]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
eb012fe549dcb3f0db34ad97b3bb59324168968a
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59
60
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63 {
64 int error = 0;
65 zfsvfs_t *zfsvfs = ZTOZSB(zp);
66
67 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
68 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
69 return (error);
70 atomic_inc_32(&zp->z_sync_writes_cnt);
71 zil_commit(zfsvfs->z_log, zp->z_id);
72 atomic_dec_32(&zp->z_sync_writes_cnt);
73 zfs_exit(zfsvfs, FTAG);
74 }
75 return (error);
76 }
77
78
79 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
80 /*
81 * Lseek support for finding holes (cmd == SEEK_HOLE) and
82 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
83 */
84 static int
85 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
86 {
87 zfs_locked_range_t *lr;
88 uint64_t noff = (uint64_t)*off; /* new offset */
89 uint64_t file_sz;
90 int error;
91 boolean_t hole;
92
93 file_sz = zp->z_size;
94 if (noff >= file_sz) {
95 return (SET_ERROR(ENXIO));
96 }
97
98 if (cmd == F_SEEK_HOLE)
99 hole = B_TRUE;
100 else
101 hole = B_FALSE;
102
103 /* Flush any mmap()'d data to disk */
104 if (zn_has_cached_data(zp, 0, file_sz - 1))
105 zn_flush_cached_data(zp, B_FALSE);
106
107 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
108 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
109 zfs_rangelock_exit(lr);
110
111 if (error == ESRCH)
112 return (SET_ERROR(ENXIO));
113
114 /* File was dirty, so fall back to using generic logic */
115 if (error == EBUSY) {
116 if (hole)
117 *off = file_sz;
118
119 return (0);
120 }
121
122 /*
123 * We could find a hole that begins after the logical end-of-file,
124 * because dmu_offset_next() only works on whole blocks. If the
125 * EOF falls mid-block, then indicate that the "virtual hole"
126 * at the end of the file begins at the logical EOF, rather than
127 * at the end of the last block.
128 */
129 if (noff > file_sz) {
130 ASSERT(hole);
131 noff = file_sz;
132 }
133
134 if (noff < *off)
135 return (error);
136 *off = noff;
137 return (error);
138 }
139
140 int
141 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
142 {
143 zfsvfs_t *zfsvfs = ZTOZSB(zp);
144 int error;
145
146 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
147 return (error);
148
149 error = zfs_holey_common(zp, cmd, off);
150
151 zfs_exit(zfsvfs, FTAG);
152 return (error);
153 }
154 #endif /* SEEK_HOLE && SEEK_DATA */
155
156 int
157 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
158 {
159 zfsvfs_t *zfsvfs = ZTOZSB(zp);
160 int error;
161
162 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
163 return (error);
164
165 if (flag & V_ACE_MASK)
166 #if defined(__linux__)
167 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
168 zfs_init_idmap);
169 #else
170 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
171 NULL);
172 #endif
173 else
174 #if defined(__linux__)
175 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
176 #else
177 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
178 #endif
179
180 zfs_exit(zfsvfs, FTAG);
181 return (error);
182 }
183
184 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
185
186 /*
187 * Read bytes from specified file into supplied buffer.
188 *
189 * IN: zp - inode of file to be read from.
190 * uio - structure supplying read location, range info,
191 * and return buffer.
192 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
193 * O_DIRECT flag; used to bypass page cache.
194 * cr - credentials of caller.
195 *
196 * OUT: uio - updated offset and range, buffer filled.
197 *
198 * RETURN: 0 on success, error code on failure.
199 *
200 * Side Effects:
201 * inode - atime updated if byte count > 0
202 */
203 int
204 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
205 {
206 (void) cr;
207 int error = 0;
208 boolean_t frsync = B_FALSE;
209
210 zfsvfs_t *zfsvfs = ZTOZSB(zp);
211 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 return (error);
213
214 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
215 zfs_exit(zfsvfs, FTAG);
216 return (SET_ERROR(EACCES));
217 }
218
219 /* We don't copy out anything useful for directories. */
220 if (Z_ISDIR(ZTOTYPE(zp))) {
221 zfs_exit(zfsvfs, FTAG);
222 return (SET_ERROR(EISDIR));
223 }
224
225 /*
226 * Validate file offset
227 */
228 if (zfs_uio_offset(uio) < (offset_t)0) {
229 zfs_exit(zfsvfs, FTAG);
230 return (SET_ERROR(EINVAL));
231 }
232
233 /*
234 * Fasttrack empty reads
235 */
236 if (zfs_uio_resid(uio) == 0) {
237 zfs_exit(zfsvfs, FTAG);
238 return (0);
239 }
240
241 #ifdef FRSYNC
242 /*
243 * If we're in FRSYNC mode, sync out this znode before reading it.
244 * Only do this for non-snapshots.
245 *
246 * Some platforms do not support FRSYNC and instead map it
247 * to O_SYNC, which results in unnecessary calls to zil_commit. We
248 * only honor FRSYNC requests on platforms which support it.
249 */
250 frsync = !!(ioflag & FRSYNC);
251 #endif
252 if (zfsvfs->z_log &&
253 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
254 zil_commit(zfsvfs->z_log, zp->z_id);
255
256 /*
257 * Lock the range against changes.
