]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
645b1d4d80bacb5375d7ff09a010a4629f40dea6
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/metaslab.h>
43 #include <sys/trace_zil.h>
44 #include <sys/abd.h>
45
46 /*
47 * The zfs intent log (ZIL) saves transaction records of system calls
48 * that change the file system in memory with enough information
49 * to be able to replay them. These are stored in memory until
50 * either the DMU transaction group (txg) commits them to the stable pool
51 * and they can be discarded, or they are flushed to the stable log
52 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
53 * requirement. In the event of a panic or power fail then those log
54 * records (transactions) are replayed.
55 *
56 * There is one ZIL per file system. Its on-disk (pool) format consists
57 * of 3 parts:
58 *
59 * - ZIL header
60 * - ZIL blocks
61 * - ZIL records
62 *
63 * A log record holds a system call transaction. Log blocks can
64 * hold many log records and the blocks are chained together.
65 * Each ZIL block contains a block pointer (blkptr_t) to the next
66 * ZIL block in the chain. The ZIL header points to the first
67 * block in the chain. Note there is not a fixed place in the pool
68 * to hold blocks. They are dynamically allocated and freed as
69 * needed from the blocks available. Figure X shows the ZIL structure:
70 */
71
72 /*
73 * See zil.h for more information about these fields.
74 */
75 zil_stats_t zil_stats = {
76 { "zil_commit_count", KSTAT_DATA_UINT64 },
77 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
78 { "zil_itx_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
80 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
81 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
82 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
83 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
84 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
86 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
87 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
88 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
89 };
90
91 static kstat_t *zil_ksp;
92
93 /*
94 * Disable intent logging replay. This global ZIL switch affects all pools.
95 */
96 int zil_replay_disable = 0;
97
98 /*
99 * Tunable parameter for debugging or performance analysis. Setting
100 * zfs_nocacheflush will cause corruption on power loss if a volatile
101 * out-of-order write cache is enabled.
102 */
103 int zfs_nocacheflush = 0;
104
105 /*
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
109 */
110 unsigned long zil_slog_bulk = 768 * 1024;
111
112 static kmem_cache_t *zil_lwb_cache;
113
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115
116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
125 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
126 if (likely(cmp))
127 return (cmp);
128
129 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
130 }
131
132 static void
133 zil_bp_tree_init(zilog_t *zilog)
134 {
135 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
136 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
137 }
138
139 static void
140 zil_bp_tree_fini(zilog_t *zilog)
141 {
142 avl_tree_t *t = &zilog->zl_bp_tree;
143 zil_bp_node_t *zn;
144 void *cookie = NULL;
145
146 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
147 kmem_free(zn, sizeof (zil_bp_node_t));
148
149 avl_destroy(t);
150 }
151
152 int
153 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
154 {
155 avl_tree_t *t = &zilog->zl_bp_tree;
156 const dva_t *dva;
157 zil_bp_node_t *zn;
158 avl_index_t where;
159
160 if (BP_IS_EMBEDDED(bp))
161 return (0);
162
163 dva = BP_IDENTITY(bp);
164
165 if (avl_find(t, dva, &where) != NULL)
166 return (SET_ERROR(EEXIST));
167
168 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
169 zn->zn_dva = *dva;
170 avl_insert(t, zn, where);
171
172 return (0);
173 }
174
175 static zil_header_t *
176 zil_header_in_syncing_context(zilog_t *zilog)
177 {
178 return ((zil_header_t *)zilog->zl_header);
179 }
180
181 static void
182 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
183 {
184 zio_cksum_t *zc = &bp->blk_cksum;
185
186 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
187 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
189 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
190 }
191
192 /*
193 * Read a log block and make sure it's valid.
194 */
195 static int
196 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
197 char **end)
198 {
199 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
200 arc_flags_t aflags = ARC_FLAG_WAIT;
201 arc_buf_t *abuf = NULL;
202 zbookmark_phys_t zb;
203 int error;
204
205 if (zilog->zl_header->zh_claim_txg == 0)
206 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
207
208 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
209 zio_flags |= ZIO_FLAG_SPECULATIVE;
210
211 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
212 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
213
214 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
215 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
216
217 if (error == 0) {
218 zio_cksum_t cksum = bp->blk_cksum;
219
220 /*
221 * Validate the checksummed log block.
222 *
223 * Sequence numbers should be... sequential. The checksum
224 * verifier for the next block should be bp's checksum plus 1.
225 *
226 * Also check the log chain linkage and size used.
227 */
228 cksum.zc_word[ZIL_ZC_SEQ]++;
229
230 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
231 zil_chain_t *zilc = abuf->b_data;
232 char *lr = (char *)(zilc + 1);
233 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
234
235 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
236 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
237 error = SET_ERROR(ECKSUM);
238 } else {
239 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
240 bcopy(lr, dst, len);
241 *end = (char *)dst + len;
242 *nbp = zilc->zc_next_blk;
243 }
244 } else {
245 char *lr = abuf->b_data;
246 uint64_t size = BP_GET_LSIZE(bp);
247 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
248
249 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
251 (zilc->zc_nused > (size - sizeof (*zilc)))) {
252 error = SET_ERROR(ECKSUM);
253 } else {
254 ASSERT3U(zilc->zc_nused, <=,
255 SPA_OLD_MAXBLOCKSIZE);
256 bcopy(lr, dst, zilc->zc_nused);
257 *end = (char *)dst + zilc->zc_nused;
258 *nbp = zilc->zc_next_blk;
259 }
260 }
261
262 arc_buf_destroy(abuf, &abuf);
263 }
264
265 return (error);
266 }
267
268 /*
269 * Read a TX_WRITE log data block.
270 */
271 static int
272 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
273 {
274 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
275 const blkptr_t *bp = &lr->lr_blkptr;
276 arc_flags_t aflags = ARC_FLAG_WAIT;
277 arc_buf_t *abuf = NULL;
278 zbookmark_phys_t zb;
279 int error;
280
281 if (BP_IS_HOLE(bp)) {
282 if (wbuf != NULL)
283 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
284 return (0);
285 }
286
287 if (zilog->zl_header->zh_claim_txg == 0)
288 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
289
290 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
291 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
292
293 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
294 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
295
296 if (error == 0) {
297 if (wbuf != NULL)
298 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
299 arc_buf_destroy(abuf, &abuf);
300 }
301
302 return (error);
303 }
304
305 /*
306 * Parse the intent log, and call parse_func for each valid record within.
307 */
308 int
309 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
310 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
311 {
312 const zil_header_t *zh = zilog->zl_header;
313 boolean_t claimed = !!zh->zh_claim_txg;
314 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
315 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
316 uint64_t max_blk_seq = 0;
317 uint64_t max_lr_seq = 0;
318 uint64_t blk_count = 0;
319 uint64_t lr_count = 0;
320 blkptr_t blk, next_blk;
321 char *lrbuf, *lrp;
322 int error = 0;
323
324 bzero(&next_blk, sizeof (blkptr_t));
325
326 /*
327 * Old logs didn't record the maximum zh_claim_lr_seq.
328 */
329 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
330 claim_lr_seq = UINT64_MAX;
331
332 /*
333 * Starting at the block pointed to by zh_log we read the log chain.
334 * For each block in the chain we strongly check that block to
335 * ensure its validity. We stop when an invalid block is found.
336 * For each block pointer in the chain we call parse_blk_func().
337 * For each record in each valid block we call parse_lr_func().
338 * If the log has been claimed, stop if we encounter a sequence
339 * number greater than the highest claimed sequence number.
340 */
341 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
342 zil_bp_tree_init(zilog);
343
344 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
345 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
346 int reclen;
347 char *end = NULL;
348
349 if (blk_seq > claim_blk_seq)
350 break;
351 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
352 break;
353 ASSERT3U(max_blk_seq, <, blk_seq);
354 max_blk_seq = blk_seq;
355 blk_count++;
356
357 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
358 break;
359
360 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
361 if (error != 0)
362 break;
363
364 for (lrp = lrbuf; lrp < end; lrp += reclen) {
365 lr_t *lr = (lr_t *)lrp;
366 reclen = lr->lrc_reclen;
367 ASSERT3U(reclen, >=, sizeof (lr_t));
368 if (lr->lrc_seq > claim_lr_seq)
369 goto done;
370 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
371 goto done;
372 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
373 max_lr_seq = lr->lrc_seq;
374 lr_count++;
375 }
376 }
377 done:
378 zilog->zl_parse_error = error;
379 zilog->zl_parse_blk_seq = max_blk_seq;
380 zilog->zl_parse_lr_seq = max_lr_seq;
381 zilog->zl_parse_blk_count = blk_count;
382 zilog->zl_parse_lr_count = lr_count;
383
384 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
385 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
386
387 zil_bp_tree_fini(zilog);
388 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
389
390 return (error);
391 }
392
393 static int
394 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
395 {
396 /*
397 * Claim log block if not already committed and not already claimed.
