]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
rng-egd: remove redundant free
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
530@item qcow2
531QEMU image format, the most versatile format. Use it to have smaller
532images (useful if your filesystem does not supports holes, for example
533on Windows), optional AES encryption, zlib based compression and
534support of multiple VM snapshots.
535
536Supported options:
537@table @code
538@item compat
539Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
540image format that can be read by any QEMU since 0.10 (this is the default).
541@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
542newer understand. Amongst others, this includes zero clusters, which allow
543efficient copy-on-read for sparse images.
544
545@item backing_file
546File name of a base image (see @option{create} subcommand)
547@item backing_fmt
548Image format of the base image
549@item encryption
550If this option is set to @code{on}, the image is encrypted.
551
552Encryption uses the AES format which is very secure (128 bit keys). Use
553a long password (16 characters) to get maximum protection.
554
555@item cluster_size
556Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
557sizes can improve the image file size whereas larger cluster sizes generally
558provide better performance.
559
560@item preallocation
561Preallocation mode (allowed values: off, metadata). An image with preallocated
562metadata is initially larger but can improve performance when the image needs
563to grow.
564
565@item lazy_refcounts
566If this option is set to @code{on}, reference count updates are postponed with
567the goal of avoiding metadata I/O and improving performance. This is
568particularly interesting with @option{cache=writethrough} which doesn't batch
569metadata updates. The tradeoff is that after a host crash, the reference count
570tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
571check -r all} is required, which may take some time.
572
573This option can only be enabled if @code{compat=1.1} is specified.
574
575@end table
576
577@item qed
578Old QEMU image format with support for backing files and compact image files
579(when your filesystem or transport medium does not support holes).
580
581When converting QED images to qcow2, you might want to consider using the
582@code{lazy_refcounts=on} option to get a more QED-like behaviour.
583
584Supported options:
585@table @code
586@item backing_file
587File name of a base image (see @option{create} subcommand).
588@item backing_fmt
589Image file format of backing file (optional). Useful if the format cannot be
590autodetected because it has no header, like some vhd/vpc files.
591@item cluster_size
592Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
593cluster sizes can improve the image file size whereas larger cluster sizes
594generally provide better performance.
595@item table_size
596Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
597and 16). There is normally no need to change this value but this option can be
598used for performance benchmarking.
599@end table
600
601@item qcow
602Old QEMU image format with support for backing files, compact image files,
603encryption and compression.
604
605Supported options:
606@table @code
607@item backing_file
608File name of a base image (see @option{create} subcommand)
609@item encryption
610If this option is set to @code{on}, the image is encrypted.
611@end table
612
613@item cow
614User Mode Linux Copy On Write image format. It is supported only for
615compatibility with previous versions.
616Supported options:
617@table @code
618@item backing_file
619File name of a base image (see @option{create} subcommand)
620@end table
621
622@item vdi
623VirtualBox 1.1 compatible image format.
624Supported options:
625@table @code
626@item static
627If this option is set to @code{on}, the image is created with metadata
628preallocation.
629@end table
630
631@item vmdk
632VMware 3 and 4 compatible image format.
633
634Supported options:
635@table @code
636@item backing_file
637File name of a base image (see @option{create} subcommand).
638@item compat6
639Create a VMDK version 6 image (instead of version 4)
640@item subformat
641Specifies which VMDK subformat to use. Valid options are
642@code{monolithicSparse} (default),
643@code{monolithicFlat},
644@code{twoGbMaxExtentSparse},
645@code{twoGbMaxExtentFlat} and
646@code{streamOptimized}.
647@end table
648
649@item vpc
650VirtualPC compatible image format (VHD).
651Supported options:
652@table @code
653@item subformat
654Specifies which VHD subformat to use. Valid options are
655@code{dynamic} (default) and @code{fixed}.
656@end table
657@end table
658
659@subsubsection Read-only formats
660More disk image file formats are supported in a read-only mode.
