]> git.proxmox.com Git - pve-docs.git/blob - qm.adoc
sysadmin: add section 'Firmware Updates' and references
[pve-docs.git] / qm.adoc
1 [[chapter_virtual_machines]]
2 ifdef::manvolnum[]
3 qm(1)
4 =====
5 :pve-toplevel:
6
7 NAME
8 ----
9
10 qm - QEMU/KVM Virtual Machine Manager
11
12
13 SYNOPSIS
14 --------
15
16 include::qm.1-synopsis.adoc[]
17
18 DESCRIPTION
19 -----------
20 endif::manvolnum[]
21 ifndef::manvolnum[]
22 QEMU/KVM Virtual Machines
23 =========================
24 :pve-toplevel:
25 endif::manvolnum[]
26
27 // deprecates
28 // http://pve.proxmox.com/wiki/Container_and_Full_Virtualization
29 // http://pve.proxmox.com/wiki/KVM
30 // http://pve.proxmox.com/wiki/Qemu_Server
31
32 QEMU (short form for Quick Emulator) is an open source hypervisor that emulates a
33 physical computer. From the perspective of the host system where QEMU is
34 running, QEMU is a user program which has access to a number of local resources
35 like partitions, files, network cards which are then passed to an
36 emulated computer which sees them as if they were real devices.
37
38 A guest operating system running in the emulated computer accesses these
39 devices, and runs as if it were running on real hardware. For instance, you can pass
40 an ISO image as a parameter to QEMU, and the OS running in the emulated computer
41 will see a real CD-ROM inserted into a CD drive.
42
43 QEMU can emulate a great variety of hardware from ARM to Sparc, but {pve} is
44 only concerned with 32 and 64 bits PC clone emulation, since it represents the
45 overwhelming majority of server hardware. The emulation of PC clones is also one
46 of the fastest due to the availability of processor extensions which greatly
47 speed up QEMU when the emulated architecture is the same as the host
48 architecture.
49
50 NOTE: You may sometimes encounter the term _KVM_ (Kernel-based Virtual Machine).
51 It means that QEMU is running with the support of the virtualization processor
52 extensions, via the Linux KVM module. In the context of {pve} _QEMU_ and
53 _KVM_ can be used interchangeably, as QEMU in {pve} will always try to load the KVM
54 module.
55
56 QEMU inside {pve} runs as a root process, since this is required to access block
57 and PCI devices.
58
59
60 Emulated devices and paravirtualized devices
61 --------------------------------------------
62
63 The PC hardware emulated by QEMU includes a mainboard, network controllers,
64 SCSI, IDE and SATA controllers, serial ports (the complete list can be seen in
65 the `kvm(1)` man page) all of them emulated in software. All these devices
66 are the exact software equivalent of existing hardware devices, and if the OS
67 running in the guest has the proper drivers it will use the devices as if it
68 were running on real hardware. This allows QEMU to run _unmodified_ operating
69 systems.
70
71 This however has a performance cost, as running in software what was meant to
72 run in hardware involves a lot of extra work for the host CPU. To mitigate this,
73 QEMU can present to the guest operating system _paravirtualized devices_, where
74 the guest OS recognizes it is running inside QEMU and cooperates with the
75 hypervisor.
76
77 QEMU relies on the virtio virtualization standard, and is thus able to present
78 paravirtualized virtio devices, which includes a paravirtualized generic disk
79 controller, a paravirtualized network card, a paravirtualized serial port,
80 a paravirtualized SCSI controller, etc ...
81
82 TIP: It is *highly recommended* to use the virtio devices whenever you can, as
83 they provide a big performance improvement and are generally better maintained.
84 Using the virtio generic disk controller versus an emulated IDE controller will
85 double the sequential write throughput, as measured with `bonnie++(8)`. Using
86 the virtio network interface can deliver up to three times the throughput of an
87 emulated Intel E1000 network card, as measured with `iperf(1)`. footnote:[See
88 this benchmark on the KVM wiki https://www.linux-kvm.org/page/Using_VirtIO_NIC]
89
90
91 [[qm_virtual_machines_settings]]
92 Virtual Machines Settings
93 -------------------------
94
95 Generally speaking {pve} tries to choose sane defaults for virtual machines
96 (VM). Make sure you understand the meaning of the settings you change, as it
97 could incur a performance slowdown, or putting your data at risk.
98
99
100 [[qm_general_settings]]
101 General Settings
102 ~~~~~~~~~~~~~~~~
103
104 [thumbnail="screenshot/gui-create-vm-general.png"]
105
106 General settings of a VM include
107
108 * the *Node* : the physical server on which the VM will run
109 * the *VM ID*: a unique number in this {pve} installation used to identify your VM
110 * *Name*: a free form text string you can use to describe the VM
111 * *Resource Pool*: a logical group of VMs
112
113
114 [[qm_os_settings]]
115 OS Settings
116 ~~~~~~~~~~~
117
118 [thumbnail="screenshot/gui-create-vm-os.png"]
119
120 When creating a virtual machine (VM), setting the proper Operating System(OS)
121 allows {pve} to optimize some low level parameters. For instance Windows OS
122 expect the BIOS clock to use the local time, while Unix based OS expect the
123 BIOS clock to have the UTC time.
124
125 [[qm_system_settings]]
126 System Settings
127 ~~~~~~~~~~~~~~~
128
129 On VM creation you can change some basic system components of the new VM. You
130 can specify which xref:qm_display[display type] you want to use.
131 [thumbnail="screenshot/gui-create-vm-system.png"]
132 Additionally, the xref:qm_hard_disk[SCSI controller] can be changed.
133 If you plan to install the QEMU Guest Agent, or if your selected ISO image
134 already ships and installs it automatically, you may want to tick the 'QEMU
135 Agent' box, which lets {pve} know that it can use its features to show some
136 more information, and complete some actions (for example, shutdown or
137 snapshots) more intelligently.
138
139 {pve} allows to boot VMs with different firmware and machine types, namely
140 xref:qm_bios_and_uefi[SeaBIOS and OVMF]. In most cases you want to switch from
141 the default SeaBIOS to OVMF only if you plan to use
142 xref:qm_pci_passthrough[PCIe pass through]. A VMs 'Machine Type' defines the
143 hardware layout of the VM's virtual motherboard. You can choose between the
144 default https://en.wikipedia.org/wiki/Intel_440FX[Intel 440FX] or the
145 https://ark.intel.com/content/www/us/en/ark/products/31918/intel-82q35-graphics-and-memory-controller.html[Q35]
146 chipset, which also provides a virtual PCIe bus, and thus may be desired if
147 one wants to pass through PCIe hardware.
148
149 [[qm_hard_disk]]
150 Hard Disk
151 ~~~~~~~~~
152
153 [[qm_hard_disk_bus]]
154 Bus/Controller
155 ^^^^^^^^^^^^^^
156 QEMU can emulate a number of storage controllers:
157
158 TIP: It is highly recommended to use the *VirtIO SCSI* or *VirtIO Block*
159 controller for performance reasons and because they are better maintained.
160
161 * the *IDE* controller, has a design which goes back to the 1984 PC/AT disk
162 controller. Even if this controller has been superseded by recent designs,
163 each and every OS you can think of has support for it, making it a great choice
164 if you want to run an OS released before 2003. You can connect up to 4 devices
165 on this controller.
166
167 * the *SATA* (Serial ATA) controller, dating from 2003, has a more modern
168 design, allowing higher throughput and a greater number of devices to be
169 connected. You can connect up to 6 devices on this controller.
170
171 * the *SCSI* controller, designed in 1985, is commonly found on server grade
172 hardware, and can connect up to 14 storage devices. {pve} emulates by default a
173 LSI 53C895A controller.
174 +
175 A SCSI controller of type _VirtIO SCSI single_ and enabling the
176 xref:qm_hard_disk_iothread[IO Thread] setting for the attached disks is
177 recommended if you aim for performance. This is the default for newly created
178 Linux VMs since {pve} 7.3. Each disk will have its own _VirtIO SCSI_ controller,
179 and QEMU will handle the disks IO in a dedicated thread. Linux distributions
180 have support for this controller since 2012, and FreeBSD since 2014. For Windows
181 OSes, you need to provide an extra ISO containing the drivers during the
182 installation.
183 // https://pve.proxmox.com/wiki/Paravirtualized_Block_Drivers_for_Windows#During_windows_installation.
184
185 * The *VirtIO Block* controller, often just called VirtIO or virtio-blk,
186 is an older type of paravirtualized controller. It has been superseded by the
187 VirtIO SCSI Controller, in terms of features.
188
189 [thumbnail="screenshot/gui-create-vm-hard-disk.png"]
190
191 [[qm_hard_disk_formats]]
192 Image Format
193 ^^^^^^^^^^^^
194 On each controller you attach a number of emulated hard disks, which are backed
195 by a file or a block device residing in the configured storage. The choice of
196 a storage type will determine the format of the hard disk image. Storages which
197 present block devices (LVM, ZFS, Ceph) will require the *raw disk image format*,
198 whereas files based storages (Ext4, NFS, CIFS, GlusterFS) will let you to choose
199 either the *raw disk image format* or the *QEMU image format*.
200
201 * the *QEMU image format* is a copy on write format which allows snapshots, and
202 thin provisioning of the disk image.
203 * the *raw disk image* is a bit-to-bit image of a hard disk, similar to what
204 you would get when executing the `dd` command on a block device in Linux. This
205 format does not support thin provisioning or snapshots by itself, requiring
206 cooperation from the storage layer for these tasks. It may, however, be up to
207 10% faster than the *QEMU image format*. footnote:[See this benchmark for details
208 https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf]
209 * the *VMware image format* only makes sense if you intend to import/export the
210 disk image to other hypervisors.
