]> git.proxmox.com Git - qemu.git/blame - exec.c
vfio-pci: Implement PCI hot reset
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
67d95c15 53
db7b5426 54//#define DEBUG_SUBPAGE
1196be37 55
e2eef170 56#if !defined(CONFIG_USER_ONLY)
74576198 57static int in_migration;
94a6b54f 58
a3161038 59RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
60
61static MemoryRegion *system_memory;
309cb471 62static MemoryRegion *system_io;
62152b8a 63
f6790af6
AK
64AddressSpace address_space_io;
65AddressSpace address_space_memory;
2673a5da 66
0844e007 67MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 68static MemoryRegion io_mem_unassigned;
0e0df1e2 69
e2eef170 70#endif
9fa3e853 71
bdc44640 72struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
73/* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
4917cf44 75DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 76/* 0 = Do not count executed instructions.
bf20dc07 77 1 = Precise instruction counting.
2e70f6ef 78 2 = Adaptive rate instruction counting. */
5708fc66 79int use_icount;
6a00d601 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
4346ae3e 82
1db8abb1
PB
83typedef struct PhysPageEntry PhysPageEntry;
84
85struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89};
90
0475d94f
PB
91typedef PhysPageEntry Node[L2_SIZE];
92
1db8abb1
PB
93struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
0475d94f
PB
98 Node *nodes;
99 MemoryRegionSection *sections;
acc9d80b 100 AddressSpace *as;
1db8abb1
PB
101};
102
90260c6c
JK
103#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104typedef struct subpage_t {
105 MemoryRegion iomem;
acc9d80b 106 AddressSpace *as;
90260c6c
JK
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109} subpage_t;
110
b41aac4f
LPF
111#define PHYS_SECTION_UNASSIGNED 0
112#define PHYS_SECTION_NOTDIRTY 1
113#define PHYS_SECTION_ROM 2
114#define PHYS_SECTION_WATCH 3
5312bd8b 115
9affd6fc
PB
116typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123} PhysPageMap;
124
6092666e 125static PhysPageMap *prev_map;
9affd6fc 126static PhysPageMap next_map;
d6f2ea22 127
07f07b31 128#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 129
e2eef170 130static void io_mem_init(void);
62152b8a 131static void memory_map_init(void);
8b9c99d9 132static void *qemu_safe_ram_ptr(ram_addr_t addr);
e2eef170 133
1ec9b909 134static MemoryRegion io_mem_watch;
6658ffb8 135#endif
fd6ce8f6 136
6d9a1304 137#if !defined(CONFIG_USER_ONLY)
d6f2ea22 138
f7bf5461 139static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 140{
9affd6fc
PB
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
d6f2ea22 148 }
f7bf5461
AK
149}
150
151static uint16_t phys_map_node_alloc(void)
152{
153 unsigned i;
154 uint16_t ret;
155
9affd6fc 156 ret = next_map.nodes_nb++;
f7bf5461 157 assert(ret != PHYS_MAP_NODE_NIL);
9affd6fc 158 assert(ret != next_map.nodes_nb_alloc);
d6f2ea22 159 for (i = 0; i < L2_SIZE; ++i) {
9affd6fc
PB
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 162 }
f7bf5461 163 return ret;
d6f2ea22
AK
164}
165
a8170e5e
AK
166static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
2999097b 168 int level)
f7bf5461
AK
169{
170 PhysPageEntry *p;
171 int i;
a8170e5e 172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
108c49b8 173
07f07b31 174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800 175 lp->ptr = phys_map_node_alloc();
9affd6fc 176 p = next_map.nodes[lp->ptr];
f7bf5461
AK
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
07f07b31 179 p[i].is_leaf = 1;
b41aac4f 180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 181 }
67c4d23c 182 }
f7bf5461 183 } else {
9affd6fc 184 p = next_map.nodes[lp->ptr];
92e873b9 185 }
2999097b 186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 187
2999097b 188 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
c19e8800 191 lp->ptr = leaf;
07f07b31
AK
192 *index += step;
193 *nb -= step;
2999097b
AK
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
f7bf5461
AK
198 }
199}
200
ac1970fb 201static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 202 hwaddr index, hwaddr nb,
2999097b 203 uint16_t leaf)
f7bf5461 204{
2999097b 205 /* Wildly overreserve - it doesn't matter much. */
07f07b31 206 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 207
ac1970fb 208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
209}
210
9affd6fc
PB
211static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
92e873b9 213{
31ab2b4a
AK
214 PhysPageEntry *p;
215 int i;
f1f6e3b8 216
07f07b31 217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 219 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 220 }
9affd6fc 221 p = nodes[lp.ptr];
31ab2b4a 222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 223 }
9affd6fc 224 return &sections[lp.ptr];
f3705d53
AK
225}
226
e5548617
BS
227bool memory_region_is_unassigned(MemoryRegion *mr)
228{
2a8e7499 229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 230 && mr != &io_mem_watch;
fd6ce8f6 231}
149f54b5 232
c7086b4a 233static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
234 hwaddr addr,
235 bool resolve_subpage)
9f029603 236{
90260c6c
JK
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
0475d94f
PB
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
90260c6c
JK
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
0475d94f 244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
245 }
246 return section;
9f029603
JK
247}
248
90260c6c 249static MemoryRegionSection *
c7086b4a 250address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 251 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
252{
253 MemoryRegionSection *section;
254 Int128 diff;
255
c7086b4a 256 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
265 return section;
266}
90260c6c 267
5c8a00ce
PB
268MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
90260c6c 271{
30951157
AK
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
c7086b4a 278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
90260c6c
JK
300}
301
302MemoryRegionSection *
303address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305{
30951157 306 MemoryRegionSection *section;
c7086b4a 307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
308
309 assert(!section->mr->iommu_ops);
310 return section;
90260c6c 311}
5b6dd868 312#endif
fd6ce8f6 313
5b6dd868 314void cpu_exec_init_all(void)
fdbb84d1 315{
5b6dd868 316#if !defined(CONFIG_USER_ONLY)
b2a8658e 317 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
318 memory_map_init();
319 io_mem_init();
fdbb84d1 320#endif
5b6dd868 321}
fdbb84d1 322
b170fce3 323#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
324
325static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 326{
259186a7 327 CPUState *cpu = opaque;
a513fe19 328
5b6dd868
BS
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
259186a7
AF
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
333
334 return 0;
a513fe19 335}
7501267e 336
1a1562f5 337const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
259186a7
AF
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
346 VMSTATE_END_OF_LIST()
347 }
348};
1a1562f5 349
5b6dd868 350#endif
ea041c0e 351
38d8f5c8 352CPUState *qemu_get_cpu(int index)
ea041c0e 353{
bdc44640 354 CPUState *cpu;
ea041c0e 355
bdc44640 356 CPU_FOREACH(cpu) {
55e5c285 357 if (cpu->cpu_index == index) {
bdc44640 358 return cpu;
55e5c285 359 }
ea041c0e 360 }
5b6dd868 361
bdc44640 362 return NULL;
ea041c0e
FB
363}
364
5b6dd868 365void cpu_exec_init(CPUArchState *env)
ea041c0e 366{
5b6dd868 367 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 368 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 369 CPUState *some_cpu;
5b6dd868
BS
370 int cpu_index;
371
372#if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374#endif
5b6dd868 375 cpu_index = 0;
bdc44640 376 CPU_FOREACH(some_cpu) {
5b6dd868
BS
377 cpu_index++;
378 }
55e5c285 379 cpu->cpu_index = cpu_index;
1b1ed8dc 380 cpu->numa_node = 0;
5b6dd868
BS
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383#ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385#endif
bdc44640 386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
387#if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389#endif
e0d47944
AF
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
5b6dd868 393#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
b170fce3 396 assert(cc->vmsd == NULL);
e0d47944 397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 398#endif
b170fce3
AF
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
ea041c0e
FB
402}
403
1fddef4b 404#if defined(TARGET_HAS_ICE)
94df27fd 405#if defined(CONFIG_USER_ONLY)
00b941e5 406static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
407{
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409}
410#else
00b941e5 411static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 412{
00b941e5 413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
9d70c4b7 414 (pc & ~TARGET_PAGE_MASK));
1e7855a5 415}
c27004ec 416#endif
94df27fd 417#endif /* TARGET_HAS_ICE */
d720b93d 418
c527ee8f 419#if defined(CONFIG_USER_ONLY)
9349b4f9 420void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
421
422{
423}
424
9349b4f9 425int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
426 int flags, CPUWatchpoint **watchpoint)
427{
428 return -ENOSYS;
429}
430#else
6658ffb8 431/* Add a watchpoint. */
9349b4f9 432int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 433 int flags, CPUWatchpoint **watchpoint)
6658ffb8 434{