661@table @option
662@item bochs
663Bochs images of @code{growing} type.
664@item cloop
665Linux Compressed Loop image, useful only to reuse directly compressed
666CD-ROM images present for example in the Knoppix CD-ROMs.
667@item dmg
668Apple disk image.
669@item parallels
670Parallels disk image format.
671@end table
672
673
19cb3738
FB
674@node host_drives
675@subsection Using host drives
676
677In addition to disk image files, QEMU can directly access host
678devices. We describe here the usage for QEMU version >= 0.8.3.
679
680@subsubsection Linux
681
682On Linux, you can directly use the host device filename instead of a
4be456f1 683disk image filename provided you have enough privileges to access
19cb3738
FB
684it. For example, use @file{/dev/cdrom} to access to the CDROM or
685@file{/dev/fd0} for the floppy.
686
f542086d 687@table @code
19cb3738
FB
688@item CD
689You can specify a CDROM device even if no CDROM is loaded. QEMU has
690specific code to detect CDROM insertion or removal. CDROM ejection by
691the guest OS is supported. Currently only data CDs are supported.
692@item Floppy
693You can specify a floppy device even if no floppy is loaded. Floppy
694removal is currently not detected accurately (if you change floppy
695without doing floppy access while the floppy is not loaded, the guest
696OS will think that the same floppy is loaded).
697@item Hard disks
698Hard disks can be used. Normally you must specify the whole disk
699(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
700see it as a partitioned disk. WARNING: unless you know what you do, it
701is better to only make READ-ONLY accesses to the hard disk otherwise
702you may corrupt your host data (use the @option{-snapshot} command
703line option or modify the device permissions accordingly).
704@end table
705
706@subsubsection Windows
707
01781963
FB
708@table @code
709@item CD
4be456f1 710The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
711alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
712supported as an alias to the first CDROM drive.
19cb3738 713
e598752a 714Currently there is no specific code to handle removable media, so it
19cb3738
FB
715is better to use the @code{change} or @code{eject} monitor commands to
716change or eject media.
01781963 717@item Hard disks
89dfe898 718Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
719where @var{N} is the drive number (0 is the first hard disk).
720
721WARNING: unless you know what you do, it is better to only make
722READ-ONLY accesses to the hard disk otherwise you may corrupt your
723host data (use the @option{-snapshot} command line so that the
724modifications are written in a temporary file).
725@end table
726
19cb3738
FB
727
728@subsubsection Mac OS X
729
5fafdf24 730@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 731
e598752a 732Currently there is no specific code to handle removable media, so it
19cb3738
FB
733is better to use the @code{change} or @code{eject} monitor commands to
734change or eject media.
735
debc7065 736@node disk_images_fat_images
2c6cadd4
FB
737@subsection Virtual FAT disk images
738
739QEMU can automatically create a virtual FAT disk image from a
740directory tree. In order to use it, just type:
741
5fafdf24 742@example
3804da9d 743qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
744@end example
745
746Then you access access to all the files in the @file{/my_directory}
747directory without having to copy them in a disk image or to export
748them via SAMBA or NFS. The default access is @emph{read-only}.
749
750Floppies can be emulated with the @code{:floppy:} option:
751
5fafdf24 752@example
3804da9d 753qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
754@end example
755
756A read/write support is available for testing (beta stage) with the
757@code{:rw:} option:
758
5fafdf24 759@example
3804da9d 760qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
761@end example
762
763What you should @emph{never} do:
764@itemize
765@item use non-ASCII filenames ;
766@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
767@item expect it to work when loadvm'ing ;
768@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
769@end itemize
770
75818250
TS
771@node disk_images_nbd
772@subsection NBD access
773
774QEMU can access directly to block device exported using the Network Block Device
775protocol.