211
212 [[qm_hard_disk_cache]]
213 Cache Mode
214 ^^^^^^^^^^
215 Setting the *Cache* mode of the hard drive will impact how the host system will
216 notify the guest systems of block write completions. The *No cache* default
217 means that the guest system will be notified that a write is complete when each
218 block reaches the physical storage write queue, ignoring the host page cache.
219 This provides a good balance between safety and speed.
220
221 If you want the {pve} backup manager to skip a disk when doing a backup of a VM,
222 you can set the *No backup* option on that disk.
223
224 If you want the {pve} storage replication mechanism to skip a disk when starting
225 a replication job, you can set the *Skip replication* option on that disk.
226 As of {pve} 5.0, replication requires the disk images to be on a storage of type
227 `zfspool`, so adding a disk image to other storages when the VM has replication
228 configured requires to skip replication for this disk image.
229
230 [[qm_hard_disk_discard]]
231 Trim/Discard
232 ^^^^^^^^^^^^
233 If your storage supports _thin provisioning_ (see the storage chapter in the
234 {pve} guide), you can activate the *Discard* option on a drive. With *Discard*
235 set and a _TRIM_-enabled guest OS footnote:[TRIM, UNMAP, and discard
236 https://en.wikipedia.org/wiki/Trim_%28computing%29], when the VM's filesystem
237 marks blocks as unused after deleting files, the controller will relay this
238 information to the storage, which will then shrink the disk image accordingly.
239 For the guest to be able to issue _TRIM_ commands, you must enable the *Discard*
240 option on the drive. Some guest operating systems may also require the
241 *SSD Emulation* flag to be set. Note that *Discard* on *VirtIO Block* drives is
242 only supported on guests using Linux Kernel 5.0 or higher.
243
244 If you would like a drive to be presented to the guest as a solid-state drive
245 rather than a rotational hard disk, you can set the *SSD emulation* option on
246 that drive. There is no requirement that the underlying storage actually be
247 backed by SSDs; this feature can be used with physical media of any type.
248 Note that *SSD emulation* is not supported on *VirtIO Block* drives.
249
250
251 [[qm_hard_disk_iothread]]
252 IO Thread
253 ^^^^^^^^^
254 The option *IO Thread* can only be used when using a disk with the *VirtIO*
255 controller, or with the *SCSI* controller, when the emulated controller type is
256 *VirtIO SCSI single*. With *IO Thread* enabled, QEMU creates one I/O thread per
257 storage controller rather than handling all I/O in the main event loop or vCPU
258 threads. One benefit is better work distribution and utilization of the
259 underlying storage. Another benefit is reduced latency (hangs) in the guest for
260 very I/O-intensive host workloads, since neither the main thread nor a vCPU
261 thread can be blocked by disk I/O.
262
263 [[qm_cpu]]
264 CPU
265 ~~~
266
267 [thumbnail="screenshot/gui-create-vm-cpu.png"]
268
269 A *CPU socket* is a physical slot on a PC motherboard where you can plug a CPU.
270 This CPU can then contain one or many *cores*, which are independent
271 processing units. Whether you have a single CPU socket with 4 cores, or two CPU
272 sockets with two cores is mostly irrelevant from a performance point of view.
273 However some software licenses depend on the number of sockets a machine has,
274 in that case it makes sense to set the number of sockets to what the license
275 allows you.
276
277 Increasing the number of virtual CPUs (cores and sockets) will usually provide a
278 performance improvement though that is heavily dependent on the use of the VM.
279 Multi-threaded applications will of course benefit from a large number of
280 virtual CPUs, as for each virtual cpu you add, QEMU will create a new thread of
281 execution on the host system. If you're not sure about the workload of your VM,
282 it is usually a safe bet to set the number of *Total cores* to 2.
283
284 NOTE: It is perfectly safe if the _overall_ number of cores of all your VMs
285 is greater than the number of cores on the server (for example, 4 VMs each with
286 4 cores (= total 16) on a machine with only 8 cores). In that case the host
287 system will balance the QEMU execution threads between your server cores, just
288 like if you were running a standard multi-threaded application. However, {pve}
289 will prevent you from starting VMs with more virtual CPU cores than physically
290 available, as this will only bring the performance down due to the cost of
291 context switches.
292
293 [[qm_cpu_resource_limits]]
294 Resource Limits
295 ^^^^^^^^^^^^^^^
296
297 In addition to the number of virtual cores, you can configure how much resources
298 a VM can get in relation to the host CPU time and also in relation to other
299 VMs.
300 With the *cpulimit* (``Host CPU Time'') option you can limit how much CPU time
301 the whole VM can use on the host. It is a floating point value representing CPU
302 time in percent, so `1.0` is equal to `100%`, `2.5` to `250%` and so on. If a
303 single process would fully use one single core it would have `100%` CPU Time
304 usage. If a VM with four cores utilizes all its cores fully it would
305 theoretically use `400%`. In reality the usage may be even a bit higher as QEMU
306 can have additional threads for VM peripherals besides the vCPU core ones.
307 This setting can be useful if a VM should have multiple vCPUs, as it runs a few
308 processes in parallel, but the VM as a whole should not be able to run all
309 vCPUs at 100% at the same time. Using a specific example: lets say we have a VM
310 which would profit from having 8 vCPUs, but at no time all of those 8 cores
311 should run at full load - as this would make the server so overloaded that
312 other VMs and CTs would get to less CPU. So, we set the *cpulimit* limit to
313 `4.0` (=400%). If all cores do the same heavy work they would all get 50% of a
314 real host cores CPU time. But, if only 4 would do work they could still get
315 almost 100% of a real core each.
316
317 NOTE: VMs can, depending on their configuration, use additional threads, such
318 as for networking or IO operations but also live migration. Thus a VM can show
319 up to use more CPU time than just its virtual CPUs could use. To ensure that a
320 VM never uses more CPU time than virtual CPUs assigned set the *cpulimit*
321 setting to the same value as the total core count.
322
323 The second CPU resource limiting setting, *cpuunits* (nowadays often called CPU
324 shares or CPU weight), controls how much CPU time a VM gets compared to other
325 running VMs. It is a relative weight which defaults to `100` (or `1024` if the
326 host uses legacy cgroup v1). If you increase this for a VM it will be
327 prioritized by the scheduler in comparison to other VMs with lower weight. For
328 example, if VM 100 has set the default `100` and VM 200 was changed to `200`,
329 the latter VM 200 would receive twice the CPU bandwidth than the first VM 100.
330
331 For more information see `man systemd.resource-control`, here `CPUQuota`
332 corresponds to `cpulimit` and `CPUWeight` corresponds to our `cpuunits`
333 setting, visit its Notes section for references and implementation details.
334
335 The third CPU resource limiting setting, *affinity*, controls what host cores
336 the virtual machine will be permitted to execute on. E.g., if an affinity value
337 of `0-3,8-11` is provided, the virtual machine will be restricted to using the
338 host cores `0,1,2,3,8,9,10,` and `11`. Valid *affinity* values are written in
339 cpuset `List Format`. List Format is a comma-separated list of CPU numbers and
340 ranges of numbers, in ASCII decimal.
341
342 NOTE: CPU *affinity* uses the `taskset` command to restrict virtual machines to
343 a given set of cores. This restriction will not take effect for some types of
344 processes that may be created for IO. *CPU affinity is not a security feature.*
345
346 For more information regarding *affinity* see `man cpuset`. Here the
347 `List Format` corresponds to valid *affinity* values. Visit its `Formats`
348 section for more examples.
349
350 CPU Type
351 ^^^^^^^^
352
353 QEMU can emulate a number different of *CPU types* from 486 to the latest Xeon
354 processors. Each new processor generation adds new features, like hardware
355 assisted 3d rendering, random number generation, memory protection, etc. Also,
356 a current generation can be upgraded through
357 xref:chapter_firmware_updates[microcode update] with bug or security fixes.
358
359 Usually you should select for your VM a processor type which closely matches the
360 CPU of the host system, as it means that the host CPU features (also called _CPU
361 flags_ ) will be available in your VMs. If you want an exact match, you can set
362 the CPU type to *host* in which case the VM will have exactly the same CPU flags
363 as your host system.
364
365 This has a downside though. If you want to do a live migration of VMs between
366 different hosts, your VM might end up on a new system with a different CPU type
367 or a different microcode version.
368 If the CPU flags passed to the guest are missing, the QEMU process will stop. To
369 remedy this QEMU has also its own virtual CPU types, that {pve} uses by default.
370
371 The backend default is 'kvm64' which works on essentially all x86_64 host CPUs
372 and the UI default when creating a new VM is 'x86-64-v2-AES', which requires a
373 host CPU starting from Westmere for Intel or at least a fourth generation
374 Opteron for AMD.
375
376 In short:
377
378 If you don’t care about live migration or have a homogeneous cluster where all
379 nodes have the same CPU and same microcode version, set the CPU type to host, as
380 in theory this will give your guests maximum performance.
381
382 If you care about live migration and security, and you have only Intel CPUs or
383 only AMD CPUs, choose the lowest generation CPU model of your cluster.
384
385 If you care about live migration without security, or have mixed Intel/AMD
386 cluster, choose the lowest compatible virtual QEMU CPU type.
387
388 NOTE: Live migrations between Intel and AMD host CPUs have no guarantee to work.
389
390 See also
391 xref:chapter_qm_vcpu_list[List of AMD and Intel CPU Types as Defined in QEMU].
392
393 QEMU CPU Types
394 ^^^^^^^^^^^^^^
395
396 QEMU also provide virtual CPU types, compatible with both Intel and AMD host
397 CPUs.
398
399 NOTE: To mitigate the Spectre vulnerability for virtual CPU types, you need to
400 add the relevant CPU flags, see
401 xref:qm_meltdown_spectre[Meltdown / Spectre related CPU flags].
