]> git.proxmox.com Git - qemu.git/blame - exec.c
memory: check for watchpoints when getting code ram_addr
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
67d95c15
AK
60#define WANT_EXEC_OBSOLETE
61#include "exec-obsolete.h"
62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
85d59fef 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
117
118static MemoryRegion *system_memory;
309cb471 119static MemoryRegion *system_io;
62152b8a 120
0e0df1e2 121MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 122static MemoryRegion io_mem_subpage_ram;
0e0df1e2 123
e2eef170 124#endif
9fa3e853 125
9349b4f9 126CPUArchState *first_cpu;
6a00d601
FB
127/* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
9349b4f9 129DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 130/* 0 = Do not count executed instructions.
bf20dc07 131 1 = Precise instruction counting.
2e70f6ef
PB
132 2 = Adaptive rate instruction counting. */
133int use_icount = 0;
6a00d601 134
54936004 135typedef struct PageDesc {
92e873b9 136 /* list of TBs intersecting this ram page */
fd6ce8f6 137 TranslationBlock *first_tb;
9fa3e853
FB
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142#if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144#endif
54936004
FB
145} PageDesc;
146
41c1b1c9 147/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
148 while in user mode we want it to be based on virtual addresses. */
149#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
150#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152#else
5cd2c5b6 153# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 154#endif
bedb69ea 155#else
5cd2c5b6 156# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 157#endif
54936004 158
5cd2c5b6
RH
159/* Size of the L2 (and L3, etc) page tables. */
160#define L2_BITS 10
54936004
FB
161#define L2_SIZE (1 << L2_BITS)
162
3eef53df
AK
163#define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
5cd2c5b6 166/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
167#define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
5cd2c5b6
RH
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
5cd2c5b6
RH
176#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
5cd2c5b6
RH
178#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
83fb7adf 180unsigned long qemu_real_host_page_size;
83fb7adf
FB
181unsigned long qemu_host_page_size;
182unsigned long qemu_host_page_mask;
54936004 183
5cd2c5b6
RH
184/* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186static void *l1_map[V_L1_SIZE];
54936004 187
e2eef170 188#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
189typedef struct PhysPageEntry PhysPageEntry;
190
5312bd8b
AK
191static MemoryRegionSection *phys_sections;
192static unsigned phys_sections_nb, phys_sections_nb_alloc;
193static uint16_t phys_section_unassigned;
aa102231
AK
194static uint16_t phys_section_notdirty;
195static uint16_t phys_section_rom;
196static uint16_t phys_section_watch;
5312bd8b 197
4346ae3e 198struct PhysPageEntry {
07f07b31
AK
199 uint16_t is_leaf : 1;
200 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
201 uint16_t ptr : 15;
4346ae3e
AK
202};
203
d6f2ea22
AK
204/* Simple allocator for PhysPageEntry nodes */
205static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
206static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
207
07f07b31 208#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 209
5cd2c5b6 210/* This is a multi-level map on the physical address space.
06ef3525 211 The bottom level has pointers to MemoryRegionSections. */
07f07b31 212static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
6d9a1304 213
e2eef170 214static void io_mem_init(void);
62152b8a 215static void memory_map_init(void);
e2eef170 216
1ec9b909 217static MemoryRegion io_mem_watch;
6658ffb8 218#endif
33417e70 219
34865134 220/* log support */
1e8b27ca
JR
221#ifdef WIN32
222static const char *logfilename = "qemu.log";
223#else
d9b630fd 224static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 225#endif
34865134
FB
226FILE *logfile;
227int loglevel;
e735b91c 228static int log_append = 0;
34865134 229
e3db7226 230/* statistics */
b3755a91 231#if !defined(CONFIG_USER_ONLY)
e3db7226 232static int tlb_flush_count;
b3755a91 233#endif
e3db7226
FB
234static int tb_flush_count;
235static int tb_phys_invalidate_count;
236
7cb69cae
FB
237#ifdef _WIN32
238static void map_exec(void *addr, long size)
239{
240 DWORD old_protect;
241 VirtualProtect(addr, size,
242 PAGE_EXECUTE_READWRITE, &old_protect);
243
244}
245#else
246static void map_exec(void *addr, long size)
247{
4369415f 248 unsigned long start, end, page_size;
7cb69cae 249
4369415f 250 page_size = getpagesize();
7cb69cae 251 start = (unsigned long)addr;
4369415f 252 start &= ~(page_size - 1);
7cb69cae
FB
253
254 end = (unsigned long)addr + size;
4369415f
FB
255 end += page_size - 1;
256 end &= ~(page_size - 1);
7cb69cae
FB
257
258 mprotect((void *)start, end - start,
259 PROT_READ | PROT_WRITE | PROT_EXEC);
260}
261#endif
262
b346ff46 263static void page_init(void)
54936004 264{
83fb7adf 265 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 266 TARGET_PAGE_SIZE */
c2b48b69
AL
267#ifdef _WIN32
268 {
269 SYSTEM_INFO system_info;
270
271 GetSystemInfo(&system_info);
272 qemu_real_host_page_size = system_info.dwPageSize;
273 }
274#else
275 qemu_real_host_page_size = getpagesize();
276#endif
83fb7adf
FB
277 if (qemu_host_page_size == 0)
278 qemu_host_page_size = qemu_real_host_page_size;
279 if (qemu_host_page_size < TARGET_PAGE_SIZE)
280 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 281 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 282
2e9a5713 283#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 284 {
f01576f1
JL
285#ifdef HAVE_KINFO_GETVMMAP
286 struct kinfo_vmentry *freep;
287 int i, cnt;
288
289 freep = kinfo_getvmmap(getpid(), &cnt);
290 if (freep) {
291 mmap_lock();
292 for (i = 0; i < cnt; i++) {
293 unsigned long startaddr, endaddr;
294
295 startaddr = freep[i].kve_start;
296 endaddr = freep[i].kve_end;
297 if (h2g_valid(startaddr)) {
298 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
299
300 if (h2g_valid(endaddr)) {
301 endaddr = h2g(endaddr);
fd436907 302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
303 } else {
304#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
305 endaddr = ~0ul;
fd436907 306 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
307#endif
308 }
309 }
310 }
311 free(freep);
312 mmap_unlock();
313 }
314#else
50a9569b 315 FILE *f;
50a9569b 316
0776590d 317 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 318
fd436907 319 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 320 if (f) {
5cd2c5b6
RH
321 mmap_lock();
322
50a9569b 323 do {
5cd2c5b6
RH
324 unsigned long startaddr, endaddr;
325 int n;
326
327 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
328
329 if (n == 2 && h2g_valid(startaddr)) {
330 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
331
332 if (h2g_valid(endaddr)) {
333 endaddr = h2g(endaddr);
334 } else {
335 endaddr = ~0ul;
336 }
337 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
338 }
339 } while (!feof(f));
5cd2c5b6 340
50a9569b 341 fclose(f);
5cd2c5b6 342 mmap_unlock();
50a9569b 343 }
f01576f1 344#endif
50a9569b
AZ
345 }
346#endif
54936004
FB
347}
348
41c1b1c9 349static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 350{
41c1b1c9
PB
351 PageDesc *pd;
352 void **lp;
353 int i;
354
5cd2c5b6 355#if defined(CONFIG_USER_ONLY)
7267c094 356 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
357# define ALLOC(P, SIZE) \
358 do { \
359 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
360 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
361 } while (0)
362#else
363# define ALLOC(P, SIZE) \
7267c094 364 do { P = g_malloc0(SIZE); } while (0)
17e2377a 365#endif
434929bf 366
5cd2c5b6
RH
367 /* Level 1. Always allocated. */
368 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
369
370 /* Level 2..N-1. */
371 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
372 void **p = *lp;
373
374 if (p == NULL) {
375 if (!alloc) {
376 return NULL;
377 }
378 ALLOC(p, sizeof(void *) * L2_SIZE);
379 *lp = p;
17e2377a 380 }
5cd2c5b6
RH
381
382 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
383 }
384
385 pd = *lp;
386 if (pd == NULL) {
387 if (!alloc) {
388 return NULL;
389 }
390 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
391 *lp = pd;
54936004 392 }
5cd2c5b6
RH
393
394#undef ALLOC
5cd2c5b6
RH
395
396 return pd + (index & (L2_SIZE - 1));
54936004
FB
397}
398
41c1b1c9 399static inline PageDesc *page_find(tb_page_addr_t index)
54936004 400{
5cd2c5b6 401 return page_find_alloc(index, 0);
fd6ce8f6
FB
402}
403
6d9a1304 404#if !defined(CONFIG_USER_ONLY)
d6f2ea22 405
f7bf5461 406static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 407{
f7bf5461 408 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
409 typedef PhysPageEntry Node[L2_SIZE];
410 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
411 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
412 phys_map_nodes_nb + nodes);
d6f2ea22
AK
413 phys_map_nodes = g_renew(Node, phys_map_nodes,
414 phys_map_nodes_nb_alloc);
415 }
f7bf5461
AK
416}
417
418static uint16_t phys_map_node_alloc(void)
419{
420 unsigned i;
421 uint16_t ret;
422
423 ret = phys_map_nodes_nb++;
424 assert(ret != PHYS_MAP_NODE_NIL);
425 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 426 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 427 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 428 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 429 }
f7bf5461 430 return ret;
d6f2ea22
AK
431}
432
433static void phys_map_nodes_reset(void)
434{
435 phys_map_nodes_nb = 0;
436}
437
92e873b9 438
2999097b
AK
439static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
440 target_phys_addr_t *nb, uint16_t leaf,
441 int level)
f7bf5461
AK
442{
443 PhysPageEntry *p;
444 int i;
07f07b31 445 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
108c49b8 446
07f07b31 447 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
448 lp->ptr = phys_map_node_alloc();
449 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
450 if (level == 0) {
451 for (i = 0; i < L2_SIZE; i++) {
07f07b31 452 p[i].is_leaf = 1;
c19e8800 453 p[i].ptr = phys_section_unassigned;
4346ae3e 454 }
67c4d23c 455 }
f7bf5461 456 } else {
c19e8800 457 p = phys_map_nodes[lp->ptr];
92e873b9 458 }
2999097b 459 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 460
2999097b 461 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
462 if ((*index & (step - 1)) == 0 && *nb >= step) {
463 lp->is_leaf = true;
c19e8800 464 lp->ptr = leaf;
07f07b31
AK
465 *index += step;
466 *nb -= step;
2999097b
AK
467 } else {
468 phys_page_set_level(lp, index, nb, leaf, level - 1);
469 }
470 ++lp;
f7bf5461
AK
471 }
472}
473
2999097b
AK
474static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
475 uint16_t leaf)
f7bf5461 476{
2999097b 477 /* Wildly overreserve - it doesn't matter much. */
07f07b31 478 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 479
2999097b 480 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
481}
482
f3705d53 483static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
92e873b9 484{
31ab2b4a
AK
485 PhysPageEntry lp = phys_map;
486 PhysPageEntry *p;
487 int i;
31ab2b4a 488 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 489
07f07b31 490 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 491 if (lp.ptr == PHYS_MAP_NODE_NIL) {
31ab2b4a
AK
492 goto not_found;
493 }
c19e8800 494 p = phys_map_nodes[lp.ptr];
31ab2b4a 495 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 496 }
31ab2b4a 497
c19e8800 498 s_index = lp.ptr;
31ab2b4a 499not_found:
f3705d53
AK
500 return &phys_sections[s_index];
501}
502
503static target_phys_addr_t section_addr(MemoryRegionSection *section,
504 target_phys_addr_t addr)
505{
506 addr -= section->offset_within_address_space;
507 addr += section->offset_within_region;
508 return addr;
92e873b9
FB
509}
510
c227f099 511static void tlb_protect_code(ram_addr_t ram_addr);
9349b4f9 512static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
3a7d929e 513 target_ulong vaddr);
c8a706fe
PB
514#define mmap_lock() do { } while(0)
515#define mmap_unlock() do { } while(0)
9fa3e853 516#endif
fd6ce8f6 517
4369415f
FB
518#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
519
520#if defined(CONFIG_USER_ONLY)
ccbb4d44 521/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
522 user mode. It will change when a dedicated libc will be used */
523#define USE_STATIC_CODE_GEN_BUFFER
524#endif
525
526#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
527static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
528 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
529#endif
530
8fcd3692 531static void code_gen_alloc(unsigned long tb_size)
26a5f13b 532{
4369415f
FB
533#ifdef USE_STATIC_CODE_GEN_BUFFER
534 code_gen_buffer = static_code_gen_buffer;
535 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
536 map_exec(code_gen_buffer, code_gen_buffer_size);
537#else
26a5f13b
FB
538 code_gen_buffer_size = tb_size;
539 if (code_gen_buffer_size == 0) {
4369415f 540#if defined(CONFIG_USER_ONLY)
4369415f
FB
541 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
542#else
ccbb4d44 543 /* XXX: needs adjustments */
94a6b54f 544 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 545#endif
26a5f13b
FB
546 }
547 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
548 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
549 /* The code gen buffer location may have constraints depending on
550 the host cpu and OS */
551#if defined(__linux__)
552 {
553 int flags;
141ac468
BS
554 void *start = NULL;
555
26a5f13b
FB
556 flags = MAP_PRIVATE | MAP_ANONYMOUS;
557#if defined(__x86_64__)
558 flags |= MAP_32BIT;
559 /* Cannot map more than that */
560 if (code_gen_buffer_size > (800 * 1024 * 1024))
561 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
562#elif defined(__sparc_v9__)
563 // Map the buffer below 2G, so we can use direct calls and branches
564 flags |= MAP_FIXED;
565 start = (void *) 0x60000000UL;
566 if (code_gen_buffer_size > (512 * 1024 * 1024))
567 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 568#elif defined(__arm__)
5c84bd90 569 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
570 if (code_gen_buffer_size > 16 * 1024 * 1024)
571 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
572#elif defined(__s390x__)
573 /* Map the buffer so that we can use direct calls and branches. */
574 /* We have a +- 4GB range on the branches; leave some slop. */
575 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
576 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
577 }
578 start = (void *)0x90000000UL;
26a5f13b 579#endif
141ac468
BS
580 code_gen_buffer = mmap(start, code_gen_buffer_size,
581 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
582 flags, -1, 0);
583 if (code_gen_buffer == MAP_FAILED) {
584 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
585 exit(1);
586 }
587 }
cbb608a5 588#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
589 || defined(__DragonFly__) || defined(__OpenBSD__) \
590 || defined(__NetBSD__)
06e67a82
AL
591 {
592 int flags;
593 void *addr = NULL;
594 flags = MAP_PRIVATE | MAP_ANONYMOUS;
595#if defined(__x86_64__)
596 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
597 * 0x40000000 is free */
598 flags |= MAP_FIXED;
599 addr = (void *)0x40000000;
600 /* Cannot map more than that */
601 if (code_gen_buffer_size > (800 * 1024 * 1024))
602 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
603#elif defined(__sparc_v9__)
604 // Map the buffer below 2G, so we can use direct calls and branches
605 flags |= MAP_FIXED;
606 addr = (void *) 0x60000000UL;
607 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
608 code_gen_buffer_size = (512 * 1024 * 1024);
609 }
06e67a82
AL
610#endif
611 code_gen_buffer = mmap(addr, code_gen_buffer_size,
612 PROT_WRITE | PROT_READ | PROT_EXEC,
613 flags, -1, 0);
614 if (code_gen_buffer == MAP_FAILED) {
615 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
616 exit(1);
617 }
618 }
26a5f13b 619#else
7267c094 620 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
621 map_exec(code_gen_buffer, code_gen_buffer_size);
622#endif
4369415f 623#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 624 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
625 code_gen_buffer_max_size = code_gen_buffer_size -
626 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 627 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 628 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
629}
630
631/* Must be called before using the QEMU cpus. 'tb_size' is the size
632 (in bytes) allocated to the translation buffer. Zero means default
633 size. */
d5ab9713 634void tcg_exec_init(unsigned long tb_size)
26a5f13b 635{
26a5f13b
FB
636 cpu_gen_init();
637 code_gen_alloc(tb_size);
638 code_gen_ptr = code_gen_buffer;
4369415f 639 page_init();
9002ec79
RH
640#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
641 /* There's no guest base to take into account, so go ahead and
642 initialize the prologue now. */
643 tcg_prologue_init(&tcg_ctx);
644#endif
26a5f13b
FB
645}
646
d5ab9713
JK
647bool tcg_enabled(void)
648{
649 return code_gen_buffer != NULL;
650}
651
652void cpu_exec_init_all(void)
653{
654#if !defined(CONFIG_USER_ONLY)
655 memory_map_init();
656 io_mem_init();
657#endif
658}
659
9656f324
PB
660#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
661
e59fb374 662static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7 663{
9349b4f9 664 CPUArchState *env = opaque;
9656f324 665
3098dba0
AJ
666 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
667 version_id is increased. */
668 env->interrupt_request &= ~0x01;
9656f324
PB
669 tlb_flush(env, 1);
670
671 return 0;
672}
e7f4eff7
JQ
673
674static const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .minimum_version_id_old = 1,
e7f4eff7
JQ
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField []) {
9349b4f9
AF
681 VMSTATE_UINT32(halted, CPUArchState),
682 VMSTATE_UINT32(interrupt_request, CPUArchState),
e7f4eff7
JQ
683 VMSTATE_END_OF_LIST()
684 }
685};
9656f324
PB
686#endif
687
9349b4f9 688CPUArchState *qemu_get_cpu(int cpu)
950f1472 689{
9349b4f9 690 CPUArchState *env = first_cpu;
950f1472
GC
691
692 while (env) {
693 if (env->cpu_index == cpu)
694 break;
695 env = env->next_cpu;
696 }
697
698 return env;
699}
700
9349b4f9 701void cpu_exec_init(CPUArchState *env)
fd6ce8f6 702{
9349b4f9 703 CPUArchState **penv;
6a00d601
FB
704 int cpu_index;
705
c2764719
PB
706#if defined(CONFIG_USER_ONLY)
707 cpu_list_lock();
708#endif
6a00d601
FB
709 env->next_cpu = NULL;
710 penv = &first_cpu;
711 cpu_index = 0;
712 while (*penv != NULL) {
1e9fa730 713 penv = &(*penv)->next_cpu;
6a00d601
FB
714 cpu_index++;
715 }
716 env->cpu_index = cpu_index;
268a362c 717 env->numa_node = 0;
72cf2d4f
BS
718 QTAILQ_INIT(&env->breakpoints);
719 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
720#ifndef CONFIG_USER_ONLY
721 env->thread_id = qemu_get_thread_id();
722#endif
6a00d601 723 *penv = env;
c2764719
PB
724#if defined(CONFIG_USER_ONLY)
725 cpu_list_unlock();
726#endif
b3c7724c 727#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
728 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
729 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
730 cpu_save, cpu_load, env);
731#endif
fd6ce8f6
FB
732}
733
d1a1eb74
TG
734/* Allocate a new translation block. Flush the translation buffer if
735 too many translation blocks or too much generated code. */
736static TranslationBlock *tb_alloc(target_ulong pc)
737{
738 TranslationBlock *tb;
739
740 if (nb_tbs >= code_gen_max_blocks ||
741 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
742 return NULL;
743 tb = &tbs[nb_tbs++];
744 tb->pc = pc;
745 tb->cflags = 0;
746 return tb;
747}
748
749void tb_free(TranslationBlock *tb)
750{
751 /* In practice this is mostly used for single use temporary TB
752 Ignore the hard cases and just back up if this TB happens to
753 be the last one generated. */
754 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
755 code_gen_ptr = tb->tc_ptr;
756 nb_tbs--;
757 }
758}
759
9fa3e853
FB
760static inline void invalidate_page_bitmap(PageDesc *p)
761{
762 if (p->code_bitmap) {
7267c094 763 g_free(p->code_bitmap);
9fa3e853
FB
764 p->code_bitmap = NULL;
765 }
766 p->code_write_count = 0;
767}
768
5cd2c5b6
RH
769/* Set to NULL all the 'first_tb' fields in all PageDescs. */
770
771static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 772{
5cd2c5b6 773 int i;
fd6ce8f6 774
5cd2c5b6
RH
775 if (*lp == NULL) {
776 return;
777 }
778 if (level == 0) {
779 PageDesc *pd = *lp;
7296abac 780 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
781 pd[i].first_tb = NULL;
782 invalidate_page_bitmap(pd + i);
fd6ce8f6 783 }
5cd2c5b6
RH
784 } else {
785 void **pp = *lp;
7296abac 786 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
787 page_flush_tb_1 (level - 1, pp + i);
788 }
789 }
790}
791
792static void page_flush_tb(void)
793{
794 int i;
795 for (i = 0; i < V_L1_SIZE; i++) {
796 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
797 }
798}
799
800/* flush all the translation blocks */
d4e8164f 801/* XXX: tb_flush is currently not thread safe */
9349b4f9 802void tb_flush(CPUArchState *env1)
fd6ce8f6 803{
9349b4f9 804 CPUArchState *env;
0124311e 805#if defined(DEBUG_FLUSH)
ab3d1727
BS
806 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
807 (unsigned long)(code_gen_ptr - code_gen_buffer),
808 nb_tbs, nb_tbs > 0 ?