258 */
259 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
260 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
261
262 /*
263 * If we are reading past end-of-file we can skip
264 * to the end; but we might still need to set atime.
265 */
266 if (zfs_uio_offset(uio) >= zp->z_size) {
267 error = 0;
268 goto out;
269 }
270
271 ASSERT(zfs_uio_offset(uio) < zp->z_size);
272 #if defined(__linux__)
273 ssize_t start_offset = zfs_uio_offset(uio);
274 #endif
275 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
276 ssize_t start_resid = n;
277
278 while (n > 0) {
279 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
280 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
281 #ifdef UIO_NOCOPY
282 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
283 error = mappedread_sf(zp, nbytes, uio);
284 else
285 #endif
286 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
287 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
288 error = mappedread(zp, nbytes, uio);
289 } else {
290 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
291 uio, nbytes);
292 }
293
294 if (error) {
295 /* convert checksum errors into IO errors */
296 if (error == ECKSUM)
297 error = SET_ERROR(EIO);
298
299 #if defined(__linux__)
300 /*
301 * if we actually read some bytes, bubbling EFAULT
302 * up to become EAGAIN isn't what we want here...
303 *
304 * ...on Linux, at least. On FBSD, doing this breaks.
305 */
306 if (error == EFAULT &&
307 (zfs_uio_offset(uio) - start_offset) != 0)
308 error = 0;
309 #endif
310 break;
311 }
312
313 n -= nbytes;
314 }
315
316 int64_t nread = start_resid - n;
317 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
318 task_io_account_read(nread);
319 out:
320 zfs_rangelock_exit(lr);
321
322 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
323 zfs_exit(zfsvfs, FTAG);
324 return (error);
325 }
326
327 static void
328 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
329 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
330 {
331 zilog_t *zilog = zfsvfs->z_log;
332 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
333
334 ASSERT(clear_setid_bits_txgp != NULL);
335 ASSERT(tx != NULL);
336
337 /*
338 * Clear Set-UID/Set-GID bits on successful write if not
339 * privileged and at least one of the execute bits is set.
340 *
341 * It would be nice to do this after all writes have
342 * been done, but that would still expose the ISUID/ISGID
343 * to another app after the partial write is committed.
344 *
345 * Note: we don't call zfs_fuid_map_id() here because
346 * user 0 is not an ephemeral uid.
347 */
348 mutex_enter(&zp->z_acl_lock);
349 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
350 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
351 secpolicy_vnode_setid_retain(zp, cr,
352 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
353 uint64_t newmode;
354
355 zp->z_mode &= ~(S_ISUID | S_ISGID);
356 newmode = zp->z_mode;
357 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
358 (void *)&newmode, sizeof (uint64_t), tx);
359
360 mutex_exit(&zp->z_acl_lock);
361
362 /*
363 * Make sure SUID/SGID bits will be removed when we replay the
364 * log. If the setid bits are keep coming back, don't log more
365 * than one TX_SETATTR per transaction group.
366 */
367 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
368 vattr_t va = {0};
369
370 va.va_mask = ATTR_MODE;
371 va.va_nodeid = zp->z_id;
372 va.va_mode = newmode;
373 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
374 ATTR_MODE, NULL);
375 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
376 }
377 } else {
378 mutex_exit(&zp->z_acl_lock);
379 }
380 }
381
382 /*
383 * Write the bytes to a file.
384 *
385 * IN: zp - znode of file to be written to.
386 * uio - structure supplying write location, range info,
387 * and data buffer.
388 * ioflag - O_APPEND flag set if in append mode.
389 * O_DIRECT flag; used to bypass page cache.
390 * cr - credentials of caller.
391 *
392 * OUT: uio - updated offset and range.
393 *
394 * RETURN: 0 if success
395 * error code if failure
396 *
397 * Timestamps:
398 * ip - ctime|mtime updated if byte count > 0
399 */
400 int
401 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
402 {
403 int error = 0, error1;
404 ssize_t start_resid = zfs_uio_resid(uio);
405 uint64_t clear_setid_bits_txg = 0;
406
407 /*
408 * Fasttrack empty write
409 */
410 ssize_t n = start_resid;
411 if (n == 0)
412 return (0);
413
414 zfsvfs_t *zfsvfs = ZTOZSB(zp);
415 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
416 return (error);
417
418 sa_bulk_attr_t bulk[4];
419 int count = 0;
420 uint64_t mtime[2], ctime[2];
421 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
422 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
423 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
424 &zp->z_size, 8);
425 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
426 &zp->z_pflags, 8);
427
428 /*
429 * Callers might not be able to detect properly that we are read-only,
430 * so check it explicitly here.
431 */
432 if (zfs_is_readonly(zfsvfs)) {
433 zfs_exit(zfsvfs, FTAG);
434 return (SET_ERROR(EROFS));
435 }
436
437 /*
438 * If immutable or not appending then return EPERM.
439 * Intentionally allow ZFS_READONLY through here.
