range_t *inlr, *outlr;
1038 dmu_buf_impl_t *db;
1039 dmu_tx_t *tx;
1040 zilog_t *zilog;
1041 uint64_t inoff, outoff, len, done;
1042 uint64_t outsize, size;
1043 int error;
1044 int count = 0;
1045 sa_bulk_attr_t bulk[3];
1046 uint64_t mtime[2], ctime[2];
1047 uint64_t uid, gid, projid;
1048 blkptr_t *bps;
1049 size_t maxblocks, nbps;
1050 uint_t inblksz;
1051 uint64_t clear_setid_bits_txg = 0;
1052
1053 inoff = *inoffp;
1054 outoff = *outoffp;
1055 len = *lenp;
1056 done = 0;
1057
1058 inzfsvfs = ZTOZSB(inzp);
1059 outzfsvfs = ZTOZSB(outzp);
1060
1061 /*
1062 * We need to call zfs_enter() potentially on two different datasets,
1063 * so we need a dedicated function for that.
1064 */
1065 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1066 if (error != 0)
1067 return (error);
1068
1069 inos = inzfsvfs->z_os;
1070 outos = outzfsvfs->z_os;
1071
1072 /*
1073 * Both source and destination have to belong to the same storage pool.
1074 */
1075 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1076 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1077 return (SET_ERROR(EXDEV));
1078 }
1079
1080 /*
1081 * outos and inos belongs to the same storage pool.
1082 * see a few lines above, only one check.
1083 */
1084 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1085 SPA_FEATURE_BLOCK_CLONING)) {
1086 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1087 return (SET_ERROR(EOPNOTSUPP));
1088 }
1089
1090 ASSERT(!outzfsvfs->z_replay);
1091
1092 /*
1093 * Block cloning from an unencrypted dataset into an encrypted
1094 * dataset and vice versa is not supported.
1095 */
1096 if (inos->os_encrypted != outos->os_encrypted) {
1097 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1098 return (SET_ERROR(EXDEV));
1099 }
1100
1101 /*
1102 * Cloning across encrypted datasets is possible only if they
1103 * share the same master key.
1104 */
1105 if (inos != outos && inos->os_encrypted &&
1106 !dmu_objset_crypto_key_equal(inos, outos)) {
1107 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1108 return (SET_ERROR(EXDEV));
1109 }
1110
1111 error = zfs_verify_zp(inzp);
1112 if (error == 0)
1113 error = zfs_verify_zp(outzp);
1114 if (error != 0) {
1115 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1116 return (error);
1117 }
1118
1119 /*
1120 * We don't copy source file's flags that's why we don't allow to clone
1121 * files that are in quarantine.
1122 */
1123 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1124 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1125 return (SET_ERROR(EACCES));
1126 }
1127
1128 if (inoff >= inzp->z_size) {
1129 *lenp = 0;
1130 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1131 return (0);
1132 }
1133 if (len > inzp->z_size - inoff) {
1134 len = inzp->z_size - inoff;
1135 }
1136 if (len == 0) {
1137 *lenp = 0;
1138 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1139 return (0);
1140 }
1141
1142 /*
1143 * Callers might not be able to detect properly that we are read-only,
1144 * so check it explicitly here.
1145 */
1146 if (zfs_is_readonly(outzfsvfs)) {
1147 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1148 return (SET_ERROR(EROFS));
1149 }
1150
1151 /*
1152 * If immutable or not appending then return EPERM.
1153 * Intentionally allow ZFS_READONLY through here.
1154 * See zfs_zaccess_common()
1155 */
1156 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1157 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1158 return (SET_ERROR(EPERM));
1159 }
1160
1161 /*
1162 * No overlapping if we are cloning within the same file.
1163 */
1164 if (inzp == outzp) {
1165 if (inoff < outoff + len && outoff < inoff + len) {
1166 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1167 return (SET_ERROR(EINVAL));
1168 }
1169 }
1170
1171 /*
1172 * Maintain predictable lock order.
1173 */
1174 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1175 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1176 RL_READER);
1177 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1178 RL_WRITER);
1179 } else {
1180 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1181 RL_WRITER);
1182 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1183 RL_READER);
1184 }
1185
1186 inblksz = inzp->z_blksz;
1187
1188 /*
1189 * We cannot clone into files with different block size if we can't
1190 * grow it (block size is already bigger or more than one block).