776
777@example
1d7d2a9d 778qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
779@end example
780
781If the NBD server is located on the same host, you can use an unix socket instead
782of an inet socket:
783
784@example
1d7d2a9d 785qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
786@end example
787
788In this case, the block device must be exported using qemu-nbd:
789
790@example
791qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
792@end example
793
794The use of qemu-nbd allows to share a disk between several guests:
795@example
796qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
797@end example
798
1d7d2a9d 799@noindent
75818250
TS
800and then you can use it with two guests:
801@example
1d7d2a9d
PB
802qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
803qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
804@end example
805
1d7d2a9d
PB
806If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
807own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 808@example
1d7d2a9d
PB
809qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
810qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
811@end example
812
813The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
814also available. Here are some example of the older syntax:
815@example
816qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
817qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
818qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
819@end example
820
42af9c30
MK
821@node disk_images_sheepdog
822@subsection Sheepdog disk images
823
824Sheepdog is a distributed storage system for QEMU. It provides highly
825available block level storage volumes that can be attached to
826QEMU-based virtual machines.
827
828You can create a Sheepdog disk image with the command:
829@example
5d6768e3 830qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
831@end example
832where @var{image} is the Sheepdog image name and @var{size} is its
833size.
834
835To import the existing @var{filename} to Sheepdog, you can use a
836convert command.
837@example
5d6768e3 838qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
839@end example
840
841You can boot from the Sheepdog disk image with the command:
842@example
5d6768e3 843qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
844@end example
845
846You can also create a snapshot of the Sheepdog image like qcow2.
847@example
5d6768e3 848qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
849@end example
850where @var{tag} is a tag name of the newly created snapshot.
851
852To boot from the Sheepdog snapshot, specify the tag name of the
853snapshot.
854@example
5d6768e3 855qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
856@end example
857
858You can create a cloned image from the existing snapshot.
859@example
5d6768e3 860qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
861@end example
862where @var{base} is a image name of the source snapshot and @var{tag}
863is its tag name.
864
1b8bbb46
MK
865You can use an unix socket instead of an inet socket:
866
867@example
868qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
869@end example
870
42af9c30
MK
871If the Sheepdog daemon doesn't run on the local host, you need to
872specify one of the Sheepdog servers to connect to.
873@example
5d6768e3
MK
874qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
875qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
876@end example
877
00984e39
RS
878@node disk_images_iscsi
879@subsection iSCSI LUNs
880
881iSCSI is a popular protocol used to access SCSI devices across a computer
882network.
883
884There are two different ways iSCSI devices can be used by QEMU.
885
886The first method is to mount the iSCSI LUN on the host, and make it appear as
887any other ordinary SCSI device on the host and then to access this device as a
888/dev/sd device from QEMU. How to do this differs between host OSes.
889
890The second method involves using the iSCSI initiator that is built into
891QEMU. This provides a mechanism that works the same way regardless of which
892host OS you are running QEMU on. This section will describe this second method
893of using iSCSI together with QEMU.
894
895In QEMU, iSCSI devices are described using special iSCSI URLs
896
897@example
898URL syntax:
899iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
900@end example
901
902Username and password are optional and only used if your target is set up
903using CHAP authentication for access control.
904Alternatively the username and password can also be set via environment
905variables to have these not show up in the process list
906
907@example
908export LIBISCSI_CHAP_USERNAME=<username>
909export LIBISCSI_CHAP_PASSWORD=<password>
910iscsi://<host>/<target-iqn-name>/<lun>
911@end example
912
f9dadc98
RS
913Various session related parameters can be set via special options, either
914in a configuration file provided via '-readconfig' or directly on the
915command line.
916
31459f46
RS
917If the initiator-name is not specified qemu will use a default name
918of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
919virtual machine.