440 * See zfs_zaccess_common()
441 */
442 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
443 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
444 (zfs_uio_offset(uio) < zp->z_size))) {
445 zfs_exit(zfsvfs, FTAG);
446 return (SET_ERROR(EPERM));
447 }
448
449 /*
450 * Validate file offset
451 */
452 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
453 if (woff < 0) {
454 zfs_exit(zfsvfs, FTAG);
455 return (SET_ERROR(EINVAL));
456 }
457
458 /*
459 * Pre-fault the pages to ensure slow (eg NFS) pages
460 * don't hold up txg.
461 */
462 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
463 if (zfs_uio_prefaultpages(pfbytes, uio)) {
464 zfs_exit(zfsvfs, FTAG);
465 return (SET_ERROR(EFAULT));
466 }
467
468 /*
469 * If in append mode, set the io offset pointer to eof.
470 */
471 zfs_locked_range_t *lr;
472 if (ioflag & O_APPEND) {
473 /*
474 * Obtain an appending range lock to guarantee file append
475 * semantics. We reset the write offset once we have the lock.
476 */
477 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
478 woff = lr->lr_offset;
479 if (lr->lr_length == UINT64_MAX) {
480 /*
481 * We overlocked the file because this write will cause
482 * the file block size to increase.
483 * Note that zp_size cannot change with this lock held.
484 */
485 woff = zp->z_size;
486 }
487 zfs_uio_setoffset(uio, woff);
488 } else {
489 /*
490 * Note that if the file block size will change as a result of
491 * this write, then this range lock will lock the entire file
492 * so that we can re-write the block safely.
493 */
494 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
495 }
496
497 if (zn_rlimit_fsize_uio(zp, uio)) {
498 zfs_rangelock_exit(lr);
499 zfs_exit(zfsvfs, FTAG);
500 return (SET_ERROR(EFBIG));
501 }
502
503 const rlim64_t limit = MAXOFFSET_T;
504
505 if (woff >= limit) {
506 zfs_rangelock_exit(lr);
507 zfs_exit(zfsvfs, FTAG);
508 return (SET_ERROR(EFBIG));
509 }
510
511 if (n > limit - woff)
512 n = limit - woff;
513
514 uint64_t end_size = MAX(zp->z_size, woff + n);
515 zilog_t *zilog = zfsvfs->z_log;
516 boolean_t commit = (ioflag & (O_SYNC | O_DSYNC)) ||
517 (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS);
518
519 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
520 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
521 const uint64_t projid = zp->z_projid;
522
523 /*
524 * Write the file in reasonable size chunks. Each chunk is written
525 * in a separate transaction; this keeps the intent log records small
526 * and allows us to do more fine-grained space accounting.
527 */
528 while (n > 0) {
529 woff = zfs_uio_offset(uio);
530
531 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
532 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
533 (projid != ZFS_DEFAULT_PROJID &&
534 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
535 projid))) {
536 error = SET_ERROR(EDQUOT);
537 break;
538 }
539
540 uint64_t blksz;
541 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
542 if (zp->z_blksz > zfsvfs->z_max_blksz &&
543 !ISP2(zp->z_blksz)) {
544 /*
545 * File's blocksize is already larger than the
546 * "recordsize" property. Only let it grow to
547 * the next power of 2.
548 */
549 blksz = 1 << highbit64(zp->z_blksz);
550 } else {
551 blksz = zfsvfs->z_max_blksz;
552 }
553 blksz = MIN(blksz, P2ROUNDUP(end_size,
554 SPA_MINBLOCKSIZE));
555 blksz = MAX(blksz, zp->z_blksz);
556 } else {
557 blksz = zp->z_blksz;
558 }
559
560 arc_buf_t *abuf = NULL;
561 ssize_t nbytes = n;
562 if (n >= blksz && woff >= zp->z_size &&
563 P2PHASE(woff, blksz) == 0 &&
564 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
565 /*
566 * This write covers a full block. "Borrow" a buffer
567 * from the dmu so that we can fill it before we enter
568 * a transaction. This avoids the possibility of
569 * holding up the transaction if the data copy hangs
570 * up on a pagefault (e.g., from an NFS server mapping).
571 */
572 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
573 blksz);
574 ASSERT(abuf != NULL);
575 ASSERT(arc_buf_size(abuf) == blksz);
576 if ((error = zfs_uiocopy(abuf->b_data, blksz,
577 UIO_WRITE, uio, &nbytes))) {
578 dmu_return_arcbuf(abuf);
579 break;
580 }
581 ASSERT3S(nbytes, ==, blksz);
582 } else {
583 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
584 P2PHASE(woff, blksz));
585 if (pfbytes < nbytes) {
586 if (zfs_uio_prefaultpages(nbytes, uio)) {
587 error = SET_ERROR(EFAULT);
588 break;
589 }
590 pfbytes = nbytes;
591 }
592 }
593
594 /*
595 * Start a transaction.
596 */
597 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
598 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
599 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
600 DB_DNODE_ENTER(db);
601 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
602 DB_DNODE_EXIT(db);
603 zfs_sa_upgrade_txholds(tx, zp);
604 error = dmu_tx_assign(tx, TXG_WAIT);
605 if (error) {
606 dmu_tx_abort(tx);
607 if (abuf != NULL)
608 dmu_return_arcbuf(abuf);
609 break;
610 }
611
612 /*
613 * NB: We must call zfs_clear_setid_bits_if_necessary before
614 * committing the transaction!