809 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 810#endif
26a5f13b 811 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
812 cpu_abort(env1, "Internal error: code buffer overflow\n");
813
fd6ce8f6 814 nb_tbs = 0;
3b46e624 815
6a00d601
FB
816 for(env = first_cpu; env != NULL; env = env->next_cpu) {
817 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
818 }
9fa3e853 819
8a8a608f 820 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 821 page_flush_tb();
9fa3e853 822
fd6ce8f6 823 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
824 /* XXX: flush processor icache at this point if cache flush is
825 expensive */
e3db7226 826 tb_flush_count++;
fd6ce8f6
FB
827}
828
829#ifdef DEBUG_TB_CHECK
830
bc98a7ef 831static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
832{
833 TranslationBlock *tb;
834 int i;
835 address &= TARGET_PAGE_MASK;
99773bd4
PB
836 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
837 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
838 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
839 address >= tb->pc + tb->size)) {
0bf9e31a
BS
840 printf("ERROR invalidate: address=" TARGET_FMT_lx
841 " PC=%08lx size=%04x\n",
99773bd4 842 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
843 }
844 }
845 }
846}
847
848/* verify that all the pages have correct rights for code */
849static void tb_page_check(void)
850{
851 TranslationBlock *tb;
852 int i, flags1, flags2;
3b46e624 853
99773bd4
PB
854 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
855 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
856 flags1 = page_get_flags(tb->pc);
857 flags2 = page_get_flags(tb->pc + tb->size - 1);
858 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
859 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 860 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
861 }
862 }
863 }
864}
865
866#endif
867
868/* invalidate one TB */
869static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
870 int next_offset)
871{
872 TranslationBlock *tb1;
873 for(;;) {
874 tb1 = *ptb;
875 if (tb1 == tb) {
876 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
877 break;
878 }
879 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
880 }
881}
882
9fa3e853
FB
883static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
884{
885 TranslationBlock *tb1;
886 unsigned int n1;
887
888 for(;;) {
889 tb1 = *ptb;
890 n1 = (long)tb1 & 3;
891 tb1 = (TranslationBlock *)((long)tb1 & ~3);
892 if (tb1 == tb) {
893 *ptb = tb1->page_next[n1];
894 break;
895 }
896 ptb = &tb1->page_next[n1];
897 }
898}
899
d4e8164f
FB
900static inline void tb_jmp_remove(TranslationBlock *tb, int n)
901{
902 TranslationBlock *tb1, **ptb;
903 unsigned int n1;
904
905 ptb = &tb->jmp_next[n];
906 tb1 = *ptb;
907 if (tb1) {
908 /* find tb(n) in circular list */
909 for(;;) {
910 tb1 = *ptb;
911 n1 = (long)tb1 & 3;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 if (n1 == n && tb1 == tb)
914 break;
915 if (n1 == 2) {
916 ptb = &tb1->jmp_first;
917 } else {
918 ptb = &tb1->jmp_next[n1];
919 }
920 }
921 /* now we can suppress tb(n) from the list */
922 *ptb = tb->jmp_next[n];
923
924 tb->jmp_next[n] = NULL;
925 }
926}
927
928/* reset the jump entry 'n' of a TB so that it is not chained to
929 another TB */
930static inline void tb_reset_jump(TranslationBlock *tb, int n)
931{
932 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
933}
934
41c1b1c9 935void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 936{
9349b4f9 937 CPUArchState *env;
8a40a180 938 PageDesc *p;
d4e8164f 939 unsigned int h, n1;
41c1b1c9 940 tb_page_addr_t phys_pc;
8a40a180 941 TranslationBlock *tb1, *tb2;
3b46e624 942
8a40a180
FB
943 /* remove the TB from the hash list */
944 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 h = tb_phys_hash_func(phys_pc);
5fafdf24 946 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
947 offsetof(TranslationBlock, phys_hash_next));
948
949 /* remove the TB from the page list */
950 if (tb->page_addr[0] != page_addr) {
951 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
952 tb_page_remove(&p->first_tb, tb);
953 invalidate_page_bitmap(p);
954 }
955 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
956 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
957 tb_page_remove(&p->first_tb, tb);
958 invalidate_page_bitmap(p);
959 }
960
36bdbe54 961 tb_invalidated_flag = 1;
59817ccb 962
fd6ce8f6 963 /* remove the TB from the hash list */
8a40a180 964 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
965 for(env = first_cpu; env != NULL; env = env->next_cpu) {
966 if (env->tb_jmp_cache[h] == tb)
967 env->tb_jmp_cache[h] = NULL;
968 }
d4e8164f
FB
969
970 /* suppress this TB from the two jump lists */
971 tb_jmp_remove(tb, 0);
972 tb_jmp_remove(tb, 1);
973
974 /* suppress any remaining jumps to this TB */
975 tb1 = tb->jmp_first;
976 for(;;) {
977 n1 = (long)tb1 & 3;
978 if (n1 == 2)
979 break;
980 tb1 = (TranslationBlock *)((long)tb1 & ~3);
981 tb2 = tb1->jmp_next[n1];
982 tb_reset_jump(tb1, n1);
983 tb1->jmp_next[n1] = NULL;
984 tb1 = tb2;
985 }
986 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 987
e3db7226 988 tb_phys_invalidate_count++;
9fa3e853
FB
989}
990
991static inline void set_bits(uint8_t *tab, int start, int len)
992{
993 int end, mask, end1;
994
995 end = start + len;
996 tab += start >> 3;
997 mask = 0xff << (start & 7);
998 if ((start & ~7) == (end & ~7)) {
999 if (start < end) {
1000 mask &= ~(0xff << (end & 7));
1001 *tab |= mask;
1002 }
1003 } else {
1004 *tab++ |= mask;
1005 start = (start + 8) & ~7;
1006 end1 = end & ~7;
1007 while (start < end1) {
1008 *tab++ = 0xff;
1009 start += 8;
1010 }
1011 if (start < end) {
1012 mask = ~(0xff << (end & 7));
1013 *tab |= mask;
1014 }
1015 }
1016}
1017
1018static void build_page_bitmap(PageDesc *p)
1019{
1020 int n, tb_start, tb_end;
1021 TranslationBlock *tb;
3b46e624 1022
7267c094 1023 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1024
1025 tb = p->first_tb;
1026 while (tb != NULL) {
1027 n = (long)tb & 3;
1028 tb = (TranslationBlock *)((long)tb & ~3);
1029 /* NOTE: this is subtle as a TB may span two physical pages */
1030 if (n == 0) {
1031 /* NOTE: tb_end may be after the end of the page, but
1032 it is not a problem */
1033 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1034 tb_end = tb_start + tb->size;
1035 if (tb_end > TARGET_PAGE_SIZE)
1036 tb_end = TARGET_PAGE_SIZE;
1037 } else {
1038 tb_start = 0;
1039 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1040 }
1041 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1042 tb = tb->page_next[n];
1043 }
1044}
1045
9349b4f9 1046TranslationBlock *tb_gen_code(CPUArchState *env,
2e70f6ef
PB
1047 target_ulong pc, target_ulong cs_base,
1048 int flags, int cflags)
d720b93d
FB
1049{
1050 TranslationBlock *tb;
1051 uint8_t *tc_ptr;
41c1b1c9
PB
1052 tb_page_addr_t phys_pc, phys_page2;
1053 target_ulong virt_page2;
d720b93d
FB
1054 int code_gen_size;
1055
41c1b1c9 1056 phys_pc = get_page_addr_code(env, pc);
c27004ec 1057 tb = tb_alloc(pc);
d720b93d
FB
1058 if (!tb) {
1059 /* flush must be done */
1060 tb_flush(env);
1061 /* cannot fail at this point */
c27004ec 1062 tb = tb_alloc(pc);
2e70f6ef
PB
1063 /* Don't forget to invalidate previous TB info. */
1064 tb_invalidated_flag = 1;
d720b93d
FB
1065 }
1066 tc_ptr = code_gen_ptr;
1067 tb->tc_ptr = tc_ptr;
1068 tb->cs_base = cs_base;
1069 tb->flags = flags;
1070 tb->cflags = cflags;
d07bde88 1071 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1072 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1073
d720b93d 1074 /* check next page if needed */
c27004ec 1075 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1076 phys_page2 = -1;
c27004ec 1077 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1078 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1079 }
41c1b1c9 1080 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1081 return tb;
d720b93d 1082}
3b46e624 1083
9fa3e853
FB
1084/* invalidate all TBs which intersect with the target physical page
1085 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1086 the same physical page. 'is_cpu_write_access' should be true if called
1087 from a real cpu write access: the virtual CPU will exit the current
1088 TB if code is modified inside this TB. */
41c1b1c9 1089void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1090 int is_cpu_write_access)
1091{
6b917547 1092 TranslationBlock *tb, *tb_next, *saved_tb;
9349b4f9 1093 CPUArchState *env = cpu_single_env;
41c1b1c9 1094 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1095 PageDesc *p;
1096 int n;
1097#ifdef TARGET_HAS_PRECISE_SMC
1098 int current_tb_not_found = is_cpu_write_access;
1099 TranslationBlock *current_tb = NULL;
1100 int current_tb_modified = 0;
1101 target_ulong current_pc = 0;
1102 target_ulong current_cs_base = 0;
1103 int current_flags = 0;
1104#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1105
1106 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1107 if (!p)
9fa3e853 1108 return;
5fafdf24 1109 if (!p->code_bitmap &&
d720b93d
FB
1110 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1111 is_cpu_write_access) {
9fa3e853
FB
1112 /* build code bitmap */
1113 build_page_bitmap(p);
1114 }
1115
1116 /* we remove all the TBs in the range [start, end[ */
1117 /* XXX: see if in some cases it could be faster to invalidate all the code */
1118 tb = p->first_tb;
1119 while (tb != NULL) {
1120 n = (long)tb & 3;
1121 tb = (TranslationBlock *)((long)tb & ~3);
1122 tb_next = tb->page_next[n];
1123 /* NOTE: this is subtle as a TB may span two physical pages */
1124 if (n == 0) {
1125 /* NOTE: tb_end may be after the end of the page, but
1126 it is not a problem */
1127 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1128 tb_end = tb_start + tb->size;
1129 } else {
1130 tb_start = tb->page_addr[1];
1131 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1132 }
1133 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1134#ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb_not_found) {
1136 current_tb_not_found = 0;
1137 current_tb = NULL;
2e70f6ef 1138 if (env->mem_io_pc) {
d720b93d 1139 /* now we have a real cpu fault */
2e70f6ef 1140 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1141 }
1142 }
1143 if (current_tb == tb &&
2e70f6ef 1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
3b46e624 1150
d720b93d 1151 current_tb_modified = 1;
618ba8e6 1152 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
d720b93d
FB
1155 }
1156#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1157 /* we need to do that to handle the case where a signal
1158 occurs while doing tb_phys_invalidate() */
1159 saved_tb = NULL;
1160 if (env) {
1161 saved_tb = env->current_tb;
1162 env->current_tb = NULL;
1163 }
9fa3e853 1164 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1165 if (env) {
1166 env->current_tb = saved_tb;
1167 if (env->interrupt_request && env->current_tb)
1168 cpu_interrupt(env, env->interrupt_request);
1169 }
9fa3e853
FB
1170 }
1171 tb = tb_next;
1172 }
1173#if !defined(CONFIG_USER_ONLY)
1174 /* if no code remaining, no need to continue to use slow writes */
1175 if (!p->first_tb) {
1176 invalidate_page_bitmap(p);
d720b93d 1177 if (is_cpu_write_access) {
2e70f6ef 1178 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1179 }
1180 }
1181#endif
1182#ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb_modified) {
1184 /* we generate a block containing just the instruction
1185 modifying the memory. It will ensure that it cannot modify
1186 itself */
ea1c1802 1187 env->current_tb = NULL;
2e70f6ef 1188 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1189 cpu_resume_from_signal(env, NULL);
9fa3e853 1190 }
fd6ce8f6 1191#endif
9fa3e853 1192}
fd6ce8f6 1193
9fa3e853 1194/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1195static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1196{
1197 PageDesc *p;
1198 int offset, b;
59817ccb 1199#if 0
a4193c8a 1200 if (1) {
93fcfe39
AL
1201 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1202 cpu_single_env->mem_io_vaddr, len,
1203 cpu_single_env->eip,
1204 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1205 }
1206#endif
9fa3e853 1207 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1208 if (!p)
9fa3e853
FB
1209 return;
1210 if (p->code_bitmap) {
1211 offset = start & ~TARGET_PAGE_MASK;
1212 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1213 if (b & ((1 << len) - 1))
1214 goto do_invalidate;
1215 } else {
1216 do_invalidate:
d720b93d 1217 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1218 }
1219}
1220
9fa3e853 1221#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1222static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1223 unsigned long pc, void *puc)
9fa3e853 1224{
6b917547 1225 TranslationBlock *tb;
9fa3e853 1226 PageDesc *p;
6b917547 1227 int n;
d720b93d 1228#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1229 TranslationBlock *current_tb = NULL;
9349b4f9 1230 CPUArchState *env = cpu_single_env;
6b917547
AL
1231 int current_tb_modified = 0;
1232 target_ulong current_pc = 0;
1233 target_ulong current_cs_base = 0;
1234 int current_flags = 0;
d720b93d 1235#endif
9fa3e853
FB
1236
1237 addr &= TARGET_PAGE_MASK;
1238 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1239 if (!p)
9fa3e853
FB
1240 return;
1241 tb = p->first_tb;
d720b93d
FB
1242#ifdef TARGET_HAS_PRECISE_SMC
1243 if (tb && pc != 0) {
1244 current_tb = tb_find_pc(pc);
1245 }
1246#endif
9fa3e853
FB
1247 while (tb != NULL) {
1248 n = (long)tb & 3;
1249 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1250#ifdef TARGET_HAS_PRECISE_SMC
1251 if (current_tb == tb &&
2e70f6ef 1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
3b46e624 1258
d720b93d 1259 current_tb_modified = 1;
618ba8e6 1260 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
d720b93d
FB
1263 }
1264#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1265 tb_phys_invalidate(tb, addr);
1266 tb = tb->page_next[n];
1267 }
fd6ce8f6 1268 p->first_tb = NULL;
d720b93d
FB
1269#ifdef TARGET_HAS_PRECISE_SMC
1270 if (current_tb_modified) {
1271 /* we generate a block containing just the instruction
1272 modifying the memory. It will ensure that it cannot modify
1273 itself */
ea1c1802 1274 env->current_tb = NULL;
2e70f6ef 1275 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1276 cpu_resume_from_signal(env, puc);
1277 }
1278#endif
fd6ce8f6 1279}
9fa3e853 1280#endif
fd6ce8f6
FB
1281
1282/* add the tb in the target page and protect it if necessary */
5fafdf24 1283static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1284 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1285{
1286 PageDesc *p;
4429ab44
JQ
1287#ifndef CONFIG_USER_ONLY
1288 bool page_already_protected;
1289#endif
9fa3e853
FB
1290
1291 tb->page_addr[n] = page_addr;
5cd2c5b6 1292 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1293 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1294#ifndef CONFIG_USER_ONLY
1295 page_already_protected = p->first_tb != NULL;
1296#endif
9fa3e853
FB
1297 p->first_tb = (TranslationBlock *)((long)tb | n);
1298 invalidate_page_bitmap(p);
fd6ce8f6 1299
107db443 1300#if defined(TARGET_HAS_SMC) || 1
d720b93d 1301
9fa3e853 1302#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1303 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1304 target_ulong addr;
1305 PageDesc *p2;
9fa3e853
FB
1306 int prot;
1307
fd6ce8f6
FB
1308 /* force the host page as non writable (writes will have a
1309 page fault + mprotect overhead) */
53a5960a 1310 page_addr &= qemu_host_page_mask;
fd6ce8f6 1311 prot = 0;
53a5960a
PB
1312 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1313 addr += TARGET_PAGE_SIZE) {
1314
1315 p2 = page_find (addr >> TARGET_PAGE_BITS);
1316 if (!p2)
1317 continue;
1318 prot |= p2->flags;
1319 p2->flags &= ~PAGE_WRITE;
53a5960a 1320 }
5fafdf24 1321 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1322 (prot & PAGE_BITS) & ~PAGE_WRITE);
1323#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1324 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1325 page_addr);
fd6ce8f6 1326#endif
fd6ce8f6 1327 }
9fa3e853
FB
1328#else
1329 /* if some code is already present, then the pages are already
1330 protected. So we handle the case where only the first TB is
1331 allocated in a physical page */
4429ab44 1332 if (!page_already_protected) {
6a00d601 1333 tlb_protect_code(page_addr);
9fa3e853
FB
1334 }
1335#endif
d720b93d
FB
1336
1337#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1338}
1339
9fa3e853
FB
1340/* add a new TB and link it to the physical page tables. phys_page2 is
1341 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1342void tb_link_page(TranslationBlock *tb,
1343 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1344{
9fa3e853
FB
1345 unsigned int h;
1346 TranslationBlock **ptb;
1347
c8a706fe
PB
1348 /* Grab the mmap lock to stop another thread invalidating this TB