b4051334 435 target_ulong len_mask = ~(len - 1);
c0ce998e 436 CPUWatchpoint *wp;
6658ffb8 437
b4051334 438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
7267c094 445 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
446
447 wp->vaddr = addr;
b4051334 448 wp->len_mask = len_mask;
a1d1bb31
AL
449 wp->flags = flags;
450
2dc9f411 451 /* keep all GDB-injected watchpoints in front */
c0ce998e 452 if (flags & BP_GDB)
72cf2d4f 453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 454 else
72cf2d4f 455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 456
6658ffb8 457 tlb_flush_page(env, addr);
a1d1bb31
AL
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
6658ffb8
PB
462}
463
a1d1bb31 464/* Remove a specific watchpoint. */
9349b4f9 465int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 466 int flags)
6658ffb8 467{
b4051334 468 target_ulong len_mask = ~(len - 1);
a1d1bb31 469 CPUWatchpoint *wp;
6658ffb8 470
72cf2d4f 471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 472 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 474 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
475 return 0;
476 }
477 }
a1d1bb31 478 return -ENOENT;
6658ffb8
PB
479}
480
a1d1bb31 481/* Remove a specific watchpoint by reference. */
9349b4f9 482void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 483{
72cf2d4f 484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 485
a1d1bb31
AL
486 tlb_flush_page(env, watchpoint->vaddr);
487
7267c094 488 g_free(watchpoint);
a1d1bb31
AL
489}
490
491/* Remove all matching watchpoints. */
9349b4f9 492void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 493{
c0ce998e 494 CPUWatchpoint *wp, *next;
a1d1bb31 495
72cf2d4f 496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 499 }
7d03f82f 500}
c527ee8f 501#endif
7d03f82f 502
a1d1bb31 503/* Add a breakpoint. */
9349b4f9 504int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 505 CPUBreakpoint **breakpoint)
4c3a88a2 506{
1fddef4b 507#if defined(TARGET_HAS_ICE)
c0ce998e 508 CPUBreakpoint *bp;
3b46e624 509
7267c094 510 bp = g_malloc(sizeof(*bp));
4c3a88a2 511
a1d1bb31
AL
512 bp->pc = pc;
513 bp->flags = flags;
514
2dc9f411 515 /* keep all GDB-injected breakpoints in front */
00b941e5 516 if (flags & BP_GDB) {
72cf2d4f 517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 518 } else {
72cf2d4f 519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 520 }
3b46e624 521
00b941e5 522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 523
00b941e5 524 if (breakpoint) {
a1d1bb31 525 *breakpoint = bp;
00b941e5 526 }
4c3a88a2
FB
527 return 0;
528#else
a1d1bb31 529 return -ENOSYS;
4c3a88a2
FB
530#endif
531}
532
a1d1bb31 533/* Remove a specific breakpoint. */
9349b4f9 534int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 535{
7d03f82f 536#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
537 CPUBreakpoint *bp;
538
72cf2d4f 539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
7d03f82f 544 }
a1d1bb31
AL
545 return -ENOENT;
546#else
547 return -ENOSYS;
7d03f82f
EI
548#endif
549}
550
a1d1bb31 551/* Remove a specific breakpoint by reference. */
9349b4f9 552void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 553{
1fddef4b 554#if defined(TARGET_HAS_ICE)
72cf2d4f 555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 556
00b941e5 557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 558
7267c094 559 g_free(breakpoint);
a1d1bb31
AL
560#endif
561}
562
563/* Remove all matching breakpoints. */
9349b4f9 564void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
565{
566#if defined(TARGET_HAS_ICE)
c0ce998e 567 CPUBreakpoint *bp, *next;
a1d1bb31 568
72cf2d4f 569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 572 }
4c3a88a2
FB
573#endif
574}
575
c33a346e
FB
576/* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
3825b28f 578void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 579{
1fddef4b 580#if defined(TARGET_HAS_ICE)
ed2803da
AF
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
38e478ec 584 kvm_update_guest_debug(cpu, 0);
ed2803da 585 } else {
ccbb4d44 586 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 587 /* XXX: only flush what is necessary */
38e478ec 588 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
589 tb_flush(env);
590 }
c33a346e
FB
591 }
592#endif
593}
594
9349b4f9 595void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 596{
878096ee 597 CPUState *cpu = ENV_GET_CPU(env);
7501267e 598 va_list ap;
493ae1f0 599 va_list ap2;
7501267e
FB
600
601 va_start(ap, fmt);
493ae1f0 602 va_copy(ap2, ap);
7501267e
FB
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
878096ee 606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
a0762859 611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 612 qemu_log_flush();
93fcfe39 613 qemu_log_close();
924edcae 614 }
493ae1f0 615 va_end(ap2);
f9373291 616 va_end(ap);
fd052bf6
RV
617#if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624#endif
7501267e
FB
625 abort();
626}
627
9349b4f9 628CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 629{
9349b4f9 630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
5a38f081
AL
631#if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634#endif
635
b24c882b
AG
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
9349b4f9 640 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081 641
5a38f081
AL
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
5a38f081 647#if defined(TARGET_HAS_ICE)
72cf2d4f 648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
72cf2d4f 651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655#endif
656
c5be9f08
TS
657 return new_env;
658}
659
0124311e 660#if !defined(CONFIG_USER_ONLY)
d24981d3
JQ
661static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663{
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677}
678
5579c7f3 679/* Note: start and end must be within the same ram block. */
c227f099 680void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 681 int dirty_flags)
1ccde1cb 682{
d24981d3 683 uintptr_t length;
1ccde1cb
FB
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
f7c11b53 691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 692
d24981d3
JQ
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 695 }
1ccde1cb
FB
696}
697
8b9c99d9 698static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 699{
f6f3fbca 700 int ret = 0;
74576198 701 in_migration = enable;
f6f3fbca 702 return ret;
74576198
AL
703}
704
a8170e5e 705hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
e5548617 711{
a8170e5e 712 hwaddr iotlb;
e5548617
BS
713 CPUWatchpoint *wp;
714
cc5bea60 715 if (memory_region_is_ram(section->mr)) {
e5548617
BS
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 718 + xlat;
e5548617 719 if (!section->readonly) {
b41aac4f 720 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 721 } else {
b41aac4f 722 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
723 }
724 } else {
0475d94f 725 iotlb = section - address_space_memory.dispatch->sections;
149f54b5 726 iotlb += xlat;
e5548617
BS
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 735 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743}
9fa3e853
FB
744#endif /* defined(CONFIG_USER_ONLY) */
745
e2eef170 746#if !defined(CONFIG_USER_ONLY)
8da3ff18 747
c227f099 748static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 749 uint16_t section);
acc9d80b 750static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 751
91138037
MA
752static void *(*phys_mem_alloc)(ram_addr_t size) = qemu_anon_ram_alloc;
753
754/*
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
758 */
759void phys_mem_set_alloc(void *(*alloc)(ram_addr_t))
760{
761 phys_mem_alloc = alloc;
762}
763
5312bd8b
AK
764static uint16_t phys_section_add(MemoryRegionSection *section)
765{
68f3f65b
PB
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
769 */
9affd6fc 770 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
68f3f65b 771
9affd6fc
PB
772 if (next_map.sections_nb == next_map.sections_nb_alloc) {
773 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
774 16);
775 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
776 next_map.sections_nb_alloc);
5312bd8b 777 }
9affd6fc 778 next_map.sections[next_map.sections_nb] = *section;
dfde4e6e 779 memory_region_ref(section->mr);
9affd6fc 780 return next_map.sections_nb++;
5312bd8b
AK
781}
782
058bc4b5
PB
783static void phys_section_destroy(MemoryRegion *mr)
784{
dfde4e6e
PB
785 memory_region_unref(mr);
786
058bc4b5
PB
787 if (mr->subpage) {
788 subpage_t *subpage = container_of(mr, subpage_t, iomem);
789 memory_region_destroy(&subpage->iomem);
790 g_free(subpage);
791 }
792}
793
6092666e 794static void phys_sections_free(PhysPageMap *map)
5312bd8b 795{
9affd6fc
PB
796 while (map->sections_nb > 0) {
797 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
798 phys_section_destroy(section->mr);
799 }
9affd6fc
PB
800 g_free(map->sections);
801 g_free(map->nodes);
6092666e 802 g_free(map);
5312bd8b
AK
803}
804
ac1970fb 805static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
806{
807 subpage_t *subpage;
a8170e5e 808 hwaddr base = section->offset_within_address_space
0f0cb164 809 & TARGET_PAGE_MASK;
9affd6fc
PB
810 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
811 next_map.nodes, next_map.sections);
0f0cb164
AK
812 MemoryRegionSection subsection = {
813 .offset_within_address_space = base,
052e87b0 814 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 815 };
a8170e5e 816 hwaddr start, end;
0f0cb164 817