615 */
616
617 /*
618 * If rangelock_enter() over-locked we grow the blocksize
619 * and then reduce the lock range. This will only happen
620 * on the first iteration since rangelock_reduce() will
621 * shrink down lr_length to the appropriate size.
622 */
623 if (lr->lr_length == UINT64_MAX) {
624 zfs_grow_blocksize(zp, blksz, tx);
625 zfs_rangelock_reduce(lr, woff, n);
626 }
627
628 ssize_t tx_bytes;
629 if (abuf == NULL) {
630 tx_bytes = zfs_uio_resid(uio);
631 zfs_uio_fault_disable(uio, B_TRUE);
632 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
633 uio, nbytes, tx);
634 zfs_uio_fault_disable(uio, B_FALSE);
635 #ifdef __linux__
636 if (error == EFAULT) {
637 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
638 cr, &clear_setid_bits_txg, tx);
639 dmu_tx_commit(tx);
640 /*
641 * Account for partial writes before
642 * continuing the loop.
643 * Update needs to occur before the next
644 * zfs_uio_prefaultpages, or prefaultpages may
645 * error, and we may break the loop early.
646 */
647 n -= tx_bytes - zfs_uio_resid(uio);
648 pfbytes -= tx_bytes - zfs_uio_resid(uio);
649 continue;
650 }
651 #endif
652 /*
653 * On FreeBSD, EFAULT should be propagated back to the
654 * VFS, which will handle faulting and will retry.
655 */
656 if (error != 0 && error != EFAULT) {
657 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
658 cr, &clear_setid_bits_txg, tx);
659 dmu_tx_commit(tx);
660 break;
661 }
662 tx_bytes -= zfs_uio_resid(uio);
663 } else {
664 /*
665 * Thus, we're writing a full block at a block-aligned
666 * offset and extending the file past EOF.
667 *
668 * dmu_assign_arcbuf_by_dbuf() will directly assign the
669 * arc buffer to a dbuf.
670 */
671 error = dmu_assign_arcbuf_by_dbuf(
672 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
673 if (error != 0) {
674 /*
675 * XXX This might not be necessary if
676 * dmu_assign_arcbuf_by_dbuf is guaranteed
677 * to be atomic.
678 */
679 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
680 cr, &clear_setid_bits_txg, tx);
681 dmu_return_arcbuf(abuf);
682 dmu_tx_commit(tx);
683 break;
684 }
685 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
686 zfs_uioskip(uio, nbytes);
687 tx_bytes = nbytes;
688 }
689 if (tx_bytes &&
690 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
691 !(ioflag & O_DIRECT)) {
692 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
693 }
694
695 /*
696 * If we made no progress, we're done. If we made even
697 * partial progress, update the znode and ZIL accordingly.
698 */
699 if (tx_bytes == 0) {
700 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
701 (void *)&zp->z_size, sizeof (uint64_t), tx);
702 dmu_tx_commit(tx);
703 ASSERT(error != 0);
704 break;
705 }
706
707 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
708 &clear_setid_bits_txg, tx);
709
710 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
711
712 /*
713 * Update the file size (zp_size) if it has changed;
714 * account for possible concurrent updates.
715 */
716 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
717 (void) atomic_cas_64(&zp->z_size, end_size,
718 zfs_uio_offset(uio));
719 ASSERT(error == 0 || error == EFAULT);
720 }
721 /*
722 * If we are replaying and eof is non zero then force
723 * the file size to the specified eof. Note, there's no
724 * concurrency during replay.
725 */
726 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
727 zp->z_size = zfsvfs->z_replay_eof;
728
729 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
730 if (error1 != 0)
731 /* Avoid clobbering EFAULT. */
732 error = error1;
733
734 /*
735 * NB: During replay, the TX_SETATTR record logged by
736 * zfs_clear_setid_bits_if_necessary must precede any of
737 * the TX_WRITE records logged here.
738 */
739 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, commit,
740 NULL, NULL);
741
742 dmu_tx_commit(tx);
743
744 if (error != 0)
745 break;
746 ASSERT3S(tx_bytes, ==, nbytes);
747 n -= nbytes;
748 pfbytes -= nbytes;
749 }
750
751 zfs_znode_update_vfs(zp);
752 zfs_rangelock_exit(lr);
753
754 /*
755 * If we're in replay mode, or we made no progress, or the
756 * uio data is inaccessible return an error. Otherwise, it's
757 * at least a partial write, so it's successful.
758 */
759 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
760 error == EFAULT) {
761 zfs_exit(zfsvfs, FTAG);
762 return (error);
763 }
764
765 if (commit)
766 zil_commit(zilog, zp->z_id);
767
768 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
769 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
770 task_io_account_write(nwritten);
771
772 zfs_exit(zfsvfs, FTAG);
773 return (0);
774 }
775
776 int
777 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
778 {
779 zfsvfs_t *zfsvfs = ZTOZSB(zp);
780 int error;
781 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
782
783 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
784 return (error);
785 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
786 zfs_exit(zfsvfs, FTAG);
787
788 return (error);
789 }
790
791 int
792 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
793 {
794 zfsvfs_t *zfsvfs = ZTOZSB(zp);
795 int error;
796 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
797 zilog_t *zilog = zfsvfs->z_log;
798
799 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
800 return (error);
801
802 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
803
804 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
805 zil_commit(zilog, 0);
806
807 zfs_exit(zfsvfs, FTAG);
808 return (error);
809 }
810
811 #ifdef ZFS_DEBUG
812 static int zil_fault_io = 0;
813 #endif
814
815 static void zfs_get_done(zgd_t *zgd, int error);
816
817 /*
818 * Get data to generate a TX_WRITE intent log record.