402
403 Historically, {pve} had the 'kvm64' CPU model, with CPU flags at the level of
404 Pentium 4 enabled, so performance was not great for certain workloads.
405
406 In the summer of 2020, AMD, Intel, Red Hat, and SUSE collaborated to define
407 three x86-64 microarchitecture levels on top of the x86-64 baseline, with modern
408 flags enabled. For details, see the
409 https://gitlab.com/x86-psABIs/x86-64-ABI[x86-64-ABI specification].
410
411 NOTE: Some newer distributions like CentOS 9 are now built with 'x86-64-v2'
412 flags as a minimum requirement.
413
414 * 'kvm64 (x86-64-v1)': Compatible with Intel CPU >= Pentium 4, AMD CPU >=
415 Phenom.
416 +
417 * 'x86-64-v2': Compatible with Intel CPU >= Nehalem, AMD CPU >= Opteron_G3.
418 Added CPU flags compared to 'x86-64-v1': '+cx16', '+lahf-lm', '+popcnt', '+pni',
419 '+sse4.1', '+sse4.2', '+ssse3'.
420 +
421 * 'x86-64-v2-AES': Compatible with Intel CPU >= Westmere, AMD CPU >= Opteron_G4.
422 Added CPU flags compared to 'x86-64-v2': '+aes'.
423 +
424 * 'x86-64-v3': Compatible with Intel CPU >= Broadwell, AMD CPU >= EPYC. Added
425 CPU flags compared to 'x86-64-v2-AES': '+avx', '+avx2', '+bmi1', '+bmi2',
426 '+f16c', '+fma', '+movbe', '+xsave'.
427 +
428 * 'x86-64-v4': Compatible with Intel CPU >= Skylake, AMD CPU >= EPYC v4 Genoa.
429 Added CPU flags compared to 'x86-64-v3': '+avx512f', '+avx512bw', '+avx512cd',
430 '+avx512dq', '+avx512vl'.
431
432 Custom CPU Types
433 ^^^^^^^^^^^^^^^^
434
435 You can specify custom CPU types with a configurable set of features. These are
436 maintained in the configuration file `/etc/pve/virtual-guest/cpu-models.conf` by
437 an administrator. See `man cpu-models.conf` for format details.
438
439 Specified custom types can be selected by any user with the `Sys.Audit`
440 privilege on `/nodes`. When configuring a custom CPU type for a VM via the CLI
441 or API, the name needs to be prefixed with 'custom-'.
442
443 [[qm_meltdown_spectre]]
444 Meltdown / Spectre related CPU flags
445 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
446
447 There are several CPU flags related to the Meltdown and Spectre vulnerabilities
448 footnote:[Meltdown Attack https://meltdownattack.com/] which need to be set
449 manually unless the selected CPU type of your VM already enables them by default.
450
451 There are two requirements that need to be fulfilled in order to use these
452 CPU flags:
453
454 * The host CPU(s) must support the feature and propagate it to the guest's virtual CPU(s)
455 * The guest operating system must be updated to a version which mitigates the
456 attacks and is able to utilize the CPU feature
457
458 Otherwise you need to set the desired CPU flag of the virtual CPU, either by
459 editing the CPU options in the WebUI, or by setting the 'flags' property of the
460 'cpu' option in the VM configuration file.
461
462 For Spectre v1,v2,v4 fixes, your CPU or system vendor also needs to provide a
463 so-called ``microcode update'' for your CPU, see
464 xref:chapter_firmware_updates[chapter Firmware Updates]. Note that not all
465 affected CPUs can be updated to support spec-ctrl.
466
467
468 To check if the {pve} host is vulnerable, execute the following command as root:
469
470 ----
471 for f in /sys/devices/system/cpu/vulnerabilities/*; do echo "${f##*/} -" $(cat "$f"); done
472 ----
473
474 A community script is also available to detect if the host is still vulnerable.
475 footnote:[spectre-meltdown-checker https://meltdown.ovh/]
476
477 Intel processors
478 ^^^^^^^^^^^^^^^^
479
480 * 'pcid'
481 +
482 This reduces the performance impact of the Meltdown (CVE-2017-5754) mitigation
483 called 'Kernel Page-Table Isolation (KPTI)', which effectively hides
484 the Kernel memory from the user space. Without PCID, KPTI is quite an expensive
485 mechanism footnote:[PCID is now a critical performance/security feature on x86
486 https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU].
487 +
488 To check if the {pve} host supports PCID, execute the following command as root:
489 +
490 ----
491 # grep ' pcid ' /proc/cpuinfo
492 ----
493 +
494 If this does not return empty your host's CPU has support for 'pcid'.
495
496 * 'spec-ctrl'
497 +
498 Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix,
499 in cases where retpolines are not sufficient.
500 Included by default in Intel CPU models with -IBRS suffix.
501 Must be explicitly turned on for Intel CPU models without -IBRS suffix.
502 Requires an updated host CPU microcode (intel-microcode >= 20180425).
503 +
504 * 'ssbd'
505 +
506 Required to enable the Spectre V4 (CVE-2018-3639) fix. Not included by default in any Intel CPU model.
507 Must be explicitly turned on for all Intel CPU models.
508 Requires an updated host CPU microcode(intel-microcode >= 20180703).
509
510
511 AMD processors
512 ^^^^^^^^^^^^^^
513
514 * 'ibpb'
515 +
516 Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix,
517 in cases where retpolines are not sufficient.
518 Included by default in AMD CPU models with -IBPB suffix.
519 Must be explicitly turned on for AMD CPU models without -IBPB suffix.
520 Requires the host CPU microcode to support this feature before it can be used for guest CPUs.
521
522
523
524 * 'virt-ssbd'
525 +
526 Required to enable the Spectre v4 (CVE-2018-3639) fix.
527 Not included by default in any AMD CPU model.
528 Must be explicitly turned on for all AMD CPU models.
529 This should be provided to guests, even if amd-ssbd is also provided, for maximum guest compatibility.
530 Note that this must be explicitly enabled when when using the "host" cpu model,
531 because this is a virtual feature which does not exist in the physical CPUs.
532
533
534 * 'amd-ssbd'
535 +
536 Required to enable the Spectre v4 (CVE-2018-3639) fix.
537 Not included by default in any AMD CPU model. Must be explicitly turned on for all AMD CPU models.
538 This provides higher performance than virt-ssbd, therefore a host supporting this should always expose this to guests if possible.
539 virt-ssbd should none the less also be exposed for maximum guest compatibility as some kernels only know about virt-ssbd.
540
541
542 * 'amd-no-ssb'
543 +
544 Recommended to indicate the host is not vulnerable to Spectre V4 (CVE-2018-3639).
545 Not included by default in any AMD CPU model.
546 Future hardware generations of CPU will not be vulnerable to CVE-2018-3639,
547 and thus the guest should be told not to enable its mitigations, by exposing amd-no-ssb.
548 This is mutually exclusive with virt-ssbd and amd-ssbd.
549
550
551 NUMA
552 ^^^^
553 You can also optionally emulate a *NUMA*
554 footnote:[https://en.wikipedia.org/wiki/Non-uniform_memory_access] architecture
555 in your VMs. The basics of the NUMA architecture mean that instead of having a
556 global memory pool available to all your cores, the memory is spread into local
557 banks close to each socket.
558 This can bring speed improvements as the memory bus is not a bottleneck
559 anymore. If your system has a NUMA architecture footnote:[if the command
560 `numactl --hardware | grep available` returns more than one node, then your host
561 system has a NUMA architecture] we recommend to activate the option, as this
562 will allow proper distribution of the VM resources on the host system.
563 This option is also required to hot-plug cores or RAM in a VM.
564
565 If the NUMA option is used, it is recommended to set the number of sockets to
566 the number of nodes of the host system.
567
568 vCPU hot-plug
569 ^^^^^^^^^^^^^
570
571 Modern operating systems introduced the capability to hot-plug and, to a
572 certain extent, hot-unplug CPUs in a running system. Virtualization allows us
573 to avoid a lot of the (physical) problems real hardware can cause in such
574 scenarios.
575 Still, this is a rather new and complicated feature, so its use should be
576 restricted to cases where its absolutely needed. Most of the functionality can
577 be replicated with other, well tested and less complicated, features, see
578 xref:qm_cpu_resource_limits[Resource Limits].
579
580 In {pve} the maximal number of plugged CPUs is always `cores * sockets`.
581 To start a VM with less than this total core count of CPUs you may use the
582 *vpus* setting, it denotes how many vCPUs should be plugged in at VM start.
583
584 Currently only this feature is only supported on Linux, a kernel newer than 3.10
585 is needed, a kernel newer than 4.7 is recommended.
586
587 You can use a udev rule as follow to automatically set new CPUs as online in
588 the guest:
589
590 ----
591 SUBSYSTEM=="cpu", ACTION=="add", TEST=="online", ATTR{online}=="0", ATTR{online}="1"
592 ----
593
594 Save this under /etc/udev/rules.d/ as a file ending in `.rules`.
595
596 Note: CPU hot-remove is machine dependent and requires guest cooperation. The
597 deletion command does not guarantee CPU removal to actually happen, typically
598 it's a request forwarded to guest OS using target dependent mechanism, such as
599 ACPI on x86/amd64.
600
601
602 [[qm_memory]]
603 Memory
604 ~~~~~~
605
606 For each VM you have the option to set a fixed size memory or asking
607 {pve} to dynamically allocate memory based on the current RAM usage of the
608 host.
609
610 .Fixed Memory Allocation
611 [thumbnail="screenshot/gui-create-vm-memory.png"]
612
613 When setting memory and minimum memory to the same amount
614 {pve} will simply allocate what you specify to your VM.
615
616 Even when using a fixed memory size, the ballooning device gets added to the
617 VM, because it delivers useful information such as how much memory the guest
618 really uses.
619 In general, you should leave *ballooning* enabled, but if you want to disable
620 it (like for debugging purposes), simply uncheck *Ballooning Device* or set
621
622 balloon: 0
623
624 in the configuration.