920
921
f9dadc98
RS
922@example
923Setting a specific initiator name to use when logging in to the target
924-iscsi initiator-name=iqn.qemu.test:my-initiator
925@end example
926
927@example
928Controlling which type of header digest to negotiate with the target
929-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
930@end example
931
932These can also be set via a configuration file
933@example
934[iscsi]
935 user = "CHAP username"
936 password = "CHAP password"
937 initiator-name = "iqn.qemu.test:my-initiator"
938 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
939 header-digest = "CRC32C"
940@end example
941
942
943Setting the target name allows different options for different targets
944@example
945[iscsi "iqn.target.name"]
946 user = "CHAP username"
947 password = "CHAP password"
948 initiator-name = "iqn.qemu.test:my-initiator"
949 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
950 header-digest = "CRC32C"
951@end example
952
953
954Howto use a configuration file to set iSCSI configuration options:
955@example
956cat >iscsi.conf <<EOF
957[iscsi]
958 user = "me"
959 password = "my password"
960 initiator-name = "iqn.qemu.test:my-initiator"
961 header-digest = "CRC32C"
962EOF
963
964qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
965 -readconfig iscsi.conf
966@end example
967
968
00984e39
RS
969Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
970@example
971This example shows how to set up an iSCSI target with one CDROM and one DISK
972using the Linux STGT software target. This target is available on Red Hat based
973systems as the package 'scsi-target-utils'.
974
975tgtd --iscsi portal=127.0.0.1:3260
976tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
977tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
978 -b /IMAGES/disk.img --device-type=disk
979tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
980 -b /IMAGES/cd.iso --device-type=cd
981tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
982
f9dadc98
RS
983qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
984 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
985 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
986@end example
987
8809e289
BR
988@node disk_images_gluster
989@subsection GlusterFS disk images
00984e39 990
8809e289
BR
991GlusterFS is an user space distributed file system.
992
993You can boot from the GlusterFS disk image with the command:
994@example
995qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
996@end example
997
998@var{gluster} is the protocol.
999
1000@var{transport} specifies the transport type used to connect to gluster
1001management daemon (glusterd). Valid transport types are
1002tcp, unix and rdma. If a transport type isn't specified, then tcp
1003type is assumed.
1004
1005@var{server} specifies the server where the volume file specification for
1006the given volume resides. This can be either hostname, ipv4 address
1007or ipv6 address. ipv6 address needs to be within square brackets [ ].
1008If transport type is unix, then @var{server} field should not be specifed.
1009Instead @var{socket} field needs to be populated with the path to unix domain
1010socket.
1011
1012@var{port} is the port number on which glusterd is listening. This is optional
1013and if not specified, QEMU will send 0 which will make gluster to use the
1014default port. If the transport type is unix, then @var{port} should not be
1015specified.
1016
1017@var{volname} is the name of the gluster volume which contains the disk image.
1018
1019@var{image} is the path to the actual disk image that resides on gluster volume.
1020
1021You can create a GlusterFS disk image with the command:
1022@example
1023qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1024@end example
1025
1026Examples
1027@example
1028qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1029qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1030qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1031qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1032qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1033qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1034qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1035qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1036@end example
00984e39 1037
0a12ec87
RJ
1038@node disk_images_ssh
1039@subsection Secure Shell (ssh) disk images
1040
1041You can access disk images located on a remote ssh server
1042by using the ssh protocol:
1043
1044@example
1045qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1046@end example
1047
1048Alternative syntax using properties:
1049
1050@example
1051qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1052@end example
1053
1054@var{ssh} is the protocol.
1055
1056@var{user} is the remote user. If not specified, then the local
1057username is tried.
1058
1059@var{server} specifies the remote ssh server. Any ssh server can be
1060used, but it must implement the sftp-server protocol. Most Unix/Linux
1061systems should work without requiring any extra configuration.
1062
1063@var{port} is the port number on which sshd is listening. By default
1064the standard ssh port (22) is used.
1065
1066@var{path} is the path to the disk image.
1067
1068The optional @var{host_key_check} parameter controls how the remote
1069host's key is checked. The default is @code{yes} which means to use
1070the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1071turns off known-hosts checking. Or you can check that the host key
1072matches a specific fingerprint:
1073@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1074(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1075tools only use MD5 to print fingerprints).