f3705d53 818 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 819
f3705d53 820 if (!(existing->mr->subpage)) {
acc9d80b 821 subpage = subpage_init(d->as, base);
0f0cb164 822 subsection.mr = &subpage->iomem;
ac1970fb 823 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 824 phys_section_add(&subsection));
0f0cb164 825 } else {
f3705d53 826 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
827 }
828 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 829 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
830 subpage_register(subpage, start, end, phys_section_add(section));
831}
832
833
052e87b0
PB
834static void register_multipage(AddressSpaceDispatch *d,
835 MemoryRegionSection *section)
33417e70 836{
a8170e5e 837 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 838 uint16_t section_index = phys_section_add(section);
052e87b0
PB
839 uint64_t num_pages = int128_get64(int128_rshift(section->size,
840 TARGET_PAGE_BITS));
dd81124b 841
733d5ef5
PB
842 assert(num_pages);
843 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
844}
845
ac1970fb 846static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 847{
89ae337a 848 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 849 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 850 MemoryRegionSection now = *section, remain = *section;
052e87b0 851 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 852
733d5ef5
PB
853 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
854 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
855 - now.offset_within_address_space;
856
052e87b0 857 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 858 register_subpage(d, &now);
733d5ef5 859 } else {
052e87b0 860 now.size = int128_zero();
733d5ef5 861 }
052e87b0
PB
862 while (int128_ne(remain.size, now.size)) {
863 remain.size = int128_sub(remain.size, now.size);
864 remain.offset_within_address_space += int128_get64(now.size);
865 remain.offset_within_region += int128_get64(now.size);
69b67646 866 now = remain;
052e87b0 867 if (int128_lt(remain.size, page_size)) {
733d5ef5 868 register_subpage(d, &now);
88266249 869 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 870 now.size = page_size;
ac1970fb 871 register_subpage(d, &now);
69b67646 872 } else {
052e87b0 873 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 874 register_multipage(d, &now);
69b67646 875 }
0f0cb164
AK
876 }
877}
878
62a2744c
SY
879void qemu_flush_coalesced_mmio_buffer(void)
880{
881 if (kvm_enabled())
882 kvm_flush_coalesced_mmio_buffer();
883}
884
b2a8658e
UD
885void qemu_mutex_lock_ramlist(void)
886{
887 qemu_mutex_lock(&ram_list.mutex);
888}
889
890void qemu_mutex_unlock_ramlist(void)
891{
892 qemu_mutex_unlock(&ram_list.mutex);
893}
894
e1e84ba0 895#ifdef __linux__
c902760f
MT
896
897#include <sys/vfs.h>
898
899#define HUGETLBFS_MAGIC 0x958458f6
900
901static long gethugepagesize(const char *path)
902{
903 struct statfs fs;
904 int ret;
905
906 do {
9742bf26 907 ret = statfs(path, &fs);
c902760f
MT
908 } while (ret != 0 && errno == EINTR);
909
910 if (ret != 0) {
9742bf26
YT
911 perror(path);
912 return 0;
c902760f
MT
913 }
914
915 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 916 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
917
918 return fs.f_bsize;
919}
920
04b16653
AW
921static void *file_ram_alloc(RAMBlock *block,
922 ram_addr_t memory,
923 const char *path)
c902760f
MT
924{
925 char *filename;
8ca761f6
PF
926 char *sanitized_name;
927 char *c;
c902760f
MT
928 void *area;
929 int fd;
930#ifdef MAP_POPULATE
931 int flags;
932#endif
933 unsigned long hpagesize;
934
935 hpagesize = gethugepagesize(path);
936 if (!hpagesize) {
9742bf26 937 return NULL;
c902760f
MT
938 }
939
940 if (memory < hpagesize) {
941 return NULL;
942 }
943
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
946 return NULL;
947 }
948
8ca761f6
PF
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name = g_strdup(block->mr->name);
951 for (c = sanitized_name; *c != '\0'; c++) {
952 if (*c == '/')
953 *c = '_';
954 }
955
956 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
957 sanitized_name);
958 g_free(sanitized_name);
c902760f
MT
959
960 fd = mkstemp(filename);
961 if (fd < 0) {
9742bf26 962 perror("unable to create backing store for hugepages");
e4ada482 963 g_free(filename);
9742bf26 964 return NULL;
c902760f
MT
965 }
966 unlink(filename);
e4ada482 967 g_free(filename);
c902760f
MT
968
969 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970
971 /*
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
975 * mmap will fail.
976 */
977 if (ftruncate(fd, memory))
9742bf26 978 perror("ftruncate");
c902760f
MT
979
980#ifdef MAP_POPULATE
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
984 */
985 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
987#else
988 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
989#endif
990 if (area == MAP_FAILED) {
9742bf26
YT
991 perror("file_ram_alloc: can't mmap RAM pages");
992 close(fd);
993 return (NULL);
c902760f 994 }
04b16653 995 block->fd = fd;
c902760f
MT
996 return area;
997}
e1e84ba0
MA
998#else
999static void *file_ram_alloc(RAMBlock *block,
1000 ram_addr_t memory,
1001 const char *path)
1002{
1003 fprintf(stderr, "-mem-path not supported on this host\n");
1004 exit(1);
1005}
c902760f
MT
1006#endif
1007
d17b5288 1008static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1009{
1010 RAMBlock *block, *next_block;
3e837b2c 1011 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1012
49cd9ac6
SH
1013 assert(size != 0); /* it would hand out same offset multiple times */
1014
a3161038 1015 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1016 return 0;
1017
a3161038 1018 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1019 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1020
1021 end = block->offset + block->length;
1022
a3161038 1023 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1024 if (next_block->offset >= end) {
1025 next = MIN(next, next_block->offset);
1026 }
1027 }
1028 if (next - end >= size && next - end < mingap) {
3e837b2c 1029 offset = end;
04b16653
AW
1030 mingap = next - end;
1031 }
1032 }
3e837b2c
AW
1033
1034 if (offset == RAM_ADDR_MAX) {
1035 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1036 (uint64_t)size);
1037 abort();
1038 }
1039
04b16653
AW
1040 return offset;
1041}
1042
652d7ec2 1043ram_addr_t last_ram_offset(void)
d17b5288
AW
1044{
1045 RAMBlock *block;
1046 ram_addr_t last = 0;
1047
a3161038 1048 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1049 last = MAX(last, block->offset + block->length);
1050
1051 return last;
1052}
1053
ddb97f1d
JB
1054static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1055{
1056 int ret;
ddb97f1d
JB
1057
1058 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1059 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1060 "dump-guest-core", true)) {
ddb97f1d
JB
1061 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1062 if (ret) {
1063 perror("qemu_madvise");
1064 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1065 "but dump_guest_core=off specified\n");
1066 }
1067 }
1068}
1069
c5705a77 1070void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1071{
1072 RAMBlock *new_block, *block;
1073
c5705a77 1074 new_block = NULL;
a3161038 1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1076 if (block->offset == addr) {
1077 new_block = block;
1078 break;
1079 }
1080 }
1081 assert(new_block);
1082 assert(!new_block->idstr[0]);
84b89d78 1083
09e5ab63
AL
1084 if (dev) {
1085 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1086 if (id) {
1087 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1088 g_free(id);
84b89d78
CM
1089 }
1090 }
1091 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1092
b2a8658e
UD
1093 /* This assumes the iothread lock is taken here too. */
1094 qemu_mutex_lock_ramlist();
a3161038 1095 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1096 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1097 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1098 new_block->idstr);
1099 abort();
1100 }
1101 }
b2a8658e 1102 qemu_mutex_unlock_ramlist();
c5705a77
AK
1103}
1104
8490fc78
LC
1105static int memory_try_enable_merging(void *addr, size_t len)
1106{
2ff3de68 1107 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1108 /* disabled by the user */
1109 return 0;
1110 }
1111
1112 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1113}
1114
c5705a77
AK
1115ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1116 MemoryRegion *mr)
1117{
abb26d63 1118 RAMBlock *block, *new_block;
c5705a77
AK
1119
1120 size = TARGET_PAGE_ALIGN(size);
1121 new_block = g_malloc0(sizeof(*new_block));
3435f395 1122 new_block->fd = -1;
84b89d78 1123
b2a8658e
UD
1124 /* This assumes the iothread lock is taken here too. */
1125 qemu_mutex_lock_ramlist();
7c637366 1126 new_block->mr = mr;
432d268c 1127 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1128 if (host) {
1129 new_block->host = host;
cd19cfa2 1130 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1131 } else if (xen_enabled()) {
1132 if (mem_path) {
1133 fprintf(stderr, "-mem-path not supported with Xen\n");
1134 exit(1);
1135 }
1136 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1137 } else {
1138 if (mem_path) {
e1e84ba0
MA
1139 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1140 /*
1141 * file_ram_alloc() needs to allocate just like
1142 * phys_mem_alloc, but we haven't bothered to provide
1143 * a hook there.