625
626 .Automatic Memory Allocation
627
628 // see autoballoon() in pvestatd.pm
629 When setting the minimum memory lower than memory, {pve} will make sure that the
630 minimum amount you specified is always available to the VM, and if RAM usage on
631 the host is below 80%, will dynamically add memory to the guest up to the
632 maximum memory specified.
633
634 When the host is running low on RAM, the VM will then release some memory
635 back to the host, swapping running processes if needed and starting the oom
636 killer in last resort. The passing around of memory between host and guest is
637 done via a special `balloon` kernel driver running inside the guest, which will
638 grab or release memory pages from the host.
639 footnote:[A good explanation of the inner workings of the balloon driver can be found here https://rwmj.wordpress.com/2010/07/17/virtio-balloon/]
640
641 When multiple VMs use the autoallocate facility, it is possible to set a
642 *Shares* coefficient which indicates the relative amount of the free host memory
643 that each VM should take. Suppose for instance you have four VMs, three of them
644 running an HTTP server and the last one is a database server. To cache more
645 database blocks in the database server RAM, you would like to prioritize the
646 database VM when spare RAM is available. For this you assign a Shares property
647 of 3000 to the database VM, leaving the other VMs to the Shares default setting
648 of 1000. The host server has 32GB of RAM, and is currently using 16GB, leaving 32
649 * 80/100 - 16 = 9GB RAM to be allocated to the VMs. The database VM will get 9 *
650 3000 / (3000 + 1000 + 1000 + 1000) = 4.5 GB extra RAM and each HTTP server will
651 get 1.5 GB.
652
653 All Linux distributions released after 2010 have the balloon kernel driver
654 included. For Windows OSes, the balloon driver needs to be added manually and can
655 incur a slowdown of the guest, so we don't recommend using it on critical
656 systems.
657 // see https://forum.proxmox.com/threads/solved-hyper-threading-vs-no-hyper-threading-fixed-vs-variable-memory.20265/
658
659 When allocating RAM to your VMs, a good rule of thumb is always to leave 1GB
660 of RAM available to the host.
661
662
663 [[qm_network_device]]
664 Network Device
665 ~~~~~~~~~~~~~~
666
667 [thumbnail="screenshot/gui-create-vm-network.png"]
668
669 Each VM can have many _Network interface controllers_ (NIC), of four different
670 types:
671
672 * *Intel E1000* is the default, and emulates an Intel Gigabit network card.
673 * the *VirtIO* paravirtualized NIC should be used if you aim for maximum
674 performance. Like all VirtIO devices, the guest OS should have the proper driver
675 installed.
676 * the *Realtek 8139* emulates an older 100 MB/s network card, and should
677 only be used when emulating older operating systems ( released before 2002 )
678 * the *vmxnet3* is another paravirtualized device, which should only be used
679 when importing a VM from another hypervisor.
680
681 {pve} will generate for each NIC a random *MAC address*, so that your VM is
682 addressable on Ethernet networks.
683
684 The NIC you added to the VM can follow one of two different models:
685
686 * in the default *Bridged mode* each virtual NIC is backed on the host by a
687 _tap device_, ( a software loopback device simulating an Ethernet NIC ). This
688 tap device is added to a bridge, by default vmbr0 in {pve}. In this mode, VMs
689 have direct access to the Ethernet LAN on which the host is located.
690 * in the alternative *NAT mode*, each virtual NIC will only communicate with
691 the QEMU user networking stack, where a built-in router and DHCP server can
692 provide network access. This built-in DHCP will serve addresses in the private
693 10.0.2.0/24 range. The NAT mode is much slower than the bridged mode, and
694 should only be used for testing. This mode is only available via CLI or the API,
695 but not via the WebUI.
696
697 You can also skip adding a network device when creating a VM by selecting *No
698 network device*.
699
700 You can overwrite the *MTU* setting for each VM network device. The option
701 `mtu=1` represents a special case, in which the MTU value will be inherited
702 from the underlying bridge.
703 This option is only available for *VirtIO* network devices.
704
705 .Multiqueue
706 If you are using the VirtIO driver, you can optionally activate the
707 *Multiqueue* option. This option allows the guest OS to process networking
708 packets using multiple virtual CPUs, providing an increase in the total number
709 of packets transferred.
710
711 //http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
712 When using the VirtIO driver with {pve}, each NIC network queue is passed to the
713 host kernel, where the queue will be processed by a kernel thread spawned by the
714 vhost driver. With this option activated, it is possible to pass _multiple_
715 network queues to the host kernel for each NIC.
716
717 //https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/sect-Virtualization_Tuning_Optimization_Guide-Networking-Techniques.html#sect-Virtualization_Tuning_Optimization_Guide-Networking-Multi-queue_virtio-net
718 When using Multiqueue, it is recommended to set it to a value equal
719 to the number of Total Cores of your guest. You also need to set in
720 the VM the number of multi-purpose channels on each VirtIO NIC with the ethtool
721 command:
722
723 `ethtool -L ens1 combined X`
724
725 where X is the number of the number of vcpus of the VM.
726
727 You should note that setting the Multiqueue parameter to a value greater
728 than one will increase the CPU load on the host and guest systems as the
729 traffic increases. We recommend to set this option only when the VM has to
730 process a great number of incoming connections, such as when the VM is running
731 as a router, reverse proxy or a busy HTTP server doing long polling.
732
733 [[qm_display]]
734 Display
735 ~~~~~~~
736
737 QEMU can virtualize a few types of VGA hardware. Some examples are:
738
739 * *std*, the default, emulates a card with Bochs VBE extensions.
740 * *cirrus*, this was once the default, it emulates a very old hardware module
741 with all its problems. This display type should only be used if really
742 necessary footnote:[https://www.kraxel.org/blog/2014/10/qemu-using-cirrus-considered-harmful/
743 qemu: using cirrus considered harmful], for example, if using Windows XP or
744 earlier
745 * *vmware*, is a VMWare SVGA-II compatible adapter.
746 * *qxl*, is the QXL paravirtualized graphics card. Selecting this also
747 enables https://www.spice-space.org/[SPICE] (a remote viewer protocol) for the
748 VM.
749 * *virtio-gl*, often named VirGL is a virtual 3D GPU for use inside VMs that
750 can offload workloads to the host GPU without requiring special (expensive)
751 models and drivers and neither binding the host GPU completely, allowing
752 reuse between multiple guests and or the host.
753 +
754 NOTE: VirGL support needs some extra libraries that aren't installed by
755 default due to being relatively big and also not available as open source for
756 all GPU models/vendors. For most setups you'll just need to do:
757 `apt install libgl1 libegl1`
758
759 You can edit the amount of memory given to the virtual GPU, by setting
760 the 'memory' option. This can enable higher resolutions inside the VM,
761 especially with SPICE/QXL.
762
763 As the memory is reserved by display device, selecting Multi-Monitor mode
764 for SPICE (such as `qxl2` for dual monitors) has some implications:
765
766 * Windows needs a device for each monitor, so if your 'ostype' is some
767 version of Windows, {pve} gives the VM an extra device per monitor.
768 Each device gets the specified amount of memory.
769
770 * Linux VMs, can always enable more virtual monitors, but selecting
771 a Multi-Monitor mode multiplies the memory given to the device with
772 the number of monitors.
773
774 Selecting `serialX` as display 'type' disables the VGA output, and redirects
775 the Web Console to the selected serial port. A configured display 'memory'
776 setting will be ignored in that case.
777
778 [[qm_usb_passthrough]]
779 USB Passthrough
780 ~~~~~~~~~~~~~~~
781
782 There are two different types of USB passthrough devices:
783
784 * Host USB passthrough
785 * SPICE USB passthrough
786
787 Host USB passthrough works by giving a VM a USB device of the host.
788 This can either be done via the vendor- and product-id, or
789 via the host bus and port.
790
791 The vendor/product-id looks like this: *0123:abcd*,
792 where *0123* is the id of the vendor, and *abcd* is the id
793 of the product, meaning two pieces of the same usb device
794 have the same id.
795
796 The bus/port looks like this: *1-2.3.4*, where *1* is the bus
797 and *2.3.4* is the port path. This represents the physical
798 ports of your host (depending of the internal order of the
799 usb controllers).
800
801 If a device is present in a VM configuration when the VM starts up,
802 but the device is not present in the host, the VM can boot without problems.
803 As soon as the device/port is available in the host, it gets passed through.
804
805 WARNING: Using this kind of USB passthrough means that you cannot move
806 a VM online to another host, since the hardware is only available
807 on the host the VM is currently residing.
808
809 The second type of passthrough is SPICE USB passthrough. This is useful
810 if you use a SPICE client which supports it. If you add a SPICE USB port
811 to your VM, you can passthrough a USB device from where your SPICE client is,
812 directly to the VM (for example an input device or hardware dongle).
813
814 It is also possible to map devices on a cluster level, so that they can be
815 properly used with HA and hardware changes are detected and non root users
816 can configure them. See xref:resource_mapping[Resource Mapping]
817 for details on that.
818
819 [[qm_bios_and_uefi]]
820 BIOS and UEFI
821 ~~~~~~~~~~~~~
822
823 In order to properly emulate a computer, QEMU needs to use a firmware.
824 Which, on common PCs often known as BIOS or (U)EFI, is executed as one of the
825 first steps when booting a VM. It is responsible for doing basic hardware
826 initialization and for providing an interface to the firmware and hardware for
827 the operating system. By default QEMU uses *SeaBIOS* for this, which is an
828 open-source, x86 BIOS implementation. SeaBIOS is a good choice for most
829 standard setups.