1076
1077Currently authentication must be done using ssh-agent. Other
1078authentication methods may be supported in future.
1079
9a2d462e
RJ
1080Note: Many ssh servers do not support an @code{fsync}-style operation.
1081The ssh driver cannot guarantee that disk flush requests are
1082obeyed, and this causes a risk of disk corruption if the remote
1083server or network goes down during writes. The driver will
1084print a warning when @code{fsync} is not supported:
1085
1086warning: ssh server @code{ssh.example.com:22} does not support fsync
1087
1088With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1089supported.
0a12ec87 1090
debc7065 1091@node pcsys_network
9d4fb82e
FB
1092@section Network emulation
1093
4be456f1 1094QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1095target) and can connect them to an arbitrary number of Virtual Local
1096Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1097VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1098simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1099network stack can replace the TAP device to have a basic network
1100connection.
1101
1102@subsection VLANs
9d4fb82e 1103
41d03949
FB
1104QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1105connection between several network devices. These devices can be for
1106example QEMU virtual Ethernet cards or virtual Host ethernet devices
1107(TAP devices).
9d4fb82e 1108
41d03949
FB
1109@subsection Using TAP network interfaces
1110
1111This is the standard way to connect QEMU to a real network. QEMU adds
1112a virtual network device on your host (called @code{tapN}), and you
1113can then configure it as if it was a real ethernet card.
9d4fb82e 1114
8f40c388
FB
1115@subsubsection Linux host
1116
9d4fb82e
FB
1117As an example, you can download the @file{linux-test-xxx.tar.gz}
1118archive and copy the script @file{qemu-ifup} in @file{/etc} and
1119configure properly @code{sudo} so that the command @code{ifconfig}
1120contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1121that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1122device @file{/dev/net/tun} must be present.
1123
ee0f4751
FB
1124See @ref{sec_invocation} to have examples of command lines using the
1125TAP network interfaces.
9d4fb82e 1126
8f40c388
FB
1127@subsubsection Windows host
1128
1129There is a virtual ethernet driver for Windows 2000/XP systems, called
1130TAP-Win32. But it is not included in standard QEMU for Windows,
1131so you will need to get it separately. It is part of OpenVPN package,
1132so download OpenVPN from : @url{http://openvpn.net/}.
1133
9d4fb82e
FB
1134@subsection Using the user mode network stack
1135
41d03949
FB
1136By using the option @option{-net user} (default configuration if no
1137@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1138network stack (you don't need root privilege to use the virtual
41d03949 1139network). The virtual network configuration is the following:
9d4fb82e
FB
1140
1141@example
1142
41d03949
FB
1143 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1144 | (10.0.2.2)
9d4fb82e 1145 |
2518bd0d 1146 ----> DNS server (10.0.2.3)
3b46e624 1147 |
2518bd0d 1148 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1149@end example
1150
1151The QEMU VM behaves as if it was behind a firewall which blocks all
1152incoming connections. You can use a DHCP client to automatically
41d03949
FB
1153configure the network in the QEMU VM. The DHCP server assign addresses
1154to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1155
1156In order to check that the user mode network is working, you can ping
1157the address 10.0.2.2 and verify that you got an address in the range
115810.0.2.x from the QEMU virtual DHCP server.
1159
b415a407 1160Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1161would require root privileges. It means you can only ping the local
b415a407
FB
1162router (10.0.2.2).
1163
9bf05444
FB
1164When using the built-in TFTP server, the router is also the TFTP
1165server.
1166
1167When using the @option{-redir} option, TCP or UDP connections can be
1168redirected from the host to the guest. It allows for example to
1169redirect X11, telnet or SSH connections.
443f1376 1170
41d03949
FB
1171@subsection Connecting VLANs between QEMU instances
1172
1173Using the @option{-net socket} option, it is possible to make VLANs
1174that span several QEMU instances. See @ref{sec_invocation} to have a
1175basic example.