398 * If tx == NULL, just verify that the block is claimable.
399 */
400 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
401 zil_bp_tree_add(zilog, bp) != 0)
402 return (0);
403
404 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
405 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
406 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
407 }
408
409 static int
410 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
411 {
412 lr_write_t *lr = (lr_write_t *)lrc;
413 int error;
414
415 if (lrc->lrc_txtype != TX_WRITE)
416 return (0);
417
418 /*
419 * If the block is not readable, don't claim it. This can happen
420 * in normal operation when a log block is written to disk before
421 * some of the dmu_sync() blocks it points to. In this case, the
422 * transaction cannot have been committed to anyone (we would have
423 * waited for all writes to be stable first), so it is semantically
424 * correct to declare this the end of the log.
425 */
426 if (lr->lr_blkptr.blk_birth >= first_txg &&
427 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
428 return (error);
429 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
430 }
431
432 /* ARGSUSED */
433 static int
434 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
435 {
436 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437
438 return (0);
439 }
440
441 static int
442 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
443 {
444 lr_write_t *lr = (lr_write_t *)lrc;
445 blkptr_t *bp = &lr->lr_blkptr;
446
447 /*
448 * If we previously claimed it, we need to free it.
449 */
450 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
451 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
452 !BP_IS_HOLE(bp))
453 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
454
455 return (0);
456 }
457
458 static lwb_t *
459 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
460 boolean_t fastwrite)
461 {
462 lwb_t *lwb;
463
464 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
465 lwb->lwb_zilog = zilog;
466 lwb->lwb_blk = *bp;
467 lwb->lwb_fastwrite = fastwrite;
468 lwb->lwb_slog = slog;
469 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
470 lwb->lwb_max_txg = txg;
471 lwb->lwb_zio = NULL;
472 lwb->lwb_tx = NULL;
473 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
474 lwb->lwb_nused = sizeof (zil_chain_t);
475 lwb->lwb_sz = BP_GET_LSIZE(bp);
476 } else {
477 lwb->lwb_nused = 0;
478 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
479 }
480
481 mutex_enter(&zilog->zl_lock);
482 list_insert_tail(&zilog->zl_lwb_list, lwb);
483 mutex_exit(&zilog->zl_lock);
484
485 return (lwb);
486 }
487
488 /*
489 * Called when we create in-memory log transactions so that we know
490 * to cleanup the itxs at the end of spa_sync().
491 */
492 void
493 zilog_dirty(zilog_t *zilog, uint64_t txg)
494 {
495 dsl_pool_t *dp = zilog->zl_dmu_pool;
496 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
497
498 if (ds->ds_is_snapshot)
499 panic("dirtying snapshot!");
500
501 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
502 /* up the hold count until we can be written out */
503 dmu_buf_add_ref(ds->ds_dbuf, zilog);
504 }
505 }
506
507 /*
508 * Determine if the zil is dirty in the specified txg. Callers wanting to
509 * ensure that the dirty state does not change must hold the itxg_lock for
510 * the specified txg. Holding the lock will ensure that the zil cannot be
511 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
512 * state.
513 */
514 boolean_t
515 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
516 {
517 dsl_pool_t *dp = zilog->zl_dmu_pool;
518
519 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
520 return (B_TRUE);
521 return (B_FALSE);
522 }
523
524 /*
525 * Determine if the zil is dirty. The zil is considered dirty if it has
526 * any pending itx records that have not been cleaned by zil_clean().
527 */
528 boolean_t
529 zilog_is_dirty(zilog_t *zilog)
530 {
531 dsl_pool_t *dp = zilog->zl_dmu_pool;
532 int t;
533
534 for (t = 0; t < TXG_SIZE; t++) {
535 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
536 return (B_TRUE);
537 }
538 return (B_FALSE);
539 }
540
541 /*
542 * Create an on-disk intent log.
543 */
544 static lwb_t *
545 zil_create(zilog_t *zilog)
546 {
547 const zil_header_t *zh = zilog->zl_header;
548 lwb_t *lwb = NULL;
549 uint64_t txg = 0;
550 dmu_tx_t *tx = NULL;
551 blkptr_t blk;
552 int error = 0;
553 boolean_t fastwrite = FALSE;
554 boolean_t slog = FALSE;
555
556 /*
557 * Wait for any previous destroy to complete.
558 */
559 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
560
561 ASSERT(zh->zh_claim_txg == 0);
562 ASSERT(zh->zh_replay_seq == 0);
563
564 blk = zh->zh_log;
565
566 /*
567 * Allocate an initial log block if:
568 * - there isn't one already
569 * - the existing block is the wrong endianness
570 */
571 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
572 tx = dmu_tx_create(zilog->zl_os);
573 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
574 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
575 txg = dmu_tx_get_txg(tx);
576
577 if (!BP_IS_HOLE(&blk)) {
578 zio_free_zil(zilog->zl_spa, txg, &blk);
579 BP_ZERO(&blk);
580 }
581
582 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
583 ZIL_MIN_BLKSZ, &slog);
584 fastwrite = TRUE;
585
586 if (error == 0)
587 zil_init_log_chain(zilog, &blk);
588 }
589
590 /*
591 * Allocate a log write buffer (lwb) for the first log block.
592 */
593 if (error == 0)
594 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
595
596 /*
597 * If we just allocated the first log block, commit our transaction
598 * and wait for zil_sync() to stuff the block poiner into zh_log.
599 * (zh is part of the MOS, so we cannot modify it in open context.)
600 */
601 if (tx != NULL) {
602 dmu_tx_commit(tx);
603 txg_wait_synced(zilog->zl_dmu_pool, txg);
604 }
605
606 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
607
608 return (lwb);
609 }
610
611 /*
612 * In one tx, free all log blocks and clear the log header.
613 * If keep_first is set, then we're replaying a log with no content.
614 * We want to keep the first block, however, so that the first
615 * synchronous transaction doesn't require a txg_wait_synced()
616 * in zil_create(). We don't need to txg_wait_synced() here either
617 * when keep_first is set, because both zil_create() and zil_destroy()
618 * will wait for any in-progress destroys to complete.
619 */
620 void
621 zil_destroy(zilog_t *zilog, boolean_t keep_first)
622 {
623 const zil_header_t *zh = zilog->zl_header;
624 lwb_t *lwb;
625 dmu_tx_t *tx;
626 uint64_t txg;
627
628 /*
629 * Wait for any previous destroy to complete.
630 */
631 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
632
633 zilog->zl_old_header = *zh; /* debugging aid */
634
635 if (BP_IS_HOLE(&zh->zh_log))
636 return;
637
638 tx = dmu_tx_create(zilog->zl_os);
639 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
640 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
641 txg = dmu_tx_get_txg(tx);
642
643 mutex_enter(&zilog->zl_lock);
644
645 ASSERT3U(zilog->zl_destroy_txg, <, txg);
646 zilog->zl_destroy_txg = txg;
647 zilog->zl_keep_first = keep_first;
648
649 if (!list_is_empty(&zilog->zl_lwb_list)) {
650 ASSERT(zh->zh_claim_txg == 0);
651 VERIFY(!keep_first);
652 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
653 ASSERT(lwb->lwb_zio == NULL);
654 if (lwb->lwb_fastwrite)
655 metaslab_fastwrite_unmark(zilog->zl_spa,
656 &lwb->lwb_blk);
657 list_remove(&zilog->zl_lwb_list, lwb);
658 if (lwb->lwb_buf != NULL)
659 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
660 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
661 kmem_cache_free(zil_lwb_cache, lwb);
662 }
663 } else if (!keep_first) {
664 zil_destroy_sync(zilog, tx);
665 }
666 mutex_exit(&zilog->zl_lock);
667
668 dmu_tx_commit(tx);
669 }
670
671 void
672 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
673 {
674 ASSERT(list_is_empty(&zilog->zl_lwb_list));
675 (void) zil_parse(zilog, zil_free_log_block,
676 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
677 }
678
679 int
680 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
681 {
682 dmu_tx_t *tx = txarg;
683 uint64_t first_txg = dmu_tx_get_txg(tx);
684 zilog_t *zilog;
685 zil_header_t *zh;
686 objset_t *os;
687 int error;
688
689 error = dmu_objset_own_obj(dp, ds->ds_object,
690 DMU_OST_ANY, B_FALSE, FTAG, &os);
691 if (error != 0) {
692 /*
693 * EBUSY indicates that the objset is inconsistent, in which
694 * case it can not have a ZIL.