1191 */
1192 if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1193 outzp->z_size > inblksz)) {
1194 error = SET_ERROR(EINVAL);
1195 goto unlock;
1196 }
1197
1198 /*
1199 * Block size must be power-of-2 if destination offset != 0.
1200 * There can be no multiple blocks of non-power-of-2 size.
1201 */
1202 if (outoff != 0 && !ISP2(inblksz)) {
1203 error = SET_ERROR(EINVAL);
1204 goto unlock;
1205 }
1206
1207 /*
1208 * Offsets and len must be at block boundries.
1209 */
1210 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1211 error = SET_ERROR(EINVAL);
1212 goto unlock;
1213 }
1214 /*
1215 * Length must be multipe of blksz, except for the end of the file.
1216 */
1217 if ((len % inblksz) != 0 &&
1218 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1219 error = SET_ERROR(EINVAL);
1220 goto unlock;
1221 }
1222
1223 /*
1224 * If we are copying only one block and it is smaller than recordsize
1225 * property, do not allow destination to grow beyond one block if it
1226 * is not there yet. Otherwise the destination will get stuck with
1227 * that block size forever, that can be as small as 512 bytes, no
1228 * matter how big the destination grow later.
1229 */
1230 if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1231 outzp->z_size <= inblksz && outoff + len > inblksz) {
1232 error = SET_ERROR(EINVAL);
1233 goto unlock;
1234 }
1235
1236 error = zn_rlimit_fsize(outoff + len);
1237 if (error != 0) {
1238 goto unlock;
1239 }
1240
1241 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1242 error = SET_ERROR(EFBIG);
1243 goto unlock;
1244 }
1245
1246 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1247 &mtime, 16);
1248 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1249 &ctime, 16);
1250 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1251 &outzp->z_size, 8);
1252
1253 zilog = outzfsvfs->z_log;
1254 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1255 sizeof (bps[0]);
1256
1257 uid = KUID_TO_SUID(ZTOUID(outzp));
1258 gid = KGID_TO_SGID(ZTOGID(outzp));
1259 projid = outzp->z_projid;
1260
1261 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1262
1263 /*
1264 * Clone the file in reasonable size chunks. Each chunk is cloned
1265 * in a separate transaction; this keeps the intent log records small
1266 * and allows us to do more fine-grained space accounting.
1267 */
1268 while (len > 0) {
1269 size = MIN(inblksz * maxblocks, len);
1270
1271 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1272 uid) ||
1273 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1274 gid) ||
1275 (projid != ZFS_DEFAULT_PROJID &&
1276 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1277 projid))) {
1278 error = SET_ERROR(EDQUOT);
1279 break;
1280 }
1281
1282 nbps = maxblocks;
1283 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1284 &nbps);
1285 if (error != 0) {
1286 /*
1287 * If we are trying to clone a block that was created
1288 * in the current transaction group, error will be
1289 * EAGAIN here, which we can just return to the caller
1290 * so it can fallback if it likes.
1291 */
1292 break;
1293 }
1294
1295 /*
1296 * Start a transaction.
1297 */
1298 tx = dmu_tx_create(outos);
1299 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1300 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1301 DB_DNODE_ENTER(db);
1302 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1303 DB_DNODE_EXIT(db);
1304 zfs_sa_upgrade_txholds(tx, outzp);
1305 error = dmu_tx_assign(tx, TXG_WAIT);
1306 if (error != 0) {
1307 dmu_tx_abort(tx);
1308 break;
1309 }
1310
1311 /*
1312 * Copy source znode's block size. This only happens on the
1313 * first iteration since zfs_rangelock_reduce() will shrink down
1314 * lr_len to the appropriate size.
1315 */
1316 if (outlr->lr_length == UINT64_MAX) {
1317 zfs_grow_blocksize(outzp, inblksz, tx);
1318 /*
1319 * Round range lock up to the block boundary, so we
1320 * prevent appends until we are done.
1321 */
1322 zfs_rangelock_reduce(outlr, outoff,
1323 ((len - 1) / inblksz + 1) * inblksz);
1324 }
1325
1326 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1327 bps, nbps);
1328 if (error != 0) {
1329 dmu_tx_commit(tx);
1330 break;
1331 }
1332
1333 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1334 &clear_setid_bits_txg, tx);
1335
1336 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1337
1338 /*
1339 * Update the file size (zp_size) if it has changed;
1340 * account for possible concurrent updates.