830
831 Some operating systems (such as Windows 11) may require use of an UEFI
832 compatible implementation. In such cases, you must use *OVMF* instead,
833 which is an open-source UEFI implementation. footnote:[See the OVMF Project https://github.com/tianocore/tianocore.github.io/wiki/OVMF]
834
835 There are other scenarios in which the SeaBIOS may not be the ideal firmware to
836 boot from, for example if you want to do VGA passthrough. footnote:[Alex
837 Williamson has a good blog entry about this
838 https://vfio.blogspot.co.at/2014/08/primary-graphics-assignment-without-vga.html]
839
840 If you want to use OVMF, there are several things to consider:
841
842 In order to save things like the *boot order*, there needs to be an EFI Disk.
843 This disk will be included in backups and snapshots, and there can only be one.
844
845 You can create such a disk with the following command:
846
847 ----
848 # qm set <vmid> -efidisk0 <storage>:1,format=<format>,efitype=4m,pre-enrolled-keys=1
849 ----
850
851 Where *<storage>* is the storage where you want to have the disk, and
852 *<format>* is a format which the storage supports. Alternatively, you can
853 create such a disk through the web interface with 'Add' -> 'EFI Disk' in the
854 hardware section of a VM.
855
856 The *efitype* option specifies which version of the OVMF firmware should be
857 used. For new VMs, this should always be '4m', as it supports Secure Boot and
858 has more space allocated to support future development (this is the default in
859 the GUI).
860
861 *pre-enroll-keys* specifies if the efidisk should come pre-loaded with
862 distribution-specific and Microsoft Standard Secure Boot keys. It also enables
863 Secure Boot by default (though it can still be disabled in the OVMF menu within
864 the VM).
865
866 NOTE: If you want to start using Secure Boot in an existing VM (that still uses
867 a '2m' efidisk), you need to recreate the efidisk. To do so, delete the old one
868 (`qm set <vmid> -delete efidisk0`) and add a new one as described above. This
869 will reset any custom configurations you have made in the OVMF menu!
870
871 When using OVMF with a virtual display (without VGA passthrough),
872 you need to set the client resolution in the OVMF menu (which you can reach
873 with a press of the ESC button during boot), or you have to choose
874 SPICE as the display type.
875
876 [[qm_tpm]]
877 Trusted Platform Module (TPM)
878 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
879
880 A *Trusted Platform Module* is a device which stores secret data - such as
881 encryption keys - securely and provides tamper-resistance functions for
882 validating system boot.
883
884 Certain operating systems (such as Windows 11) require such a device to be
885 attached to a machine (be it physical or virtual).
886
887 A TPM is added by specifying a *tpmstate* volume. This works similar to an
888 efidisk, in that it cannot be changed (only removed) once created. You can add
889 one via the following command:
890
891 ----
892 # qm set <vmid> -tpmstate0 <storage>:1,version=<version>
893 ----
894
895 Where *<storage>* is the storage you want to put the state on, and *<version>*
896 is either 'v1.2' or 'v2.0'. You can also add one via the web interface, by
897 choosing 'Add' -> 'TPM State' in the hardware section of a VM.
898
899 The 'v2.0' TPM spec is newer and better supported, so unless you have a specific
900 implementation that requires a 'v1.2' TPM, it should be preferred.
901
902 NOTE: Compared to a physical TPM, an emulated one does *not* provide any real
903 security benefits. The point of a TPM is that the data on it cannot be modified
904 easily, except via commands specified as part of the TPM spec. Since with an
905 emulated device the data storage happens on a regular volume, it can potentially
906 be edited by anyone with access to it.
907
908 [[qm_ivshmem]]
909 Inter-VM shared memory
910 ~~~~~~~~~~~~~~~~~~~~~~
911
912 You can add an Inter-VM shared memory device (`ivshmem`), which allows one to
913 share memory between the host and a guest, or also between multiple guests.
914
915 To add such a device, you can use `qm`:
916
917 ----
918 # qm set <vmid> -ivshmem size=32,name=foo
919 ----
920
921 Where the size is in MiB. The file will be located under
922 `/dev/shm/pve-shm-$name` (the default name is the vmid).
923
924 NOTE: Currently the device will get deleted as soon as any VM using it got
925 shutdown or stopped. Open connections will still persist, but new connections
926 to the exact same device cannot be made anymore.
927
928 A use case for such a device is the Looking Glass
929 footnote:[Looking Glass: https://looking-glass.io/] project, which enables high
930 performance, low-latency display mirroring between host and guest.
931
932 [[qm_audio_device]]
933 Audio Device
934 ~~~~~~~~~~~~
935
936 To add an audio device run the following command:
937
938 ----
939 qm set <vmid> -audio0 device=<device>
940 ----
941
942 Supported audio devices are:
943
944 * `ich9-intel-hda`: Intel HD Audio Controller, emulates ICH9
945 * `intel-hda`: Intel HD Audio Controller, emulates ICH6
946 * `AC97`: Audio Codec '97, useful for older operating systems like Windows XP
947
948 There are two backends available:
949
950 * 'spice'
951 * 'none'
952
953 The 'spice' backend can be used in combination with xref:qm_display[SPICE] while
954 the 'none' backend can be useful if an audio device is needed in the VM for some
955 software to work. To use the physical audio device of the host use device
956 passthrough (see xref:qm_pci_passthrough[PCI Passthrough] and
957 xref:qm_usb_passthrough[USB Passthrough]). Remote protocols like Microsoft’s RDP
958 have options to play sound.
959
960
961 [[qm_virtio_rng]]
962 VirtIO RNG
963 ~~~~~~~~~~
964
965 A RNG (Random Number Generator) is a device providing entropy ('randomness') to
966 a system. A virtual hardware-RNG can be used to provide such entropy from the
967 host system to a guest VM. This helps to avoid entropy starvation problems in
968 the guest (a situation where not enough entropy is available and the system may
969 slow down or run into problems), especially during the guests boot process.
970
971 To add a VirtIO-based emulated RNG, run the following command:
972
973 ----
974 qm set <vmid> -rng0 source=<source>[,max_bytes=X,period=Y]
975 ----
976
977 `source` specifies where entropy is read from on the host and has to be one of
978 the following:
979
980 * `/dev/urandom`: Non-blocking kernel entropy pool (preferred)
981 * `/dev/random`: Blocking kernel pool (not recommended, can lead to entropy
982 starvation on the host system)
983 * `/dev/hwrng`: To pass through a hardware RNG attached to the host (if multiple
984 are available, the one selected in
985 `/sys/devices/virtual/misc/hw_random/rng_current` will be used)
986
987 A limit can be specified via the `max_bytes` and `period` parameters, they are
988 read as `max_bytes` per `period` in milliseconds. However, it does not represent
989 a linear relationship: 1024B/1000ms would mean that up to 1 KiB of data becomes
990 available on a 1 second timer, not that 1 KiB is streamed to the guest over the
991 course of one second. Reducing the `period` can thus be used to inject entropy
992 into the guest at a faster rate.
993
994 By default, the limit is set to 1024 bytes per 1000 ms (1 KiB/s). It is
995 recommended to always use a limiter to avoid guests using too many host
996 resources. If desired, a value of '0' for `max_bytes` can be used to disable
997 all limits.
998
999 [[qm_bootorder]]
1000 Device Boot Order
1001 ~~~~~~~~~~~~~~~~~
1002
1003 QEMU can tell the guest which devices it should boot from, and in which order.
1004 This can be specified in the config via the `boot` property, for example:
1005
1006 ----
1007 boot: order=scsi0;net0;hostpci0
1008 ----
1009
1010 [thumbnail="screenshot/gui-qemu-edit-bootorder.png"]
1011
1012 This way, the guest would first attempt to boot from the disk `scsi0`, if that
1013 fails, it would go on to attempt network boot from `net0`, and in case that
1014 fails too, finally attempt to boot from a passed through PCIe device (seen as
1015 disk in case of NVMe, otherwise tries to launch into an option ROM).
1016
1017 On the GUI you can use a drag-and-drop editor to specify the boot order, and use
1018 the checkbox to enable or disable certain devices for booting altogether.
1019
1020 NOTE: If your guest uses multiple disks to boot the OS or load the bootloader,
1021 all of them must be marked as 'bootable' (that is, they must have the checkbox
1022 enabled or appear in the list in the config) for the guest to be able to boot.
1023 This is because recent SeaBIOS and OVMF versions only initialize disks if they
1024 are marked 'bootable'.
1025
1026 In any case, even devices not appearing in the list or having the checkmark
1027 disabled will still be available to the guest, once it's operating system has
1028 booted and initialized them. The 'bootable' flag only affects the guest BIOS and
1029 bootloader.
1030
1031
1032 [[qm_startup_and_shutdown]]
1033 Automatic Start and Shutdown of Virtual Machines
1034 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1035
1036 After creating your VMs, you probably want them to start automatically
1037 when the host system boots. For this you need to select the option 'Start at
1038 boot' from the 'Options' Tab of your VM in the web interface, or set it with
1039 the following command:
1040
1041 ----
1042 # qm set <vmid> -onboot 1
1043 ----
1044
1045 .Start and Shutdown Order
1046
1047 [thumbnail="screenshot/gui-qemu-edit-start-order.png"]
1048
1049 In some case you want to be able to fine tune the boot order of your
1050 VMs, for instance if one of your VM is providing firewalling or DHCP
1051 to other guest systems. For this you can use the following
1052 parameters:
1053
1054 * *Start/Shutdown order*: Defines the start order priority. For example, set it
1055 * to 1 if
1056 you want the VM to be the first to be started. (We use the reverse startup
1057 order for shutdown, so a machine with a start order of 1 would be the last to
1058 be shut down). If multiple VMs have the same order defined on a host, they will
1059 additionally be ordered by 'VMID' in ascending order.
1060 * *Startup delay*: Defines the interval between this VM start and subsequent
1061 VMs starts. For example, set it to 240 if you want to wait 240 seconds before
1062 starting other VMs.
1063 * *Shutdown timeout*: Defines the duration in seconds {pve} should wait
1064 for the VM to be offline after issuing a shutdown command. By default this
1065 value is set to 180, which means that {pve} will issue a shutdown request and
1066 wait 180 seconds for the machine to be offline. If the machine is still online
1067 after the timeout it will be stopped forcefully.