819 */
820 int
821 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
822 struct lwb *lwb, zio_t *zio)
823 {
824 zfsvfs_t *zfsvfs = arg;
825 objset_t *os = zfsvfs->z_os;
826 znode_t *zp;
827 uint64_t object = lr->lr_foid;
828 uint64_t offset = lr->lr_offset;
829 uint64_t size = lr->lr_length;
830 dmu_buf_t *db;
831 zgd_t *zgd;
832 int error = 0;
833 uint64_t zp_gen;
834
835 ASSERT3P(lwb, !=, NULL);
836 ASSERT3U(size, !=, 0);
837
838 /*
839 * Nothing to do if the file has been removed
840 */
841 if (zfs_zget(zfsvfs, object, &zp) != 0)
842 return (SET_ERROR(ENOENT));
843 if (zp->z_unlinked) {
844 /*
845 * Release the vnode asynchronously as we currently have the
846 * txg stopped from syncing.
847 */
848 zfs_zrele_async(zp);
849 return (SET_ERROR(ENOENT));
850 }
851 /* check if generation number matches */
852 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
853 sizeof (zp_gen)) != 0) {
854 zfs_zrele_async(zp);
855 return (SET_ERROR(EIO));
856 }
857 if (zp_gen != gen) {
858 zfs_zrele_async(zp);
859 return (SET_ERROR(ENOENT));
860 }
861
862 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
863 zgd->zgd_lwb = lwb;
864 zgd->zgd_private = zp;
865
866 /*
867 * Write records come in two flavors: immediate and indirect.
868 * For small writes it's cheaper to store the data with the
869 * log record (immediate); for large writes it's cheaper to
870 * sync the data and get a pointer to it (indirect) so that
871 * we don't have to write the data twice.
872 */
873 if (buf != NULL) { /* immediate write */
874 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
875 offset, size, RL_READER);
876 /* test for truncation needs to be done while range locked */
877 if (offset >= zp->z_size) {
878 error = SET_ERROR(ENOENT);
879 } else {
880 error = dmu_read(os, object, offset, size, buf,
881 DMU_READ_NO_PREFETCH);
882 }
883 ASSERT(error == 0 || error == ENOENT);
884 } else { /* indirect write */
885 ASSERT3P(zio, !=, NULL);
886 /*
887 * Have to lock the whole block to ensure when it's
888 * written out and its checksum is being calculated
889 * that no one can change the data. We need to re-check
890 * blocksize after we get the lock in case it's changed!
891 */
892 for (;;) {
893 uint64_t blkoff;
894 size = zp->z_blksz;
895 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
896 offset -= blkoff;
897 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
898 offset, size, RL_READER);
899 if (zp->z_blksz == size)
900 break;
901 offset += blkoff;
902 zfs_rangelock_exit(zgd->zgd_lr);
903 }
904 /* test for truncation needs to be done while range locked */
905 if (lr->lr_offset >= zp->z_size)
906 error = SET_ERROR(ENOENT);
907 #ifdef ZFS_DEBUG
908 if (zil_fault_io) {
909 error = SET_ERROR(EIO);
910 zil_fault_io = 0;
911 }
912 #endif
913 if (error == 0)
914 error = dmu_buf_hold_noread(os, object, offset, zgd,
915 &db);
916
917 if (error == 0) {
918 blkptr_t *bp = &lr->lr_blkptr;
919
920 zgd->zgd_db = db;
921 zgd->zgd_bp = bp;
922
923 ASSERT(db->db_offset == offset);
924 ASSERT(db->db_size == size);
925
926 error = dmu_sync(zio, lr->lr_common.lrc_txg,
927 zfs_get_done, zgd);
928 ASSERT(error || lr->lr_length <= size);
929
930 /*
931 * On success, we need to wait for the write I/O
932 * initiated by dmu_sync() to complete before we can
933 * release this dbuf. We will finish everything up
934 * in the zfs_get_done() callback.
935 */
936 if (error == 0)
937 return (0);
938
939 if (error == EALREADY) {
940 lr->lr_common.lrc_txtype = TX_WRITE2;
941 /*
942 * TX_WRITE2 relies on the data previously
943 * written by the TX_WRITE that caused
944 * EALREADY. We zero out the BP because
945 * it is the old, currently-on-disk BP.
946 */
947 zgd->zgd_bp = NULL;
948 BP_ZERO(bp);
949 error = 0;
950 }
951 }
952 }
953
954 zfs_get_done(zgd, error);
955
956 return (error);
957 }
958
959
960 static void
961 zfs_get_done(zgd_t *zgd, int error)
962 {
963 (void) error;
964 znode_t *zp = zgd->zgd_private;
965
966 if (zgd->zgd_db)
967 dmu_buf_rele(zgd->zgd_db, zgd);
968
969 zfs_rangelock_exit(zgd->zgd_lr);
970
971 /*
972 * Release the vnode asynchronously as we currently have the
973 * txg stopped from syncing.