1349 before we are done. */
1350 mmap_lock();
9fa3e853
FB
1351 /* add in the physical hash table */
1352 h = tb_phys_hash_func(phys_pc);
1353 ptb = &tb_phys_hash[h];
1354 tb->phys_hash_next = *ptb;
1355 *ptb = tb;
fd6ce8f6
FB
1356
1357 /* add in the page list */
9fa3e853
FB
1358 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1359 if (phys_page2 != -1)
1360 tb_alloc_page(tb, 1, phys_page2);
1361 else
1362 tb->page_addr[1] = -1;
9fa3e853 1363
d4e8164f
FB
1364 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1365 tb->jmp_next[0] = NULL;
1366 tb->jmp_next[1] = NULL;
1367
1368 /* init original jump addresses */
1369 if (tb->tb_next_offset[0] != 0xffff)
1370 tb_reset_jump(tb, 0);
1371 if (tb->tb_next_offset[1] != 0xffff)
1372 tb_reset_jump(tb, 1);
8a40a180
FB
1373
1374#ifdef DEBUG_TB_CHECK
1375 tb_page_check();
1376#endif
c8a706fe 1377 mmap_unlock();
fd6ce8f6
FB
1378}
1379
9fa3e853
FB
1380/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1381 tb[1].tc_ptr. Return NULL if not found */
1382TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1383{
9fa3e853
FB
1384 int m_min, m_max, m;
1385 unsigned long v;
1386 TranslationBlock *tb;
a513fe19
FB
1387
1388 if (nb_tbs <= 0)
1389 return NULL;
1390 if (tc_ptr < (unsigned long)code_gen_buffer ||
1391 tc_ptr >= (unsigned long)code_gen_ptr)
1392 return NULL;
1393 /* binary search (cf Knuth) */
1394 m_min = 0;
1395 m_max = nb_tbs - 1;
1396 while (m_min <= m_max) {
1397 m = (m_min + m_max) >> 1;
1398 tb = &tbs[m];
1399 v = (unsigned long)tb->tc_ptr;
1400 if (v == tc_ptr)
1401 return tb;
1402 else if (tc_ptr < v) {
1403 m_max = m - 1;
1404 } else {
1405 m_min = m + 1;
1406 }
5fafdf24 1407 }
a513fe19
FB
1408 return &tbs[m_max];
1409}
7501267e 1410
ea041c0e
FB
1411static void tb_reset_jump_recursive(TranslationBlock *tb);
1412
1413static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1414{
1415 TranslationBlock *tb1, *tb_next, **ptb;
1416 unsigned int n1;
1417
1418 tb1 = tb->jmp_next[n];
1419 if (tb1 != NULL) {
1420 /* find head of list */
1421 for(;;) {
1422 n1 = (long)tb1 & 3;
1423 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1424 if (n1 == 2)
1425 break;
1426 tb1 = tb1->jmp_next[n1];
1427 }
1428 /* we are now sure now that tb jumps to tb1 */
1429 tb_next = tb1;
1430
1431 /* remove tb from the jmp_first list */
1432 ptb = &tb_next->jmp_first;
1433 for(;;) {
1434 tb1 = *ptb;
1435 n1 = (long)tb1 & 3;
1436 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1437 if (n1 == n && tb1 == tb)
1438 break;
1439 ptb = &tb1->jmp_next[n1];
1440 }
1441 *ptb = tb->jmp_next[n];
1442 tb->jmp_next[n] = NULL;
3b46e624 1443
ea041c0e
FB
1444 /* suppress the jump to next tb in generated code */
1445 tb_reset_jump(tb, n);
1446
0124311e 1447 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1448 tb_reset_jump_recursive(tb_next);
1449 }
1450}
1451
1452static void tb_reset_jump_recursive(TranslationBlock *tb)
1453{
1454 tb_reset_jump_recursive2(tb, 0);
1455 tb_reset_jump_recursive2(tb, 1);
1456}
1457
1fddef4b 1458#if defined(TARGET_HAS_ICE)
94df27fd 1459#if defined(CONFIG_USER_ONLY)
9349b4f9 1460static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
1461{
1462 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1463}
1464#else
9349b4f9 1465static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
d720b93d 1466{
c227f099 1467 target_phys_addr_t addr;
c227f099 1468 ram_addr_t ram_addr;
f3705d53 1469 MemoryRegionSection *section;
d720b93d 1470
c2f07f81 1471 addr = cpu_get_phys_page_debug(env, pc);
06ef3525 1472 section = phys_page_find(addr >> TARGET_PAGE_BITS);
f3705d53
AK
1473 if (!(memory_region_is_ram(section->mr)
1474 || (section->mr->rom_device && section->mr->readable))) {
06ef3525
AK
1475 return;
1476 }
f3705d53
AK
1477 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1478 + section_addr(section, addr);
706cd4b5 1479 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1480}
c27004ec 1481#endif
94df27fd 1482#endif /* TARGET_HAS_ICE */
d720b93d 1483
c527ee8f 1484#if defined(CONFIG_USER_ONLY)
9349b4f9 1485void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
1486
1487{
1488}
1489
9349b4f9 1490int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
1491 int flags, CPUWatchpoint **watchpoint)
1492{
1493 return -ENOSYS;
1494}
1495#else
6658ffb8 1496/* Add a watchpoint. */
9349b4f9 1497int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1498 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1499{
b4051334 1500 target_ulong len_mask = ~(len - 1);
c0ce998e 1501 CPUWatchpoint *wp;
6658ffb8 1502
b4051334 1503 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
1504 if ((len & (len - 1)) || (addr & ~len_mask) ||
1505 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
1506 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1507 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1508 return -EINVAL;
1509 }
7267c094 1510 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1511
1512 wp->vaddr = addr;
b4051334 1513 wp->len_mask = len_mask;
a1d1bb31
AL
1514 wp->flags = flags;
1515
2dc9f411 1516 /* keep all GDB-injected watchpoints in front */
c0ce998e 1517 if (flags & BP_GDB)
72cf2d4f 1518 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1519 else
72cf2d4f 1520 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1521
6658ffb8 1522 tlb_flush_page(env, addr);
a1d1bb31
AL
1523
1524 if (watchpoint)
1525 *watchpoint = wp;
1526 return 0;
6658ffb8
PB
1527}
1528
a1d1bb31 1529/* Remove a specific watchpoint. */
9349b4f9 1530int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1531 int flags)
6658ffb8 1532{
b4051334 1533 target_ulong len_mask = ~(len - 1);
a1d1bb31 1534 CPUWatchpoint *wp;
6658ffb8 1535
72cf2d4f 1536 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1537 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1538 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1539 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1540 return 0;
1541 }
1542 }
a1d1bb31 1543 return -ENOENT;
6658ffb8
PB
1544}
1545
a1d1bb31 1546/* Remove a specific watchpoint by reference. */
9349b4f9 1547void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 1548{
72cf2d4f 1549 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1550
a1d1bb31
AL
1551 tlb_flush_page(env, watchpoint->vaddr);
1552
7267c094 1553 g_free(watchpoint);
a1d1bb31
AL
1554}
1555
1556/* Remove all matching watchpoints. */
9349b4f9 1557void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 1558{
c0ce998e 1559 CPUWatchpoint *wp, *next;
a1d1bb31 1560
72cf2d4f 1561 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1562 if (wp->flags & mask)
1563 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1564 }
7d03f82f 1565}
c527ee8f 1566#endif
7d03f82f 1567
a1d1bb31 1568/* Add a breakpoint. */
9349b4f9 1569int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 1570 CPUBreakpoint **breakpoint)
4c3a88a2 1571{
1fddef4b 1572#if defined(TARGET_HAS_ICE)
c0ce998e 1573 CPUBreakpoint *bp;
3b46e624 1574
7267c094 1575 bp = g_malloc(sizeof(*bp));
4c3a88a2 1576
a1d1bb31
AL
1577 bp->pc = pc;
1578 bp->flags = flags;
1579
2dc9f411 1580 /* keep all GDB-injected breakpoints in front */
c0ce998e 1581 if (flags & BP_GDB)
72cf2d4f 1582 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1583 else
72cf2d4f 1584 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1585
d720b93d 1586 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1587
1588 if (breakpoint)
1589 *breakpoint = bp;
4c3a88a2
FB
1590 return 0;
1591#else
a1d1bb31 1592 return -ENOSYS;
4c3a88a2
FB
1593#endif
1594}
1595
a1d1bb31 1596/* Remove a specific breakpoint. */
9349b4f9 1597int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 1598{
7d03f82f 1599#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1600 CPUBreakpoint *bp;
1601
72cf2d4f 1602 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1603 if (bp->pc == pc && bp->flags == flags) {
1604 cpu_breakpoint_remove_by_ref(env, bp);
1605 return 0;
1606 }
7d03f82f 1607 }
a1d1bb31
AL
1608 return -ENOENT;
1609#else
1610 return -ENOSYS;
7d03f82f
EI
1611#endif
1612}
1613
a1d1bb31 1614/* Remove a specific breakpoint by reference. */
9349b4f9 1615void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1616{
1fddef4b 1617#if defined(TARGET_HAS_ICE)
72cf2d4f 1618 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1619
a1d1bb31
AL
1620 breakpoint_invalidate(env, breakpoint->pc);
1621
7267c094 1622 g_free(breakpoint);
a1d1bb31
AL
1623#endif
1624}
1625
1626/* Remove all matching breakpoints. */
9349b4f9 1627void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
1628{
1629#if defined(TARGET_HAS_ICE)
c0ce998e 1630 CPUBreakpoint *bp, *next;
a1d1bb31 1631
72cf2d4f 1632 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1633 if (bp->flags & mask)
1634 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1635 }
4c3a88a2
FB
1636#endif
1637}
1638
c33a346e
FB
1639/* enable or disable single step mode. EXCP_DEBUG is returned by the
1640 CPU loop after each instruction */
9349b4f9 1641void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 1642{
1fddef4b 1643#if defined(TARGET_HAS_ICE)
c33a346e
FB
1644 if (env->singlestep_enabled != enabled) {
1645 env->singlestep_enabled = enabled;
e22a25c9
AL
1646 if (kvm_enabled())
1647 kvm_update_guest_debug(env, 0);
1648 else {
ccbb4d44 1649 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1650 /* XXX: only flush what is necessary */
1651 tb_flush(env);
1652 }
c33a346e
FB
1653 }
1654#endif
1655}
1656
34865134
FB
1657/* enable or disable low levels log */
1658void cpu_set_log(int log_flags)
1659{
1660 loglevel = log_flags;
1661 if (loglevel && !logfile) {
11fcfab4 1662 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1663 if (!logfile) {
1664 perror(logfilename);
1665 _exit(1);
1666 }
9fa3e853
FB
1667#if !defined(CONFIG_SOFTMMU)
1668 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1669 {
b55266b5 1670 static char logfile_buf[4096];
9fa3e853
FB
1671 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1672 }
daf767b1
SW
1673#elif defined(_WIN32)
1674 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1675 setvbuf(logfile, NULL, _IONBF, 0);
1676#else
34865134 1677 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1678#endif
e735b91c
PB
1679 log_append = 1;
1680 }
1681 if (!loglevel && logfile) {
1682 fclose(logfile);
1683 logfile = NULL;
34865134
FB
1684 }
1685}
1686
1687void cpu_set_log_filename(const char *filename)
1688{
1689 logfilename = strdup(filename);
e735b91c
PB
1690 if (logfile) {
1691 fclose(logfile);
1692 logfile = NULL;
1693 }
1694 cpu_set_log(loglevel);
34865134 1695}
c33a346e 1696
9349b4f9 1697static void cpu_unlink_tb(CPUArchState *env)
ea041c0e 1698{
3098dba0
AJ
1699 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1700 problem and hope the cpu will stop of its own accord. For userspace
1701 emulation this often isn't actually as bad as it sounds. Often
1702 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1703 TranslationBlock *tb;
c227f099 1704 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1705
cab1b4bd 1706 spin_lock(&interrupt_lock);
3098dba0
AJ
1707 tb = env->current_tb;
1708 /* if the cpu is currently executing code, we must unlink it and
1709 all the potentially executing TB */
f76cfe56 1710 if (tb) {
3098dba0
AJ
1711 env->current_tb = NULL;
1712 tb_reset_jump_recursive(tb);
be214e6c 1713 }
cab1b4bd 1714 spin_unlock(&interrupt_lock);
3098dba0
AJ
1715}
1716
97ffbd8d 1717#ifndef CONFIG_USER_ONLY
3098dba0 1718/* mask must never be zero, except for A20 change call */
9349b4f9 1719static void tcg_handle_interrupt(CPUArchState *env, int mask)
3098dba0
AJ
1720{
1721 int old_mask;
be214e6c 1722
2e70f6ef 1723 old_mask = env->interrupt_request;
68a79315 1724 env->interrupt_request |= mask;
3098dba0 1725
8edac960
AL
1726 /*
1727 * If called from iothread context, wake the target cpu in
1728 * case its halted.
1729 */
b7680cb6 1730 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1731 qemu_cpu_kick(env);
1732 return;
1733 }
8edac960 1734
2e70f6ef 1735 if (use_icount) {
266910c4 1736 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1737 if (!can_do_io(env)
be214e6c 1738 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1739 cpu_abort(env, "Raised interrupt while not in I/O function");
1740 }
2e70f6ef 1741 } else {
3098dba0 1742 cpu_unlink_tb(env);
ea041c0e
FB
1743 }
1744}
1745
ec6959d0
JK
1746CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1747
97ffbd8d
JK
1748#else /* CONFIG_USER_ONLY */
1749
9349b4f9 1750void cpu_interrupt(CPUArchState *env, int mask)
97ffbd8d
JK
1751{
1752 env->interrupt_request |= mask;
1753 cpu_unlink_tb(env);
1754}
1755#endif /* CONFIG_USER_ONLY */
1756
9349b4f9 1757void cpu_reset_interrupt(CPUArchState *env, int mask)
b54ad049
FB
1758{
1759 env->interrupt_request &= ~mask;
1760}
1761
9349b4f9 1762void cpu_exit(CPUArchState *env)
3098dba0
AJ
1763{
1764 env->exit_request = 1;
1765 cpu_unlink_tb(env);
1766}
1767
c7cd6a37 1768const CPULogItem cpu_log_items[] = {
5fafdf24 1769 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1770 "show generated host assembly code for each compiled TB" },
1771 { CPU_LOG_TB_IN_ASM, "in_asm",
1772 "show target assembly code for each compiled TB" },
5fafdf24 1773 { CPU_LOG_TB_OP, "op",
57fec1fe 1774 "show micro ops for each compiled TB" },
f193c797 1775 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1776 "show micro ops "
1777#ifdef TARGET_I386
1778 "before eflags optimization and "
f193c797 1779#endif
e01a1157 1780 "after liveness analysis" },
f193c797
FB
1781 { CPU_LOG_INT, "int",
1782 "show interrupts/exceptions in short format" },
1783 { CPU_LOG_EXEC, "exec",
1784 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1785 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1786 "show CPU state before block translation" },
f193c797
FB
1787#ifdef TARGET_I386
1788 { CPU_LOG_PCALL, "pcall",
1789 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1790 { CPU_LOG_RESET, "cpu_reset",
1791 "show CPU state before CPU resets" },
f193c797 1792#endif
8e3a9fd2 1793#ifdef DEBUG_IOPORT
fd872598
FB
1794 { CPU_LOG_IOPORT, "ioport",
1795 "show all i/o ports accesses" },
8e3a9fd2 1796#endif
f193c797
FB
1797 { 0, NULL, NULL },
1798};
1799
1800static int cmp1(const char *s1, int n, const char *s2)
1801{
1802 if (strlen(s2) != n)
1803 return 0;
1804 return memcmp(s1, s2, n) == 0;
1805}
3b46e624 1806
f193c797
FB
1807/* takes a comma separated list of log masks. Return 0 if error. */
1808int cpu_str_to_log_mask(const char *str)
1809{
c7cd6a37 1810 const CPULogItem *item;
f193c797
FB
1811 int mask;
1812 const char *p, *p1;
1813
1814 p = str;
1815 mask = 0;
1816 for(;;) {
1817 p1 = strchr(p, ',');
1818 if (!p1)
1819 p1 = p + strlen(p);
9742bf26
YT
1820 if(cmp1(p,p1-p,"all")) {
1821 for(item = cpu_log_items; item->mask != 0; item++) {
1822 mask |= item->mask;
1823 }
1824 } else {
1825 for(item = cpu_log_items; item->mask != 0; item++) {
1826 if (cmp1(p, p1 - p, item->name))
1827 goto found;
1828 }
1829 return 0;
f193c797 1830 }
f193c797
FB
1831 found:
1832 mask |= item->mask;
1833 if (*p1 != ',')
1834 break;
1835 p = p1 + 1;
1836 }
1837 return mask;
1838}
ea041c0e 1839
9349b4f9 1840void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e
FB
1841{
1842 va_list ap;
493ae1f0 1843 va_list ap2;
7501267e
FB
1844
1845 va_start(ap, fmt);
493ae1f0 1846 va_copy(ap2, ap);
7501267e
FB
1847 fprintf(stderr, "qemu: fatal: ");
1848 vfprintf(stderr, fmt, ap);
1849 fprintf(stderr, "\n");
1850#ifdef TARGET_I386
7fe48483
FB
1851 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1852#else
1853 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1854#endif
93fcfe39
AL
1855 if (qemu_log_enabled()) {
1856 qemu_log("qemu: fatal: ");
1857 qemu_log_vprintf(fmt, ap2);
1858 qemu_log("\n");
f9373291 1859#ifdef TARGET_I386
93fcfe39 1860 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1861#else
93fcfe39 1862 log_cpu_state(env, 0);
f9373291 1863#endif
31b1a7b4 1864 qemu_log_flush();
93fcfe39 1865 qemu_log_close();
924edcae 1866 }
493ae1f0 1867 va_end(ap2);
f9373291 1868 va_end(ap);
fd052bf6
RV
1869#if defined(CONFIG_USER_ONLY)
1870 {
1871 struct sigaction act;
1872 sigfillset(&act.sa_mask);
1873 act.sa_handler = SIG_DFL;
1874 sigaction(SIGABRT, &act, NULL);
1875 }
1876#endif
7501267e
FB
1877 abort();
1878}
1879
9349b4f9 1880CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 1881{
9349b4f9
AF
1882 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1883 CPUArchState *next_cpu = new_env->next_cpu;
c5be9f08 1884 int cpu_index = new_env->cpu_index;
5a38f081
AL
1885#if defined(TARGET_HAS_ICE)
1886 CPUBreakpoint *bp;
1887 CPUWatchpoint *wp;
1888#endif
1889
9349b4f9 1890 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081
AL
1891
1892 /* Preserve chaining and index. */
c5be9f08
TS
1893 new_env->next_cpu = next_cpu;
1894 new_env->cpu_index = cpu_index;
5a38f081
AL
1895
1896 /* Clone all break/watchpoints.