1176
576fd0a1 1177@node pcsys_other_devs
6cbf4c8c
CM
1178@section Other Devices
1179
1180@subsection Inter-VM Shared Memory device
1181
1182With KVM enabled on a Linux host, a shared memory device is available. Guests
1183map a POSIX shared memory region into the guest as a PCI device that enables
1184zero-copy communication to the application level of the guests. The basic
1185syntax is:
1186
1187@example
3804da9d 1188qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1189@end example
1190
1191If desired, interrupts can be sent between guest VMs accessing the same shared
1192memory region. Interrupt support requires using a shared memory server and
1193using a chardev socket to connect to it. The code for the shared memory server
1194is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1195memory server is:
1196
1197@example
3804da9d
SW
1198qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1199 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1200qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1201@end example
1202
1203When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1204using the same server to communicate via interrupts. Guests can read their
1205VM ID from a device register (see example code). Since receiving the shared
1206memory region from the server is asynchronous, there is a (small) chance the
1207guest may boot before the shared memory is attached. To allow an application
1208to ensure shared memory is attached, the VM ID register will return -1 (an
1209invalid VM ID) until the memory is attached. Once the shared memory is
1210attached, the VM ID will return the guest's valid VM ID. With these semantics,
1211the guest application can check to ensure the shared memory is attached to the
1212guest before proceeding.
1213
1214The @option{role} argument can be set to either master or peer and will affect
1215how the shared memory is migrated. With @option{role=master}, the guest will
1216copy the shared memory on migration to the destination host. With
1217@option{role=peer}, the guest will not be able to migrate with the device attached.
1218With the @option{peer} case, the device should be detached and then reattached
1219after migration using the PCI hotplug support.
1220
9d4fb82e
FB
1221@node direct_linux_boot
1222@section Direct Linux Boot
1f673135
FB
1223
1224This section explains how to launch a Linux kernel inside QEMU without
1225having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1226kernel testing.
1f673135 1227
ee0f4751 1228The syntax is:
1f673135 1229@example
3804da9d 1230qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1231@end example
1232
ee0f4751
FB
1233Use @option{-kernel} to provide the Linux kernel image and
1234@option{-append} to give the kernel command line arguments. The
1235@option{-initrd} option can be used to provide an INITRD image.
1f673135 1236
ee0f4751
FB
1237When using the direct Linux boot, a disk image for the first hard disk
1238@file{hda} is required because its boot sector is used to launch the
1239Linux kernel.
1f673135 1240
ee0f4751
FB
1241If you do not need graphical output, you can disable it and redirect
1242the virtual serial port and the QEMU monitor to the console with the
1243@option{-nographic} option. The typical command line is:
1f673135 1244@example
3804da9d
SW
1245qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1246 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1247@end example
1248
ee0f4751
FB
1249Use @key{Ctrl-a c} to switch between the serial console and the
1250monitor (@pxref{pcsys_keys}).
1f673135 1251
debc7065 1252@node pcsys_usb
b389dbfb
FB
1253@section USB emulation
1254
0aff66b5
PB
1255QEMU emulates a PCI UHCI USB controller. You can virtually plug
1256virtual USB devices or real host USB devices (experimental, works only
071c9394 1257on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1258as necessary to connect multiple USB devices.