974 */
975 zfs_zrele_async(zp);
976
977 kmem_free(zgd, sizeof (zgd_t));
978 }
979
980 static int
981 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
982 {
983 int error;
984
985 /* Swap. Not sure if the order of zfs_enter()s is important. */
986 if (zfsvfs1 > zfsvfs2) {
987 zfsvfs_t *tmpzfsvfs;
988
989 tmpzfsvfs = zfsvfs2;
990 zfsvfs2 = zfsvfs1;
991 zfsvfs1 = tmpzfsvfs;
992 }
993
994 error = zfs_enter(zfsvfs1, tag);
995 if (error != 0)
996 return (error);
997 if (zfsvfs1 != zfsvfs2) {
998 error = zfs_enter(zfsvfs2, tag);
999 if (error != 0) {
1000 zfs_exit(zfsvfs1, tag);
1001 return (error);
1002 }
1003 }
1004
1005 return (0);
1006 }
1007
1008 static void
1009 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1010 {
1011
1012 zfs_exit(zfsvfs1, tag);
1013 if (zfsvfs1 != zfsvfs2)
1014 zfs_exit(zfsvfs2, tag);
1015 }
1016
1017 /*
1018 * We split each clone request in chunks that can fit into a single ZIL
1019 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1020 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1021 * us room for storing 1022 block pointers.
1022 *
1023 * On success, the function return the number of bytes copied in *lenp.
1024 * Note, it doesn't return how much bytes are left to be copied.
1025 * On errors which are caused by any file system limitations or
1026 * brt limitations `EINVAL` is returned. In the most cases a user
1027 * requested bad parameters, it could be possible to clone the file but
1028 * some parameters don't match the requirements.
1029 */
1030 int
1031 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1032 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1033 {
1034 zfsvfs_t *inzfsvfs, *outzfsvfs;
1035 objset_t *inos, *outos;
1036 zfs_locked_range_t *inlr, *outlr;
1037 dmu_buf_impl_t *db;
1038 dmu_tx_t *tx;
1039 zilog_t *zilog;
1040 uint64_t inoff, outoff, len, done;
1041 uint64_t outsize, size;
1042 int error;
1043 int count = 0;
1044 sa_bulk_attr_t bulk[3];
1045 uint64_t mtime[2], ctime[2];
1046 uint64_t uid, gid, projid;
1047 blkptr_t *bps;
1048 size_t maxblocks, nbps;
1049 uint_t inblksz;
1050 uint64_t clear_setid_bits_txg = 0;
1051
1052 inoff = *inoffp;
1053 outoff = *outoffp;
1054 len = *lenp;
1055 done = 0;
1056
1057 inzfsvfs = ZTOZSB(inzp);
1058 outzfsvfs = ZTOZSB(outzp);
1059
1060 /*
1061 * We need to call zfs_enter() potentially on two different datasets,
1062 * so we need a dedicated function for that.
1063 */
1064 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1065 if (error != 0)
1066 return (error);
1067
1068 inos = inzfsvfs->z_os;
1069 outos = outzfsvfs->z_os;
1070
1071 /*
1072 * Both source and destination have to belong to the same storage pool.
1073 */
1074 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1075 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1076 return (SET_ERROR(EXDEV));
1077 }
1078
1079 /*
1080 * outos and inos belongs to the same storage pool.
1081 * see a few lines above, only one check.
1082 */
1083 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1084 SPA_FEATURE_BLOCK_CLONING)) {
1085 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1086 return (SET_ERROR(EOPNOTSUPP));
1087 }
1088
1089 ASSERT(!outzfsvfs->z_replay);
1090
1091 /*
1092 * Block cloning from an unencrypted dataset into an encrypted
1093 * dataset and vice versa is not supported.
1094 */
1095 if (inos->os_encrypted != outos->os_encrypted) {
1096 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1097 return (SET_ERROR(EXDEV));
1098 }
1099
1100 error = zfs_verify_zp(inzp);
1101 if (error == 0)
1102 error = zfs_verify_zp(outzp);
1103 if (error != 0) {
1104 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1105 return (error);
1106 }
1107
1108 /*
1109 * We don't copy source file's flags that's why we don't allow to clone
1110 * files that are in quarantine.
1111 */
1112 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1113 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1114 return (SET_ERROR(EACCES));
1115 }
1116
1117 if (inoff >= inzp->z_size) {
1118 *lenp = 0;
1119 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1120 return (0);
1121 }
1122 if (len > inzp->z_size - inoff) {
1123 len = inzp->z_size - inoff;
1124 }
1125 if (len == 0) {
1126 *lenp = 0;
1127 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1128 return (0);
1129 }
1130
1131 /*
1132 * Callers might not be able to detect properly that we are read-only,
1133 * so check it explicitly here.
1134 */
1135 if (zfs_is_readonly(outzfsvfs)) {
1136 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1137 return (SET_ERROR(EROFS));
1138 }
1139
1140 /*
1141 * If immutable or not appending then return EPERM.