1897 Note: Once we support ptrace with hw-debug register access, make sure
1898 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1899 QTAILQ_INIT(&env->breakpoints);
1900 QTAILQ_INIT(&env->watchpoints);
5a38f081 1901#if defined(TARGET_HAS_ICE)
72cf2d4f 1902 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1903 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1904 }
72cf2d4f 1905 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1906 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1907 wp->flags, NULL);
1908 }
1909#endif
1910
c5be9f08
TS
1911 return new_env;
1912}
1913
0124311e
FB
1914#if !defined(CONFIG_USER_ONLY)
1915
9349b4f9 1916static inline void tlb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
5c751e99
EI
1917{
1918 unsigned int i;
1919
1920 /* Discard jump cache entries for any tb which might potentially
1921 overlap the flushed page. */
1922 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1923 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1924 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1925
1926 i = tb_jmp_cache_hash_page(addr);
1927 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1928 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1929}
1930
08738984
IK
1931static CPUTLBEntry s_cputlb_empty_entry = {
1932 .addr_read = -1,
1933 .addr_write = -1,
1934 .addr_code = -1,
1935 .addend = -1,
1936};
1937
771124e1
PM
1938/* NOTE:
1939 * If flush_global is true (the usual case), flush all tlb entries.
1940 * If flush_global is false, flush (at least) all tlb entries not
1941 * marked global.
1942 *
1943 * Since QEMU doesn't currently implement a global/not-global flag
1944 * for tlb entries, at the moment tlb_flush() will also flush all
1945 * tlb entries in the flush_global == false case. This is OK because
1946 * CPU architectures generally permit an implementation to drop
1947 * entries from the TLB at any time, so flushing more entries than
1948 * required is only an efficiency issue, not a correctness issue.
1949 */
9349b4f9 1950void tlb_flush(CPUArchState *env, int flush_global)
33417e70 1951{
33417e70 1952 int i;
0124311e 1953
9fa3e853
FB
1954#if defined(DEBUG_TLB)
1955 printf("tlb_flush:\n");
1956#endif
0124311e
FB
1957 /* must reset current TB so that interrupts cannot modify the
1958 links while we are modifying them */
1959 env->current_tb = NULL;
1960
33417e70 1961 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1962 int mmu_idx;
1963 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1964 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1965 }
33417e70 1966 }
9fa3e853 1967
8a40a180 1968 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1969
d4c430a8
PB
1970 env->tlb_flush_addr = -1;
1971 env->tlb_flush_mask = 0;
e3db7226 1972 tlb_flush_count++;
33417e70
FB
1973}
1974
274da6b2 1975static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1976{
5fafdf24 1977 if (addr == (tlb_entry->addr_read &
84b7b8e7 1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1979 addr == (tlb_entry->addr_write &
84b7b8e7 1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1981 addr == (tlb_entry->addr_code &
84b7b8e7 1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1983 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1984 }
61382a50
FB
1985}
1986
9349b4f9 1987void tlb_flush_page(CPUArchState *env, target_ulong addr)
33417e70 1988{
8a40a180 1989 int i;
cfde4bd9 1990 int mmu_idx;
0124311e 1991
9fa3e853 1992#if defined(DEBUG_TLB)
108c49b8 1993 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1994#endif
d4c430a8
PB
1995 /* Check if we need to flush due to large pages. */
1996 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1997#if defined(DEBUG_TLB)
1998 printf("tlb_flush_page: forced full flush ("
1999 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2000 env->tlb_flush_addr, env->tlb_flush_mask);
2001#endif
2002 tlb_flush(env, 1);
2003 return;
2004 }
0124311e
FB
2005 /* must reset current TB so that interrupts cannot modify the
2006 links while we are modifying them */
2007 env->current_tb = NULL;
61382a50
FB
2008
2009 addr &= TARGET_PAGE_MASK;
2010 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2012 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2013
5c751e99 2014 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2015}
2016
9fa3e853
FB
2017/* update the TLBs so that writes to code in the virtual page 'addr'
2018 can be detected */
c227f099 2019static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2020{
5fafdf24 2021 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2022 ram_addr + TARGET_PAGE_SIZE,
2023 CODE_DIRTY_FLAG);
9fa3e853
FB
2024}
2025
9fa3e853 2026/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2027 tested for self modifying code */
9349b4f9 2028static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
3a7d929e 2029 target_ulong vaddr)
9fa3e853 2030{
f7c11b53 2031 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2032}
2033
7859cc6e
AK
2034static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
2035{
2036 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
2037}
2038
5fafdf24 2039static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2040 unsigned long start, unsigned long length)
2041{
2042 unsigned long addr;
7859cc6e 2043 if (tlb_is_dirty_ram(tlb_entry)) {
84b7b8e7 2044 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2045 if ((addr - start) < length) {
7859cc6e 2046 tlb_entry->addr_write |= TLB_NOTDIRTY;
1ccde1cb
FB
2047 }
2048 }
2049}
2050
5579c7f3 2051/* Note: start and end must be within the same ram block. */
c227f099 2052void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2053 int dirty_flags)
1ccde1cb 2054{
9349b4f9 2055 CPUArchState *env;
4f2ac237 2056 unsigned long length, start1;
f7c11b53 2057 int i;
1ccde1cb
FB
2058
2059 start &= TARGET_PAGE_MASK;
2060 end = TARGET_PAGE_ALIGN(end);
2061
2062 length = end - start;
2063 if (length == 0)
2064 return;
f7c11b53 2065 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2066
1ccde1cb
FB
2067 /* we modify the TLB cache so that the dirty bit will be set again
2068 when accessing the range */
b2e0a138 2069 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2070 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2071 address comparisons below. */
b2e0a138 2072 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2073 != (end - 1) - start) {
2074 abort();
2075 }
2076
6a00d601 2077 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2078 int mmu_idx;
2079 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2080 for(i = 0; i < CPU_TLB_SIZE; i++)
2081 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2082 start1, length);
2083 }
6a00d601 2084 }
1ccde1cb
FB
2085}
2086
74576198
AL
2087int cpu_physical_memory_set_dirty_tracking(int enable)
2088{
f6f3fbca 2089 int ret = 0;
74576198 2090 in_migration = enable;
f6f3fbca 2091 return ret;
74576198
AL
2092}
2093
3a7d929e
FB
2094static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2095{
c227f099 2096 ram_addr_t ram_addr;
5579c7f3 2097 void *p;
3a7d929e 2098
7859cc6e 2099 if (tlb_is_dirty_ram(tlb_entry)) {
5579c7f3
PB
2100 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2101 + tlb_entry->addend);
e890261f 2102 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2103 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2104 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2105 }
2106 }
2107}
2108
2109/* update the TLB according to the current state of the dirty bits */
9349b4f9 2110void cpu_tlb_update_dirty(CPUArchState *env)
3a7d929e
FB
2111{
2112 int i;
cfde4bd9
IY
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2117 }
3a7d929e
FB
2118}
2119
0f459d16 2120static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2121{
0f459d16
PB
2122 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2123 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2124}
2125
0f459d16
PB
2126/* update the TLB corresponding to virtual page vaddr
2127 so that it is no longer dirty */
9349b4f9 2128static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
1ccde1cb 2129{
1ccde1cb 2130 int i;
cfde4bd9 2131 int mmu_idx;
1ccde1cb 2132
0f459d16 2133 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2134 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2135 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2136 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2137}
2138
d4c430a8
PB
2139/* Our TLB does not support large pages, so remember the area covered by
2140 large pages and trigger a full TLB flush if these are invalidated. */
9349b4f9 2141static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
d4c430a8
PB
2142 target_ulong size)
2143{
2144 target_ulong mask = ~(size - 1);
2145
2146 if (env->tlb_flush_addr == (target_ulong)-1) {
2147 env->tlb_flush_addr = vaddr & mask;
2148 env->tlb_flush_mask = mask;
2149 return;
2150 }
2151 /* Extend the existing region to include the new page.
2152 This is a compromise between unnecessary flushes and the cost
2153 of maintaining a full variable size TLB. */
2154 mask &= env->tlb_flush_mask;
2155 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2156 mask <<= 1;
2157 }
2158 env->tlb_flush_addr &= mask;
2159 env->tlb_flush_mask = mask;
2160}
2161
06ef3525 2162static bool is_ram_rom(MemoryRegionSection *s)
1d393fa2 2163{
06ef3525 2164 return memory_region_is_ram(s->mr);
1d393fa2
AK
2165}
2166
06ef3525 2167static bool is_romd(MemoryRegionSection *s)
75c578dc 2168{
06ef3525 2169 MemoryRegion *mr = s->mr;
75c578dc 2170
75c578dc
AK
2171 return mr->rom_device && mr->readable;
2172}
2173
06ef3525 2174static bool is_ram_rom_romd(MemoryRegionSection *s)
1d393fa2 2175{
06ef3525 2176 return is_ram_rom(s) || is_romd(s);
1d393fa2
AK
2177}
2178
d4c430a8
PB
2179/* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
9349b4f9 2182void tlb_set_page(CPUArchState *env, target_ulong vaddr,
d4c430a8
PB
2183 target_phys_addr_t paddr, int prot,
2184 int mmu_idx, target_ulong size)
9fa3e853 2185{
f3705d53 2186 MemoryRegionSection *section;
9fa3e853 2187 unsigned int index;
4f2ac237 2188 target_ulong address;
0f459d16 2189 target_ulong code_address;
355b1943 2190 unsigned long addend;
84b7b8e7 2191 CPUTLBEntry *te;
a1d1bb31 2192 CPUWatchpoint *wp;
c227f099 2193 target_phys_addr_t iotlb;
9fa3e853 2194
d4c430a8
PB
2195 assert(size >= TARGET_PAGE_SIZE);
2196 if (size != TARGET_PAGE_SIZE) {
2197 tlb_add_large_page(env, vaddr, size);
2198 }
06ef3525 2199 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853 2200#if defined(DEBUG_TLB)
7fd3f494
SW
2201 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2202 " prot=%x idx=%d pd=0x%08lx\n",
2203 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2204#endif
2205
0f459d16 2206 address = vaddr;
f3705d53 2207 if (!is_ram_rom_romd(section)) {
0f459d16
PB
2208 /* IO memory case (romd handled later) */
2209 address |= TLB_MMIO;
2210 }
f3705d53
AK
2211 if (is_ram_rom_romd(section)) {
2212 addend = (unsigned long)memory_region_get_ram_ptr(section->mr)
2213 + section_addr(section, paddr);
06ef3525
AK
2214 } else {
2215 addend = 0;
2216 }
f3705d53 2217 if (is_ram_rom(section)) {
0f459d16 2218 /* Normal RAM. */
f3705d53
AK
2219 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2220 + section_addr(section, paddr);
2221 if (!section->readonly)
aa102231 2222 iotlb |= phys_section_notdirty;
0f459d16 2223 else
aa102231 2224 iotlb |= phys_section_rom;
0f459d16 2225 } else {
ccbb4d44 2226 /* IO handlers are currently passed a physical address.
0f459d16
PB
2227 It would be nice to pass an offset from the base address
2228 of that region. This would avoid having to special case RAM,
2229 and avoid full address decoding in every device.
2230 We can't use the high bits of pd for this because
2231 IO_MEM_ROMD uses these as a ram address. */
aa102231 2232 iotlb = section - phys_sections;
f3705d53 2233 iotlb += section_addr(section, paddr);
0f459d16
PB
2234 }
2235
2236 code_address = address;
2237 /* Make accesses to pages with watchpoints go via the
2238 watchpoint trap routines. */
72cf2d4f 2239 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2240 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2241 /* Avoid trapping reads of pages with a write breakpoint. */
2242 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
aa102231 2243 iotlb = phys_section_watch + paddr;
bf298f83
JK
2244 address |= TLB_MMIO;
2245 break;
2246 }
6658ffb8 2247 }
0f459d16 2248 }
d79acba4 2249
0f459d16
PB
2250 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2251 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2252 te = &env->tlb_table[mmu_idx][index];
2253 te->addend = addend - vaddr;
2254 if (prot & PAGE_READ) {
2255 te->addr_read = address;
2256 } else {
2257 te->addr_read = -1;
2258 }
5c751e99 2259
0f459d16
PB
2260 if (prot & PAGE_EXEC) {
2261 te->addr_code = code_address;
2262 } else {
2263 te->addr_code = -1;
2264 }
2265 if (prot & PAGE_WRITE) {
f3705d53
AK
2266 if ((memory_region_is_ram(section->mr) && section->readonly)
2267 || is_romd(section)) {
0f459d16
PB
2268 /* Write access calls the I/O callback. */
2269 te->addr_write = address | TLB_MMIO;
f3705d53 2270 } else if (memory_region_is_ram(section->mr)
06ef3525 2271 && !cpu_physical_memory_is_dirty(
f3705d53
AK
2272 section->mr->ram_addr
2273 + section_addr(section, paddr))) {
0f459d16 2274 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2275 } else {
0f459d16 2276 te->addr_write = address;
9fa3e853 2277 }
0f459d16
PB
2278 } else {
2279 te->addr_write = -1;
9fa3e853 2280 }
9fa3e853
FB
2281}
2282
0124311e
FB
2283#else
2284
9349b4f9 2285void tlb_flush(CPUArchState *env, int flush_global)
0124311e
FB
2286{
2287}
2288
9349b4f9 2289void tlb_flush_page(CPUArchState *env, target_ulong addr)
0124311e
FB
2290{
2291}
2292
edf8e2af
MW
2293/*
2294 * Walks guest process memory "regions" one by one
2295 * and calls callback function 'fn' for each region.
2296 */
5cd2c5b6
RH
2297
2298struct walk_memory_regions_data
2299{
2300 walk_memory_regions_fn fn;
2301 void *priv;
2302 unsigned long start;
2303 int prot;
2304};
2305
2306static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2307 abi_ulong end, int new_prot)
5cd2c5b6
RH
2308{
2309 if (data->start != -1ul) {
2310 int rc = data->fn(data->priv, data->start, end, data->prot);
2311 if (rc != 0) {
2312 return rc;
2313 }
2314 }
2315
2316 data->start = (new_prot ? end : -1ul);
2317 data->prot = new_prot;
2318
2319 return 0;
2320}
2321
2322static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2323 abi_ulong base, int level, void **lp)
5cd2c5b6 2324{
b480d9b7 2325 abi_ulong pa;
5cd2c5b6
RH
2326 int i, rc;
2327
2328 if (*lp == NULL) {
2329 return walk_memory_regions_end(data, base, 0);
2330 }
2331
2332 if (level == 0) {
2333 PageDesc *pd = *lp;
7296abac 2334 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2335 int prot = pd[i].flags;
2336
2337 pa = base | (i << TARGET_PAGE_BITS);
2338 if (prot != data->prot) {
2339 rc = walk_memory_regions_end(data, pa, prot);
2340 if (rc != 0) {
2341 return rc;
9fa3e853 2342 }
9fa3e853 2343 }
5cd2c5b6
RH
2344 }
2345 } else {
2346 void **pp = *lp;
7296abac 2347 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2348 pa = base | ((abi_ulong)i <<
2349 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2350 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2351 if (rc != 0) {
2352 return rc;
2353 }
2354 }
2355 }
2356
2357 return 0;
2358}
2359
2360int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2361{
2362 struct walk_memory_regions_data data;
2363 unsigned long i;
2364
2365 data.fn = fn;
2366 data.priv = priv;
2367 data.start = -1ul;
2368 data.prot = 0;
2369
2370 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2371 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2372 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2373 if (rc != 0) {
2374 return rc;
9fa3e853 2375 }
33417e70 2376 }
5cd2c5b6
RH
2377
2378 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2379}
2380
b480d9b7
PB
2381static int dump_region(void *priv, abi_ulong start,
2382 abi_ulong end, unsigned long prot)
edf8e2af
MW
2383{
2384 FILE *f = (FILE *)priv;
2385
b480d9b7
PB
2386 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2387 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2388 start, end, end - start,
2389 ((prot & PAGE_READ) ? 'r' : '-'),
2390 ((prot & PAGE_WRITE) ? 'w' : '-'),
2391 ((prot & PAGE_EXEC) ? 'x' : '-'));
2392
2393 return (0);
2394}
2395
2396/* dump memory mappings */
2397void page_dump(FILE *f)
2398{
2399 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2400 "start", "end", "size", "prot");
2401 walk_memory_regions(f, dump_region);
33417e70
FB
2402}
2403
53a5960a 2404int page_get_flags(target_ulong address)
33417e70 2405{
9fa3e853
FB
2406 PageDesc *p;
2407
2408 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2409 if (!p)
9fa3e853
FB
2410 return 0;
2411 return p->flags;
2412}
2413
376a7909
RH
2414/* Modify the flags of a page and invalidate the code if necessary.