1144 */
1145 fprintf(stderr,
1146 "-mem-path not supported with this accelerator\n");
1147 exit(1);
1148 }
6977dfe6 1149 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1150 }
1151 if (!new_block->host) {
91138037 1152 new_block->host = phys_mem_alloc(size);
39228250
MA
1153 if (!new_block->host) {
1154 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1155 new_block->mr->name, strerror(errno));
1156 exit(1);
1157 }
8490fc78 1158 memory_try_enable_merging(new_block->host, size);
6977dfe6 1159 }
c902760f 1160 }
94a6b54f
PB
1161 new_block->length = size;
1162
abb26d63
PB
1163 /* Keep the list sorted from biggest to smallest block. */
1164 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1165 if (block->length < new_block->length) {
1166 break;
1167 }
1168 }
1169 if (block) {
1170 QTAILQ_INSERT_BEFORE(block, new_block, next);
1171 } else {
1172 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1173 }
0d6d3c87 1174 ram_list.mru_block = NULL;
94a6b54f 1175
f798b07f 1176 ram_list.version++;
b2a8658e 1177 qemu_mutex_unlock_ramlist();
f798b07f 1178
7267c094 1179 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1180 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1181 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1182 0, size >> TARGET_PAGE_BITS);
1720aeee 1183 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1184
ddb97f1d 1185 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1186 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1187 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1188
6f0437e8
JK
1189 if (kvm_enabled())
1190 kvm_setup_guest_memory(new_block->host, size);
1191
94a6b54f
PB
1192 return new_block->offset;
1193}
e9a1ab19 1194
c5705a77 1195ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1196{
c5705a77 1197 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1198}
1199
1f2e98b6
AW
1200void qemu_ram_free_from_ptr(ram_addr_t addr)
1201{
1202 RAMBlock *block;
1203
b2a8658e
UD
1204 /* This assumes the iothread lock is taken here too. */
1205 qemu_mutex_lock_ramlist();
a3161038 1206 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1207 if (addr == block->offset) {
a3161038 1208 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1209 ram_list.mru_block = NULL;
f798b07f 1210 ram_list.version++;
7267c094 1211 g_free(block);
b2a8658e 1212 break;
1f2e98b6
AW
1213 }
1214 }
b2a8658e 1215 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1216}
1217
c227f099 1218void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1219{
04b16653
AW
1220 RAMBlock *block;
1221
b2a8658e
UD
1222 /* This assumes the iothread lock is taken here too. */
1223 qemu_mutex_lock_ramlist();
a3161038 1224 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1225 if (addr == block->offset) {
a3161038 1226 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1227 ram_list.mru_block = NULL;
f798b07f 1228 ram_list.version++;
cd19cfa2
HY
1229 if (block->flags & RAM_PREALLOC_MASK) {
1230 ;
dfeaf2ab
MA
1231 } else if (xen_enabled()) {
1232 xen_invalidate_map_cache_entry(block->host);
089f3f76 1233#ifndef _WIN32
3435f395
MA
1234 } else if (block->fd >= 0) {
1235 munmap(block->host, block->length);
1236 close(block->fd);
089f3f76 1237#endif
04b16653 1238 } else {
dfeaf2ab 1239 qemu_anon_ram_free(block->host, block->length);
04b16653 1240 }
7267c094 1241 g_free(block);
b2a8658e 1242 break;
04b16653
AW
1243 }
1244 }
b2a8658e 1245 qemu_mutex_unlock_ramlist();
04b16653 1246
e9a1ab19
FB
1247}
1248
cd19cfa2
HY
1249#ifndef _WIN32
1250void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1251{
1252 RAMBlock *block;
1253 ram_addr_t offset;
1254 int flags;
1255 void *area, *vaddr;
1256
a3161038 1257 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1258 offset = addr - block->offset;
1259 if (offset < block->length) {
1260 vaddr = block->host + offset;
1261 if (block->flags & RAM_PREALLOC_MASK) {
1262 ;
dfeaf2ab
MA
1263 } else if (xen_enabled()) {
1264 abort();
cd19cfa2
HY
1265 } else {
1266 flags = MAP_FIXED;
1267 munmap(vaddr, length);
3435f395 1268 if (block->fd >= 0) {
cd19cfa2 1269#ifdef MAP_POPULATE
3435f395
MA
1270 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1271 MAP_PRIVATE;
fd28aa13 1272#else
3435f395 1273 flags |= MAP_PRIVATE;
cd19cfa2 1274#endif
3435f395
MA
1275 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1276 flags, block->fd, offset);
cd19cfa2 1277 } else {
2eb9fbaa
MA
1278 /*
1279 * Remap needs to match alloc. Accelerators that
1280 * set phys_mem_alloc never remap. If they did,
1281 * we'd need a remap hook here.
1282 */
1283 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1284
cd19cfa2
HY
1285 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1286 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1287 flags, -1, 0);
cd19cfa2
HY
1288 }
1289 if (area != vaddr) {
f15fbc4b
AP
1290 fprintf(stderr, "Could not remap addr: "
1291 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1292 length, addr);
1293 exit(1);
1294 }
8490fc78 1295 memory_try_enable_merging(vaddr, length);
ddb97f1d 1296 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1297 }
1298 return;
1299 }
1300 }
1301}
1302#endif /* !_WIN32 */
1303
1b5ec234 1304static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
dc828ca1 1305{
94a6b54f
PB
1306 RAMBlock *block;
1307
b2a8658e 1308 /* The list is protected by the iothread lock here. */
0d6d3c87
PB
1309 block = ram_list.mru_block;
1310 if (block && addr - block->offset < block->length) {
1311 goto found;
1312 }
a3161038 1313 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f471a17e 1314 if (addr - block->offset < block->length) {
0d6d3c87 1315 goto found;
f471a17e 1316 }
94a6b54f 1317 }
f471a17e
AW
1318
1319 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1320 abort();
1321
0d6d3c87
PB
1322found:
1323 ram_list.mru_block = block;
1b5ec234
PB
1324 return block;
1325}
1326
1327/* Return a host pointer to ram allocated with qemu_ram_alloc.
1328 With the exception of the softmmu code in this file, this should
1329 only be used for local memory (e.g. video ram) that the device owns,
1330 and knows it isn't going to access beyond the end of the block.
1331
1332 It should not be used for general purpose DMA.
1333 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1334 */
1335void *qemu_get_ram_ptr(ram_addr_t addr)
1336{
1337 RAMBlock *block = qemu_get_ram_block(addr);
1338
0d6d3c87
PB
1339 if (xen_enabled()) {
1340 /* We need to check if the requested address is in the RAM
1341 * because we don't want to map the entire memory in QEMU.
1342 * In that case just map until the end of the page.
1343 */
1344 if (block->offset == 0) {
1345 return xen_map_cache(addr, 0, 0);
1346 } else if (block->host == NULL) {
1347 block->host =
1348 xen_map_cache(block->offset, block->length, 1);
1349 }
1350 }
1351 return block->host + (addr - block->offset);
dc828ca1
PB
1352}
1353
0d6d3c87
PB
1354/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1355 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1356 *
1357 * ??? Is this still necessary?
b2e0a138 1358 */
8b9c99d9 1359static void *qemu_safe_ram_ptr(ram_addr_t addr)
b2e0a138
MT
1360{
1361 RAMBlock *block;
1362
b2a8658e 1363 /* The list is protected by the iothread lock here. */
a3161038 1364 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
b2e0a138 1365 if (addr - block->offset < block->length) {
868bb33f 1366 if (xen_enabled()) {
432d268c
JN
1367 /* We need to check if the requested address is in the RAM
1368 * because we don't want to map the entire memory in QEMU.
712c2b41 1369 * In that case just map until the end of the page.
432d268c
JN
1370 */
1371 if (block->offset == 0) {
e41d7c69 1372 return xen_map_cache(addr, 0, 0);
432d268c 1373 } else if (block->host == NULL) {
e41d7c69
JK
1374 block->host =
1375 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
1376 }
1377 }
b2e0a138
MT
1378 return block->host + (addr - block->offset);
1379 }
1380 }
1381
1382 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1383 abort();
1384
1385 return NULL;
1386}
1387
38bee5dc
SS
1388/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1389 * but takes a size argument */
cb85f7ab 1390static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1391{
8ab934f9
SS
1392 if (*size == 0) {
1393 return NULL;
1394 }
868bb33f 1395 if (xen_enabled()) {
e41d7c69 1396 return xen_map_cache(addr, *size, 1);
868bb33f 1397 } else {
38bee5dc
SS
1398 RAMBlock *block;
1399
a3161038 1400 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1401 if (addr - block->offset < block->length) {
1402 if (addr - block->offset + *size > block->length)
1403 *size = block->length - addr + block->offset;
1404 return block->host + (addr - block->offset);
1405 }
1406 }
1407
1408 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1409 abort();
38bee5dc
SS
1410 }
1411}
1412
7443b437
PB
1413/* Some of the softmmu routines need to translate from a host pointer
1414 (typically a TLB entry) back to a ram offset. */
1b5ec234 1415MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1416{
94a6b54f
PB
1417 RAMBlock *block;
1418 uint8_t *host = ptr;
1419
868bb33f 1420 if (xen_enabled()) {
e41d7c69 1421 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1422 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1423 }
1424
23887b79
PB
1425 block = ram_list.mru_block;
1426 if (block && block->host && host - block->host < block->length) {
1427 goto found;
1428 }
1429
a3161038 1430 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1431 /* This case append when the block is not mapped. */
1432 if (block->host == NULL) {
1433 continue;
1434 }
f471a17e 1435 if (host - block->host < block->length) {
23887b79 1436 goto found;
f471a17e 1437 }
94a6b54f 1438 }
432d268c 1439
1b5ec234 1440 return NULL;
23887b79
PB
1441
1442found:
1443 *ram_addr = block->offset + (host - block->host);