1068
1069 NOTE: VMs managed by the HA stack do not follow the 'start on boot' and
1070 'boot order' options currently. Those VMs will be skipped by the startup and
1071 shutdown algorithm as the HA manager itself ensures that VMs get started and
1072 stopped.
1073
1074 Please note that machines without a Start/Shutdown order parameter will always
1075 start after those where the parameter is set. Further, this parameter can only
1076 be enforced between virtual machines running on the same host, not
1077 cluster-wide.
1078
1079 If you require a delay between the host boot and the booting of the first VM,
1080 see the section on xref:first_guest_boot_delay[Proxmox VE Node Management].
1081
1082
1083 [[qm_qemu_agent]]
1084 QEMU Guest Agent
1085 ~~~~~~~~~~~~~~~~
1086
1087 The QEMU Guest Agent is a service which runs inside the VM, providing a
1088 communication channel between the host and the guest. It is used to exchange
1089 information and allows the host to issue commands to the guest.
1090
1091 For example, the IP addresses in the VM summary panel are fetched via the guest
1092 agent.
1093
1094 Or when starting a backup, the guest is told via the guest agent to sync
1095 outstanding writes via the 'fs-freeze' and 'fs-thaw' commands.
1096
1097 For the guest agent to work properly the following steps must be taken:
1098
1099 * install the agent in the guest and make sure it is running
1100 * enable the communication via the agent in {pve}
1101
1102 Install Guest Agent
1103 ^^^^^^^^^^^^^^^^^^^
1104
1105 For most Linux distributions, the guest agent is available. The package is
1106 usually named `qemu-guest-agent`.
1107
1108 For Windows, it can be installed from the
1109 https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso[Fedora
1110 VirtIO driver ISO].
1111
1112 [[qm_qga_enable]]
1113 Enable Guest Agent Communication
1114 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1115
1116 Communication from {pve} with the guest agent can be enabled in the VM's
1117 *Options* panel. A fresh start of the VM is necessary for the changes to take
1118 effect.
1119
1120 [[qm_qga_auto_trim]]
1121 Automatic TRIM Using QGA
1122 ^^^^^^^^^^^^^^^^^^^^^^^^
1123
1124 It is possible to enable the 'Run guest-trim' option. With this enabled,
1125 {pve} will issue a trim command to the guest after the following
1126 operations that have the potential to write out zeros to the storage:
1127
1128 * moving a disk to another storage
1129 * live migrating a VM to another node with local storage
1130
1131 On a thin provisioned storage, this can help to free up unused space.
1132
1133 NOTE: There is a caveat with ext4 on Linux, because it uses an in-memory
1134 optimization to avoid issuing duplicate TRIM requests. Since the guest doesn't
1135 know about the change in the underlying storage, only the first guest-trim will
1136 run as expected. Subsequent ones, until the next reboot, will only consider
1137 parts of the filesystem that changed since then.
1138
1139 [[qm_qga_fsfreeze]]
1140 Filesystem Freeze & Thaw on Backup
1141 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1142
1143 By default, guest filesystems are synced via the 'fs-freeze' QEMU Guest Agent
1144 Command when a backup is performed, to provide consistency.
1145
1146 On Windows guests, some applications might handle consistent backups themselves
1147 by hooking into the Windows VSS (Volume Shadow Copy Service) layer, a
1148 'fs-freeze' then might interfere with that. For example, it has been observed
1149 that calling 'fs-freeze' with some SQL Servers triggers VSS to call the SQL
1150 Writer VSS module in a mode that breaks the SQL Server backup chain for
1151 differential backups.
1152
1153 For such setups you can configure {pve} to not issue a freeze-and-thaw cycle on
1154 backup by setting the `freeze-fs-on-backup` QGA option to `0`. This can also be
1155 done via the GUI with the 'Freeze/thaw guest filesystems on backup for
1156 consistency' option.
1157
1158 IMPORTANT: Disabling this option can potentially lead to backups with inconsistent
1159 filesystems and should therefore only be disabled if you know what you are
1160 doing.
1161
1162 Troubleshooting
1163 ^^^^^^^^^^^^^^^
1164
1165 .VM does not shut down
1166
1167 Make sure the guest agent is installed and running.
1168
1169 Once the guest agent is enabled, {pve} will send power commands like
1170 'shutdown' via the guest agent. If the guest agent is not running, commands
1171 cannot get executed properly and the shutdown command will run into a timeout.
1172
1173 [[qm_spice_enhancements]]
1174 SPICE Enhancements
1175 ~~~~~~~~~~~~~~~~~~
1176
1177 SPICE Enhancements are optional features that can improve the remote viewer
1178 experience.
1179
1180 To enable them via the GUI go to the *Options* panel of the virtual machine. Run
1181 the following command to enable them via the CLI:
1182
1183 ----
1184 qm set <vmid> -spice_enhancements foldersharing=1,videostreaming=all
1185 ----
1186
1187 NOTE: To use these features the <<qm_display,*Display*>> of the virtual machine
1188 must be set to SPICE (qxl).
1189
1190 Folder Sharing
1191 ^^^^^^^^^^^^^^
1192
1193 Share a local folder with the guest. The `spice-webdavd` daemon needs to be
1194 installed in the guest. It makes the shared folder available through a local
1195 WebDAV server located at http://localhost:9843.
1196
1197 For Windows guests the installer for the 'Spice WebDAV daemon' can be downloaded
1198 from the
1199 https://www.spice-space.org/download.html#windows-binaries[official SPICE website].
1200
1201 Most Linux distributions have a package called `spice-webdavd` that can be
1202 installed.
1203
1204 To share a folder in Virt-Viewer (Remote Viewer) go to 'File -> Preferences'.
1205 Select the folder to share and then enable the checkbox.
1206
1207 NOTE: Folder sharing currently only works in the Linux version of Virt-Viewer.
1208
1209 CAUTION: Experimental! Currently this feature does not work reliably.
1210
1211 Video Streaming
1212 ^^^^^^^^^^^^^^^
1213
1214 Fast refreshing areas are encoded into a video stream. Two options exist:
1215
1216 * *all*: Any fast refreshing area will be encoded into a video stream.
1217 * *filter*: Additional filters are used to decide if video streaming should be
1218 used (currently only small window surfaces are skipped).
1219
1220 A general recommendation if video streaming should be enabled and which option
1221 to choose from cannot be given. Your mileage may vary depending on the specific
1222 circumstances.
1223
1224 Troubleshooting
1225 ^^^^^^^^^^^^^^^
1226
1227 .Shared folder does not show up
1228
1229 Make sure the WebDAV service is enabled and running in the guest. On Windows it
1230 is called 'Spice webdav proxy'. In Linux the name is 'spice-webdavd' but can be
1231 different depending on the distribution.
1232
1233 If the service is running, check the WebDAV server by opening
1234 http://localhost:9843 in a browser in the guest.
1235
1236 It can help to restart the SPICE session.
1237
1238 [[qm_migration]]
1239 Migration
1240 ---------
1241
1242 [thumbnail="screenshot/gui-qemu-migrate.png"]
1243
1244 If you have a cluster, you can migrate your VM to another host with
1245
1246 ----
1247 # qm migrate <vmid> <target>
1248 ----
1249
1250 There are generally two mechanisms for this
1251
1252 * Online Migration (aka Live Migration)
1253 * Offline Migration
1254
1255 Online Migration
1256 ~~~~~~~~~~~~~~~~
1257
1258 If your VM is running and no locally bound resources are configured (such as
1259 passed-through devices), you can initiate a live migration with the `--online`
1260 flag in the `qm migration` command evocation. The web-interface defaults to
1261 live migration when the VM is running.
1262
1263 How it works
1264 ^^^^^^^^^^^^
1265
1266 Online migration first starts a new QEMU process on the target host with the
1267 'incoming' flag, which performs only basic initialization with the guest vCPUs
1268 still paused and then waits for the guest memory and device state data streams
1269 of the source Virtual Machine.
1270 All other resources, such as disks, are either shared or got already sent
1271 before runtime state migration of the VMs begins; so only the memory content
1272 and device state remain to be transferred.
1273
1274 Once this connection is established, the source begins asynchronously sending
1275 the memory content to the target. If the guest memory on the source changes,
1276 those sections are marked dirty and another pass is made to send the guest
1277 memory data.
1278 This loop is repeated until the data difference between running source VM
1279 and incoming target VM is small enough to be sent in a few milliseconds,
1280 because then the source VM can be paused completely, without a user or program
1281 noticing the pause, so that the remaining data can be sent to the target, and
1282 then unpause the targets VM's CPU to make it the new running VM in well under a
1283 second.
1284
1285 Requirements
1286 ^^^^^^^^^^^^
1287
1288 For Live Migration to work, there are some things required:
1289
1290 * The VM has no local resources that cannot be migrated. For example,
1291 PCI or USB devices that are passed through currently block live-migration.
1292 Local Disks, on the other hand, can be migrated by sending them to the target
1293 just fine.
1294 * The hosts are located in the same {pve} cluster.
1295 * The hosts have a working (and reliable) network connection between them.
1296 * The target host must have the same, or higher versions of the
1297 {pve} packages. Although it can sometimes work the other way around, this
1298 cannot be guaranteed.
1299 * The hosts have CPUs from the same vendor with similar capabilities. Different
1300 vendor *might* work depending on the actual models and VMs CPU type
1301 configured, but it cannot be guaranteed - so please test before deploying
1302 such a setup in production.
1303
1304 Offline Migration
1305 ~~~~~~~~~~~~~~~~~
1306
1307 If you have local resources, you can still migrate your VMs offline as long as
1308 all disk are on storage defined on both hosts.