695 */
696 if (error != EBUSY) {
697 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
698 (unsigned long long)ds->ds_object, error);
699 }
700
701 return (0);
702 }
703
704 zilog = dmu_objset_zil(os);
705 zh = zil_header_in_syncing_context(zilog);
706
707 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
708 if (!BP_IS_HOLE(&zh->zh_log))
709 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
710 BP_ZERO(&zh->zh_log);
711 dsl_dataset_dirty(dmu_objset_ds(os), tx);
712 dmu_objset_disown(os, FTAG);
713 return (0);
714 }
715
716 /*
717 * Claim all log blocks if we haven't already done so, and remember
718 * the highest claimed sequence number. This ensures that if we can
719 * read only part of the log now (e.g. due to a missing device),
720 * but we can read the entire log later, we will not try to replay
721 * or destroy beyond the last block we successfully claimed.
722 */
723 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
724 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
725 (void) zil_parse(zilog, zil_claim_log_block,
726 zil_claim_log_record, tx, first_txg);
727 zh->zh_claim_txg = first_txg;
728 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
729 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
730 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
731 zh->zh_flags |= ZIL_REPLAY_NEEDED;
732 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
733 dsl_dataset_dirty(dmu_objset_ds(os), tx);
734 }
735
736 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
737 dmu_objset_disown(os, FTAG);
738 return (0);
739 }
740
741 /*
742 * Check the log by walking the log chain.
743 * Checksum errors are ok as they indicate the end of the chain.
744 * Any other error (no device or read failure) returns an error.
745 */
746 /* ARGSUSED */
747 int
748 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
749 {
750 zilog_t *zilog;
751 objset_t *os;
752 blkptr_t *bp;
753 int error;
754
755 ASSERT(tx == NULL);
756
757 error = dmu_objset_from_ds(ds, &os);
758 if (error != 0) {
759 cmn_err(CE_WARN, "can't open objset %llu, error %d",
760 (unsigned long long)ds->ds_object, error);
761 return (0);
762 }
763
764 zilog = dmu_objset_zil(os);
765 bp = (blkptr_t *)&zilog->zl_header->zh_log;
766
767 /*
768 * Check the first block and determine if it's on a log device
769 * which may have been removed or faulted prior to loading this
770 * pool. If so, there's no point in checking the rest of the log
771 * as its content should have already been synced to the pool.
772 */
773 if (!BP_IS_HOLE(bp)) {
774 vdev_t *vd;
775 boolean_t valid = B_TRUE;
776
777 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
778 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
779 if (vd->vdev_islog && vdev_is_dead(vd))
780 valid = vdev_log_state_valid(vd);
781 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
782
783 if (!valid)
784 return (0);
785 }
786
787 /*
788 * Because tx == NULL, zil_claim_log_block() will not actually claim
789 * any blocks, but just determine whether it is possible to do so.
790 * In addition to checking the log chain, zil_claim_log_block()
791 * will invoke zio_claim() with a done func of spa_claim_notify(),
792 * which will update spa_max_claim_txg. See spa_load() for details.
793 */
794 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
795 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
796
797 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
798 }
799
800 static int
801 zil_vdev_compare(const void *x1, const void *x2)
802 {
803 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
804 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
805
806 return (AVL_CMP(v1, v2));
807 }
808
809 void
810 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
811 {
812 avl_tree_t *t = &zilog->zl_vdev_tree;
813 avl_index_t where;
814 zil_vdev_node_t *zv, zvsearch;
815 int ndvas = BP_GET_NDVAS(bp);
816 int i;
817
818 if (zfs_nocacheflush)
819 return;
820
821 ASSERT(zilog->zl_writer);
822
823 /*
824 * Even though we're zl_writer, we still need a lock because the
825 * zl_get_data() callbacks may have dmu_sync() done callbacks
826 * that will run concurrently.
827 */
828 mutex_enter(&zilog->zl_vdev_lock);
829 for (i = 0; i < ndvas; i++) {
830 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
831 if (avl_find(t, &zvsearch, &where) == NULL) {
832 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
833 zv->zv_vdev = zvsearch.zv_vdev;
834 avl_insert(t, zv, where);
835 }
836 }
837 mutex_exit(&zilog->zl_vdev_lock);
838 }
839
840 static void
841 zil_flush_vdevs(zilog_t *zilog)
842 {
843 spa_t *spa = zilog->zl_spa;
844 avl_tree_t *t = &zilog->zl_vdev_tree;
845 void *cookie = NULL;
846 zil_vdev_node_t *zv;
847 zio_t *zio;
848
849 ASSERT(zilog->zl_writer);
850
851 /*
852 * We don't need zl_vdev_lock here because we're the zl_writer,
853 * and all zl_get_data() callbacks are done.
854 */
855 if (avl_numnodes(t) == 0)
856 return;
857
858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859
860 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
861
862 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
863 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
864 if (vd != NULL)
865 zio_flush(zio, vd);
866 kmem_free(zv, sizeof (*zv));
867 }
868
869 /*
870 * Wait for all the flushes to complete. Not all devices actually
871 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
872 */
873 (void) zio_wait(zio);
874
875 spa_config_exit(spa, SCL_STATE, FTAG);
876 }
877
878 /*
879 * Function called when a log block write completes
880 */
881 static void
882 zil_lwb_write_done(zio_t *zio)
883 {
884 lwb_t *lwb = zio->io_private;
885 zilog_t *zilog = lwb->lwb_zilog;
886 dmu_tx_t *tx = lwb->lwb_tx;
887
888 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
889 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
890 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
891 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
892 ASSERT(!BP_IS_GANG(zio->io_bp));
893 ASSERT(!BP_IS_HOLE(zio->io_bp));
894 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
895
896 /*
897 * Ensure the lwb buffer pointer is cleared before releasing
898 * the txg. If we have had an allocation failure and
899 * the txg is waiting to sync then we want want zil_sync()
900 * to remove the lwb so that it's not picked up as the next new
901 * one in zil_commit_writer(). zil_sync() will only remove
902 * the lwb if lwb_buf is null.
903 */
904 abd_put(zio->io_abd);
905 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
906 mutex_enter(&zilog->zl_lock);
907 lwb->lwb_zio = NULL;
908 lwb->lwb_fastwrite = FALSE;
909 lwb->lwb_buf = NULL;
910 lwb->lwb_tx = NULL;
911 mutex_exit(&zilog->zl_lock);
912
913 /*
914 * Now that we've written this log block, we have a stable pointer
915 * to the next block in the chain, so it's OK to let the txg in
916 * which we allocated the next block sync.
917 */
918 dmu_tx_commit(tx);
919 }
920
921 /*
922 * Initialize the io for a log block.
923 */
924 static void
925 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
926 {
927 zbookmark_phys_t zb;
928 zio_priority_t prio;
929
930 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
931 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
932 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
933
934 if (zilog->zl_root_zio == NULL) {
935 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
936 ZIO_FLAG_CANFAIL);
937 }
938
939 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
940 mutex_enter(&zilog->zl_lock);
941 if (lwb->lwb_zio == NULL) {
942 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
943 BP_GET_LSIZE(&lwb->lwb_blk));
944 if (!lwb->lwb_fastwrite) {
945 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
946 lwb->lwb_fastwrite = 1;
947 }
948 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
949 prio = ZIO_PRIORITY_SYNC_WRITE;
950 else
951 prio = ZIO_PRIORITY_ASYNC_WRITE;
952 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
953 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
954 zil_lwb_write_done, lwb, prio,
955 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
956 ZIO_FLAG_FASTWRITE, &zb);
957 }
958 mutex_exit(&zilog->zl_lock);
959 }
960
961 /*
962 * Define a limited set of intent log block sizes.
963 *
964 * These must be a multiple of 4KB. Note only the amount used (again
965 * aligned to 4KB) actually gets written. However, we can't always just
966 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
967 */
968 uint64_t zil_block_buckets[] = {
969 4096, /* non TX_WRITE */
970 8192+4096, /* data base */
971 32*1024 + 4096, /* NFS writes */
972 UINT64_MAX
973 };
974
975 /*
976 * Start a log block write and advance to the next log block.