1142 * Intentionally allow ZFS_READONLY through here.
1143 * See zfs_zaccess_common()
1144 */
1145 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1146 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1147 return (SET_ERROR(EPERM));
1148 }
1149
1150 /*
1151 * No overlapping if we are cloning within the same file.
1152 */
1153 if (inzp == outzp) {
1154 if (inoff < outoff + len && outoff < inoff + len) {
1155 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1156 return (SET_ERROR(EINVAL));
1157 }
1158 }
1159
1160 /*
1161 * Maintain predictable lock order.
1162 */
1163 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1164 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1165 RL_READER);
1166 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1167 RL_WRITER);
1168 } else {
1169 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1170 RL_WRITER);
1171 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1172 RL_READER);
1173 }
1174
1175 inblksz = inzp->z_blksz;
1176
1177 /*
1178 * We cannot clone into files with different block size if we can't
1179 * grow it (block size is already bigger or more than one block).
1180 */
1181 if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
1182 outzp->z_size > inblksz)) {
1183 error = SET_ERROR(EINVAL);
1184 goto unlock;
1185 }
1186
1187 /*
1188 * Block size must be power-of-2 if destination offset != 0.
1189 * There can be no multiple blocks of non-power-of-2 size.
1190 */
1191 if (outoff != 0 && !ISP2(inblksz)) {
1192 error = SET_ERROR(EINVAL);
1193 goto unlock;
1194 }
1195
1196 /*
1197 * Offsets and len must be at block boundries.
1198 */
1199 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1200 error = SET_ERROR(EINVAL);
1201 goto unlock;
1202 }
1203 /*
1204 * Length must be multipe of blksz, except for the end of the file.
1205 */
1206 if ((len % inblksz) != 0 &&
1207 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1208 error = SET_ERROR(EINVAL);
1209 goto unlock;
1210 }
1211
1212 /*
1213 * If we are copying only one block and it is smaller than recordsize
1214 * property, do not allow destination to grow beyond one block if it
1215 * is not there yet. Otherwise the destination will get stuck with
1216 * that block size forever, that can be as small as 512 bytes, no
1217 * matter how big the destination grow later.
1218 */
1219 if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
1220 outzp->z_size <= inblksz && outoff + len > inblksz) {
1221 error = SET_ERROR(EINVAL);
1222 goto unlock;
1223 }
1224
1225 error = zn_rlimit_fsize(outoff + len);
1226 if (error != 0) {
1227 goto unlock;
1228 }
1229
1230 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1231 error = SET_ERROR(EFBIG);
1232 goto unlock;
1233 }
1234
1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1236 &mtime, 16);
1237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1238 &ctime, 16);
1239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1240 &outzp->z_size, 8);
1241
1242 zilog = outzfsvfs->z_log;
1243 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1244 sizeof (bps[0]);
1245
1246 uid = KUID_TO_SUID(ZTOUID(outzp));
1247 gid = KGID_TO_SGID(ZTOGID(outzp));
1248 projid = outzp->z_projid;
1249
1250 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1251
1252 /*
1253 * Clone the file in reasonable size chunks. Each chunk is cloned
1254 * in a separate transaction; this keeps the intent log records small
1255 * and allows us to do more fine-grained space accounting.
1256 */
1257 while (len > 0) {
1258 size = MIN(inblksz * maxblocks, len);
1259
1260 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1261 uid) ||
1262 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1263 gid) ||
1264 (projid != ZFS_DEFAULT_PROJID &&
1265 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1266 projid))) {
1267 error = SET_ERROR(EDQUOT);
1268 break;
1269 }
1270
1271 nbps = maxblocks;
1272 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1273 &nbps);
1274 if (error != 0) {
1275 /*
1276 * If we are trying to clone a block that was created
1277 * in the current transaction group, error will be
1278 * EAGAIN here, which we can just return to the caller
1279 * so it can fallback if it likes.
1280 */
1281 break;
1282 }
1283 /*
1284 * Encrypted data is fine as long as it comes from the same
1285 * dataset.
1286 * TODO: We want to extend it in the future to allow cloning to
1287 * datasets with the same keys, like clones or to be able to
1288 * clone a file from a snapshot of an encrypted dataset into the
1289 * dataset itself.
1290 */
1291 if (BP_IS_PROTECTED(&bps[0])) {
1292 if (inzfsvfs != outzfsvfs) {
1293 error = SET_ERROR(EXDEV);
1294 break;
1295 }
1296 }
1297
1298 /*
1299 * Start a transaction.
1300 */
1301 tx = dmu_tx_create(outos);
1302 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1303 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1304 DB_DNODE_ENTER(db);
1305 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1306 DB_DNODE_EXIT(db);
1307 zfs_sa_upgrade_txholds(tx, outzp);
1308 error = dmu_tx_assign(tx, TXG_WAIT);
1309 if (error != 0) {
1310 dmu_tx_abort(tx);
1311 break;
1312 }
1313
1314 /*
1315 * Copy source znode's block size. This only happens on the
1316 * first iteration since zfs_rangelock_reduce() will shrink down
1317 * lr_len to the appropriate size.