b389dbfb 1259
0aff66b5
PB
1260@menu
1261* usb_devices::
1262* host_usb_devices::
1263@end menu
1264@node usb_devices
1265@subsection Connecting USB devices
b389dbfb 1266
0aff66b5
PB
1267USB devices can be connected with the @option{-usbdevice} commandline option
1268or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1269
db380c06
AZ
1270@table @code
1271@item mouse
0aff66b5 1272Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1273@item tablet
c6d46c20 1274Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1275This means QEMU is able to report the mouse position without having
0aff66b5 1276to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1277@item disk:@var{file}
0aff66b5 1278Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1279@item host:@var{bus.addr}
0aff66b5
PB
1280Pass through the host device identified by @var{bus.addr}
1281(Linux only)
db380c06 1282@item host:@var{vendor_id:product_id}
0aff66b5
PB
1283Pass through the host device identified by @var{vendor_id:product_id}
1284(Linux only)
db380c06 1285@item wacom-tablet
f6d2a316
AZ
1286Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1287above but it can be used with the tslib library because in addition to touch
1288coordinates it reports touch pressure.
db380c06 1289@item keyboard
47b2d338 1290Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1291@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1292Serial converter. This emulates an FTDI FT232BM chip connected to host character
1293device @var{dev}. The available character devices are the same as for the
1294@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1295used to override the default 0403:6001. For instance,
db380c06
AZ
1296@example
1297usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1298@end example
1299will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1300serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1301@item braille
1302Braille device. This will use BrlAPI to display the braille output on a real
1303or fake device.
9ad97e65
AZ
1304@item net:@var{options}
1305Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1306specifies NIC options as with @code{-net nic,}@var{options} (see description).
1307For instance, user-mode networking can be used with
6c9f886c 1308@example
3804da9d 1309qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1310@end example
1311Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1312@item bt[:@var{hci-type}]
1313Bluetooth dongle whose type is specified in the same format as with
1314the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1315no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1316This USB device implements the USB Transport Layer of HCI. Example
1317usage:
1318@example
3804da9d 1319qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1320@end example
0aff66b5 1321@end table
b389dbfb 1322
0aff66b5 1323@node host_usb_devices
b389dbfb
FB
1324@subsection Using host USB devices on a Linux host
1325
1326WARNING: this is an experimental feature. QEMU will slow down when
1327using it. USB devices requiring real time streaming (i.e. USB Video
1328Cameras) are not supported yet.
1329
1330@enumerate
5fafdf24 1331@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1332is actually using the USB device. A simple way to do that is simply to
1333disable the corresponding kernel module by renaming it from @file{mydriver.o}
1334to @file{mydriver.o.disabled}.
1335
1336@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1337@example
1338ls /proc/bus/usb
1339001 devices drivers
1340@end example
1341
1342@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1343@example
1344chown -R myuid /proc/bus/usb
1345@end example
1346
1347@item Launch QEMU and do in the monitor:
5fafdf24 1348@example
b389dbfb
FB
1349info usbhost
1350 Device 1.2, speed 480 Mb/s
1351 Class 00: USB device 1234:5678, USB DISK
1352@end example
1353You should see the list of the devices you can use (Never try to use
1354hubs, it won't work).
1355
1356@item Add the device in QEMU by using:
5fafdf24 1357@example
b389dbfb
FB
1358usb_add host:1234:5678
1359@end example
1360
1361Normally the guest OS should report that a new USB device is
1362plugged. You can use the option @option{-usbdevice} to do the same.
1363
1364@item Now you can try to use the host USB device in QEMU.
1365
1366@end enumerate
1367
1368When relaunching QEMU, you may have to unplug and plug again the USB
1369device to make it work again (this is a bug).
1370
f858dcae
TS
1371@node vnc_security
1372@section VNC security
1373
1374The VNC server capability provides access to the graphical console
1375of the guest VM across the network. This has a number of security
1376considerations depending on the deployment scenarios.
1377
1378@menu
1379* vnc_sec_none::
1380* vnc_sec_password::
1381* vnc_sec_certificate::
1382* vnc_sec_certificate_verify::
1383* vnc_sec_certificate_pw::
2f9606b3
AL
1384* vnc_sec_sasl::
1385* vnc_sec_certificate_sasl::
f858dcae 1386* vnc_generate_cert::
2f9606b3 1387* vnc_setup_sasl::
f858dcae
TS
1388@end menu
1389@node vnc_sec_none
1390@subsection Without passwords
1391
1392The simplest VNC server setup does not include any form of authentication.