977 * Calls are serialized.
978 */
979 static lwb_t *
980 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
981 {
982 lwb_t *nlwb = NULL;
983 zil_chain_t *zilc;
984 spa_t *spa = zilog->zl_spa;
985 blkptr_t *bp;
986 dmu_tx_t *tx;
987 uint64_t txg;
988 uint64_t zil_blksz, wsz;
989 int i, error;
990 boolean_t slog;
991
992 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
993 zilc = (zil_chain_t *)lwb->lwb_buf;
994 bp = &zilc->zc_next_blk;
995 } else {
996 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
997 bp = &zilc->zc_next_blk;
998 }
999
1000 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1001
1002 /*
1003 * Allocate the next block and save its address in this block
1004 * before writing it in order to establish the log chain.
1005 * Note that if the allocation of nlwb synced before we wrote
1006 * the block that points at it (lwb), we'd leak it if we crashed.
1007 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1008 * We dirty the dataset to ensure that zil_sync() will be called
1009 * to clean up in the event of allocation failure or I/O failure.
1010 */
1011 tx = dmu_tx_create(zilog->zl_os);
1012 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
1013 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1014 txg = dmu_tx_get_txg(tx);
1015
1016 lwb->lwb_tx = tx;
1017
1018 /*
1019 * Log blocks are pre-allocated. Here we select the size of the next
1020 * block, based on size used in the last block.
1021 * - first find the smallest bucket that will fit the block from a
1022 * limited set of block sizes. This is because it's faster to write
1023 * blocks allocated from the same metaslab as they are adjacent or
1024 * close.
1025 * - next find the maximum from the new suggested size and an array of
1026 * previous sizes. This lessens a picket fence effect of wrongly
1027 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1028 * requests.
1029 *
1030 * Note we only write what is used, but we can't just allocate
1031 * the maximum block size because we can exhaust the available
1032 * pool log space.
1033 */
1034 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1035 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1036 continue;
1037 zil_blksz = zil_block_buckets[i];
1038 if (zil_blksz == UINT64_MAX)
1039 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1040 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1041 for (i = 0; i < ZIL_PREV_BLKS; i++)
1042 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1043 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1044
1045 BP_ZERO(bp);
1046 error = zio_alloc_zil(spa, txg, bp, zil_blksz, &slog);
1047 if (slog) {
1048 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1049 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1050 } else {
1051 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1052 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1053 }
1054 if (error == 0) {
1055 ASSERT3U(bp->blk_birth, ==, txg);
1056 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1057 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1058
1059 /*
1060 * Allocate a new log write buffer (lwb).
1061 */
1062 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1063
1064 /* Record the block for later vdev flushing */
1065 zil_add_block(zilog, &lwb->lwb_blk);
1066 }
1067
1068 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1069 /* For Slim ZIL only write what is used. */
1070 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1071 ASSERT3U(wsz, <=, lwb->lwb_sz);
1072 zio_shrink(lwb->lwb_zio, wsz);
1073
1074 } else {
1075 wsz = lwb->lwb_sz;
1076 }
1077
1078 zilc->zc_pad = 0;
1079 zilc->zc_nused = lwb->lwb_nused;
1080 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1081
1082 /*
1083 * clear unused data for security
1084 */
1085 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1086
1087 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1088
1089 /*
1090 * If there was an allocation failure then nlwb will be null which
1091 * forces a txg_wait_synced().
1092 */
1093 return (nlwb);
1094 }
1095
1096 static lwb_t *
1097 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1098 {
1099 lr_t *lrcb, *lrc;
1100 lr_write_t *lrwb, *lrw;
1101 char *lr_buf;
1102 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1103
1104 if (lwb == NULL)
1105 return (NULL);
1106
1107 ASSERT(lwb->lwb_buf != NULL);
1108
1109 lrc = &itx->itx_lr; /* Common log record inside itx. */
1110 lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
1111 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1112 dlen = P2ROUNDUP_TYPED(
1113 lrw->lr_length, sizeof (uint64_t), uint64_t);
1114 } else {
1115 dlen = 0;
1116 }
1117 reclen = lrc->lrc_reclen;
1118 zilog->zl_cur_used += (reclen + dlen);
1119 txg = lrc->lrc_txg;
1120
1121 zil_lwb_write_init(zilog, lwb);
1122
1123 cont:
1124 /*
1125 * If this record won't fit in the current log block, start a new one.
1126 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1127 */
1128 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1129 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1130 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1131 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1132 lwb = zil_lwb_write_start(zilog, lwb);
1133 if (lwb == NULL)
1134 return (NULL);
1135 zil_lwb_write_init(zilog, lwb);
1136 ASSERT(LWB_EMPTY(lwb));
1137 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1138 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1139 }
1140
1141 dnow = MIN(dlen, lwb_sp - reclen);
1142 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1143 bcopy(lrc, lr_buf, reclen);
1144 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1145 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1146
1147 ZIL_STAT_BUMP(zil_itx_count);
1148
1149 /*
1150 * If it's a write, fetch the data or get its blkptr as appropriate.
1151 */
1152 if (lrc->lrc_txtype == TX_WRITE) {
1153 if (txg > spa_freeze_txg(zilog->zl_spa))
1154 txg_wait_synced(zilog->zl_dmu_pool, txg);
1155 if (itx->itx_wr_state == WR_COPIED) {
1156 ZIL_STAT_BUMP(zil_itx_copied_count);
1157 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1158 } else {
1159 char *dbuf;
1160 int error;
1161
1162 if (itx->itx_wr_state == WR_NEED_COPY) {
1163 dbuf = lr_buf + reclen;
1164 lrcb->lrc_reclen += dnow;
1165 if (lrwb->lr_length > dnow)
1166 lrwb->lr_length = dnow;
1167 lrw->lr_offset += dnow;
1168 lrw->lr_length -= dnow;
1169 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1170 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1171 } else {
1172 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1173 dbuf = NULL;
1174 ZIL_STAT_BUMP(zil_itx_indirect_count);
1175 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1176 lrw->lr_length);
1177 }
1178 error = zilog->zl_get_data(
1179 itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1180 if (error == EIO) {
1181 txg_wait_synced(zilog->zl_dmu_pool, txg);
1182 return (lwb);
1183 }
1184 if (error != 0) {
1185 ASSERT(error == ENOENT || error == EEXIST ||
1186 error == EALREADY);
1187 return (lwb);
1188 }
1189 }
1190 }
1191
1192 /*
1193 * We're actually making an entry, so update lrc_seq to be the
1194 * log record sequence number. Note that this is generally not
1195 * equal to the itx sequence number because not all transactions
1196 * are synchronous, and sometimes spa_sync() gets there first.
1197 */
1198 lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1199 lwb->lwb_nused += reclen + dnow;
1200 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1201 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1202 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1203
1204 dlen -= dnow;
1205 if (dlen > 0) {
1206 zilog->zl_cur_used += reclen;
1207 goto cont;
1208 }
1209
1210 return (lwb);
1211 }
1212
1213 itx_t *
1214 zil_itx_create(uint64_t txtype, size_t lrsize)
1215 {
1216 size_t itxsize;
1217 itx_t *itx;
1218
1219 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1220 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1221
1222 itx = zio_data_buf_alloc(itxsize);
1223 itx->itx_lr.lrc_txtype = txtype;
1224 itx->itx_lr.lrc_reclen = lrsize;
1225 itx->itx_lr.lrc_seq = 0; /* defensive */
1226 itx->itx_sync = B_TRUE; /* default is synchronous */
1227 itx->itx_callback = NULL;
1228 itx->itx_callback_data = NULL;
1229 itx->itx_size = itxsize;
1230
1231 return (itx);
1232 }
1233
1234 void
1235 zil_itx_destroy(itx_t *itx)
1236 {
1237 zio_data_buf_free(itx, itx->itx_size);
1238 }
1239
1240 /*
1241 * Free up the sync and async itxs. The itxs_t has already been detached
1242 * so no locks are needed.