1318 */
1319 if (outlr->lr_length == UINT64_MAX) {
1320 zfs_grow_blocksize(outzp, inblksz, tx);
1321 /*
1322 * Round range lock up to the block boundary, so we
1323 * prevent appends until we are done.
1324 */
1325 zfs_rangelock_reduce(outlr, outoff,
1326 ((len - 1) / inblksz + 1) * inblksz);
1327 }
1328
1329 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1330 bps, nbps);
1331 if (error != 0) {
1332 dmu_tx_commit(tx);
1333 break;
1334 }
1335
1336 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1337 &clear_setid_bits_txg, tx);
1338
1339 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1340
1341 /*
1342 * Update the file size (zp_size) if it has changed;
1343 * account for possible concurrent updates.
1344 */
1345 while ((outsize = outzp->z_size) < outoff + size) {
1346 (void) atomic_cas_64(&outzp->z_size, outsize,
1347 outoff + size);
1348 }
1349
1350 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1351
1352 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1353 size, inblksz, bps, nbps);
1354
1355 dmu_tx_commit(tx);
1356
1357 if (error != 0)
1358 break;
1359
1360 inoff += size;
1361 outoff += size;
1362 len -= size;
1363 done += size;
1364 }
1365
1366 vmem_free(bps, sizeof (bps[0]) * maxblocks);
1367 zfs_znode_update_vfs(outzp);
1368
1369 unlock:
1370 zfs_rangelock_exit(outlr);
1371 zfs_rangelock_exit(inlr);
1372
1373 if (done > 0) {
1374 /*
1375 * If we have made at least partial progress, reset the error.
1376 */
1377 error = 0;
1378
1379 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1380
1381 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1382 zil_commit(zilog, outzp->z_id);
1383 }
1384
1385 *inoffp += done;
1386 *outoffp += done;
1387 *lenp = done;
1388 } else {
1389 /*
1390 * If we made no progress, there must be a good reason.
1391 * EOF is handled explicitly above, before the loop.
1392 */
1393 ASSERT3S(error, !=, 0);
1394 }
1395
1396 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1397
1398 return (error);
1399 }
1400
1401 /*
1402 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1403 * but we cannot do that, because when replaying we don't have source znode
1404 * available. This is why we need a dedicated replay function.
1405 */
1406 int
1407 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1408 const blkptr_t *bps, size_t nbps)
1409 {
1410 zfsvfs_t *zfsvfs;
1411 dmu_buf_impl_t *db;
1412 dmu_tx_t *tx;
1413 int error;
1414 int count = 0;
1415 sa_bulk_attr_t bulk[3];
1416 uint64_t mtime[2], ctime[2];
1417
1418 ASSERT3U(off, <, MAXOFFSET_T);
1419 ASSERT3U(len, >, 0);
1420 ASSERT3U(nbps, >, 0);
1421
1422 zfsvfs = ZTOZSB(zp);
1423
1424 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1425 SPA_FEATURE_BLOCK_CLONING));
1426
1427 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1428 return (error);
1429
1430 ASSERT(zfsvfs->z_replay);
1431 ASSERT(!zfs_is_readonly(zfsvfs));
1432
1433 if ((off % blksz) != 0) {
1434 zfs_exit(zfsvfs, FTAG);
1435 return (SET_ERROR(EINVAL));
1436 }
1437
1438 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1439 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1440 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1441 &zp->z_size, 8);
1442
1443 /*
1444 * Start a transaction.
1445 */
1446 tx = dmu_tx_create(zfsvfs->z_os);
1447
1448 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1449 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1450 DB_DNODE_ENTER(db);
1451 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1452 DB_DNODE_EXIT(db);
1453 zfs_sa_upgrade_txholds(tx, zp);
1454 error = dmu_tx_assign(tx, TXG_WAIT);
1455 if (error != 0) {
1456 dmu_tx_abort(tx);
1457 zfs_exit(zfsvfs, FTAG);
1458 return (error);
1459 }
1460
1461 if (zp->z_blksz < blksz)
1462 zfs_grow_blocksize(zp, blksz, tx);
1463
1464 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
1465
1466 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1467
1468 if (zp->z_size < off + len)
1469 zp->z_size = off + len;
1470
1471 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1472
1473 /*
1474 * zil_replaying() not only check if we are replaying ZIL, but also
1475 * updates the ZIL header to record replay progress.
1476 */
1477 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1478
1479 dmu_tx_commit(tx);
1480
1481 zfs_znode_update_vfs(zp);
1482
1483 zfs_exit(zfsvfs, FTAG);
1484
1485 return (error);
1486 }
1487
1488 EXPORT_SYMBOL(zfs_access);
1489 EXPORT_SYMBOL(zfs_fsync);
1490 EXPORT_SYMBOL(zfs_holey);
1491 EXPORT_SYMBOL(zfs_read);
1492 EXPORT_SYMBOL(zfs_write);
1493 EXPORT_SYMBOL(zfs_getsecattr);
1494 EXPORT_SYMBOL(zfs_setsecattr);
1495 EXPORT_SYMBOL(zfs_clone_range);
1496 EXPORT_SYMBOL(zfs_clone_range_replay);
1497
1498 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1499 "Bytes to read per chunk");