2415 The flag PAGE_WRITE_ORG is positioned automatically depending
2416 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2417void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2418{
376a7909
RH
2419 target_ulong addr, len;
2420
2421 /* This function should never be called with addresses outside the
2422 guest address space. If this assert fires, it probably indicates
2423 a missing call to h2g_valid. */
b480d9b7
PB
2424#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2425 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2426#endif
2427 assert(start < end);
9fa3e853
FB
2428
2429 start = start & TARGET_PAGE_MASK;
2430 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2431
2432 if (flags & PAGE_WRITE) {
9fa3e853 2433 flags |= PAGE_WRITE_ORG;
376a7909
RH
2434 }
2435
2436 for (addr = start, len = end - start;
2437 len != 0;
2438 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2439 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2440
2441 /* If the write protection bit is set, then we invalidate
2442 the code inside. */
5fafdf24 2443 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2444 (flags & PAGE_WRITE) &&
2445 p->first_tb) {
d720b93d 2446 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2447 }
2448 p->flags = flags;
2449 }
33417e70
FB
2450}
2451
3d97b40b
TS
2452int page_check_range(target_ulong start, target_ulong len, int flags)
2453{
2454 PageDesc *p;
2455 target_ulong end;
2456 target_ulong addr;
2457
376a7909
RH
2458 /* This function should never be called with addresses outside the
2459 guest address space. If this assert fires, it probably indicates
2460 a missing call to h2g_valid. */
338e9e6c
BS
2461#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2462 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2463#endif
2464
3e0650a9
RH
2465 if (len == 0) {
2466 return 0;
2467 }
376a7909
RH
2468 if (start + len - 1 < start) {
2469 /* We've wrapped around. */
55f280c9 2470 return -1;
376a7909 2471 }
55f280c9 2472
3d97b40b
TS
2473 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2474 start = start & TARGET_PAGE_MASK;
2475
376a7909
RH
2476 for (addr = start, len = end - start;
2477 len != 0;
2478 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2479 p = page_find(addr >> TARGET_PAGE_BITS);
2480 if( !p )
2481 return -1;
2482 if( !(p->flags & PAGE_VALID) )
2483 return -1;
2484
dae3270c 2485 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2486 return -1;
dae3270c
FB
2487 if (flags & PAGE_WRITE) {
2488 if (!(p->flags & PAGE_WRITE_ORG))
2489 return -1;
2490 /* unprotect the page if it was put read-only because it
2491 contains translated code */
2492 if (!(p->flags & PAGE_WRITE)) {
2493 if (!page_unprotect(addr, 0, NULL))
2494 return -1;
2495 }
2496 return 0;
2497 }
3d97b40b
TS
2498 }
2499 return 0;
2500}
2501
9fa3e853 2502/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2503 page. Return TRUE if the fault was successfully handled. */
53a5960a 2504int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2505{
45d679d6
AJ
2506 unsigned int prot;
2507 PageDesc *p;
53a5960a 2508 target_ulong host_start, host_end, addr;
9fa3e853 2509
c8a706fe
PB
2510 /* Technically this isn't safe inside a signal handler. However we
2511 know this only ever happens in a synchronous SEGV handler, so in
2512 practice it seems to be ok. */
2513 mmap_lock();
2514
45d679d6
AJ
2515 p = page_find(address >> TARGET_PAGE_BITS);
2516 if (!p) {
c8a706fe 2517 mmap_unlock();
9fa3e853 2518 return 0;
c8a706fe 2519 }
45d679d6 2520
9fa3e853
FB
2521 /* if the page was really writable, then we change its
2522 protection back to writable */
45d679d6
AJ
2523 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2524 host_start = address & qemu_host_page_mask;
2525 host_end = host_start + qemu_host_page_size;
2526
2527 prot = 0;
2528 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2529 p = page_find(addr >> TARGET_PAGE_BITS);
2530 p->flags |= PAGE_WRITE;
2531 prot |= p->flags;
2532
9fa3e853
FB
2533 /* and since the content will be modified, we must invalidate
2534 the corresponding translated code. */
45d679d6 2535 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2536#ifdef DEBUG_TB_CHECK
45d679d6 2537 tb_invalidate_check(addr);
9fa3e853 2538#endif
9fa3e853 2539 }
45d679d6
AJ
2540 mprotect((void *)g2h(host_start), qemu_host_page_size,
2541 prot & PAGE_BITS);
2542
2543 mmap_unlock();
2544 return 1;
9fa3e853 2545 }
c8a706fe 2546 mmap_unlock();
9fa3e853
FB
2547 return 0;
2548}
2549
9349b4f9 2550static inline void tlb_set_dirty(CPUArchState *env,
6a00d601 2551 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2552{
2553}
9fa3e853
FB
2554#endif /* defined(CONFIG_USER_ONLY) */
2555
e2eef170 2556#if !defined(CONFIG_USER_ONLY)
8da3ff18 2557
c04b2b78
PB
2558#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2559typedef struct subpage_t {
70c68e44 2560 MemoryRegion iomem;
c04b2b78 2561 target_phys_addr_t base;
5312bd8b 2562 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2563} subpage_t;
2564
c227f099 2565static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2566 uint16_t section);
0f0cb164 2567static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2568static void destroy_page_desc(uint16_t section_index)
54688b1e 2569{
5312bd8b
AK
2570 MemoryRegionSection *section = &phys_sections[section_index];
2571 MemoryRegion *mr = section->mr;
54688b1e
AK
2572
2573 if (mr->subpage) {
2574 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2575 memory_region_destroy(&subpage->iomem);
2576 g_free(subpage);
2577 }
2578}
2579
4346ae3e 2580static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2581{
2582 unsigned i;
d6f2ea22 2583 PhysPageEntry *p;
54688b1e 2584
c19e8800 2585 if (lp->ptr == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2586 return;
2587 }
2588
c19e8800 2589 p = phys_map_nodes[lp->ptr];
4346ae3e 2590 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 2591 if (!p[i].is_leaf) {
54688b1e 2592 destroy_l2_mapping(&p[i], level - 1);
4346ae3e 2593 } else {
c19e8800 2594 destroy_page_desc(p[i].ptr);
54688b1e 2595 }
54688b1e 2596 }
07f07b31 2597 lp->is_leaf = 0;
c19e8800 2598 lp->ptr = PHYS_MAP_NODE_NIL;
54688b1e
AK
2599}
2600
2601static void destroy_all_mappings(void)
2602{
3eef53df 2603 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2604 phys_map_nodes_reset();
54688b1e
AK
2605}
2606
5312bd8b
AK
2607static uint16_t phys_section_add(MemoryRegionSection *section)
2608{
2609 if (phys_sections_nb == phys_sections_nb_alloc) {
2610 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2611 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2612 phys_sections_nb_alloc);
2613 }
2614 phys_sections[phys_sections_nb] = *section;
2615 return phys_sections_nb++;
2616}
2617
2618static void phys_sections_clear(void)
2619{
2620 phys_sections_nb = 0;
2621}
2622
8f2498f9
MT
2623/* register physical memory.
2624 For RAM, 'size' must be a multiple of the target page size.
2625 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2626 io memory page. The address used when calling the IO function is
2627 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2628 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2629 before calculating this offset. This should not be a problem unless
2630 the low bits of start_addr and region_offset differ. */
0f0cb164
AK
2631static void register_subpage(MemoryRegionSection *section)
2632{
2633 subpage_t *subpage;
2634 target_phys_addr_t base = section->offset_within_address_space
2635 & TARGET_PAGE_MASK;
f3705d53 2636 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
0f0cb164
AK
2637 MemoryRegionSection subsection = {
2638 .offset_within_address_space = base,
2639 .size = TARGET_PAGE_SIZE,
2640 };
0f0cb164
AK
2641 target_phys_addr_t start, end;
2642
f3705d53 2643 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 2644
f3705d53 2645 if (!(existing->mr->subpage)) {
0f0cb164
AK
2646 subpage = subpage_init(base);
2647 subsection.mr = &subpage->iomem;
2999097b
AK
2648 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2649 phys_section_add(&subsection));
0f0cb164 2650 } else {
f3705d53 2651 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
2652 }
2653 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2654 end = start + section->size;
2655 subpage_register(subpage, start, end, phys_section_add(section));
2656}
2657
2658
2659static void register_multipage(MemoryRegionSection *section)
33417e70 2660{
dd81124b
AK
2661 target_phys_addr_t start_addr = section->offset_within_address_space;
2662 ram_addr_t size = section->size;
2999097b 2663 target_phys_addr_t addr;
5312bd8b 2664 uint16_t section_index = phys_section_add(section);
dd81124b 2665
3b8e6a2d 2666 assert(size);
f6f3fbca 2667
3b8e6a2d 2668 addr = start_addr;
2999097b
AK
2669 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2670 section_index);
33417e70
FB
2671}
2672
0f0cb164
AK
2673void cpu_register_physical_memory_log(MemoryRegionSection *section,
2674 bool readonly)
2675{
2676 MemoryRegionSection now = *section, remain = *section;
2677
2678 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2679 || (now.size < TARGET_PAGE_SIZE)) {
2680 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2681 - now.offset_within_address_space,
2682 now.size);
2683 register_subpage(&now);
2684 remain.size -= now.size;
2685 remain.offset_within_address_space += now.size;
2686 remain.offset_within_region += now.size;
2687 }
2688 now = remain;
2689 now.size &= TARGET_PAGE_MASK;
2690 if (now.size) {
2691 register_multipage(&now);
2692 remain.size -= now.size;
2693 remain.offset_within_address_space += now.size;
2694 remain.offset_within_region += now.size;
2695 }
2696 now = remain;
2697 if (now.size) {
2698 register_subpage(&now);
2699 }
2700}
2701
2702
c227f099 2703void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2704{
2705 if (kvm_enabled())
2706 kvm_coalesce_mmio_region(addr, size);
2707}
2708
c227f099 2709void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2710{
2711 if (kvm_enabled())
2712 kvm_uncoalesce_mmio_region(addr, size);
2713}
2714
62a2744c
SY
2715void qemu_flush_coalesced_mmio_buffer(void)
2716{
2717 if (kvm_enabled())
2718 kvm_flush_coalesced_mmio_buffer();
2719}
2720
c902760f
MT
2721#if defined(__linux__) && !defined(TARGET_S390X)
2722
2723#include <sys/vfs.h>
2724
2725#define HUGETLBFS_MAGIC 0x958458f6
2726
2727static long gethugepagesize(const char *path)
2728{
2729 struct statfs fs;
2730 int ret;
2731
2732 do {
9742bf26 2733 ret = statfs(path, &fs);
c902760f
MT
2734 } while (ret != 0 && errno == EINTR);
2735
2736 if (ret != 0) {
9742bf26
YT
2737 perror(path);
2738 return 0;
c902760f
MT
2739 }
2740
2741 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2742 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2743
2744 return fs.f_bsize;
2745}
2746
04b16653
AW
2747static void *file_ram_alloc(RAMBlock *block,
2748 ram_addr_t memory,
2749 const char *path)
c902760f
MT
2750{
2751 char *filename;
2752 void *area;
2753 int fd;
2754#ifdef MAP_POPULATE
2755 int flags;
2756#endif
2757 unsigned long hpagesize;
2758
2759 hpagesize = gethugepagesize(path);
2760 if (!hpagesize) {
9742bf26 2761 return NULL;
c902760f
MT
2762 }
2763
2764 if (memory < hpagesize) {
2765 return NULL;
2766 }
2767
2768 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2769 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2770 return NULL;
2771 }
2772
2773 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2774 return NULL;
c902760f
MT
2775 }
2776
2777 fd = mkstemp(filename);
2778 if (fd < 0) {
9742bf26
YT
2779 perror("unable to create backing store for hugepages");
2780 free(filename);
2781 return NULL;
c902760f
MT
2782 }
2783 unlink(filename);
2784 free(filename);
2785
2786 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2787
2788 /*
2789 * ftruncate is not supported by hugetlbfs in older
2790 * hosts, so don't bother bailing out on errors.
2791 * If anything goes wrong with it under other filesystems,
2792 * mmap will fail.
2793 */
2794 if (ftruncate(fd, memory))
9742bf26 2795 perror("ftruncate");
c902760f
MT
2796
2797#ifdef MAP_POPULATE
2798 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2799 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2800 * to sidestep this quirk.
2801 */
2802 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2803 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2804#else
2805 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2806#endif
2807 if (area == MAP_FAILED) {
9742bf26
YT
2808 perror("file_ram_alloc: can't mmap RAM pages");
2809 close(fd);
2810 return (NULL);
c902760f 2811 }
04b16653 2812 block->fd = fd;
c902760f
MT
2813 return area;
2814}
2815#endif
2816
d17b5288 2817static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2818{
2819 RAMBlock *block, *next_block;
3e837b2c 2820 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2821
2822 if (QLIST_EMPTY(&ram_list.blocks))
2823 return 0;
2824
2825 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2826 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2827
2828 end = block->offset + block->length;
2829
2830 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2831 if (next_block->offset >= end) {
2832 next = MIN(next, next_block->offset);
2833 }
2834 }
2835 if (next - end >= size && next - end < mingap) {
3e837b2c 2836 offset = end;
04b16653
AW
2837 mingap = next - end;
2838 }
2839 }
3e837b2c
AW
2840
2841 if (offset == RAM_ADDR_MAX) {
2842 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2843 (uint64_t)size);
2844 abort();
2845 }
2846
04b16653
AW
2847 return offset;
2848}
2849
2850static ram_addr_t last_ram_offset(void)
d17b5288
AW
2851{
2852 RAMBlock *block;
2853 ram_addr_t last = 0;
2854
2855 QLIST_FOREACH(block, &ram_list.blocks, next)
2856 last = MAX(last, block->offset + block->length);
2857
2858 return last;
2859}
2860
c5705a77 2861void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2862{
2863 RAMBlock *new_block, *block;
2864
c5705a77
AK
2865 new_block = NULL;
2866 QLIST_FOREACH(block, &ram_list.blocks, next) {
2867 if (block->offset == addr) {
2868 new_block = block;
2869 break;
2870 }
2871 }
2872 assert(new_block);
2873 assert(!new_block->idstr[0]);
84b89d78
CM
2874
2875 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2876 char *id = dev->parent_bus->info->get_dev_path(dev);
2877 if (id) {
2878 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2879 g_free(id);
84b89d78
CM
2880 }
2881 }
2882 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2883
2884 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2885 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2886 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2887 new_block->idstr);
2888 abort();
2889 }
2890 }
c5705a77
AK
2891}
2892
2893ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2894 MemoryRegion *mr)
2895{
2896 RAMBlock *new_block;
2897
2898 size = TARGET_PAGE_ALIGN(size);
2899 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2900
7c637366 2901 new_block->mr = mr;
432d268c 2902 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2903 if (host) {
2904 new_block->host = host;
cd19cfa2 2905 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2906 } else {
2907 if (mem_path) {
c902760f 2908#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2909 new_block->host = file_ram_alloc(new_block, size, mem_path);
2910 if (!new_block->host) {
2911 new_block->host = qemu_vmalloc(size);
e78815a5 2912 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2913 }
c902760f 2914#else
6977dfe6
YT
2915 fprintf(stderr, "-mem-path option unsupported\n");
2916 exit(1);
c902760f 2917#endif
6977dfe6 2918 } else {
6b02494d 2919#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2920 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2921 an system defined value, which is at least 256GB. Larger systems
2922 have larger values. We put the guest between the end of data
2923 segment (system break) and this value. We use 32GB as a base to
2924 have enough room for the system break to grow. */
2925 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2926 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2927 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2928 if (new_block->host == MAP_FAILED) {
2929 fprintf(stderr, "Allocating RAM failed\n");
2930 abort();
2931 }
6b02494d 2932#else
868bb33f 2933 if (xen_enabled()) {
fce537d4 2934 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2935 } else {
2936 new_block->host = qemu_vmalloc(size);
2937 }
6b02494d 2938#endif
e78815a5 2939 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2940 }
c902760f 2941 }
94a6b54f
PB
2942 new_block->length = size;
2943
f471a17e 2944 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2945
7267c094 2946 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2947 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2948 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2949 0xff, size >> TARGET_PAGE_BITS);
2950
6f0437e8
JK
2951 if (kvm_enabled())
2952 kvm_setup_guest_memory(new_block->host, size);
2953
94a6b54f
PB
2954 return new_block->offset;
2955}
e9a1ab19 2956
c5705a77 2957ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2958{
c5705a77 2959 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2960}
2961
1f2e98b6
AW
2962void qemu_ram_free_from_ptr(ram_addr_t addr)
2963{
2964 RAMBlock *block;
2965
2966 QLIST_FOREACH(block, &ram_list.blocks, next) {
2967 if (addr == block->offset) {
2968 QLIST_REMOVE(block, next);
7267c094 2969 g_free(block);
1f2e98b6
AW
2970 return;
2971 }
2972 }
2973}
2974
c227f099 2975void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2976{
04b16653
AW
2977 RAMBlock *block;
2978
2979 QLIST_FOREACH(block, &ram_list.blocks, next) {
2980 if (addr == block->offset) {
2981 QLIST_REMOVE(block, next);
cd19cfa2
HY
2982 if (block->flags & RAM_PREALLOC_MASK) {
2983 ;
2984 } else if (mem_path) {
04b16653
AW
2985#if defined (__linux__) && !defined(TARGET_S390X)
2986 if (block->fd) {
2987 munmap(block->host, block->length);
2988 close(block->fd);
2989 } else {
2990 qemu_vfree(block->host);
2991 }
fd28aa13
JK
2992#else
2993 abort();
04b16653
AW
2994#endif
2995 } else {
2996#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2997 munmap(block->host, block->length);
2998#else
868bb33f 2999 if (xen_enabled()) {
e41d7c69 3000 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3001 } else {
3002 qemu_vfree(block->host);
3003 }
04b16653
AW
3004#endif
3005 }
7267c094 3006 g_free(block);
04b16653
AW
3007 return;
3008 }
3009 }
3010
e9a1ab19
FB
3011}
3012
cd19cfa2
HY
3013#ifndef _WIN32
3014void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3015{
3016 RAMBlock *block;
3017 ram_addr_t offset;
3018 int flags;
3019 void *area, *vaddr;
3020
3021 QLIST_FOREACH(block, &ram_list.blocks, next) {
3022 offset = addr - block->offset;
3023 if (offset < block->length) {
3024 vaddr = block->host + offset;
3025 if (block->flags & RAM_PREALLOC_MASK) {
3026 ;
3027 } else {
3028 flags = MAP_FIXED;
3029 munmap(vaddr, length);
3030 if (mem_path) {
3031#if defined(__linux__) && !defined(TARGET_S390X)
3032 if (block->fd) {
3033#ifdef MAP_POPULATE
3034 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3035 MAP_PRIVATE;
3036#else
3037 flags |= MAP_PRIVATE;
3038#endif
3039 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3040 flags, block->fd, offset);
3041 } else {
3042 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3043 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3044 flags, -1, 0);
3045 }
fd28aa13
JK
3046#else
3047 abort();
cd19cfa2
HY
3048#endif
3049 } else {
3050#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3051 flags |= MAP_SHARED | MAP_ANONYMOUS;
3052 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3053 flags, -1, 0);
3054#else
3055 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3056 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3057 flags, -1, 0);
3058#endif
3059 }
3060 if (area != vaddr) {
f15fbc4b
AP
3061 fprintf(stderr, "Could not remap addr: "
3062 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3063 length, addr);
3064 exit(1);
3065 }
3066 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3067 }
3068 return;
3069 }
3070 }
3071}
3072#endif /* !_WIN32 */
3073
dc828ca1 3074/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3075 With the exception of the softmmu code in this file, this should
3076 only be used for local memory (e.g. video ram) that the device owns,
3077 and knows it isn't going to access beyond the end of the block.