1243 */
1244 static void
1245 zil_itxg_clean(itxs_t *itxs)
1246 {
1247 itx_t *itx;
1248 list_t *list;
1249 avl_tree_t *t;
1250 void *cookie;
1251 itx_async_node_t *ian;
1252
1253 list = &itxs->i_sync_list;
1254 while ((itx = list_head(list)) != NULL) {
1255 if (itx->itx_callback != NULL)
1256 itx->itx_callback(itx->itx_callback_data);
1257 list_remove(list, itx);
1258 zil_itx_destroy(itx);
1259 }
1260
1261 cookie = NULL;
1262 t = &itxs->i_async_tree;
1263 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1264 list = &ian->ia_list;
1265 while ((itx = list_head(list)) != NULL) {
1266 if (itx->itx_callback != NULL)
1267 itx->itx_callback(itx->itx_callback_data);
1268 list_remove(list, itx);
1269 zil_itx_destroy(itx);
1270 }
1271 list_destroy(list);
1272 kmem_free(ian, sizeof (itx_async_node_t));
1273 }
1274 avl_destroy(t);
1275
1276 kmem_free(itxs, sizeof (itxs_t));
1277 }
1278
1279 static int
1280 zil_aitx_compare(const void *x1, const void *x2)
1281 {
1282 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1283 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1284
1285 return (AVL_CMP(o1, o2));
1286 }
1287
1288 /*
1289 * Remove all async itx with the given oid.
1290 */
1291 static void
1292 zil_remove_async(zilog_t *zilog, uint64_t oid)
1293 {
1294 uint64_t otxg, txg;
1295 itx_async_node_t *ian;
1296 avl_tree_t *t;
1297 avl_index_t where;
1298 list_t clean_list;
1299 itx_t *itx;
1300
1301 ASSERT(oid != 0);
1302 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1303
1304 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1305 otxg = ZILTEST_TXG;
1306 else
1307 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1308
1309 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1310 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1311
1312 mutex_enter(&itxg->itxg_lock);
1313 if (itxg->itxg_txg != txg) {
1314 mutex_exit(&itxg->itxg_lock);
1315 continue;
1316 }
1317
1318 /*
1319 * Locate the object node and append its list.
1320 */
1321 t = &itxg->itxg_itxs->i_async_tree;
1322 ian = avl_find(t, &oid, &where);
1323 if (ian != NULL)
1324 list_move_tail(&clean_list, &ian->ia_list);
1325 mutex_exit(&itxg->itxg_lock);
1326 }
1327 while ((itx = list_head(&clean_list)) != NULL) {
1328 if (itx->itx_callback != NULL)
1329 itx->itx_callback(itx->itx_callback_data);
1330 list_remove(&clean_list, itx);
1331 zil_itx_destroy(itx);
1332 }
1333 list_destroy(&clean_list);
1334 }
1335
1336 void
1337 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1338 {
1339 uint64_t txg;
1340 itxg_t *itxg;
1341 itxs_t *itxs, *clean = NULL;
1342
1343 /*
1344 * Object ids can be re-instantiated in the next txg so
1345 * remove any async transactions to avoid future leaks.
1346 * This can happen if a fsync occurs on the re-instantiated
1347 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1348 * the new file data and flushes a write record for the old object.
1349 */
1350 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1351 zil_remove_async(zilog, itx->itx_oid);
1352
1353 /*
1354 * Ensure the data of a renamed file is committed before the rename.
1355 */
1356 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1357 zil_async_to_sync(zilog, itx->itx_oid);
1358
1359 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1360 txg = ZILTEST_TXG;
1361 else
1362 txg = dmu_tx_get_txg(tx);
1363
1364 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1365 mutex_enter(&itxg->itxg_lock);
1366 itxs = itxg->itxg_itxs;
1367 if (itxg->itxg_txg != txg) {
1368 if (itxs != NULL) {
1369 /*
1370 * The zil_clean callback hasn't got around to cleaning
1371 * this itxg. Save the itxs for release below.
1372 * This should be rare.
1373 */
1374 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1375 "txg %llu", itxg->itxg_txg);
1376 clean = itxg->itxg_itxs;
1377 }
1378 itxg->itxg_txg = txg;
1379 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1380 KM_SLEEP);
1381
1382 list_create(&itxs->i_sync_list, sizeof (itx_t),
1383 offsetof(itx_t, itx_node));
1384 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1385 sizeof (itx_async_node_t),
1386 offsetof(itx_async_node_t, ia_node));
1387 }
1388 if (itx->itx_sync) {
1389 list_insert_tail(&itxs->i_sync_list, itx);
1390 } else {
1391 avl_tree_t *t = &itxs->i_async_tree;
1392 uint64_t foid =
1393 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1394 itx_async_node_t *ian;
1395 avl_index_t where;
1396
1397 ian = avl_find(t, &foid, &where);
1398 if (ian == NULL) {
1399 ian = kmem_alloc(sizeof (itx_async_node_t),
1400 KM_SLEEP);
1401 list_create(&ian->ia_list, sizeof (itx_t),
1402 offsetof(itx_t, itx_node));
1403 ian->ia_foid = foid;
1404 avl_insert(t, ian, where);
1405 }
1406 list_insert_tail(&ian->ia_list, itx);
1407 }
1408
1409 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1410 zilog_dirty(zilog, txg);
1411 mutex_exit(&itxg->itxg_lock);
1412
1413 /* Release the old itxs now we've dropped the lock */
1414 if (clean != NULL)
1415 zil_itxg_clean(clean);
1416 }
1417
1418 /*
1419 * If there are any in-memory intent log transactions which have now been
1420 * synced then start up a taskq to free them. We should only do this after we
1421 * have written out the uberblocks (i.e. txg has been comitted) so that
1422 * don't inadvertently clean out in-memory log records that would be required
1423 * by zil_commit().
1424 */
1425 void
1426 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1427 {
1428 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1429 itxs_t *clean_me;
1430
1431 mutex_enter(&itxg->itxg_lock);
1432 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1433 mutex_exit(&itxg->itxg_lock);
1434 return;
1435 }
1436 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1437 ASSERT(itxg->itxg_txg != 0);
1438 ASSERT(zilog->zl_clean_taskq != NULL);
1439 clean_me = itxg->itxg_itxs;
1440 itxg->itxg_itxs = NULL;
1441 itxg->itxg_txg = 0;
1442 mutex_exit(&itxg->itxg_lock);
1443 /*
1444 * Preferably start a task queue to free up the old itxs but
1445 * if taskq_dispatch can't allocate resources to do that then
1446 * free it in-line. This should be rare. Note, using TQ_SLEEP
1447 * created a bad performance problem.
1448 */
1449 if (taskq_dispatch(zilog->zl_clean_taskq,
1450 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1451 zil_itxg_clean(clean_me);
1452 }
1453
1454 /*
1455 * Get the list of itxs to commit into zl_itx_commit_list.
1456 */
1457 static void
1458 zil_get_commit_list(zilog_t *zilog)
1459 {
1460 uint64_t otxg, txg;
1461 list_t *commit_list = &zilog->zl_itx_commit_list;
1462
1463 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1464 otxg = ZILTEST_TXG;
1465 else
1466 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1467
1468 /*
1469 * This is inherently racy, since there is nothing to prevent
1470 * the last synced txg from changing. That's okay since we'll
1471 * only commit things in the future.
1472 */
1473 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1474 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1475
1476 mutex_enter(&itxg->itxg_lock);
1477 if (itxg->itxg_txg != txg) {
1478 mutex_exit(&itxg->itxg_lock);
1479 continue;
1480 }
1481
1482 /*
1483 * If we're adding itx records to the zl_itx_commit_list,
1484 * then the zil better be dirty in this "txg". We can assert
1485 * that here since we're holding the itxg_lock which will
1486 * prevent spa_sync from cleaning it. Once we add the itxs
1487 * to the zl_itx_commit_list we must commit it to disk even
1488 * if it's unnecessary (i.e. the txg was synced).
1489 */
1490 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1491 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1492 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1493
1494 mutex_exit(&itxg->itxg_lock);
1495 }
1496 }
1497
1498 /*
1499 * Move the async itxs for a specified object to commit into sync lists.
1500 */
1501 static void
1502 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1503 {
1504 uint64_t otxg, txg;
1505 itx_async_node_t *ian;
1506 avl_tree_t *t;
1507 avl_index_t where;
1508
1509 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1510 otxg = ZILTEST_TXG;
1511 else
1512 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1513
1514 /*
1515 * This is inherently racy, since there is nothing to prevent
1516 * the last synced txg from changing.