1b5ec234 1444 return block->mr;
e890261f 1445}
f471a17e 1446
a8170e5e 1447static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1448 uint64_t val, unsigned size)
9fa3e853 1449{
3a7d929e 1450 int dirty_flags;
f7c11b53 1451 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1452 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1453 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1454 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1455 }
0e0df1e2
AK
1456 switch (size) {
1457 case 1:
1458 stb_p(qemu_get_ram_ptr(ram_addr), val);
1459 break;
1460 case 2:
1461 stw_p(qemu_get_ram_ptr(ram_addr), val);
1462 break;
1463 case 4:
1464 stl_p(qemu_get_ram_ptr(ram_addr), val);
1465 break;
1466 default:
1467 abort();
3a7d929e 1468 }
f23db169 1469 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1470 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1471 /* we remove the notdirty callback only if the code has been
1472 flushed */
4917cf44
AF
1473 if (dirty_flags == 0xff) {
1474 CPUArchState *env = current_cpu->env_ptr;
1475 tlb_set_dirty(env, env->mem_io_vaddr);
1476 }
9fa3e853
FB
1477}
1478
b018ddf6
PB
1479static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1480 unsigned size, bool is_write)
1481{
1482 return is_write;
1483}
1484
0e0df1e2 1485static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1486 .write = notdirty_mem_write,
b018ddf6 1487 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1488 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1489};
1490
0f459d16 1491/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1492static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1493{
4917cf44 1494 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1495 target_ulong pc, cs_base;
0f459d16 1496 target_ulong vaddr;
a1d1bb31 1497 CPUWatchpoint *wp;
06d55cc1 1498 int cpu_flags;
0f459d16 1499
06d55cc1
AL
1500 if (env->watchpoint_hit) {
1501 /* We re-entered the check after replacing the TB. Now raise
1502 * the debug interrupt so that is will trigger after the
1503 * current instruction. */
c3affe56 1504 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1505 return;
1506 }
2e70f6ef 1507 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1508 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1509 if ((vaddr == (wp->vaddr & len_mask) ||
1510 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1511 wp->flags |= BP_WATCHPOINT_HIT;
1512 if (!env->watchpoint_hit) {
1513 env->watchpoint_hit = wp;
5a316526 1514 tb_check_watchpoint(env);
6e140f28
AL
1515 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1516 env->exception_index = EXCP_DEBUG;
488d6577 1517 cpu_loop_exit(env);
6e140f28
AL
1518 } else {
1519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1520 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1521 cpu_resume_from_signal(env, NULL);
6e140f28 1522 }
06d55cc1 1523 }
6e140f28
AL
1524 } else {
1525 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1526 }
1527 }
1528}
1529
6658ffb8
PB
1530/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1531 so these check for a hit then pass through to the normal out-of-line
1532 phys routines. */
a8170e5e 1533static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1534 unsigned size)
6658ffb8 1535{
1ec9b909
AK
1536 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1537 switch (size) {
1538 case 1: return ldub_phys(addr);
1539 case 2: return lduw_phys(addr);
1540 case 4: return ldl_phys(addr);
1541 default: abort();
1542 }
6658ffb8
PB
1543}
1544
a8170e5e 1545static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1546 uint64_t val, unsigned size)
6658ffb8 1547{
1ec9b909
AK
1548 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1549 switch (size) {
67364150
MF
1550 case 1:
1551 stb_phys(addr, val);
1552 break;
1553 case 2:
1554 stw_phys(addr, val);
1555 break;
1556 case 4:
1557 stl_phys(addr, val);
1558 break;
1ec9b909
AK
1559 default: abort();
1560 }
6658ffb8
PB
1561}
1562
1ec9b909
AK
1563static const MemoryRegionOps watch_mem_ops = {
1564 .read = watch_mem_read,
1565 .write = watch_mem_write,
1566 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1567};
6658ffb8 1568
a8170e5e 1569static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1570 unsigned len)
db7b5426 1571{
acc9d80b
JK
1572 subpage_t *subpage = opaque;
1573 uint8_t buf[4];
791af8c8 1574
db7b5426 1575#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1576 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1577 subpage, len, addr);
db7b5426 1578#endif
acc9d80b
JK
1579 address_space_read(subpage->as, addr + subpage->base, buf, len);
1580 switch (len) {
1581 case 1:
1582 return ldub_p(buf);
1583 case 2:
1584 return lduw_p(buf);
1585 case 4:
1586 return ldl_p(buf);
1587 default:
1588 abort();
1589 }
db7b5426
BS
1590}
1591
a8170e5e 1592static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1593 uint64_t value, unsigned len)
db7b5426 1594{
acc9d80b
JK
1595 subpage_t *subpage = opaque;
1596 uint8_t buf[4];
1597
db7b5426 1598#if defined(DEBUG_SUBPAGE)
70c68e44 1599 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
acc9d80b
JK
1600 " value %"PRIx64"\n",
1601 __func__, subpage, len, addr, value);
db7b5426 1602#endif
acc9d80b
JK
1603 switch (len) {
1604 case 1:
1605 stb_p(buf, value);
1606 break;
1607 case 2:
1608 stw_p(buf, value);
1609 break;
1610 case 4:
1611 stl_p(buf, value);
1612 break;
1613 default:
1614 abort();
1615 }
1616 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1617}
1618
c353e4cc
PB
1619static bool subpage_accepts(void *opaque, hwaddr addr,
1620 unsigned size, bool is_write)
1621{
acc9d80b 1622 subpage_t *subpage = opaque;
c353e4cc 1623#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1624 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1625 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1626#endif
1627
acc9d80b
JK
1628 return address_space_access_valid(subpage->as, addr + subpage->base,
1629 size, is_write);
c353e4cc
PB
1630}
1631
70c68e44
AK
1632static const MemoryRegionOps subpage_ops = {
1633 .read = subpage_read,
1634 .write = subpage_write,
c353e4cc 1635 .valid.accepts = subpage_accepts,
70c68e44 1636 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1637};
1638
c227f099 1639static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1640 uint16_t section)
db7b5426
BS
1641{
1642 int idx, eidx;
1643
1644 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1645 return -1;
1646 idx = SUBPAGE_IDX(start);
1647 eidx = SUBPAGE_IDX(end);
1648#if defined(DEBUG_SUBPAGE)
0bf9e31a 1649 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
1650 mmio, start, end, idx, eidx, memory);
1651#endif
db7b5426 1652 for (; idx <= eidx; idx++) {
5312bd8b 1653 mmio->sub_section[idx] = section;
db7b5426
BS
1654 }
1655
1656 return 0;
1657}
1658
acc9d80b 1659static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1660{
c227f099 1661 subpage_t *mmio;
db7b5426 1662
7267c094 1663 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1664
acc9d80b 1665 mmio->as = as;
1eec614b 1666 mmio->base = base;
2c9b15ca 1667 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1668 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1669 mmio->iomem.subpage = true;
db7b5426 1670#if defined(DEBUG_SUBPAGE)
1eec614b
AL
1671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 1673#endif
b41aac4f 1674 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1675
1676 return mmio;
1677}
1678
5312bd8b
AK
1679static uint16_t dummy_section(MemoryRegion *mr)
1680{
1681 MemoryRegionSection section = {
1682 .mr = mr,
1683 .offset_within_address_space = 0,
1684 .offset_within_region = 0,
052e87b0 1685 .size = int128_2_64(),
5312bd8b
AK
1686 };
1687
1688 return phys_section_add(&section);
1689}
1690
a8170e5e 1691MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1692{
0475d94f 1693 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1694}
1695
e9179ce1
AK
1696static void io_mem_init(void)
1697{
2c9b15ca
PB
1698 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1699 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1700 "unassigned", UINT64_MAX);
2c9b15ca 1701 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1702 "notdirty", UINT64_MAX);
2c9b15ca 1703 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1704 "watch", UINT64_MAX);
e9179ce1
AK
1705}
1706
ac1970fb 1707static void mem_begin(MemoryListener *listener)
00752703
PB
1708{
1709 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1710 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1711
1712 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1713 d->as = as;
1714 as->next_dispatch = d;
1715}
1716
1717static void mem_commit(MemoryListener *listener)
ac1970fb 1718{
89ae337a 1719 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1720 AddressSpaceDispatch *cur = as->dispatch;
1721 AddressSpaceDispatch *next = as->next_dispatch;
1722
1723 next->nodes = next_map.nodes;
1724 next->sections = next_map.sections;
ac1970fb 1725
0475d94f
PB
1726 as->dispatch = next;
1727 g_free(cur);
ac1970fb
AK
1728}
1729
50c1e149
AK
1730static void core_begin(MemoryListener *listener)
1731{
b41aac4f
LPF
1732 uint16_t n;
1733
6092666e
PB
1734 prev_map = g_new(PhysPageMap, 1);
1735 *prev_map = next_map;
1736
9affd6fc 1737 memset(&next_map, 0, sizeof(next_map));
b41aac4f
LPF
1738 n = dummy_section(&io_mem_unassigned);
1739 assert(n == PHYS_SECTION_UNASSIGNED);
1740 n = dummy_section(&io_mem_notdirty);
1741 assert(n == PHYS_SECTION_NOTDIRTY);
1742 n = dummy_section(&io_mem_rom);
1743 assert(n == PHYS_SECTION_ROM);
1744 n = dummy_section(&io_mem_watch);
1745 assert(n == PHYS_SECTION_WATCH);
50c1e149
AK
1746}
1747
9affd6fc
PB
1748/* This listener's commit run after the other AddressSpaceDispatch listeners'.
1749 * All AddressSpaceDispatch instances have switched to the next map.