3078
3079 It should not be used for general purpose DMA.
3080 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3081 */
c227f099 3082void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3083{
94a6b54f
PB
3084 RAMBlock *block;
3085
f471a17e
AW
3086 QLIST_FOREACH(block, &ram_list.blocks, next) {
3087 if (addr - block->offset < block->length) {
7d82af38
VP
3088 /* Move this entry to to start of the list. */
3089 if (block != QLIST_FIRST(&ram_list.blocks)) {
3090 QLIST_REMOVE(block, next);
3091 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3092 }
868bb33f 3093 if (xen_enabled()) {
432d268c
JN
3094 /* We need to check if the requested address is in the RAM
3095 * because we don't want to map the entire memory in QEMU.
712c2b41 3096 * In that case just map until the end of the page.
432d268c
JN
3097 */
3098 if (block->offset == 0) {
e41d7c69 3099 return xen_map_cache(addr, 0, 0);
432d268c 3100 } else if (block->host == NULL) {
e41d7c69
JK
3101 block->host =
3102 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3103 }
3104 }
f471a17e
AW
3105 return block->host + (addr - block->offset);
3106 }
94a6b54f 3107 }
f471a17e
AW
3108
3109 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3110 abort();
3111
3112 return NULL;
dc828ca1
PB
3113}
3114
b2e0a138
MT
3115/* Return a host pointer to ram allocated with qemu_ram_alloc.
3116 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3117 */
3118void *qemu_safe_ram_ptr(ram_addr_t addr)
3119{
3120 RAMBlock *block;
3121
3122 QLIST_FOREACH(block, &ram_list.blocks, next) {
3123 if (addr - block->offset < block->length) {
868bb33f 3124 if (xen_enabled()) {
432d268c
JN
3125 /* We need to check if the requested address is in the RAM
3126 * because we don't want to map the entire memory in QEMU.
712c2b41 3127 * In that case just map until the end of the page.
432d268c
JN
3128 */
3129 if (block->offset == 0) {
e41d7c69 3130 return xen_map_cache(addr, 0, 0);
432d268c 3131 } else if (block->host == NULL) {
e41d7c69
JK
3132 block->host =
3133 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3134 }
3135 }
b2e0a138
MT
3136 return block->host + (addr - block->offset);
3137 }
3138 }
3139
3140 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3141 abort();
3142
3143 return NULL;
3144}
3145
38bee5dc
SS
3146/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3147 * but takes a size argument */
8ab934f9 3148void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3149{
8ab934f9
SS
3150 if (*size == 0) {
3151 return NULL;
3152 }
868bb33f 3153 if (xen_enabled()) {
e41d7c69 3154 return xen_map_cache(addr, *size, 1);
868bb33f 3155 } else {
38bee5dc
SS
3156 RAMBlock *block;
3157
3158 QLIST_FOREACH(block, &ram_list.blocks, next) {
3159 if (addr - block->offset < block->length) {
3160 if (addr - block->offset + *size > block->length)
3161 *size = block->length - addr + block->offset;
3162 return block->host + (addr - block->offset);
3163 }
3164 }
3165
3166 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3167 abort();
38bee5dc
SS
3168 }
3169}
3170
050a0ddf
AP
3171void qemu_put_ram_ptr(void *addr)
3172{
3173 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3174}
3175
e890261f 3176int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3177{
94a6b54f
PB
3178 RAMBlock *block;
3179 uint8_t *host = ptr;
3180
868bb33f 3181 if (xen_enabled()) {
e41d7c69 3182 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3183 return 0;
3184 }
3185
f471a17e 3186 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3187 /* This case append when the block is not mapped. */
3188 if (block->host == NULL) {
3189 continue;
3190 }
f471a17e 3191 if (host - block->host < block->length) {
e890261f
MT
3192 *ram_addr = block->offset + (host - block->host);
3193 return 0;
f471a17e 3194 }
94a6b54f 3195 }
432d268c 3196
e890261f
MT
3197 return -1;
3198}
f471a17e 3199
e890261f
MT
3200/* Some of the softmmu routines need to translate from a host pointer
3201 (typically a TLB entry) back to a ram offset. */
3202ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3203{
3204 ram_addr_t ram_addr;
f471a17e 3205
e890261f
MT
3206 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3207 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3208 abort();
3209 }
3210 return ram_addr;
5579c7f3
PB
3211}
3212
0e0df1e2
AK
3213static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3214 unsigned size)
e18231a3
BS
3215{
3216#ifdef DEBUG_UNASSIGNED
3217 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3218#endif
5b450407 3219#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3220 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
3221#endif
3222 return 0;
3223}
3224
0e0df1e2
AK
3225static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3226 uint64_t val, unsigned size)
e18231a3
BS
3227{
3228#ifdef DEBUG_UNASSIGNED
0e0df1e2 3229 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 3230#endif
5b450407 3231#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3232 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 3233#endif
33417e70
FB
3234}
3235
0e0df1e2
AK
3236static const MemoryRegionOps unassigned_mem_ops = {
3237 .read = unassigned_mem_read,
3238 .write = unassigned_mem_write,
3239 .endianness = DEVICE_NATIVE_ENDIAN,
3240};
e18231a3 3241
0e0df1e2
AK
3242static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3243 unsigned size)
e18231a3 3244{
0e0df1e2 3245 abort();
e18231a3
BS
3246}
3247
0e0df1e2
AK
3248static void error_mem_write(void *opaque, target_phys_addr_t addr,
3249 uint64_t value, unsigned size)
e18231a3 3250{
0e0df1e2 3251 abort();
33417e70
FB
3252}
3253
0e0df1e2
AK
3254static const MemoryRegionOps error_mem_ops = {
3255 .read = error_mem_read,
3256 .write = error_mem_write,
3257 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3258};
3259
0e0df1e2
AK
3260static const MemoryRegionOps rom_mem_ops = {
3261 .read = error_mem_read,
3262 .write = unassigned_mem_write,
3263 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3264};
3265
0e0df1e2
AK
3266static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3267 uint64_t val, unsigned size)
9fa3e853 3268{
3a7d929e 3269 int dirty_flags;
f7c11b53 3270 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3271 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3272#if !defined(CONFIG_USER_ONLY)
0e0df1e2 3273 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 3274 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3275#endif
3a7d929e 3276 }
0e0df1e2
AK
3277 switch (size) {
3278 case 1:
3279 stb_p(qemu_get_ram_ptr(ram_addr), val);
3280 break;
3281 case 2:
3282 stw_p(qemu_get_ram_ptr(ram_addr), val);
3283 break;
3284 case 4:
3285 stl_p(qemu_get_ram_ptr(ram_addr), val);
3286 break;
3287 default:
3288 abort();
3a7d929e 3289 }
f23db169 3290 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3291 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3292 /* we remove the notdirty callback only if the code has been
3293 flushed */
3294 if (dirty_flags == 0xff)
2e70f6ef 3295 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3296}
3297
0e0df1e2
AK
3298static const MemoryRegionOps notdirty_mem_ops = {
3299 .read = error_mem_read,
3300 .write = notdirty_mem_write,
3301 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
3302};
3303
0f459d16 3304/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3305static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 3306{
9349b4f9 3307 CPUArchState *env = cpu_single_env;
06d55cc1
AL
3308 target_ulong pc, cs_base;
3309 TranslationBlock *tb;
0f459d16 3310 target_ulong vaddr;
a1d1bb31 3311 CPUWatchpoint *wp;
06d55cc1 3312 int cpu_flags;
0f459d16 3313
06d55cc1
AL
3314 if (env->watchpoint_hit) {
3315 /* We re-entered the check after replacing the TB. Now raise
3316 * the debug interrupt so that is will trigger after the
3317 * current instruction. */
3318 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3319 return;
3320 }
2e70f6ef 3321 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3322 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3323 if ((vaddr == (wp->vaddr & len_mask) ||
3324 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3325 wp->flags |= BP_WATCHPOINT_HIT;
3326 if (!env->watchpoint_hit) {
3327 env->watchpoint_hit = wp;
3328 tb = tb_find_pc(env->mem_io_pc);
3329 if (!tb) {
3330 cpu_abort(env, "check_watchpoint: could not find TB for "
3331 "pc=%p", (void *)env->mem_io_pc);
3332 }
618ba8e6 3333 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3334 tb_phys_invalidate(tb, -1);
3335 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3336 env->exception_index = EXCP_DEBUG;
488d6577 3337 cpu_loop_exit(env);
6e140f28
AL
3338 } else {
3339 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3340 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 3341 cpu_resume_from_signal(env, NULL);
6e140f28 3342 }
06d55cc1 3343 }
6e140f28
AL
3344 } else {
3345 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3346 }
3347 }
3348}
3349
6658ffb8
PB
3350/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3351 so these check for a hit then pass through to the normal out-of-line
3352 phys routines. */
1ec9b909
AK
3353static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3354 unsigned size)
6658ffb8 3355{
1ec9b909
AK
3356 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3357 switch (size) {
3358 case 1: return ldub_phys(addr);
3359 case 2: return lduw_phys(addr);
3360 case 4: return ldl_phys(addr);
3361 default: abort();
3362 }
6658ffb8
PB
3363}
3364
1ec9b909
AK
3365static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3366 uint64_t val, unsigned size)
6658ffb8 3367{
1ec9b909
AK
3368 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3369 switch (size) {
67364150
MF
3370 case 1:
3371 stb_phys(addr, val);
3372 break;
3373 case 2:
3374 stw_phys(addr, val);
3375 break;
3376 case 4:
3377 stl_phys(addr, val);
3378 break;
1ec9b909
AK
3379 default: abort();
3380 }
6658ffb8
PB
3381}
3382
1ec9b909
AK
3383static const MemoryRegionOps watch_mem_ops = {
3384 .read = watch_mem_read,
3385 .write = watch_mem_write,
3386 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 3387};
6658ffb8 3388
70c68e44
AK
3389static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3390 unsigned len)
db7b5426 3391{
70c68e44 3392 subpage_t *mmio = opaque;
f6405247 3393 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3394 MemoryRegionSection *section;
db7b5426
BS
3395#if defined(DEBUG_SUBPAGE)
3396 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3397 mmio, len, addr, idx);
3398#endif
db7b5426 3399
5312bd8b
AK
3400 section = &phys_sections[mmio->sub_section[idx]];
3401 addr += mmio->base;
3402 addr -= section->offset_within_address_space;
3403 addr += section->offset_within_region;
37ec01d4 3404 return io_mem_read(section->mr, addr, len);
db7b5426
BS
3405}
3406
70c68e44
AK
3407static void subpage_write(void *opaque, target_phys_addr_t addr,
3408 uint64_t value, unsigned len)
db7b5426 3409{
70c68e44 3410 subpage_t *mmio = opaque;
f6405247 3411 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3412 MemoryRegionSection *section;
db7b5426 3413#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3414 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3415 " idx %d value %"PRIx64"\n",
f6405247 3416 __func__, mmio, len, addr, idx, value);
db7b5426 3417#endif
f6405247 3418
5312bd8b
AK
3419 section = &phys_sections[mmio->sub_section[idx]];
3420 addr += mmio->base;
3421 addr -= section->offset_within_address_space;
3422 addr += section->offset_within_region;
37ec01d4 3423 io_mem_write(section->mr, addr, value, len);
db7b5426
BS
3424}
3425
70c68e44
AK
3426static const MemoryRegionOps subpage_ops = {
3427 .read = subpage_read,
3428 .write = subpage_write,
3429 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3430};
3431
de712f94
AK
3432static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3433 unsigned size)
56384e8b
AF
3434{
3435 ram_addr_t raddr = addr;
3436 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3437 switch (size) {
3438 case 1: return ldub_p(ptr);
3439 case 2: return lduw_p(ptr);
3440 case 4: return ldl_p(ptr);
3441 default: abort();
3442 }
56384e8b
AF
3443}
3444
de712f94
AK
3445static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3446 uint64_t value, unsigned size)
56384e8b
AF
3447{
3448 ram_addr_t raddr = addr;
3449 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3450 switch (size) {
3451 case 1: return stb_p(ptr, value);
3452 case 2: return stw_p(ptr, value);
3453 case 4: return stl_p(ptr, value);
3454 default: abort();
3455 }
56384e8b
AF
3456}
3457
de712f94
AK
3458static const MemoryRegionOps subpage_ram_ops = {
3459 .read = subpage_ram_read,
3460 .write = subpage_ram_write,
3461 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3462};
3463
c227f099 3464static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3465 uint16_t section)
db7b5426
BS
3466{
3467 int idx, eidx;
3468
3469 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3470 return -1;
3471 idx = SUBPAGE_IDX(start);
3472 eidx = SUBPAGE_IDX(end);
3473#if defined(DEBUG_SUBPAGE)
0bf9e31a 3474 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3475 mmio, start, end, idx, eidx, memory);
3476#endif
5312bd8b
AK
3477 if (memory_region_is_ram(phys_sections[section].mr)) {
3478 MemoryRegionSection new_section = phys_sections[section];
3479 new_section.mr = &io_mem_subpage_ram;
3480 section = phys_section_add(&new_section);
56384e8b 3481 }
db7b5426 3482 for (; idx <= eidx; idx++) {
5312bd8b 3483 mmio->sub_section[idx] = section;
db7b5426
BS
3484 }
3485
3486 return 0;
3487}
3488
0f0cb164 3489static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3490{
c227f099 3491 subpage_t *mmio;
db7b5426 3492
7267c094 3493 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3494
3495 mmio->base = base;
70c68e44
AK
3496 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3497 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3498 mmio->iomem.subpage = true;
db7b5426 3499#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3500 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3501 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3502#endif
0f0cb164 3503 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3504
3505 return mmio;
3506}
3507
5312bd8b
AK
3508static uint16_t dummy_section(MemoryRegion *mr)
3509{
3510 MemoryRegionSection section = {
3511 .mr = mr,
3512 .offset_within_address_space = 0,
3513 .offset_within_region = 0,
3514 .size = UINT64_MAX,
3515 };
3516
3517 return phys_section_add(&section);
3518}
3519
37ec01d4 3520MemoryRegion *iotlb_to_region(target_phys_addr_t index)
aa102231 3521{
37ec01d4 3522 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
3523}
3524
e9179ce1
AK
3525static void io_mem_init(void)
3526{
0e0df1e2 3527 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
0e0df1e2
AK
3528 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3529 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3530 "unassigned", UINT64_MAX);
3531 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3532 "notdirty", UINT64_MAX);
de712f94
AK
3533 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3534 "subpage-ram", UINT64_MAX);
1ec9b909
AK
3535 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3536 "watch", UINT64_MAX);
e9179ce1
AK
3537}
3538
50c1e149
AK
3539static void core_begin(MemoryListener *listener)
3540{
54688b1e 3541 destroy_all_mappings();
5312bd8b 3542 phys_sections_clear();
c19e8800 3543 phys_map.ptr = PHYS_MAP_NODE_NIL;
5312bd8b 3544 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
3545 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3546 phys_section_rom = dummy_section(&io_mem_rom);
3547 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
3548}
3549
3550static void core_commit(MemoryListener *listener)
3551{
9349b4f9 3552 CPUArchState *env;
117712c3
AK
3553
3554 /* since each CPU stores ram addresses in its TLB cache, we must
3555 reset the modified entries */
3556 /* XXX: slow ! */
3557 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3558 tlb_flush(env, 1);
3559 }
50c1e149
AK
3560}
3561
93632747
AK
3562static void core_region_add(MemoryListener *listener,
3563 MemoryRegionSection *section)
3564{
4855d41a 3565 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3566}
3567
3568static void core_region_del(MemoryListener *listener,
3569 MemoryRegionSection *section)
3570{
93632747
AK
3571}
3572
50c1e149
AK
3573static void core_region_nop(MemoryListener *listener,
3574 MemoryRegionSection *section)
3575{
54688b1e 3576 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3577}