1341 */
1342 while ((outsize = outzp->z_size) < outoff + size) {
1343 (void) atomic_cas_64(&outzp->z_size, outsize,
1344 outoff + size);
1345 }
1346
1347 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1348
1349 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1350 size, inblksz, bps, nbps);
1351
1352 dmu_tx_commit(tx);
1353
1354 if (error != 0)
1355 break;
1356
1357 inoff += size;
1358 outoff += size;
1359 len -= size;
1360 done += size;
1361 }
1362
1363 vmem_free(bps, sizeof (bps[0]) * maxblocks);
1364 zfs_znode_update_vfs(outzp);
1365
1366 unlock:
1367 zfs_rangelock_exit(outlr);
1368 zfs_rangelock_exit(inlr);
1369
1370 if (done > 0) {
1371 /*
1372 * If we have made at least partial progress, reset the error.
1373 */
1374 error = 0;
1375
1376 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1377
1378 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1379 zil_commit(zilog, outzp->z_id);
1380 }
1381
1382 *inoffp += done;
1383 *outoffp += done;
1384 *lenp = done;
1385 } else {
1386 /*
1387 * If we made no progress, there must be a good reason.
1388 * EOF is handled explicitly above, before the loop.
1389 */
1390 ASSERT3S(error, !=, 0);
1391 }
1392
1393 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1394
1395 return (error);
1396 }
1397
1398 /*
1399 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1400 * but we cannot do that, because when replaying we don't have source znode
1401 * available. This is why we need a dedicated replay function.
1402 */
1403 int
1404 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1405 const blkptr_t *bps, size_t nbps)
1406 {
1407 zfsvfs_t *zfsvfs;
1408 dmu_buf_impl_t *db;
1409 dmu_tx_t *tx;
1410 int error;
1411 int count = 0;
1412 sa_bulk_attr_t bulk[3];
1413 uint64_t mtime[2], ctime[2];
1414
1415 ASSERT3U(off, <, MAXOFFSET_T);
1416 ASSERT3U(len, >, 0);
1417 ASSERT3U(nbps, >, 0);
1418
1419 zfsvfs = ZTOZSB(zp);
1420
1421 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1422 SPA_FEATURE_BLOCK_CLONING));
1423
1424 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1425 return (error);
1426
1427 ASSERT(zfsvfs->z_replay);
1428 ASSERT(!zfs_is_readonly(zfsvfs));
1429
1430 if ((off % blksz) != 0) {
1431 zfs_exit(zfsvfs, FTAG);
1432 return (SET_ERROR(EINVAL));
1433 }
1434
1435 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1436 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1437 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1438 &zp->z_size, 8);
1439
1440 /*
1441 * Start a transaction.
1442 */
1443 tx = dmu_tx_create(zfsvfs->z_os);
1444
1445 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1446 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1447 DB_DNODE_ENTER(db);
1448 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1449 DB_DNODE_EXIT(db);
1450 zfs_sa_upgrade_txholds(tx, zp);
1451 error = dmu_tx_assign(tx, TXG_WAIT);
1452 if (error != 0) {
1453 dmu_tx_abort(tx);
1454 zfs_exit(zfsvfs, FTAG);
1455 return (error);
1456 }
1457
1458 if (zp->z_blksz < blksz)
1459 zfs_grow_blocksize(zp, blksz, tx);
1460
1461 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
1462
1463 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1464
1465 if (zp->z_size < off + len)
1466 zp->z_size = off + len;
1467
1468 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1469
1470 /*
1471 * zil_replaying() not only check if we are replaying ZIL, but also
1472 * updates the ZIL header to record replay progress.
1473 */
1474 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1475
1476 dmu_tx_commit(tx);
1477
1478 zfs_znode_update_vfs(zp);
1479
1480 zfs_exit(zfsvfs, FTAG);
1481
1482 return (error);
1483 }
1484
1485 EXPORT_SYMBOL(zfs_access);
1486 EXPORT_SYMBOL(zfs_fsync);
1487 EXPORT_SYMBOL(zfs_holey);
1488 EXPORT_SYMBOL(zfs_read);
1489 EXPORT_SYMBOL(zfs_write);
1490 EXPORT_SYMBOL(zfs_getsecattr);
1491 EXPORT_SYMBOL(zfs_setsecattr);
1492 EXPORT_SYMBOL(zfs_clone_range);
1493 EXPORT_SYMBOL(zfs_clone_range_replay);
1494
1495 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1496 "Bytes to read per chunk");