1750 */
1751static void core_commit(MemoryListener *listener)
1752{
6092666e 1753 phys_sections_free(prev_map);
9affd6fc
PB
1754}
1755
1d71148e 1756static void tcg_commit(MemoryListener *listener)
50c1e149 1757{
182735ef 1758 CPUState *cpu;
117712c3
AK
1759
1760 /* since each CPU stores ram addresses in its TLB cache, we must
1761 reset the modified entries */
1762 /* XXX: slow ! */
bdc44640 1763 CPU_FOREACH(cpu) {
182735ef
AF
1764 CPUArchState *env = cpu->env_ptr;
1765
117712c3
AK
1766 tlb_flush(env, 1);
1767 }
50c1e149
AK
1768}
1769
93632747
AK
1770static void core_log_global_start(MemoryListener *listener)
1771{
1772 cpu_physical_memory_set_dirty_tracking(1);
1773}
1774
1775static void core_log_global_stop(MemoryListener *listener)
1776{
1777 cpu_physical_memory_set_dirty_tracking(0);
1778}
1779
93632747 1780static MemoryListener core_memory_listener = {
50c1e149 1781 .begin = core_begin,
9affd6fc 1782 .commit = core_commit,
93632747
AK
1783 .log_global_start = core_log_global_start,
1784 .log_global_stop = core_log_global_stop,
ac1970fb 1785 .priority = 1,
93632747
AK
1786};
1787
1d71148e
AK
1788static MemoryListener tcg_memory_listener = {
1789 .commit = tcg_commit,
1790};
1791
ac1970fb
AK
1792void address_space_init_dispatch(AddressSpace *as)
1793{
00752703 1794 as->dispatch = NULL;
89ae337a 1795 as->dispatch_listener = (MemoryListener) {
ac1970fb 1796 .begin = mem_begin,
00752703 1797 .commit = mem_commit,
ac1970fb
AK
1798 .region_add = mem_add,
1799 .region_nop = mem_add,
1800 .priority = 0,
1801 };
89ae337a 1802 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1803}
1804
83f3c251
AK
1805void address_space_destroy_dispatch(AddressSpace *as)
1806{
1807 AddressSpaceDispatch *d = as->dispatch;
1808
89ae337a 1809 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1810 g_free(d);
1811 as->dispatch = NULL;
1812}
1813
62152b8a
AK
1814static void memory_map_init(void)
1815{
7267c094 1816 system_memory = g_malloc(sizeof(*system_memory));
2c9b15ca 1817 memory_region_init(system_memory, NULL, "system", INT64_MAX);
7dca8043 1818 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1819
7267c094 1820 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1821 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1822 65536);
7dca8043 1823 address_space_init(&address_space_io, system_io, "I/O");
93632747 1824
f6790af6 1825 memory_listener_register(&core_memory_listener, &address_space_memory);
2641689a 1826 if (tcg_enabled()) {
1827 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1828 }
62152b8a
AK
1829}
1830
1831MemoryRegion *get_system_memory(void)
1832{
1833 return system_memory;
1834}
1835
309cb471
AK
1836MemoryRegion *get_system_io(void)
1837{
1838 return system_io;
1839}
1840
e2eef170
PB
1841#endif /* !defined(CONFIG_USER_ONLY) */
1842
13eb76e0
FB
1843/* physical memory access (slow version, mainly for debug) */
1844#if defined(CONFIG_USER_ONLY)
f17ec444 1845int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1846 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1847{
1848 int l, flags;
1849 target_ulong page;
53a5960a 1850 void * p;
13eb76e0
FB
1851
1852 while (len > 0) {
1853 page = addr & TARGET_PAGE_MASK;
1854 l = (page + TARGET_PAGE_SIZE) - addr;
1855 if (l > len)
1856 l = len;
1857 flags = page_get_flags(page);
1858 if (!(flags & PAGE_VALID))
a68fe89c 1859 return -1;
13eb76e0
FB
1860 if (is_write) {
1861 if (!(flags & PAGE_WRITE))
a68fe89c 1862 return -1;
579a97f7 1863 /* XXX: this code should not depend on lock_user */
72fb7daa 1864 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1865 return -1;
72fb7daa
AJ
1866 memcpy(p, buf, l);
1867 unlock_user(p, addr, l);
13eb76e0
FB
1868 } else {
1869 if (!(flags & PAGE_READ))
a68fe89c 1870 return -1;
579a97f7 1871 /* XXX: this code should not depend on lock_user */
72fb7daa 1872 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1873 return -1;
72fb7daa 1874 memcpy(buf, p, l);
5b257578 1875 unlock_user(p, addr, 0);
13eb76e0
FB
1876 }
1877 len -= l;
1878 buf += l;
1879 addr += l;
1880 }
a68fe89c 1881 return 0;
13eb76e0 1882}
8df1cd07 1883
13eb76e0 1884#else
51d7a9eb 1885
a8170e5e
AK
1886static void invalidate_and_set_dirty(hwaddr addr,
1887 hwaddr length)
51d7a9eb
AP
1888{
1889 if (!cpu_physical_memory_is_dirty(addr)) {
1890 /* invalidate code */
1891 tb_invalidate_phys_page_range(addr, addr + length, 0);
1892 /* set dirty bit */
1893 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1894 }
e226939d 1895 xen_modified_memory(addr, length);
51d7a9eb
AP
1896}
1897
2bbfa05d
PB
1898static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1899{
1900 if (memory_region_is_ram(mr)) {
1901 return !(is_write && mr->readonly);
1902 }
1903 if (memory_region_is_romd(mr)) {
1904 return !is_write;
1905 }
1906
1907 return false;
1908}
1909
23326164 1910static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1911{
e1622f4b 1912 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1913
1914 /* Regions are assumed to support 1-4 byte accesses unless
1915 otherwise specified. */
23326164
RH
1916 if (access_size_max == 0) {
1917 access_size_max = 4;
1918 }
1919
1920 /* Bound the maximum access by the alignment of the address. */
1921 if (!mr->ops->impl.unaligned) {
1922 unsigned align_size_max = addr & -addr;
1923 if (align_size_max != 0 && align_size_max < access_size_max) {
1924 access_size_max = align_size_max;
1925 }
82f2563f 1926 }
23326164
RH
1927
1928 /* Don't attempt accesses larger than the maximum. */
1929 if (l > access_size_max) {
1930 l = access_size_max;
82f2563f 1931 }
098178f2
PB
1932 if (l & (l - 1)) {
1933 l = 1 << (qemu_fls(l) - 1);
1934 }
23326164
RH
1935
1936 return l;
82f2563f
PB
1937}
1938
fd8aaa76 1939bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1940 int len, bool is_write)
13eb76e0 1941{
149f54b5 1942 hwaddr l;
13eb76e0 1943 uint8_t *ptr;
791af8c8 1944 uint64_t val;
149f54b5 1945 hwaddr addr1;
5c8a00ce 1946 MemoryRegion *mr;
fd8aaa76 1947 bool error = false;
3b46e624 1948
13eb76e0 1949 while (len > 0) {
149f54b5 1950 l = len;
5c8a00ce 1951 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1952
13eb76e0 1953 if (is_write) {
5c8a00ce
PB
1954 if (!memory_access_is_direct(mr, is_write)) {
1955 l = memory_access_size(mr, l, addr1);
4917cf44 1956 /* XXX: could force current_cpu to NULL to avoid
6a00d601 1957 potential bugs */
23326164
RH
1958 switch (l) {
1959 case 8:
1960 /* 64 bit write access */
1961 val = ldq_p(buf);
1962 error |= io_mem_write(mr, addr1, val, 8);
1963 break;
1964 case 4:
1c213d19 1965 /* 32 bit write access */
c27004ec 1966 val = ldl_p(buf);
5c8a00ce 1967 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
1968 break;
1969 case 2:
1c213d19 1970 /* 16 bit write access */
c27004ec 1971 val = lduw_p(buf);
5c8a00ce 1972 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
1973 break;
1974 case 1:
1c213d19 1975 /* 8 bit write access */
c27004ec 1976 val = ldub_p(buf);
5c8a00ce 1977 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
1978 break;
1979 default:
1980 abort();
13eb76e0 1981 }
2bbfa05d 1982 } else {
5c8a00ce 1983 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 1984 /* RAM case */
5579c7f3 1985 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 1986 memcpy(ptr, buf, l);
51d7a9eb 1987 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
1988 }
1989 } else {
5c8a00ce 1990 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 1991 /* I/O case */
5c8a00ce 1992 l = memory_access_size(mr, l, addr1);
23326164
RH
1993 switch (l) {
1994 case 8:
1995 /* 64 bit read access */
1996 error |= io_mem_read(mr, addr1, &val, 8);
1997 stq_p(buf, val);
1998 break;
1999 case 4:
13eb76e0 2000 /* 32 bit read access */
5c8a00ce 2001 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2002 stl_p(buf, val);
23326164
RH
2003 break;
2004 case 2:
13eb76e0 2005 /* 16 bit read access */
5c8a00ce 2006 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2007 stw_p(buf, val);
23326164
RH
2008 break;
2009 case 1:
1c213d19 2010 /* 8 bit read access */
5c8a00ce 2011 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2012 stb_p(buf, val);
23326164
RH
2013 break;
2014 default:
2015 abort();
13eb76e0
FB
2016 }
2017 } else {
2018 /* RAM case */
5c8a00ce 2019 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2020 memcpy(buf, ptr, l);
13eb76e0
FB
2021 }
2022 }
2023 len -= l;
2024 buf += l;
2025 addr += l;
2026 }
fd8aaa76
PB
2027
2028 return error;
13eb76e0 2029}
8df1cd07 2030
fd8aaa76 2031bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2032 const uint8_t *buf, int len)
2033{
fd8aaa76 2034 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2035}
2036
fd8aaa76 2037bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2038{
fd8aaa76 2039 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2040}
2041
2042
a8170e5e 2043void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2044 int len, int is_write)
2045{
fd8aaa76 2046 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2047}
2048
d0ecd2aa 2049/* used for ROM loading : can write in RAM and ROM */
a8170e5e 2050void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
2051 const uint8_t *buf, int len)
2052{
149f54b5 2053 hwaddr l;
d0ecd2aa 2054 uint8_t *ptr;
149f54b5 2055 hwaddr addr1;
5c8a00ce 2056 MemoryRegion *mr;
3b46e624 2057
d0ecd2aa 2058 while (len > 0) {
149f54b5 2059 l = len;
5c8a00ce
PB
2060 mr = address_space_translate(&address_space_memory,
2061 addr, &addr1, &l, true);
3b46e624 2062
5c8a00ce
PB
2063 if (!(memory_region_is_ram(mr) ||
2064 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2065 /* do nothing */
2066 } else {
5c8a00ce 2067 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2068 /* ROM/RAM case */
5579c7f3 2069 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 2070 memcpy(ptr, buf, l);
51d7a9eb 2071 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
2072 }
2073 len -= l;
2074 buf += l;
2075 addr += l;
2076 }
2077}
2078
6d16c2f8 2079typedef struct {
d3e71559 2080 MemoryRegion *mr;
6d16c2f8 2081 void *buffer;
a8170e5e
AK
2082 hwaddr addr;
2083 hwaddr len;
6d16c2f8
AL
2084} BounceBuffer;
2085
2086static BounceBuffer bounce;
2087
ba223c29
AL
2088typedef struct MapClient {
2089 void *opaque;
2090 void (*callback)(void *opaque);
72cf2d4f 2091 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2092} MapClient;
2093
72cf2d4f
BS
2094static QLIST_HEAD(map_client_list, MapClient) map_client_list
2095 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2096
2097void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2098{
7267c094 2099 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2100
2101 client->opaque = opaque;
2102 client->callback = callback;
72cf2d4f 2103 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2104 return client;
2105}
2106
8b9c99d9 2107static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2108{
2109 MapClient *client = (MapClient *)_client;
2110
72cf2d4f 2111 QLIST_REMOVE(client, link);
7267c094 2112 g_free(client);
ba223c29
AL
2113}
2114
2115static void cpu_notify_map_clients(void)
2116{
2117 MapClient *client;
2118
72cf2d4f
BS
2119 while (!QLIST_EMPTY(&map_client_list)) {
2120 client = QLIST_FIRST(&map_client_list);
ba223c29 2121 client->callback(client->opaque);
34d5e948 2122 cpu_unregister_map_client(client);
ba223c29
AL
2123 }
2124}
2125
51644ab7
PB
2126bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2127{
5c8a00ce 2128 MemoryRegion *mr;
51644ab7
PB
2129 hwaddr l, xlat;
2130
2131 while (len > 0) {
2132 l = len;
5c8a00ce
PB
2133 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2134 if (!memory_access_is_direct(mr, is_write)) {
2135 l = memory_access_size(mr, l, addr);
2136 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2137 return false;
2138 }
2139 }
2140
2141 len -= l;
2142 addr += l;
2143 }
2144 return true;
2145}
2146
6d16c2f8
AL
2147/* Map a physical memory region into a host virtual address.