3578
93632747
AK
3579static void core_log_start(MemoryListener *listener,
3580 MemoryRegionSection *section)
3581{
3582}
3583
3584static void core_log_stop(MemoryListener *listener,
3585 MemoryRegionSection *section)
3586{
3587}
3588
3589static void core_log_sync(MemoryListener *listener,
3590 MemoryRegionSection *section)
3591{
3592}
3593
3594static void core_log_global_start(MemoryListener *listener)
3595{
3596 cpu_physical_memory_set_dirty_tracking(1);
3597}
3598
3599static void core_log_global_stop(MemoryListener *listener)
3600{
3601 cpu_physical_memory_set_dirty_tracking(0);
3602}
3603
3604static void core_eventfd_add(MemoryListener *listener,
3605 MemoryRegionSection *section,
3606 bool match_data, uint64_t data, int fd)
3607{
3608}
3609
3610static void core_eventfd_del(MemoryListener *listener,
3611 MemoryRegionSection *section,
3612 bool match_data, uint64_t data, int fd)
3613{
3614}
3615
50c1e149
AK
3616static void io_begin(MemoryListener *listener)
3617{
3618}
3619
3620static void io_commit(MemoryListener *listener)
3621{
3622}
3623
4855d41a
AK
3624static void io_region_add(MemoryListener *listener,
3625 MemoryRegionSection *section)
3626{
a2d33521
AK
3627 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3628
3629 mrio->mr = section->mr;
3630 mrio->offset = section->offset_within_region;
3631 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
4855d41a 3632 section->offset_within_address_space, section->size);
a2d33521 3633 ioport_register(&mrio->iorange);
4855d41a
AK
3634}
3635
3636static void io_region_del(MemoryListener *listener,
3637 MemoryRegionSection *section)
3638{
3639 isa_unassign_ioport(section->offset_within_address_space, section->size);
3640}
3641
50c1e149
AK
3642static void io_region_nop(MemoryListener *listener,
3643 MemoryRegionSection *section)
3644{
3645}
3646
4855d41a
AK
3647static void io_log_start(MemoryListener *listener,
3648 MemoryRegionSection *section)
3649{
3650}
3651
3652static void io_log_stop(MemoryListener *listener,
3653 MemoryRegionSection *section)
3654{
3655}
3656
3657static void io_log_sync(MemoryListener *listener,
3658 MemoryRegionSection *section)
3659{
3660}
3661
3662static void io_log_global_start(MemoryListener *listener)
3663{
3664}
3665
3666static void io_log_global_stop(MemoryListener *listener)
3667{
3668}
3669
3670static void io_eventfd_add(MemoryListener *listener,
3671 MemoryRegionSection *section,
3672 bool match_data, uint64_t data, int fd)
3673{
3674}
3675
3676static void io_eventfd_del(MemoryListener *listener,
3677 MemoryRegionSection *section,
3678 bool match_data, uint64_t data, int fd)
3679{
3680}
3681
93632747 3682static MemoryListener core_memory_listener = {
50c1e149
AK
3683 .begin = core_begin,
3684 .commit = core_commit,
93632747
AK
3685 .region_add = core_region_add,
3686 .region_del = core_region_del,
50c1e149 3687 .region_nop = core_region_nop,
93632747
AK
3688 .log_start = core_log_start,
3689 .log_stop = core_log_stop,
3690 .log_sync = core_log_sync,
3691 .log_global_start = core_log_global_start,
3692 .log_global_stop = core_log_global_stop,
3693 .eventfd_add = core_eventfd_add,
3694 .eventfd_del = core_eventfd_del,
3695 .priority = 0,
3696};
3697
4855d41a 3698static MemoryListener io_memory_listener = {
50c1e149
AK
3699 .begin = io_begin,
3700 .commit = io_commit,
4855d41a
AK
3701 .region_add = io_region_add,
3702 .region_del = io_region_del,
50c1e149 3703 .region_nop = io_region_nop,
4855d41a
AK
3704 .log_start = io_log_start,
3705 .log_stop = io_log_stop,
3706 .log_sync = io_log_sync,
3707 .log_global_start = io_log_global_start,
3708 .log_global_stop = io_log_global_stop,
3709 .eventfd_add = io_eventfd_add,
3710 .eventfd_del = io_eventfd_del,
3711 .priority = 0,
3712};
3713
62152b8a
AK
3714static void memory_map_init(void)
3715{
7267c094 3716 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3717 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3718 set_system_memory_map(system_memory);
309cb471 3719
7267c094 3720 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3721 memory_region_init(system_io, "io", 65536);
3722 set_system_io_map(system_io);
93632747 3723
4855d41a
AK
3724 memory_listener_register(&core_memory_listener, system_memory);
3725 memory_listener_register(&io_memory_listener, system_io);
62152b8a
AK
3726}
3727
3728MemoryRegion *get_system_memory(void)
3729{
3730 return system_memory;
3731}
3732
309cb471
AK
3733MemoryRegion *get_system_io(void)
3734{
3735 return system_io;
3736}
3737
e2eef170
PB
3738#endif /* !defined(CONFIG_USER_ONLY) */
3739
13eb76e0
FB
3740/* physical memory access (slow version, mainly for debug) */
3741#if defined(CONFIG_USER_ONLY)
9349b4f9 3742int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 3743 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3744{
3745 int l, flags;
3746 target_ulong page;
53a5960a 3747 void * p;
13eb76e0
FB
3748
3749 while (len > 0) {
3750 page = addr & TARGET_PAGE_MASK;
3751 l = (page + TARGET_PAGE_SIZE) - addr;
3752 if (l > len)
3753 l = len;
3754 flags = page_get_flags(page);
3755 if (!(flags & PAGE_VALID))
a68fe89c 3756 return -1;
13eb76e0
FB
3757 if (is_write) {
3758 if (!(flags & PAGE_WRITE))
a68fe89c 3759 return -1;
579a97f7 3760 /* XXX: this code should not depend on lock_user */
72fb7daa 3761 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3762 return -1;
72fb7daa
AJ
3763 memcpy(p, buf, l);
3764 unlock_user(p, addr, l);
13eb76e0
FB
3765 } else {
3766 if (!(flags & PAGE_READ))
a68fe89c 3767 return -1;
579a97f7 3768 /* XXX: this code should not depend on lock_user */
72fb7daa 3769 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3770 return -1;
72fb7daa 3771 memcpy(buf, p, l);
5b257578 3772 unlock_user(p, addr, 0);
13eb76e0
FB
3773 }
3774 len -= l;
3775 buf += l;
3776 addr += l;
3777 }
a68fe89c 3778 return 0;
13eb76e0 3779}
8df1cd07 3780
13eb76e0 3781#else
c227f099 3782void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3783 int len, int is_write)
3784{
37ec01d4 3785 int l;
13eb76e0
FB
3786 uint8_t *ptr;
3787 uint32_t val;
c227f099 3788 target_phys_addr_t page;
f3705d53 3789 MemoryRegionSection *section;
3b46e624 3790
13eb76e0
FB
3791 while (len > 0) {
3792 page = addr & TARGET_PAGE_MASK;
3793 l = (page + TARGET_PAGE_SIZE) - addr;
3794 if (l > len)
3795 l = len;
06ef3525 3796 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3797
13eb76e0 3798 if (is_write) {
f3705d53 3799 if (!memory_region_is_ram(section->mr)) {
f1f6e3b8 3800 target_phys_addr_t addr1;
f3705d53 3801 addr1 = section_addr(section, addr);
6a00d601
FB
3802 /* XXX: could force cpu_single_env to NULL to avoid
3803 potential bugs */
6c2934db 3804 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3805 /* 32 bit write access */
c27004ec 3806 val = ldl_p(buf);
37ec01d4 3807 io_mem_write(section->mr, addr1, val, 4);
13eb76e0 3808 l = 4;
6c2934db 3809 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3810 /* 16 bit write access */
c27004ec 3811 val = lduw_p(buf);
37ec01d4 3812 io_mem_write(section->mr, addr1, val, 2);
13eb76e0
FB
3813 l = 2;
3814 } else {
1c213d19 3815 /* 8 bit write access */
c27004ec 3816 val = ldub_p(buf);
37ec01d4 3817 io_mem_write(section->mr, addr1, val, 1);
13eb76e0
FB
3818 l = 1;
3819 }
f3705d53 3820 } else if (!section->readonly) {
8ca5692d 3821 ram_addr_t addr1;
f3705d53
AK
3822 addr1 = memory_region_get_ram_addr(section->mr)
3823 + section_addr(section, addr);
13eb76e0 3824 /* RAM case */
5579c7f3 3825 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3826 memcpy(ptr, buf, l);
3a7d929e
FB
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3830 /* set dirty bit */
f7c11b53
YT
3831 cpu_physical_memory_set_dirty_flags(
3832 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3833 }
050a0ddf 3834 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3835 }
3836 } else {
f3705d53 3837 if (!is_ram_rom_romd(section)) {
f1f6e3b8 3838 target_phys_addr_t addr1;
13eb76e0 3839 /* I/O case */
f3705d53 3840 addr1 = section_addr(section, addr);
6c2934db 3841 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3842 /* 32 bit read access */
37ec01d4 3843 val = io_mem_read(section->mr, addr1, 4);
c27004ec 3844 stl_p(buf, val);
13eb76e0 3845 l = 4;
6c2934db 3846 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3847 /* 16 bit read access */
37ec01d4 3848 val = io_mem_read(section->mr, addr1, 2);
c27004ec 3849 stw_p(buf, val);
13eb76e0
FB
3850 l = 2;
3851 } else {
1c213d19 3852 /* 8 bit read access */
37ec01d4 3853 val = io_mem_read(section->mr, addr1, 1);
c27004ec 3854 stb_p(buf, val);
13eb76e0
FB
3855 l = 1;
3856 }
3857 } else {
3858 /* RAM case */
f3705d53
AK
3859 ptr = qemu_get_ram_ptr(section->mr->ram_addr)
3860 + section_addr(section, addr);
3861 memcpy(buf, ptr, l);
050a0ddf 3862 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3863 }
3864 }
3865 len -= l;
3866 buf += l;
3867 addr += l;
3868 }
3869}
8df1cd07 3870
d0ecd2aa 3871/* used for ROM loading : can write in RAM and ROM */
c227f099 3872void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3873 const uint8_t *buf, int len)
3874{
3875 int l;
3876 uint8_t *ptr;
c227f099 3877 target_phys_addr_t page;
f3705d53 3878 MemoryRegionSection *section;
3b46e624 3879
d0ecd2aa
FB
3880 while (len > 0) {
3881 page = addr & TARGET_PAGE_MASK;
3882 l = (page + TARGET_PAGE_SIZE) - addr;
3883 if (l > len)
3884 l = len;
06ef3525 3885 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3886
f3705d53 3887 if (!is_ram_rom_romd(section)) {
d0ecd2aa
FB
3888 /* do nothing */
3889 } else {
3890 unsigned long addr1;
f3705d53
AK
3891 addr1 = memory_region_get_ram_addr(section->mr)
3892 + section_addr(section, addr);
d0ecd2aa 3893 /* ROM/RAM case */
5579c7f3 3894 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3895 memcpy(ptr, buf, l);
050a0ddf 3896 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3897 }
3898 len -= l;
3899 buf += l;
3900 addr += l;
3901 }
3902}
3903
6d16c2f8
AL
3904typedef struct {
3905 void *buffer;
c227f099
AL
3906 target_phys_addr_t addr;
3907 target_phys_addr_t len;
6d16c2f8
AL
3908} BounceBuffer;
3909
3910static BounceBuffer bounce;
3911
ba223c29
AL
3912typedef struct MapClient {
3913 void *opaque;
3914 void (*callback)(void *opaque);
72cf2d4f 3915 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3916} MapClient;
3917
72cf2d4f
BS
3918static QLIST_HEAD(map_client_list, MapClient) map_client_list
3919 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3920
3921void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3922{
7267c094 3923 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3924
3925 client->opaque = opaque;
3926 client->callback = callback;
72cf2d4f 3927 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3928 return client;
3929}
3930
3931void cpu_unregister_map_client(void *_client)
3932{
3933 MapClient *client = (MapClient *)_client;
3934
72cf2d4f 3935 QLIST_REMOVE(client, link);
7267c094 3936 g_free(client);
ba223c29
AL
3937}
3938
3939static void cpu_notify_map_clients(void)
3940{
3941 MapClient *client;
3942
72cf2d4f
BS
3943 while (!QLIST_EMPTY(&map_client_list)) {
3944 client = QLIST_FIRST(&map_client_list);
ba223c29 3945 client->callback(client->opaque);
34d5e948 3946 cpu_unregister_map_client(client);
ba223c29
AL
3947 }
3948}
3949
6d16c2f8
AL
3950/* Map a physical memory region into a host virtual address.
3951 * May map a subset of the requested range, given by and returned in *plen.
3952 * May return NULL if resources needed to perform the mapping are exhausted.
3953 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3954 * Use cpu_register_map_client() to know when retrying the map operation is
3955 * likely to succeed.
6d16c2f8 3956 */
c227f099
AL
3957void *cpu_physical_memory_map(target_phys_addr_t addr,
3958 target_phys_addr_t *plen,
6d16c2f8
AL
3959 int is_write)
3960{
c227f099 3961 target_phys_addr_t len = *plen;
38bee5dc 3962 target_phys_addr_t todo = 0;
6d16c2f8 3963 int l;
c227f099 3964 target_phys_addr_t page;
f3705d53 3965 MemoryRegionSection *section;
f15fbc4b 3966 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3967 ram_addr_t rlen;
3968 void *ret;
6d16c2f8
AL
3969
3970 while (len > 0) {
3971 page = addr & TARGET_PAGE_MASK;
3972 l = (page + TARGET_PAGE_SIZE) - addr;
3973 if (l > len)
3974 l = len;
06ef3525 3975 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 3976
f3705d53 3977 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
38bee5dc 3978 if (todo || bounce.buffer) {
6d16c2f8
AL
3979 break;
3980 }
3981 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3982 bounce.addr = addr;
3983 bounce.len = l;
3984 if (!is_write) {
54f7b4a3 3985 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3986 }
38bee5dc
SS
3987
3988 *plen = l;
3989 return bounce.buffer;
6d16c2f8 3990 }
8ab934f9 3991 if (!todo) {
f3705d53
AK
3992 raddr = memory_region_get_ram_addr(section->mr)
3993 + section_addr(section, addr);
8ab934f9 3994 }
6d16c2f8
AL
3995
3996 len -= l;
3997 addr += l;
38bee5dc 3998 todo += l;
6d16c2f8 3999 }
8ab934f9
SS
4000 rlen = todo;
4001 ret = qemu_ram_ptr_length(raddr, &rlen);
4002 *plen = rlen;
4003 return ret;
6d16c2f8
AL
4004}
4005
4006/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4007 * Will also mark the memory as dirty if is_write == 1. access_len gives
4008 * the amount of memory that was actually read or written by the caller.
4009 */
c227f099
AL
4010void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4011 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4012{
4013 if (buffer != bounce.buffer) {
4014 if (is_write) {
e890261f 4015 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4016 while (access_len) {
4017 unsigned l;
4018 l = TARGET_PAGE_SIZE;
4019 if (l > access_len)
4020 l = access_len;
4021 if (!cpu_physical_memory_is_dirty(addr1)) {
4022 /* invalidate code */
4023 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4024 /* set dirty bit */
f7c11b53
YT
4025 cpu_physical_memory_set_dirty_flags(
4026 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4027 }
4028 addr1 += l;
4029 access_len -= l;
4030 }
4031 }
868bb33f 4032 if (xen_enabled()) {
e41d7c69 4033 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4034 }
6d16c2f8
AL
4035 return;
4036 }
4037 if (is_write) {
4038 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4039 }
f8a83245 4040 qemu_vfree(bounce.buffer);
6d16c2f8 4041 bounce.buffer = NULL;
ba223c29 4042 cpu_notify_map_clients();
6d16c2f8 4043}
d0ecd2aa 4044
8df1cd07 4045/* warning: addr must be aligned */
1e78bcc1
AG
4046static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4047 enum device_endian endian)
8df1cd07 4048{
8df1cd07
FB
4049 uint8_t *ptr;
4050 uint32_t val;
f3705d53 4051 MemoryRegionSection *section;
8df1cd07 4052
06ef3525 4053 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4054
f3705d53 4055 if (!is_ram_rom_romd(section)) {
8df1cd07 4056 /* I/O case */
f3705d53 4057 addr = section_addr(section, addr);
37ec01d4 4058 val = io_mem_read(section->mr, addr, 4);
1e78bcc1
AG
4059#if defined(TARGET_WORDS_BIGENDIAN)
4060 if (endian == DEVICE_LITTLE_ENDIAN) {
4061 val = bswap32(val);
4062 }
4063#else
4064 if (endian == DEVICE_BIG_ENDIAN) {
4065 val = bswap32(val);
4066 }
4067#endif
8df1cd07
FB
4068 } else {
4069 /* RAM case */
f3705d53 4070 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 4071 & TARGET_PAGE_MASK)
f3705d53 4072 + section_addr(section, addr));
1e78bcc1
AG
4073 switch (endian) {
4074 case DEVICE_LITTLE_ENDIAN:
4075 val = ldl_le_p(ptr);
4076 break;
4077 case DEVICE_BIG_ENDIAN:
4078 val = ldl_be_p(ptr);
4079 break;
4080 default:
4081 val = ldl_p(ptr);
4082 break;
4083 }
8df1cd07
FB
4084 }
4085 return val;
4086}
4087
1e78bcc1
AG
4088uint32_t ldl_phys(target_phys_addr_t addr)
4089{
4090 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4091}
4092
4093uint32_t ldl_le_phys(target_phys_addr_t addr)
4094{
4095 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4096}
4097
4098uint32_t ldl_be_phys(target_phys_addr_t addr)
4099{
4100 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4101}
4102
84b7b8e7 4103/* warning: addr must be aligned */
1e78bcc1
AG
4104static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4105 enum device_endian endian)
84b7b8e7 4106{
84b7b8e7
FB
4107 uint8_t *ptr;
4108 uint64_t val;
f3705d53 4109 MemoryRegionSection *section;
84b7b8e7 4110
06ef3525 4111 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4112
f3705d53 4113 if (!is_ram_rom_romd(section)) {
84b7b8e7 4114 /* I/O case */
f3705d53 4115 addr = section_addr(section, addr);
1e78bcc1
AG
4116
4117 /* XXX This is broken when device endian != cpu endian.