1517 */
1518 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1519 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1520
1521 mutex_enter(&itxg->itxg_lock);
1522 if (itxg->itxg_txg != txg) {
1523 mutex_exit(&itxg->itxg_lock);
1524 continue;
1525 }
1526
1527 /*
1528 * If a foid is specified then find that node and append its
1529 * list. Otherwise walk the tree appending all the lists
1530 * to the sync list. We add to the end rather than the
1531 * beginning to ensure the create has happened.
1532 */
1533 t = &itxg->itxg_itxs->i_async_tree;
1534 if (foid != 0) {
1535 ian = avl_find(t, &foid, &where);
1536 if (ian != NULL) {
1537 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1538 &ian->ia_list);
1539 }
1540 } else {
1541 void *cookie = NULL;
1542
1543 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1544 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1545 &ian->ia_list);
1546 list_destroy(&ian->ia_list);
1547 kmem_free(ian, sizeof (itx_async_node_t));
1548 }
1549 }
1550 mutex_exit(&itxg->itxg_lock);
1551 }
1552 }
1553
1554 static void
1555 zil_commit_writer(zilog_t *zilog)
1556 {
1557 uint64_t txg;
1558 itx_t *itx;
1559 lwb_t *lwb;
1560 spa_t *spa = zilog->zl_spa;
1561 int error = 0;
1562
1563 ASSERT(zilog->zl_root_zio == NULL);
1564
1565 mutex_exit(&zilog->zl_lock);
1566
1567 zil_get_commit_list(zilog);
1568
1569 /*
1570 * Return if there's nothing to commit before we dirty the fs by
1571 * calling zil_create().
1572 */
1573 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1574 mutex_enter(&zilog->zl_lock);
1575 return;
1576 }
1577
1578 if (zilog->zl_suspend) {
1579 lwb = NULL;
1580 } else {
1581 lwb = list_tail(&zilog->zl_lwb_list);
1582 if (lwb == NULL)
1583 lwb = zil_create(zilog);
1584 }
1585
1586 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1587 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1588 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1589 txg = itx->itx_lr.lrc_txg;
1590 ASSERT3U(txg, !=, 0);
1591
1592 /*
1593 * This is inherently racy and may result in us writing
1594 * out a log block for a txg that was just synced. This is
1595 * ok since we'll end cleaning up that log block the next
1596 * time we call zil_sync().
1597 */
1598 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1599 lwb = zil_lwb_commit(zilog, itx, lwb);
1600 }
1601 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1602
1603 /* write the last block out */
1604 if (lwb != NULL && lwb->lwb_zio != NULL)
1605 lwb = zil_lwb_write_start(zilog, lwb);
1606
1607 zilog->zl_cur_used = 0;
1608
1609 /*
1610 * Wait if necessary for the log blocks to be on stable storage.
1611 */
1612 if (zilog->zl_root_zio) {
1613 error = zio_wait(zilog->zl_root_zio);
1614 zilog->zl_root_zio = NULL;
1615 zil_flush_vdevs(zilog);
1616 }
1617
1618 if (error || lwb == NULL)
1619 txg_wait_synced(zilog->zl_dmu_pool, 0);
1620
1621 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1622 txg = itx->itx_lr.lrc_txg;
1623 ASSERT(txg);
1624
1625 if (itx->itx_callback != NULL)
1626 itx->itx_callback(itx->itx_callback_data);
1627 list_remove(&zilog->zl_itx_commit_list, itx);
1628 zil_itx_destroy(itx);
1629 }
1630
1631 mutex_enter(&zilog->zl_lock);
1632
1633 /*
1634 * Remember the highest committed log sequence number for ztest.
1635 * We only update this value when all the log writes succeeded,
1636 * because ztest wants to ASSERT that it got the whole log chain.
1637 */
1638 if (error == 0 && lwb != NULL)
1639 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1640 }
1641
1642 /*
1643 * Commit zfs transactions to stable storage.
1644 * If foid is 0 push out all transactions, otherwise push only those
1645 * for that object or might reference that object.
1646 *
1647 * itxs are committed in batches. In a heavily stressed zil there will be
1648 * a commit writer thread who is writing out a bunch of itxs to the log
1649 * for a set of committing threads (cthreads) in the same batch as the writer.
1650 * Those cthreads are all waiting on the same cv for that batch.
1651 *
1652 * There will also be a different and growing batch of threads that are
1653 * waiting to commit (qthreads). When the committing batch completes
1654 * a transition occurs such that the cthreads exit and the qthreads become
1655 * cthreads. One of the new cthreads becomes the writer thread for the
1656 * batch. Any new threads arriving become new qthreads.
1657 *
1658 * Only 2 condition variables are needed and there's no transition
1659 * between the two cvs needed. They just flip-flop between qthreads
1660 * and cthreads.
1661 *
1662 * Using this scheme we can efficiently wakeup up only those threads
1663 * that have been committed.
1664 */
1665 void
1666 zil_commit(zilog_t *zilog, uint64_t foid)
1667 {
1668 uint64_t mybatch;
1669
1670 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1671 return;
1672
1673 ZIL_STAT_BUMP(zil_commit_count);
1674
1675 /* move the async itxs for the foid to the sync queues */
1676 zil_async_to_sync(zilog, foid);
1677
1678 mutex_enter(&zilog->zl_lock);
1679 mybatch = zilog->zl_next_batch;
1680 while (zilog->zl_writer) {
1681 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1682 if (mybatch <= zilog->zl_com_batch) {
1683 mutex_exit(&zilog->zl_lock);
1684 return;
1685 }
1686 }
1687
1688 zilog->zl_next_batch++;
1689 zilog->zl_writer = B_TRUE;
1690 ZIL_STAT_BUMP(zil_commit_writer_count);
1691 zil_commit_writer(zilog);
1692 zilog->zl_com_batch = mybatch;
1693 zilog->zl_writer = B_FALSE;
1694
1695 /* wake up one thread to become the next writer */
1696 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1697
1698 /* wake up all threads waiting for this batch to be committed */
1699 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1700
1701 mutex_exit(&zilog->zl_lock);
1702 }
1703
1704 /*
1705 * Called in syncing context to free committed log blocks and update log header.
1706 */
1707 void
1708 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1709 {
1710 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1711 uint64_t txg = dmu_tx_get_txg(tx);
1712 spa_t *spa = zilog->zl_spa;
1713 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1714 lwb_t *lwb;
1715
1716 /*
1717 * We don't zero out zl_destroy_txg, so make sure we don't try
1718 * to destroy it twice.
1719 */
1720 if (spa_sync_pass(spa) != 1)
1721 return;
1722
1723 mutex_enter(&zilog->zl_lock);
1724
1725 ASSERT(zilog->zl_stop_sync == 0);
1726
1727 if (*replayed_seq != 0) {
1728 ASSERT(zh->zh_replay_seq < *replayed_seq);
1729 zh->zh_replay_seq = *replayed_seq;
1730 *replayed_seq = 0;
1731 }
1732
1733 if (zilog->zl_destroy_txg == txg) {
1734 blkptr_t blk = zh->zh_log;
1735
1736 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1737
1738 bzero(zh, sizeof (zil_header_t));
1739 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1740
1741 if (zilog->zl_keep_first) {
1742 /*
1743 * If this block was part of log chain that couldn't
1744 * be claimed because a device was missing during
1745 * zil_claim(), but that device later returns,
1746 * then this block could erroneously appear valid.
1747 * To guard against this, assign a new GUID to the new
1748 * log chain so it doesn't matter what blk points to.
1749 */
1750 zil_init_log_chain(zilog, &blk);
1751 zh->zh_log = blk;
1752 }
1753 }
1754
1755 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1756 zh->zh_log = lwb->lwb_blk;
1757 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1758 break;
1759
1760 ASSERT(lwb->lwb_zio == NULL);
1761
1762 list_remove(&zilog->zl_lwb_list, lwb);
1763 zio_free_zil(spa, txg, &lwb->lwb_blk);
1764 kmem_cache_free(zil_lwb_cache, lwb);
1765
1766 /*
1767 * If we don't have anything left in the lwb list then
1768 * we've had an allocation failure and we need to zero
1769 * out the zil_header blkptr so that we don't end
1770 * up freeing the same block twice.
1771 */
1772 if (list_head(&zilog->zl_lwb_list) == NULL)
1773 BP_ZERO(&zh->zh_log);
1774 }
1775
1776 /*
1777 * Remove fastwrite on any blocks that have been pre-allocated for
1778 * the next commit. This prevents fastwrite counter pollution by
1779 * unused, long-lived LWBs.