2148 * May map a subset of the requested range, given by and returned in *plen.
2149 * May return NULL if resources needed to perform the mapping are exhausted.
2150 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2151 * Use cpu_register_map_client() to know when retrying the map operation is
2152 * likely to succeed.
6d16c2f8 2153 */
ac1970fb 2154void *address_space_map(AddressSpace *as,
a8170e5e
AK
2155 hwaddr addr,
2156 hwaddr *plen,
ac1970fb 2157 bool is_write)
6d16c2f8 2158{
a8170e5e 2159 hwaddr len = *plen;
e3127ae0
PB
2160 hwaddr done = 0;
2161 hwaddr l, xlat, base;
2162 MemoryRegion *mr, *this_mr;
2163 ram_addr_t raddr;
6d16c2f8 2164
e3127ae0
PB
2165 if (len == 0) {
2166 return NULL;
2167 }
38bee5dc 2168
e3127ae0
PB
2169 l = len;
2170 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2171 if (!memory_access_is_direct(mr, is_write)) {
2172 if (bounce.buffer) {
2173 return NULL;
6d16c2f8 2174 }
e3127ae0
PB
2175 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2176 bounce.addr = addr;
2177 bounce.len = l;
d3e71559
PB
2178
2179 memory_region_ref(mr);
2180 bounce.mr = mr;
e3127ae0
PB
2181 if (!is_write) {
2182 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2183 }
6d16c2f8 2184
e3127ae0
PB
2185 *plen = l;
2186 return bounce.buffer;
2187 }
2188
2189 base = xlat;
2190 raddr = memory_region_get_ram_addr(mr);
2191
2192 for (;;) {
6d16c2f8
AL
2193 len -= l;
2194 addr += l;
e3127ae0
PB
2195 done += l;
2196 if (len == 0) {
2197 break;
2198 }
2199
2200 l = len;
2201 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2202 if (this_mr != mr || xlat != base + done) {
2203 break;
2204 }
6d16c2f8 2205 }
e3127ae0 2206
d3e71559 2207 memory_region_ref(mr);
e3127ae0
PB
2208 *plen = done;
2209 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2210}
2211
ac1970fb 2212/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2213 * Will also mark the memory as dirty if is_write == 1. access_len gives
2214 * the amount of memory that was actually read or written by the caller.
2215 */
a8170e5e
AK
2216void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2217 int is_write, hwaddr access_len)
6d16c2f8
AL
2218{
2219 if (buffer != bounce.buffer) {
d3e71559
PB
2220 MemoryRegion *mr;
2221 ram_addr_t addr1;
2222
2223 mr = qemu_ram_addr_from_host(buffer, &addr1);
2224 assert(mr != NULL);
6d16c2f8 2225 if (is_write) {
6d16c2f8
AL
2226 while (access_len) {
2227 unsigned l;
2228 l = TARGET_PAGE_SIZE;
2229 if (l > access_len)
2230 l = access_len;
51d7a9eb 2231 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2232 addr1 += l;
2233 access_len -= l;
2234 }
2235 }
868bb33f 2236 if (xen_enabled()) {
e41d7c69 2237 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2238 }
d3e71559 2239 memory_region_unref(mr);
6d16c2f8
AL
2240 return;
2241 }
2242 if (is_write) {
ac1970fb 2243 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2244 }
f8a83245 2245 qemu_vfree(bounce.buffer);
6d16c2f8 2246 bounce.buffer = NULL;
d3e71559 2247 memory_region_unref(bounce.mr);
ba223c29 2248 cpu_notify_map_clients();
6d16c2f8 2249}
d0ecd2aa 2250
a8170e5e
AK
2251void *cpu_physical_memory_map(hwaddr addr,
2252 hwaddr *plen,
ac1970fb
AK
2253 int is_write)
2254{
2255 return address_space_map(&address_space_memory, addr, plen, is_write);
2256}
2257
a8170e5e
AK
2258void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2259 int is_write, hwaddr access_len)
ac1970fb
AK
2260{
2261 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2262}
2263
8df1cd07 2264/* warning: addr must be aligned */
a8170e5e 2265static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2266 enum device_endian endian)
8df1cd07 2267{
8df1cd07 2268 uint8_t *ptr;
791af8c8 2269 uint64_t val;
5c8a00ce 2270 MemoryRegion *mr;
149f54b5
PB
2271 hwaddr l = 4;
2272 hwaddr addr1;
8df1cd07 2273
5c8a00ce
PB
2274 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2275 false);
2276 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2277 /* I/O case */
5c8a00ce 2278 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2279#if defined(TARGET_WORDS_BIGENDIAN)
2280 if (endian == DEVICE_LITTLE_ENDIAN) {
2281 val = bswap32(val);
2282 }
2283#else
2284 if (endian == DEVICE_BIG_ENDIAN) {
2285 val = bswap32(val);
2286 }
2287#endif
8df1cd07
FB
2288 } else {
2289 /* RAM case */
5c8a00ce 2290 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2291 & TARGET_PAGE_MASK)
149f54b5 2292 + addr1);
1e78bcc1
AG
2293 switch (endian) {
2294 case DEVICE_LITTLE_ENDIAN:
2295 val = ldl_le_p(ptr);
2296 break;
2297 case DEVICE_BIG_ENDIAN:
2298 val = ldl_be_p(ptr);
2299 break;
2300 default:
2301 val = ldl_p(ptr);
2302 break;
2303 }
8df1cd07
FB
2304 }
2305 return val;
2306}
2307
a8170e5e 2308uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2309{
2310 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2311}
2312
a8170e5e 2313uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2314{
2315 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2316}
2317
a8170e5e 2318uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2319{
2320 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2321}
2322
84b7b8e7 2323/* warning: addr must be aligned */
a8170e5e 2324static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2325 enum device_endian endian)
84b7b8e7 2326{
84b7b8e7
FB
2327 uint8_t *ptr;
2328 uint64_t val;
5c8a00ce 2329 MemoryRegion *mr;
149f54b5
PB
2330 hwaddr l = 8;
2331 hwaddr addr1;
84b7b8e7 2332
5c8a00ce
PB
2333 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2334 false);
2335 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2336 /* I/O case */
5c8a00ce 2337 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2338#if defined(TARGET_WORDS_BIGENDIAN)
2339 if (endian == DEVICE_LITTLE_ENDIAN) {
2340 val = bswap64(val);
2341 }
2342#else
2343 if (endian == DEVICE_BIG_ENDIAN) {
2344 val = bswap64(val);
2345 }
84b7b8e7
FB
2346#endif
2347 } else {
2348 /* RAM case */
5c8a00ce 2349 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2350 & TARGET_PAGE_MASK)
149f54b5 2351 + addr1);
1e78bcc1
AG
2352 switch (endian) {
2353 case DEVICE_LITTLE_ENDIAN:
2354 val = ldq_le_p(ptr);
2355 break;
2356 case DEVICE_BIG_ENDIAN:
2357 val = ldq_be_p(ptr);
2358 break;
2359 default:
2360 val = ldq_p(ptr);
2361 break;
2362 }
84b7b8e7
FB
2363 }
2364 return val;
2365}
2366
a8170e5e 2367uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2368{
2369 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2370}
2371
a8170e5e 2372uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2373{
2374 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2375}
2376
a8170e5e 2377uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2378{
2379 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2380}
2381
aab33094 2382/* XXX: optimize */
a8170e5e 2383uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2384{
2385 uint8_t val;
2386 cpu_physical_memory_read(addr, &val, 1);
2387 return val;
2388}
2389
733f0b02 2390/* warning: addr must be aligned */
a8170e5e 2391static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2392 enum device_endian endian)
aab33094 2393{
733f0b02
MT
2394 uint8_t *ptr;
2395 uint64_t val;
5c8a00ce 2396 MemoryRegion *mr;
149f54b5
PB
2397 hwaddr l = 2;
2398 hwaddr addr1;
733f0b02 2399
5c8a00ce
PB
2400 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2401 false);
2402 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2403 /* I/O case */
5c8a00ce 2404 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2405#if defined(TARGET_WORDS_BIGENDIAN)
2406 if (endian == DEVICE_LITTLE_ENDIAN) {
2407 val = bswap16(val);
2408 }
2409#else
2410 if (endian == DEVICE_BIG_ENDIAN) {
2411 val = bswap16(val);
2412 }
2413#endif
733f0b02
MT
2414 } else {
2415 /* RAM case */
5c8a00ce 2416 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2417 & TARGET_PAGE_MASK)