4118 Fix and add "endian" variable check */
84b7b8e7 4119#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
4120 val = io_mem_read(section->mr, addr, 4) << 32;
4121 val |= io_mem_read(section->mr, addr + 4, 4);
84b7b8e7 4122#else
37ec01d4
AK
4123 val = io_mem_read(section->mr, addr, 4);
4124 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
84b7b8e7
FB
4125#endif
4126 } else {
4127 /* RAM case */
f3705d53 4128 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 4129 & TARGET_PAGE_MASK)
f3705d53 4130 + section_addr(section, addr));
1e78bcc1
AG
4131 switch (endian) {
4132 case DEVICE_LITTLE_ENDIAN:
4133 val = ldq_le_p(ptr);
4134 break;
4135 case DEVICE_BIG_ENDIAN:
4136 val = ldq_be_p(ptr);
4137 break;
4138 default:
4139 val = ldq_p(ptr);
4140 break;
4141 }
84b7b8e7
FB
4142 }
4143 return val;
4144}
4145
1e78bcc1
AG
4146uint64_t ldq_phys(target_phys_addr_t addr)
4147{
4148 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4149}
4150
4151uint64_t ldq_le_phys(target_phys_addr_t addr)
4152{
4153 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4154}
4155
4156uint64_t ldq_be_phys(target_phys_addr_t addr)
4157{
4158 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4159}
4160
aab33094 4161/* XXX: optimize */
c227f099 4162uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4163{
4164 uint8_t val;
4165 cpu_physical_memory_read(addr, &val, 1);
4166 return val;
4167}
4168
733f0b02 4169/* warning: addr must be aligned */
1e78bcc1
AG
4170static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4171 enum device_endian endian)
aab33094 4172{
733f0b02
MT
4173 uint8_t *ptr;
4174 uint64_t val;
f3705d53 4175 MemoryRegionSection *section;
733f0b02 4176
06ef3525 4177 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4178
f3705d53 4179 if (!is_ram_rom_romd(section)) {
733f0b02 4180 /* I/O case */
f3705d53 4181 addr = section_addr(section, addr);
37ec01d4 4182 val = io_mem_read(section->mr, addr, 2);
1e78bcc1
AG
4183#if defined(TARGET_WORDS_BIGENDIAN)
4184 if (endian == DEVICE_LITTLE_ENDIAN) {
4185 val = bswap16(val);
4186 }
4187#else
4188 if (endian == DEVICE_BIG_ENDIAN) {
4189 val = bswap16(val);
4190 }
4191#endif
733f0b02
MT
4192 } else {
4193 /* RAM case */
f3705d53 4194 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 4195 & TARGET_PAGE_MASK)
f3705d53 4196 + section_addr(section, addr));
1e78bcc1
AG
4197 switch (endian) {
4198 case DEVICE_LITTLE_ENDIAN:
4199 val = lduw_le_p(ptr);
4200 break;
4201 case DEVICE_BIG_ENDIAN:
4202 val = lduw_be_p(ptr);
4203 break;
4204 default:
4205 val = lduw_p(ptr);
4206 break;
4207 }
733f0b02
MT
4208 }
4209 return val;
aab33094
FB
4210}
4211
1e78bcc1
AG
4212uint32_t lduw_phys(target_phys_addr_t addr)
4213{
4214 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4215}
4216
4217uint32_t lduw_le_phys(target_phys_addr_t addr)
4218{
4219 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4220}
4221
4222uint32_t lduw_be_phys(target_phys_addr_t addr)
4223{
4224 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4225}
4226
8df1cd07
FB
4227/* warning: addr must be aligned. The ram page is not masked as dirty
4228 and the code inside is not invalidated. It is useful if the dirty
4229 bits are used to track modified PTEs */
c227f099 4230void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07 4231{
8df1cd07 4232 uint8_t *ptr;
f3705d53 4233 MemoryRegionSection *section;
8df1cd07 4234
06ef3525 4235 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4236
f3705d53 4237 if (!memory_region_is_ram(section->mr) || section->readonly) {
37ec01d4 4238 addr = section_addr(section, addr);
f3705d53 4239 if (memory_region_is_ram(section->mr)) {
37ec01d4 4240 section = &phys_sections[phys_section_rom];
06ef3525 4241 }
37ec01d4 4242 io_mem_write(section->mr, addr, val, 4);
8df1cd07 4243 } else {
f3705d53 4244 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
06ef3525 4245 & TARGET_PAGE_MASK)
f3705d53 4246 + section_addr(section, addr);
5579c7f3 4247 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4248 stl_p(ptr, val);
74576198
AL
4249
4250 if (unlikely(in_migration)) {
4251 if (!cpu_physical_memory_is_dirty(addr1)) {
4252 /* invalidate code */
4253 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4254 /* set dirty bit */
f7c11b53
YT
4255 cpu_physical_memory_set_dirty_flags(
4256 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4257 }
4258 }
8df1cd07
FB
4259 }
4260}
4261
c227f099 4262void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef 4263{
bc98a7ef 4264 uint8_t *ptr;
f3705d53 4265 MemoryRegionSection *section;
bc98a7ef 4266
06ef3525 4267 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4268
f3705d53 4269 if (!memory_region_is_ram(section->mr) || section->readonly) {
37ec01d4 4270 addr = section_addr(section, addr);
f3705d53 4271 if (memory_region_is_ram(section->mr)) {
37ec01d4 4272 section = &phys_sections[phys_section_rom];
06ef3525 4273 }
bc98a7ef 4274#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
4275 io_mem_write(section->mr, addr, val >> 32, 4);
4276 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
bc98a7ef 4277#else
37ec01d4
AK
4278 io_mem_write(section->mr, addr, (uint32_t)val, 4);
4279 io_mem_write(section->mr, addr + 4, val >> 32, 4);
bc98a7ef
JM
4280#endif
4281 } else {
f3705d53 4282 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 4283 & TARGET_PAGE_MASK)
f3705d53 4284 + section_addr(section, addr));
bc98a7ef
JM
4285 stq_p(ptr, val);
4286 }
4287}
4288
8df1cd07 4289/* warning: addr must be aligned */
1e78bcc1
AG
4290static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4291 enum device_endian endian)
8df1cd07 4292{
8df1cd07 4293 uint8_t *ptr;
f3705d53 4294 MemoryRegionSection *section;
8df1cd07 4295
06ef3525 4296 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4297
f3705d53 4298 if (!memory_region_is_ram(section->mr) || section->readonly) {
37ec01d4 4299 addr = section_addr(section, addr);
f3705d53 4300 if (memory_region_is_ram(section->mr)) {
37ec01d4 4301 section = &phys_sections[phys_section_rom];
06ef3525 4302 }
1e78bcc1
AG
4303#if defined(TARGET_WORDS_BIGENDIAN)
4304 if (endian == DEVICE_LITTLE_ENDIAN) {
4305 val = bswap32(val);
4306 }
4307#else
4308 if (endian == DEVICE_BIG_ENDIAN) {
4309 val = bswap32(val);
4310 }
4311#endif
37ec01d4 4312 io_mem_write(section->mr, addr, val, 4);
8df1cd07
FB
4313 } else {
4314 unsigned long addr1;
f3705d53
AK
4315 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4316 + section_addr(section, addr);
8df1cd07 4317 /* RAM case */
5579c7f3 4318 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4319 switch (endian) {
4320 case DEVICE_LITTLE_ENDIAN:
4321 stl_le_p(ptr, val);
4322 break;
4323 case DEVICE_BIG_ENDIAN:
4324 stl_be_p(ptr, val);
4325 break;
4326 default:
4327 stl_p(ptr, val);
4328 break;
4329 }
3a7d929e
FB
4330 if (!cpu_physical_memory_is_dirty(addr1)) {
4331 /* invalidate code */
4332 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4333 /* set dirty bit */
f7c11b53
YT
4334 cpu_physical_memory_set_dirty_flags(addr1,
4335 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4336 }
8df1cd07
FB
4337 }
4338}
4339
1e78bcc1
AG
4340void stl_phys(target_phys_addr_t addr, uint32_t val)
4341{
4342 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4343}
4344
4345void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4346{
4347 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4348}
4349
4350void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4351{
4352 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4353}
4354
aab33094 4355/* XXX: optimize */
c227f099 4356void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4357{
4358 uint8_t v = val;
4359 cpu_physical_memory_write(addr, &v, 1);
4360}
4361
733f0b02 4362/* warning: addr must be aligned */
1e78bcc1
AG
4363static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4364 enum device_endian endian)
aab33094 4365{
733f0b02 4366 uint8_t *ptr;
f3705d53 4367 MemoryRegionSection *section;
733f0b02 4368
06ef3525 4369 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4370
f3705d53 4371 if (!memory_region_is_ram(section->mr) || section->readonly) {
37ec01d4 4372 addr = section_addr(section, addr);
f3705d53 4373 if (memory_region_is_ram(section->mr)) {
37ec01d4 4374 section = &phys_sections[phys_section_rom];
06ef3525 4375 }
1e78bcc1
AG
4376#if defined(TARGET_WORDS_BIGENDIAN)
4377 if (endian == DEVICE_LITTLE_ENDIAN) {
4378 val = bswap16(val);
4379 }
4380#else
4381 if (endian == DEVICE_BIG_ENDIAN) {
4382 val = bswap16(val);
4383 }
4384#endif
37ec01d4 4385 io_mem_write(section->mr, addr, val, 2);
733f0b02
MT
4386 } else {
4387 unsigned long addr1;
f3705d53
AK
4388 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4389 + section_addr(section, addr);
733f0b02
MT
4390 /* RAM case */
4391 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4392 switch (endian) {
4393 case DEVICE_LITTLE_ENDIAN:
4394 stw_le_p(ptr, val);
4395 break;
4396 case DEVICE_BIG_ENDIAN:
4397 stw_be_p(ptr, val);
4398 break;
4399 default:
4400 stw_p(ptr, val);
4401 break;
4402 }
733f0b02
MT
4403 if (!cpu_physical_memory_is_dirty(addr1)) {
4404 /* invalidate code */
4405 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4406 /* set dirty bit */
4407 cpu_physical_memory_set_dirty_flags(addr1,
4408 (0xff & ~CODE_DIRTY_FLAG));
4409 }
4410 }
aab33094
FB
4411}
4412
1e78bcc1
AG
4413void stw_phys(target_phys_addr_t addr, uint32_t val)
4414{
4415 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4416}
4417
4418void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4419{
4420 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4421}
4422
4423void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4424{
4425 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4426}
4427
aab33094 4428/* XXX: optimize */
c227f099 4429void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4430{
4431 val = tswap64(val);
71d2b725 4432 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4433}
4434
1e78bcc1
AG
4435void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4436{
4437 val = cpu_to_le64(val);
4438 cpu_physical_memory_write(addr, &val, 8);
4439}
4440
4441void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4442{
4443 val = cpu_to_be64(val);
4444 cpu_physical_memory_write(addr, &val, 8);
4445}
4446
5e2972fd 4447/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 4448int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 4449 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4450{
4451 int l;
c227f099 4452 target_phys_addr_t phys_addr;
9b3c35e0 4453 target_ulong page;
13eb76e0
FB
4454
4455 while (len > 0) {
4456 page = addr & TARGET_PAGE_MASK;
4457 phys_addr = cpu_get_phys_page_debug(env, page);
4458 /* if no physical page mapped, return an error */
4459 if (phys_addr == -1)
4460 return -1;
4461 l = (page + TARGET_PAGE_SIZE) - addr;
4462 if (l > len)
4463 l = len;
5e2972fd 4464 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4465 if (is_write)
4466 cpu_physical_memory_write_rom(phys_addr, buf, l);
4467 else
5e2972fd 4468 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4469 len -= l;
4470 buf += l;
4471 addr += l;
4472 }
4473 return 0;
4474}
a68fe89c 4475#endif
13eb76e0 4476
2e70f6ef
PB
4477/* in deterministic execution mode, instructions doing device I/Os
4478 must be at the end of the TB */
9349b4f9 4479void cpu_io_recompile(CPUArchState *env, void *retaddr)
2e70f6ef
PB
4480{
4481 TranslationBlock *tb;
4482 uint32_t n, cflags;
4483 target_ulong pc, cs_base;
4484 uint64_t flags;
4485
4486 tb = tb_find_pc((unsigned long)retaddr);
4487 if (!tb) {
4488 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4489 retaddr);
4490 }
4491 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4492 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4493 /* Calculate how many instructions had been executed before the fault
bf20dc07 4494 occurred. */
2e70f6ef
PB
4495 n = n - env->icount_decr.u16.low;
4496 /* Generate a new TB ending on the I/O insn. */
4497 n++;
4498 /* On MIPS and SH, delay slot instructions can only be restarted if
4499 they were already the first instruction in the TB. If this is not
bf20dc07 4500 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4501 branch. */
4502#if defined(TARGET_MIPS)
4503 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4504 env->active_tc.PC -= 4;
4505 env->icount_decr.u16.low++;
4506 env->hflags &= ~MIPS_HFLAG_BMASK;
4507 }
4508#elif defined(TARGET_SH4)
4509 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4510 && n > 1) {
4511 env->pc -= 2;
4512 env->icount_decr.u16.low++;
4513 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4514 }
4515#endif
4516 /* This should never happen. */
4517 if (n > CF_COUNT_MASK)
4518 cpu_abort(env, "TB too big during recompile");
4519
4520 cflags = n | CF_LAST_IO;
4521 pc = tb->pc;
4522 cs_base = tb->cs_base;
4523 flags = tb->flags;
4524 tb_phys_invalidate(tb, -1);
4525 /* FIXME: In theory this could raise an exception. In practice
4526 we have already translated the block once so it's probably ok. */
4527 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4528 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4529 the first in the TB) then we end up generating a whole new TB and
4530 repeating the fault, which is horribly inefficient.
4531 Better would be to execute just this insn uncached, or generate a
4532 second new TB. */
4533 cpu_resume_from_signal(env, NULL);
4534}
4535
b3755a91
PB
4536#if !defined(CONFIG_USER_ONLY)
4537
055403b2 4538void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4539{
4540 int i, target_code_size, max_target_code_size;
4541 int direct_jmp_count, direct_jmp2_count, cross_page;
4542 TranslationBlock *tb;
3b46e624 4543
e3db7226
FB
4544 target_code_size = 0;
4545 max_target_code_size = 0;
4546 cross_page = 0;
4547 direct_jmp_count = 0;
4548 direct_jmp2_count = 0;
4549 for(i = 0; i < nb_tbs; i++) {
4550 tb = &tbs[i];
4551 target_code_size += tb->size;
4552 if (tb->size > max_target_code_size)
4553 max_target_code_size = tb->size;
4554 if (tb->page_addr[1] != -1)
4555 cross_page++;
4556 if (tb->tb_next_offset[0] != 0xffff) {
4557 direct_jmp_count++;
4558 if (tb->tb_next_offset[1] != 0xffff) {
4559 direct_jmp2_count++;
4560 }
4561 }
4562 }
4563 /* XXX: avoid using doubles ? */
57fec1fe 4564 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4565 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4566 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4567 cpu_fprintf(f, "TB count %d/%d\n",
4568 nb_tbs, code_gen_max_blocks);
5fafdf24 4569 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4570 nb_tbs ? target_code_size / nb_tbs : 0,
4571 max_target_code_size);
055403b2 4572 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4573 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4574 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4575 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4576 cross_page,
e3db7226
FB
4577 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4578 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4579 direct_jmp_count,
e3db7226
FB
4580 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4581 direct_jmp2_count,
4582 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4583 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4584 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4585 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4586 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4587 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4588}
4589
d39e8222
AK
4590/* NOTE: this function can trigger an exception */
4591/* NOTE2: the returned address is not exactly the physical address: it
4592 is the offset relative to phys_ram_base */
9349b4f9 4593tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
d39e8222
AK
4594{
4595 int mmu_idx, page_index, pd;
4596 void *p;
37ec01d4 4597 MemoryRegion *mr;
d39e8222
AK
4598
4599 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4600 mmu_idx = cpu_mmu_index(env1);
4601 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4602 (addr & TARGET_PAGE_MASK))) {
e141ab52
BS
4603#ifdef CONFIG_TCG_PASS_AREG0
4604 cpu_ldub_code(env1, addr);
4605#else
d39e8222 4606 ldub_code(addr);
e141ab52 4607#endif
d39e8222 4608 }
ce5d64c2 4609 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
37ec01d4
AK
4610 mr = iotlb_to_region(pd);
4611 if (mr != &io_mem_ram && mr != &io_mem_rom
32b08980
AK
4612 && mr != &io_mem_notdirty && !mr->rom_device
4613 && mr != &io_mem_watch) {
d39e8222
AK
4614#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4615 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4616#else
4617 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4618#endif
4619 }
4620 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4621 return qemu_ram_addr_from_host_nofail(p);
4622}
4623
82afa586
BH
4624/*
4625 * A helper function for the _utterly broken_ virtio device model to find out if
4626 * it's running on a big endian machine. Don't do this at home kids!
4627 */
4628bool virtio_is_big_endian(void);
4629bool virtio_is_big_endian(void)
4630{
4631#if defined(TARGET_WORDS_BIGENDIAN)
4632 return true;
4633#else
4634 return false;
4635#endif
4636}
4637
61382a50 4638#define MMUSUFFIX _cmmu
3917149d 4639#undef GETPC
61382a50
FB
4640#define GETPC() NULL
4641#define env cpu_single_env
b769d8fe 4642#define SOFTMMU_CODE_ACCESS
61382a50
FB
4643
4644#define SHIFT 0
4645#include "softmmu_template.h"
4646
4647#define SHIFT 1
4648#include "softmmu_template.h"
4649
4650#define SHIFT 2
4651#include "softmmu_template.h"
4652
4653#define SHIFT 3
4654#include "softmmu_template.h"
4655
4656#undef env
4657
4658#endif