1780 */
1781 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1782 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1783 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1784 lwb->lwb_fastwrite = 0;
1785 }
1786 }
1787
1788 mutex_exit(&zilog->zl_lock);
1789 }
1790
1791 void
1792 zil_init(void)
1793 {
1794 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1795 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1796
1797 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1798 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1799 KSTAT_FLAG_VIRTUAL);
1800
1801 if (zil_ksp != NULL) {
1802 zil_ksp->ks_data = &zil_stats;
1803 kstat_install(zil_ksp);
1804 }
1805 }
1806
1807 void
1808 zil_fini(void)
1809 {
1810 kmem_cache_destroy(zil_lwb_cache);
1811
1812 if (zil_ksp != NULL) {
1813 kstat_delete(zil_ksp);
1814 zil_ksp = NULL;
1815 }
1816 }
1817
1818 void
1819 zil_set_sync(zilog_t *zilog, uint64_t sync)
1820 {
1821 zilog->zl_sync = sync;
1822 }
1823
1824 void
1825 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1826 {
1827 zilog->zl_logbias = logbias;
1828 }
1829
1830 zilog_t *
1831 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1832 {
1833 zilog_t *zilog;
1834 int i;
1835
1836 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1837
1838 zilog->zl_header = zh_phys;
1839 zilog->zl_os = os;
1840 zilog->zl_spa = dmu_objset_spa(os);
1841 zilog->zl_dmu_pool = dmu_objset_pool(os);
1842 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1843 zilog->zl_logbias = dmu_objset_logbias(os);
1844 zilog->zl_sync = dmu_objset_syncprop(os);
1845 zilog->zl_next_batch = 1;
1846
1847 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1848
1849 for (i = 0; i < TXG_SIZE; i++) {
1850 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1851 MUTEX_DEFAULT, NULL);
1852 }
1853
1854 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1855 offsetof(lwb_t, lwb_node));
1856
1857 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1858 offsetof(itx_t, itx_node));
1859
1860 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1861
1862 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1863 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1864
1865 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1866 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1867 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1868 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1869
1870 return (zilog);
1871 }
1872
1873 void
1874 zil_free(zilog_t *zilog)
1875 {
1876 int i;
1877
1878 zilog->zl_stop_sync = 1;
1879
1880 ASSERT0(zilog->zl_suspend);
1881 ASSERT0(zilog->zl_suspending);
1882
1883 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1884 list_destroy(&zilog->zl_lwb_list);
1885
1886 avl_destroy(&zilog->zl_vdev_tree);
1887 mutex_destroy(&zilog->zl_vdev_lock);
1888
1889 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1890 list_destroy(&zilog->zl_itx_commit_list);
1891
1892 for (i = 0; i < TXG_SIZE; i++) {
1893 /*
1894 * It's possible for an itx to be generated that doesn't dirty
1895 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1896 * callback to remove the entry. We remove those here.
1897 *
1898 * Also free up the ziltest itxs.
1899 */
1900 if (zilog->zl_itxg[i].itxg_itxs)
1901 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1902 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1903 }
1904
1905 mutex_destroy(&zilog->zl_lock);
1906
1907 cv_destroy(&zilog->zl_cv_writer);
1908 cv_destroy(&zilog->zl_cv_suspend);
1909 cv_destroy(&zilog->zl_cv_batch[0]);
1910 cv_destroy(&zilog->zl_cv_batch[1]);
1911
1912 kmem_free(zilog, sizeof (zilog_t));
1913 }
1914
1915 /*
1916 * Open an intent log.
1917 */
1918 zilog_t *
1919 zil_open(objset_t *os, zil_get_data_t *get_data)
1920 {
1921 zilog_t *zilog = dmu_objset_zil(os);
1922
1923 ASSERT(zilog->zl_clean_taskq == NULL);
1924 ASSERT(zilog->zl_get_data == NULL);
1925 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1926
1927 zilog->zl_get_data = get_data;
1928 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, defclsyspri,
1929 2, 2, TASKQ_PREPOPULATE);
1930
1931 return (zilog);
1932 }
1933
1934 /*
1935 * Close an intent log.
1936 */
1937 void
1938 zil_close(zilog_t *zilog)
1939 {
1940 lwb_t *lwb;
1941 uint64_t txg = 0;
1942
1943 zil_commit(zilog, 0); /* commit all itx */
1944
1945 /*
1946 * The lwb_max_txg for the stubby lwb will reflect the last activity
1947 * for the zil. After a txg_wait_synced() on the txg we know all the
1948 * callbacks have occurred that may clean the zil. Only then can we
1949 * destroy the zl_clean_taskq.
1950 */
1951 mutex_enter(&zilog->zl_lock);
1952 lwb = list_tail(&zilog->zl_lwb_list);
1953 if (lwb != NULL)
1954 txg = lwb->lwb_max_txg;
1955 mutex_exit(&zilog->zl_lock);
1956 if (txg)
1957 txg_wait_synced(zilog->zl_dmu_pool, txg);
1958
1959 if (zilog_is_dirty(zilog))
1960 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1961 if (txg < spa_freeze_txg(zilog->zl_spa))
1962 VERIFY(!zilog_is_dirty(zilog));
1963
1964 taskq_destroy(zilog->zl_clean_taskq);
1965 zilog->zl_clean_taskq = NULL;
1966 zilog->zl_get_data = NULL;
1967
1968 /*
1969 * We should have only one LWB left on the list; remove it now.
1970 */
1971 mutex_enter(&zilog->zl_lock);
1972 lwb = list_head(&zilog->zl_lwb_list);
1973 if (lwb != NULL) {
1974 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1975 ASSERT(lwb->lwb_zio == NULL);
1976 if (lwb->lwb_fastwrite)
1977 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1978 list_remove(&zilog->zl_lwb_list, lwb);
1979 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1980 kmem_cache_free(zil_lwb_cache, lwb);
1981 }
1982 mutex_exit(&zilog->zl_lock);
1983 }
1984
1985 static char *suspend_tag = "zil suspending";
1986
1987 /*
1988 * Suspend an intent log. While in suspended mode, we still honor
1989 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1990 * On old version pools, we suspend the log briefly when taking a
1991 * snapshot so that it will have an empty intent log.
1992 *
1993 * Long holds are not really intended to be used the way we do here --
1994 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1995 * could fail. Therefore we take pains to only put a long hold if it is
1996 * actually necessary. Fortunately, it will only be necessary if the
1997 * objset is currently mounted (or the ZVOL equivalent). In that case it
1998 * will already have a long hold, so we are not really making things any worse.
1999 *
2000 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2001 * zvol_state_t), and use their mechanism to prevent their hold from being
2002 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2003 * very little gain.
2004 *
2005 * if cookiep == NULL, this does both the suspend & resume.
2006 * Otherwise, it returns with the dataset "long held", and the cookie
2007 * should be passed into zil_resume().
2008 */
2009 int
2010 zil_suspend(const char *osname, void **cookiep)
2011 {
2012 objset_t *os;
2013 zilog_t *zilog;
2014 const zil_header_t *zh;
2015 int error;
2016
2017 error = dmu_objset_hold(osname, suspend_tag, &os);
2018 if (error != 0)
2019 return (error);
2020 zilog = dmu_objset_zil(os);
2021
2022 mutex_enter(&zilog->zl_lock);
2023 zh = zilog->zl_header;
2024
2025 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2026 mutex_exit(&zilog->zl_lock);
2027 dmu_objset_rele(os, suspend_tag);
2028 return (SET_ERROR(EBUSY));
2029 }
2030
2031 /*
2032 * Don't put a long hold in the cases where we can avoid it. This
2033 * is when there is no cookie so we are doing a suspend & resume
2034 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2035 * for the suspend because it's already suspended, or there's no ZIL.
2036 */
2037 if (cookiep == NULL && !zilog->zl_suspending &&
2038 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2039 mutex_exit(&zilog->zl_lock);
2040 dmu_objset_rele(os, suspend_tag);
2041 return (0);
2042 }
2043
2044 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2045 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2046
2047 zilog->zl_suspend++;
2048
2049 if (zilog->zl_suspend > 1) {
2050 /*
2051 * Someone else is already suspending it.
2052 * Just wait for them to finish.
2053 */
2054
2055 while (zilog->zl_suspending)
2056 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2057 mutex_exit(&zilog->zl_lock);
2058
2059 if (cookiep == NULL)
2060 zil_resume(os);
2061 else
2062 *cookiep = os;
2063 return (0);
2064 }
2065
2066 /*
2067 * If there is no pointer to an on-disk block, this ZIL must not
2068 * be active (e.g. filesystem not mounted), so there's nothing
2069 * to clean up.