149f54b5 2418 + addr1);
1e78bcc1
AG
2419 switch (endian) {
2420 case DEVICE_LITTLE_ENDIAN:
2421 val = lduw_le_p(ptr);
2422 break;
2423 case DEVICE_BIG_ENDIAN:
2424 val = lduw_be_p(ptr);
2425 break;
2426 default:
2427 val = lduw_p(ptr);
2428 break;
2429 }
733f0b02
MT
2430 }
2431 return val;
aab33094
FB
2432}
2433
a8170e5e 2434uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2435{
2436 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2437}
2438
a8170e5e 2439uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2440{
2441 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2442}
2443
a8170e5e 2444uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2445{
2446 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2447}
2448
8df1cd07
FB
2449/* warning: addr must be aligned. The ram page is not masked as dirty
2450 and the code inside is not invalidated. It is useful if the dirty
2451 bits are used to track modified PTEs */
a8170e5e 2452void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2453{
8df1cd07 2454 uint8_t *ptr;
5c8a00ce 2455 MemoryRegion *mr;
149f54b5
PB
2456 hwaddr l = 4;
2457 hwaddr addr1;
8df1cd07 2458
5c8a00ce
PB
2459 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2460 true);
2461 if (l < 4 || !memory_access_is_direct(mr, true)) {
2462 io_mem_write(mr, addr1, val, 4);
8df1cd07 2463 } else {
5c8a00ce 2464 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2465 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2466 stl_p(ptr, val);
74576198
AL
2467
2468 if (unlikely(in_migration)) {
2469 if (!cpu_physical_memory_is_dirty(addr1)) {
2470 /* invalidate code */
2471 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2472 /* set dirty bit */
f7c11b53
YT
2473 cpu_physical_memory_set_dirty_flags(
2474 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2475 }
2476 }
8df1cd07
FB
2477 }
2478}
2479
2480/* warning: addr must be aligned */
a8170e5e 2481static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2482 enum device_endian endian)
8df1cd07 2483{
8df1cd07 2484 uint8_t *ptr;
5c8a00ce 2485 MemoryRegion *mr;
149f54b5
PB
2486 hwaddr l = 4;
2487 hwaddr addr1;
8df1cd07 2488
5c8a00ce
PB
2489 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2490 true);
2491 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2492#if defined(TARGET_WORDS_BIGENDIAN)
2493 if (endian == DEVICE_LITTLE_ENDIAN) {
2494 val = bswap32(val);
2495 }
2496#else
2497 if (endian == DEVICE_BIG_ENDIAN) {
2498 val = bswap32(val);
2499 }
2500#endif
5c8a00ce 2501 io_mem_write(mr, addr1, val, 4);
8df1cd07 2502 } else {
8df1cd07 2503 /* RAM case */
5c8a00ce 2504 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2505 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2506 switch (endian) {
2507 case DEVICE_LITTLE_ENDIAN:
2508 stl_le_p(ptr, val);
2509 break;
2510 case DEVICE_BIG_ENDIAN:
2511 stl_be_p(ptr, val);
2512 break;
2513 default:
2514 stl_p(ptr, val);
2515 break;
2516 }
51d7a9eb 2517 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2518 }
2519}
2520
a8170e5e 2521void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2522{
2523 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2524}
2525
a8170e5e 2526void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2527{
2528 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2529}
2530
a8170e5e 2531void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2532{
2533 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2534}
2535
aab33094 2536/* XXX: optimize */
a8170e5e 2537void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2538{
2539 uint8_t v = val;
2540 cpu_physical_memory_write(addr, &v, 1);
2541}
2542
733f0b02 2543/* warning: addr must be aligned */
a8170e5e 2544static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2545 enum device_endian endian)
aab33094 2546{
733f0b02 2547 uint8_t *ptr;
5c8a00ce 2548 MemoryRegion *mr;
149f54b5
PB
2549 hwaddr l = 2;
2550 hwaddr addr1;
733f0b02 2551
5c8a00ce
PB
2552 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2553 true);
2554 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2555#if defined(TARGET_WORDS_BIGENDIAN)
2556 if (endian == DEVICE_LITTLE_ENDIAN) {
2557 val = bswap16(val);
2558 }
2559#else
2560 if (endian == DEVICE_BIG_ENDIAN) {
2561 val = bswap16(val);
2562 }
2563#endif
5c8a00ce 2564 io_mem_write(mr, addr1, val, 2);
733f0b02 2565 } else {
733f0b02 2566 /* RAM case */
5c8a00ce 2567 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2568 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2569 switch (endian) {
2570 case DEVICE_LITTLE_ENDIAN:
2571 stw_le_p(ptr, val);
2572 break;
2573 case DEVICE_BIG_ENDIAN:
2574 stw_be_p(ptr, val);
2575 break;
2576 default:
2577 stw_p(ptr, val);
2578 break;
2579 }
51d7a9eb 2580 invalidate_and_set_dirty(addr1, 2);
733f0b02 2581 }
aab33094
FB
2582}
2583
a8170e5e 2584void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2585{
2586 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2587}
2588
a8170e5e 2589void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2590{
2591 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2592}
2593
a8170e5e 2594void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2595{
2596 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2597}
2598
aab33094 2599/* XXX: optimize */
a8170e5e 2600void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2601{
2602 val = tswap64(val);
71d2b725 2603 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2604}
2605
a8170e5e 2606void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2607{
2608 val = cpu_to_le64(val);
2609 cpu_physical_memory_write(addr, &val, 8);
2610}
2611
a8170e5e 2612void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2613{
2614 val = cpu_to_be64(val);
2615 cpu_physical_memory_write(addr, &val, 8);
2616}
2617
5e2972fd 2618/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2619int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2620 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2621{
2622 int l;
a8170e5e 2623 hwaddr phys_addr;
9b3c35e0 2624 target_ulong page;
13eb76e0
FB
2625
2626 while (len > 0) {
2627 page = addr & TARGET_PAGE_MASK;
f17ec444 2628 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2629 /* if no physical page mapped, return an error */
2630 if (phys_addr == -1)
2631 return -1;
2632 l = (page + TARGET_PAGE_SIZE) - addr;
2633 if (l > len)
2634 l = len;
5e2972fd 2635 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2636 if (is_write)
2637 cpu_physical_memory_write_rom(phys_addr, buf, l);
2638 else
5e2972fd 2639 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2640 len -= l;
2641 buf += l;
2642 addr += l;
2643 }
2644 return 0;
2645}
a68fe89c 2646#endif
13eb76e0 2647
8e4a424b
BS
2648#if !defined(CONFIG_USER_ONLY)
2649
2650/*
2651 * A helper function for the _utterly broken_ virtio device model to find out if
2652 * it's running on a big endian machine. Don't do this at home kids!
2653 */
2654bool virtio_is_big_endian(void);
2655bool virtio_is_big_endian(void)
2656{
2657#if defined(TARGET_WORDS_BIGENDIAN)
2658 return true;
2659#else
2660 return false;
2661#endif
2662}
2663
2664#endif
2665
76f35538 2666#ifndef CONFIG_USER_ONLY
a8170e5e 2667bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2668{
5c8a00ce 2669 MemoryRegion*mr;
149f54b5 2670 hwaddr l = 1;
76f35538 2671
5c8a00ce
PB
2672 mr = address_space_translate(&address_space_memory,
2673 phys_addr, &phys_addr, &l, false);
76f35538 2674
5c8a00ce
PB
2675 return !(memory_region_is_ram(mr) ||
2676 memory_region_is_romd(mr));
76f35538 2677}
bd2fa51f
MH
2678
2679void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2680{
2681 RAMBlock *block;
2682
2683 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2684 func(block->host, block->offset, block->length, opaque);
2685 }
2686}
ec3f8c99 2687#endif