1309 Migration then copies the disks to the target host over the network, as with
1310 online migration. Note that any hardware pass-through configuration may need to
1311 be adapted to the device location on the target host.
1312
1313 // TODO: mention hardware map IDs as better way to solve that, once available
1314
1315 [[qm_copy_and_clone]]
1316 Copies and Clones
1317 -----------------
1318
1319 [thumbnail="screenshot/gui-qemu-full-clone.png"]
1320
1321 VM installation is usually done using an installation media (CD-ROM)
1322 from the operating system vendor. Depending on the OS, this can be a
1323 time consuming task one might want to avoid.
1324
1325 An easy way to deploy many VMs of the same type is to copy an existing
1326 VM. We use the term 'clone' for such copies, and distinguish between
1327 'linked' and 'full' clones.
1328
1329 Full Clone::
1330
1331 The result of such copy is an independent VM. The
1332 new VM does not share any storage resources with the original.
1333 +
1334
1335 It is possible to select a *Target Storage*, so one can use this to
1336 migrate a VM to a totally different storage. You can also change the
1337 disk image *Format* if the storage driver supports several formats.
1338 +
1339
1340 NOTE: A full clone needs to read and copy all VM image data. This is
1341 usually much slower than creating a linked clone.
1342 +
1343
1344 Some storage types allows to copy a specific *Snapshot*, which
1345 defaults to the 'current' VM data. This also means that the final copy
1346 never includes any additional snapshots from the original VM.
1347
1348
1349 Linked Clone::
1350
1351 Modern storage drivers support a way to generate fast linked
1352 clones. Such a clone is a writable copy whose initial contents are the
1353 same as the original data. Creating a linked clone is nearly
1354 instantaneous, and initially consumes no additional space.
1355 +
1356
1357 They are called 'linked' because the new image still refers to the
1358 original. Unmodified data blocks are read from the original image, but
1359 modification are written (and afterwards read) from a new
1360 location. This technique is called 'Copy-on-write'.
1361 +
1362
1363 This requires that the original volume is read-only. With {pve} one
1364 can convert any VM into a read-only <<qm_templates, Template>>). Such
1365 templates can later be used to create linked clones efficiently.
1366 +
1367
1368 NOTE: You cannot delete an original template while linked clones
1369 exist.
1370 +
1371
1372 It is not possible to change the *Target storage* for linked clones,
1373 because this is a storage internal feature.
1374
1375
1376 The *Target node* option allows you to create the new VM on a
1377 different node. The only restriction is that the VM is on shared
1378 storage, and that storage is also available on the target node.
1379
1380 To avoid resource conflicts, all network interface MAC addresses get
1381 randomized, and we generate a new 'UUID' for the VM BIOS (smbios1)
1382 setting.
1383
1384
1385 [[qm_templates]]
1386 Virtual Machine Templates
1387 -------------------------
1388
1389 One can convert a VM into a Template. Such templates are read-only,
1390 and you can use them to create linked clones.
1391
1392 NOTE: It is not possible to start templates, because this would modify
1393 the disk images. If you want to change the template, create a linked
1394 clone and modify that.
1395
1396 VM Generation ID
1397 ----------------
1398
1399 {pve} supports Virtual Machine Generation ID ('vmgenid') footnote:[Official
1400 'vmgenid' Specification
1401 https://docs.microsoft.com/en-us/windows/desktop/hyperv_v2/virtual-machine-generation-identifier]
1402 for virtual machines.
1403 This can be used by the guest operating system to detect any event resulting
1404 in a time shift event, for example, restoring a backup or a snapshot rollback.
1405
1406 When creating new VMs, a 'vmgenid' will be automatically generated and saved
1407 in its configuration file.
1408
1409 To create and add a 'vmgenid' to an already existing VM one can pass the
1410 special value `1' to let {pve} autogenerate one or manually set the 'UUID'
1411 footnote:[Online GUID generator http://guid.one/] by using it as value, for
1412 example:
1413
1414 ----
1415 # qm set VMID -vmgenid 1
1416 # qm set VMID -vmgenid 00000000-0000-0000-0000-000000000000
1417 ----
1418
1419 NOTE: The initial addition of a 'vmgenid' device to an existing VM, may result
1420 in the same effects as a change on snapshot rollback, backup restore, etc., has
1421 as the VM can interpret this as generation change.
1422
1423 In the rare case the 'vmgenid' mechanism is not wanted one can pass `0' for
1424 its value on VM creation, or retroactively delete the property in the
1425 configuration with:
1426
1427 ----
1428 # qm set VMID -delete vmgenid
1429 ----
1430
1431 The most prominent use case for 'vmgenid' are newer Microsoft Windows
1432 operating systems, which use it to avoid problems in time sensitive or
1433 replicate services (such as databases or domain controller
1434 footnote:[https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/virtualized-domain-controller-architecture])
1435 on snapshot rollback, backup restore or a whole VM clone operation.
1436
1437 Importing Virtual Machines and disk images
1438 ------------------------------------------
1439
1440 A VM export from a foreign hypervisor takes usually the form of one or more disk
1441 images, with a configuration file describing the settings of the VM (RAM,
1442 number of cores). +
1443 The disk images can be in the vmdk format, if the disks come from
1444 VMware or VirtualBox, or qcow2 if the disks come from a KVM hypervisor.
1445 The most popular configuration format for VM exports is the OVF standard, but in
1446 practice interoperation is limited because many settings are not implemented in
1447 the standard itself, and hypervisors export the supplementary information
1448 in non-standard extensions.
1449
1450 Besides the problem of format, importing disk images from other hypervisors
1451 may fail if the emulated hardware changes too much from one hypervisor to
1452 another. Windows VMs are particularly concerned by this, as the OS is very
1453 picky about any changes of hardware. This problem may be solved by
1454 installing the MergeIDE.zip utility available from the Internet before exporting
1455 and choosing a hard disk type of *IDE* before booting the imported Windows VM.
1456
1457 Finally there is the question of paravirtualized drivers, which improve the
1458 speed of the emulated system and are specific to the hypervisor.
1459 GNU/Linux and other free Unix OSes have all the necessary drivers installed by
1460 default and you can switch to the paravirtualized drivers right after importing
1461 the VM. For Windows VMs, you need to install the Windows paravirtualized
1462 drivers by yourself.
1463
1464 GNU/Linux and other free Unix can usually be imported without hassle. Note
1465 that we cannot guarantee a successful import/export of Windows VMs in all
1466 cases due to the problems above.
1467
1468 Step-by-step example of a Windows OVF import
1469 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1470
1471 Microsoft provides
1472 https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/[Virtual Machines downloads]
1473 to get started with Windows development.We are going to use one of these
1474 to demonstrate the OVF import feature.
1475
1476 Download the Virtual Machine zip
1477 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1478
1479 After getting informed about the user agreement, choose the _Windows 10
1480 Enterprise (Evaluation - Build)_ for the VMware platform, and download the zip.
1481
1482 Extract the disk image from the zip
1483 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1484
1485 Using the `unzip` utility or any archiver of your choice, unpack the zip,
1486 and copy via ssh/scp the ovf and vmdk files to your {pve} host.
1487
1488 Import the Virtual Machine
1489 ^^^^^^^^^^^^^^^^^^^^^^^^^^
1490
1491 This will create a new virtual machine, using cores, memory and
1492 VM name as read from the OVF manifest, and import the disks to the +local-lvm+
1493 storage. You have to configure the network manually.
1494
1495 ----
1496 # qm importovf 999 WinDev1709Eval.ovf local-lvm
1497 ----
1498
1499 The VM is ready to be started.
1500
1501 Adding an external disk image to a Virtual Machine
1502 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1503
1504 You can also add an existing disk image to a VM, either coming from a
1505 foreign hypervisor, or one that you created yourself.
1506
1507 Suppose you created a Debian/Ubuntu disk image with the 'vmdebootstrap' tool:
1508
1509 vmdebootstrap --verbose \
1510 --size 10GiB --serial-console \
1511 --grub --no-extlinux \
1512 --package openssh-server \
1513 --package avahi-daemon \
1514 --package qemu-guest-agent \
1515 --hostname vm600 --enable-dhcp \
1516 --customize=./copy_pub_ssh.sh \
1517 --sparse --image vm600.raw
1518
1519 You can now create a new target VM, importing the image to the storage `pvedir`
1520 and attaching it to the VM's SCSI controller:
1521
1522 ----
1523 # qm create 600 --net0 virtio,bridge=vmbr0 --name vm600 --serial0 socket \
1524 --boot order=scsi0 --scsihw virtio-scsi-pci --ostype l26 \
1525 --scsi0 pvedir:0,import-from=/path/to/dir/vm600.raw
1526 ----
1527
1528 The VM is ready to be started.
1529
1530
1531 ifndef::wiki[]
1532 include::qm-cloud-init.adoc[]
1533 endif::wiki[]
1534
1535 ifndef::wiki[]
1536 include::qm-pci-passthrough.adoc[]
1537 endif::wiki[]
1538
1539 Hookscripts
1540 -----------
1541
1542 You can add a hook script to VMs with the config property `hookscript`.
1543
1544 ----
1545 # qm set 100 --hookscript local:snippets/hookscript.pl
1546 ----
1547
1548 It will be called during various phases of the guests lifetime.
1549 For an example and documentation see the example script under
1550 `/usr/share/pve-docs/examples/guest-example-hookscript.pl`.
1551
1552 [[qm_hibernate]]
1553 Hibernation
1554 -----------
1555
1556 You can suspend a VM to disk with the GUI option `Hibernate` or with
1557
1558 ----
1559 # qm suspend ID --todisk
1560 ----
1561
1562 That means that the current content of the memory will be saved onto disk
1563 and the VM gets stopped. On the next start, the memory content will be
1564 loaded and the VM can continue where it was left off.
1565
1566 [[qm_vmstatestorage]]
1567 .State storage selection
1568 If no target storage for the memory is given, it will be automatically
1569 chosen, the first of:
1570
1571 1. The storage `vmstatestorage` from the VM config.