2070 */
2071 if (BP_IS_HOLE(&zh->zh_log)) {
2072 ASSERT(cookiep != NULL); /* fast path already handled */
2073
2074 *cookiep = os;
2075 mutex_exit(&zilog->zl_lock);
2076 return (0);
2077 }
2078
2079 zilog->zl_suspending = B_TRUE;
2080 mutex_exit(&zilog->zl_lock);
2081
2082 zil_commit(zilog, 0);
2083
2084 zil_destroy(zilog, B_FALSE);
2085
2086 mutex_enter(&zilog->zl_lock);
2087 zilog->zl_suspending = B_FALSE;
2088 cv_broadcast(&zilog->zl_cv_suspend);
2089 mutex_exit(&zilog->zl_lock);
2090
2091 if (cookiep == NULL)
2092 zil_resume(os);
2093 else
2094 *cookiep = os;
2095 return (0);
2096 }
2097
2098 void
2099 zil_resume(void *cookie)
2100 {
2101 objset_t *os = cookie;
2102 zilog_t *zilog = dmu_objset_zil(os);
2103
2104 mutex_enter(&zilog->zl_lock);
2105 ASSERT(zilog->zl_suspend != 0);
2106 zilog->zl_suspend--;
2107 mutex_exit(&zilog->zl_lock);
2108 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2109 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2110 }
2111
2112 typedef struct zil_replay_arg {
2113 zil_replay_func_t *zr_replay;
2114 void *zr_arg;
2115 boolean_t zr_byteswap;
2116 char *zr_lr;
2117 } zil_replay_arg_t;
2118
2119 static int
2120 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2121 {
2122 char name[ZFS_MAX_DATASET_NAME_LEN];
2123
2124 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2125
2126 dmu_objset_name(zilog->zl_os, name);
2127
2128 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2129 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2130 (u_longlong_t)lr->lrc_seq,
2131 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2132 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2133
2134 return (error);
2135 }
2136
2137 static int
2138 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2139 {
2140 zil_replay_arg_t *zr = zra;
2141 const zil_header_t *zh = zilog->zl_header;
2142 uint64_t reclen = lr->lrc_reclen;
2143 uint64_t txtype = lr->lrc_txtype;
2144 int error = 0;
2145
2146 zilog->zl_replaying_seq = lr->lrc_seq;
2147
2148 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2149 return (0);
2150
2151 if (lr->lrc_txg < claim_txg) /* already committed */
2152 return (0);
2153
2154 /* Strip case-insensitive bit, still present in log record */
2155 txtype &= ~TX_CI;
2156
2157 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2158 return (zil_replay_error(zilog, lr, EINVAL));
2159
2160 /*
2161 * If this record type can be logged out of order, the object
2162 * (lr_foid) may no longer exist. That's legitimate, not an error.
2163 */
2164 if (TX_OOO(txtype)) {
2165 error = dmu_object_info(zilog->zl_os,
2166 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
2167 if (error == ENOENT || error == EEXIST)
2168 return (0);
2169 }
2170
2171 /*
2172 * Make a copy of the data so we can revise and extend it.
2173 */
2174 bcopy(lr, zr->zr_lr, reclen);
2175
2176 /*
2177 * If this is a TX_WRITE with a blkptr, suck in the data.
2178 */
2179 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2180 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2181 zr->zr_lr + reclen);
2182 if (error != 0)
2183 return (zil_replay_error(zilog, lr, error));
2184 }
2185
2186 /*
2187 * The log block containing this lr may have been byteswapped
2188 * so that we can easily examine common fields like lrc_txtype.
2189 * However, the log is a mix of different record types, and only the
2190 * replay vectors know how to byteswap their records. Therefore, if
2191 * the lr was byteswapped, undo it before invoking the replay vector.
2192 */
2193 if (zr->zr_byteswap)
2194 byteswap_uint64_array(zr->zr_lr, reclen);
2195
2196 /*
2197 * We must now do two things atomically: replay this log record,
2198 * and update the log header sequence number to reflect the fact that
2199 * we did so. At the end of each replay function the sequence number
2200 * is updated if we are in replay mode.
2201 */
2202 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2203 if (error != 0) {
2204 /*
2205 * The DMU's dnode layer doesn't see removes until the txg
2206 * commits, so a subsequent claim can spuriously fail with
2207 * EEXIST. So if we receive any error we try syncing out
2208 * any removes then retry the transaction. Note that we
2209 * specify B_FALSE for byteswap now, so we don't do it twice.
2210 */
2211 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2212 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2213 if (error != 0)
2214 return (zil_replay_error(zilog, lr, error));
2215 }
2216 return (0);
2217 }
2218
2219 /* ARGSUSED */
2220 static int
2221 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2222 {
2223 zilog->zl_replay_blks++;
2224
2225 return (0);
2226 }
2227
2228 /*
2229 * If this dataset has a non-empty intent log, replay it and destroy it.
2230 */
2231 void
2232 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2233 {
2234 zilog_t *zilog = dmu_objset_zil(os);
2235 const zil_header_t *zh = zilog->zl_header;
2236 zil_replay_arg_t zr;
2237
2238 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2239 zil_destroy(zilog, B_TRUE);
2240 return;
2241 }
2242
2243 zr.zr_replay = replay_func;
2244 zr.zr_arg = arg;
2245 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2246 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2247
2248 /*
2249 * Wait for in-progress removes to sync before starting replay.
2250 */
2251 txg_wait_synced(zilog->zl_dmu_pool, 0);
2252
2253 zilog->zl_replay = B_TRUE;
2254 zilog->zl_replay_time = ddi_get_lbolt();
2255 ASSERT(zilog->zl_replay_blks == 0);
2256 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2257 zh->zh_claim_txg);
2258 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2259
2260 zil_destroy(zilog, B_FALSE);
2261 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2262 zilog->zl_replay = B_FALSE;
2263 }
2264
2265 boolean_t
2266 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2267 {
2268 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2269 return (B_TRUE);
2270
2271 if (zilog->zl_replay) {
2272 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2273 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2274 zilog->zl_replaying_seq;
2275 return (B_TRUE);
2276 }
2277
2278 return (B_FALSE);
2279 }
2280
2281 /* ARGSUSED */
2282 int
2283 zil_vdev_offline(const char *osname, void *arg)
2284 {
2285 int error;
2286
2287 error = zil_suspend(osname, NULL);
2288 if (error != 0)
2289 return (SET_ERROR(EEXIST));
2290 return (0);
2291 }
2292
2293 #if defined(_KERNEL) && defined(HAVE_SPL)
2294 EXPORT_SYMBOL(zil_alloc);
2295 EXPORT_SYMBOL(zil_free);
2296 EXPORT_SYMBOL(zil_open);
2297 EXPORT_SYMBOL(zil_close);
2298 EXPORT_SYMBOL(zil_replay);
2299 EXPORT_SYMBOL(zil_replaying);
2300 EXPORT_SYMBOL(zil_destroy);
2301 EXPORT_SYMBOL(zil_destroy_sync);
2302 EXPORT_SYMBOL(zil_itx_create);
2303 EXPORT_SYMBOL(zil_itx_destroy);
2304 EXPORT_SYMBOL(zil_itx_assign);
2305 EXPORT_SYMBOL(zil_commit);
2306 EXPORT_SYMBOL(zil_vdev_offline);
2307 EXPORT_SYMBOL(zil_claim);
2308 EXPORT_SYMBOL(zil_check_log_chain);
2309 EXPORT_SYMBOL(zil_sync);
2310 EXPORT_SYMBOL(zil_clean);
2311 EXPORT_SYMBOL(zil_suspend);
2312 EXPORT_SYMBOL(zil_resume);
2313 EXPORT_SYMBOL(zil_add_block);
2314 EXPORT_SYMBOL(zil_bp_tree_add);
2315 EXPORT_SYMBOL(zil_set_sync);
2316 EXPORT_SYMBOL(zil_set_logbias);
2317
2318 /* BEGIN CSTYLED */
2319 module_param(zil_replay_disable, int, 0644);
2320 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2321
2322 module_param(zfs_nocacheflush, int, 0644);
2323 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2324
2325 module_param(zil_slog_bulk, ulong, 0644);
2326 MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
2327 /* END CSTYLED */
2328 #endif