1572 2. The first shared storage from any VM disk.
1573 3. The first non-shared storage from any VM disk.
1574 4. The storage `local` as a fallback.
1575
1576 [[resource_mapping]]
1577 Resource Mapping
1578 ----------------
1579
1580 [thumbnail="screenshot/gui-datacenter-resource-mappings.png"]
1581
1582 When using or referencing local resources (e.g. address of a pci device), using
1583 the raw address or id is sometimes problematic, for example:
1584
1585 * when using HA, a different device with the same id or path may exist on the
1586 target node, and if one is not careful when assigning such guests to HA
1587 groups, the wrong device could be used, breaking configurations.
1588
1589 * changing hardware can change ids and paths, so one would have to check all
1590 assigned devices and see if the path or id is still correct.
1591
1592 To handle this better, one can define cluster wide resource mappings, such that
1593 a resource has a cluster unique, user selected identifier which can correspond
1594 to different devices on different hosts. With this, HA won't start a guest with
1595 a wrong device, and hardware changes can be detected.
1596
1597 Creating such a mapping can be done with the {pve} web GUI under `Datacenter`
1598 in the relevant tab in the `Resource Mappings` category, or on the cli with
1599
1600 ----
1601 # pvesh create /cluster/mapping/<type> <options>
1602 ----
1603
1604 [thumbnail="screenshot/gui-datacenter-mapping-pci-edit.png"]
1605
1606 Where `<type>` is the hardware type (currently either `pci` or `usb`) and
1607 `<options>` are the device mappings and other configuration parameters.
1608
1609 Note that the options must include a map property with all identifying
1610 properties of that hardware, so that it's possible to verify the hardware did
1611 not change and the correct device is passed through.
1612
1613 For example to add a PCI device as `device1` with the path `0000:01:00.0` that
1614 has the device id `0001` and the vendor id `0002` on the node `node1`, and
1615 `0000:02:00.0` on `node2` you can add it with:
1616
1617 ----
1618 # pvesh create /cluster/mapping/pci --id device1 \
1619 --map node=node1,path=0000:01:00.0,id=0002:0001 \
1620 --map node=node2,path=0000:02:00.0,id=0002:0001
1621 ----
1622
1623 You must repeat the `map` parameter for each node where that device should have
1624 a mapping (note that you can currently only map one USB device per node per
1625 mapping).
1626
1627 Using the GUI makes this much easier, as the correct properties are
1628 automatically picked up and sent to the API.
1629
1630 [thumbnail="screenshot/gui-datacenter-mapping-usb-edit.png"]
1631
1632 It's also possible for PCI devices to provide multiple devices per node with
1633 multiple map properties for the nodes. If such a device is assigned to a guest,
1634 the first free one will be used when the guest is started. The order of the
1635 paths given is also the order in which they are tried, so arbitrary allocation
1636 policies can be implemented.
1637
1638 This is useful for devices with SR-IOV, since some times it is not important
1639 which exact virtual function is passed through.
1640
1641 You can assign such a device to a guest either with the GUI or with
1642
1643 ----
1644 # qm set ID -hostpci0 <name>
1645 ----
1646
1647 for PCI devices, or
1648
1649 ----
1650 # qm set <vmid> -usb0 <name>
1651 ----
1652
1653 for USB devices.
1654
1655 Where `<vmid>` is the guests id and `<name>` is the chosen name for the created
1656 mapping. All usual options for passing through the devices are allowed, such as
1657 `mdev`.
1658
1659 To create mappings `Mapping.Modify` on `/mapping/<type>/<name>` is necessary
1660 (where `<type>` is the device type and `<name>` is the name of the mapping).
1661
1662 To use these mappings, `Mapping.Use` on `/mapping/<type>/<name>` is necessary
1663 (in addition to the normal guest privileges to edit the configuration).
1664
1665 Managing Virtual Machines with `qm`
1666 ------------------------------------
1667
1668 qm is the tool to manage QEMU/KVM virtual machines on {pve}. You can
1669 create and destroy virtual machines, and control execution
1670 (start/stop/suspend/resume). Besides that, you can use qm to set
1671 parameters in the associated config file. It is also possible to
1672 create and delete virtual disks.
1673
1674 CLI Usage Examples
1675 ~~~~~~~~~~~~~~~~~~
1676
1677 Using an iso file uploaded on the 'local' storage, create a VM
1678 with a 4 GB IDE disk on the 'local-lvm' storage
1679
1680 ----
1681 # qm create 300 -ide0 local-lvm:4 -net0 e1000 -cdrom local:iso/proxmox-mailgateway_2.1.iso
1682 ----
1683
1684 Start the new VM
1685
1686 ----
1687 # qm start 300
1688 ----
1689
1690 Send a shutdown request, then wait until the VM is stopped.
1691
1692 ----
1693 # qm shutdown 300 && qm wait 300
1694 ----
1695
1696 Same as above, but only wait for 40 seconds.
1697
1698 ----
1699 # qm shutdown 300 && qm wait 300 -timeout 40
1700 ----
1701
1702 Destroying a VM always removes it from Access Control Lists and it always
1703 removes the firewall configuration of the VM. You have to activate
1704 '--purge', if you want to additionally remove the VM from replication jobs,
1705 backup jobs and HA resource configurations.
1706
1707 ----
1708 # qm destroy 300 --purge
1709 ----
1710
1711 Move a disk image to a different storage.
1712
1713 ----
1714 # qm move-disk 300 scsi0 other-storage
1715 ----
1716
1717 Reassign a disk image to a different VM. This will remove the disk `scsi1` from
1718 the source VM and attaches it as `scsi3` to the target VM. In the background
1719 the disk image is being renamed so that the name matches the new owner.
1720
1721 ----
1722 # qm move-disk 300 scsi1 --target-vmid 400 --target-disk scsi3
1723 ----
1724
1725
1726 [[qm_configuration]]
1727 Configuration
1728 -------------
1729
1730 VM configuration files are stored inside the Proxmox cluster file
1731 system, and can be accessed at `/etc/pve/qemu-server/<VMID>.conf`.
1732 Like other files stored inside `/etc/pve/`, they get automatically
1733 replicated to all other cluster nodes.
1734
1735 NOTE: VMIDs < 100 are reserved for internal purposes, and VMIDs need to be
1736 unique cluster wide.
1737
1738 .Example VM Configuration
1739 ----
1740 boot: order=virtio0;net0
1741 cores: 1
1742 sockets: 1
1743 memory: 512
1744 name: webmail
1745 ostype: l26
1746 net0: e1000=EE:D2:28:5F:B6:3E,bridge=vmbr0
1747 virtio0: local:vm-100-disk-1,size=32G
1748 ----
1749
1750 Those configuration files are simple text files, and you can edit them
1751 using a normal text editor (`vi`, `nano`, ...). This is sometimes
1752 useful to do small corrections, but keep in mind that you need to
1753 restart the VM to apply such changes.
1754
1755 For that reason, it is usually better to use the `qm` command to
1756 generate and modify those files, or do the whole thing using the GUI.
1757 Our toolkit is smart enough to instantaneously apply most changes to
1758 running VM. This feature is called "hot plug", and there is no
1759 need to restart the VM in that case.
1760
1761
1762 File Format
1763 ~~~~~~~~~~~
1764
1765 VM configuration files use a simple colon separated key/value
1766 format. Each line has the following format:
1767
1768 -----
1769 # this is a comment
1770 OPTION: value
1771 -----
1772
1773 Blank lines in those files are ignored, and lines starting with a `#`
1774 character are treated as comments and are also ignored.
1775
1776
1777 [[qm_snapshots]]
1778 Snapshots
1779 ~~~~~~~~~
1780
1781 When you create a snapshot, `qm` stores the configuration at snapshot
1782 time into a separate snapshot section within the same configuration
1783 file. For example, after creating a snapshot called ``testsnapshot'',
1784 your configuration file will look like this:
1785
1786 .VM configuration with snapshot
1787 ----
1788 memory: 512
1789 swap: 512
1790 parent: testsnaphot
1791 ...
1792
1793 [testsnaphot]
1794 memory: 512
1795 swap: 512
1796 snaptime: 1457170803
1797 ...
1798 ----
1799
1800 There are a few snapshot related properties like `parent` and
1801 `snaptime`. The `parent` property is used to store the parent/child
1802 relationship between snapshots. `snaptime` is the snapshot creation
1803 time stamp (Unix epoch).
1804
1805 You can optionally save the memory of a running VM with the option `vmstate`.
1806 For details about how the target storage gets chosen for the VM state, see
1807 xref:qm_vmstatestorage[State storage selection] in the chapter
1808 xref:qm_hibernate[Hibernation].
1809
1810 [[qm_options]]
1811 Options
1812 ~~~~~~~
1813
1814 include::qm.conf.5-opts.adoc[]
1815
1816
1817 Locks
1818 -----
1819
1820 Online migrations, snapshots and backups (`vzdump`) set a lock to prevent
1821 incompatible concurrent actions on the affected VMs. Sometimes you need to
1822 remove such a lock manually (for example after a power failure).
1823
1824 ----
1825 # qm unlock <vmid>
1826 ----
1827
1828 CAUTION: Only do that if you are sure the action which set the lock is
1829 no longer running.
1830
1831 ifdef::wiki[]
1832
1833 See Also
1834 ~~~~~~~~
1835
1836 * link:/wiki/Cloud-Init_Support[Cloud-Init Support]
1837
1838 endif::wiki[]
1839
1840
1841 ifdef::manvolnum[]
1842
1843 Files
1844 ------
1845
1846 `/etc/pve/qemu-server/<VMID>.conf`::
1847
1848 Configuration file for the VM '<VMID>'.
1849
1850
1851 include::pve-copyright.adoc[]
1852 endif::manvolnum[]