1393For this setup it is recommended to restrict it to listen on a UNIX domain
1394socket only. For example
1395
1396@example
3804da9d 1397qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1398@end example
1399
1400This ensures that only users on local box with read/write access to that
1401path can access the VNC server. To securely access the VNC server from a
1402remote machine, a combination of netcat+ssh can be used to provide a secure
1403tunnel.
1404
1405@node vnc_sec_password
1406@subsection With passwords
1407
1408The VNC protocol has limited support for password based authentication. Since
1409the protocol limits passwords to 8 characters it should not be considered
1410to provide high security. The password can be fairly easily brute-forced by
1411a client making repeat connections. For this reason, a VNC server using password
1412authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1413or UNIX domain sockets. Password authentication is not supported when operating
1414in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1415authentication is requested with the @code{password} option, and then once QEMU
1416is running the password is set with the monitor. Until the monitor is used to
1417set the password all clients will be rejected.
f858dcae
TS
1418
1419@example
3804da9d 1420qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1421(qemu) change vnc password
1422Password: ********
1423(qemu)
1424@end example
1425
1426@node vnc_sec_certificate
1427@subsection With x509 certificates
1428
1429The QEMU VNC server also implements the VeNCrypt extension allowing use of
1430TLS for encryption of the session, and x509 certificates for authentication.
1431The use of x509 certificates is strongly recommended, because TLS on its
1432own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1433support provides a secure session, but no authentication. This allows any
1434client to connect, and provides an encrypted session.
1435
1436@example
3804da9d 1437qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1438@end example
1439
1440In the above example @code{/etc/pki/qemu} should contain at least three files,
1441@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1442users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1443NB the @code{server-key.pem} file should be protected with file mode 0600 to
1444only be readable by the user owning it.
1445
1446@node vnc_sec_certificate_verify
1447@subsection With x509 certificates and client verification
1448
1449Certificates can also provide a means to authenticate the client connecting.
1450The server will request that the client provide a certificate, which it will
1451then validate against the CA certificate. This is a good choice if deploying
1452in an environment with a private internal certificate authority.
1453
1454@example
3804da9d 1455qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1456@end example
1457
1458
1459@node vnc_sec_certificate_pw
1460@subsection With x509 certificates, client verification and passwords
1461
1462Finally, the previous method can be combined with VNC password authentication
1463to provide two layers of authentication for clients.
1464
1465@example
3804da9d 1466qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1467(qemu) change vnc password
1468Password: ********
1469(qemu)
1470@end example
1471
2f9606b3
AL
1472
1473@node vnc_sec_sasl
1474@subsection With SASL authentication
1475
1476The SASL authentication method is a VNC extension, that provides an
1477easily extendable, pluggable authentication method. This allows for
1478integration with a wide range of authentication mechanisms, such as
1479PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1480The strength of the authentication depends on the exact mechanism
1481configured. If the chosen mechanism also provides a SSF layer, then
1482it will encrypt the datastream as well.
1483
1484Refer to the later docs on how to choose the exact SASL mechanism
1485used for authentication, but assuming use of one supporting SSF,
1486then QEMU can be launched with:
1487
1488@example
3804da9d 1489qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1490@end example
1491
1492@node vnc_sec_certificate_sasl
1493@subsection With x509 certificates and SASL authentication
1494
1495If the desired SASL authentication mechanism does not supported
1496SSF layers, then it is strongly advised to run it in combination
1497with TLS and x509 certificates. This provides securely encrypted
1498data stream, avoiding risk of compromising of the security
1499credentials. This can be enabled, by combining the 'sasl' option
1500with the aforementioned TLS + x509 options:
1501
1502@example
3804da9d 1503qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1504@end example
1505
1506
f858dcae
TS
1507@node vnc_generate_cert
1508@subsection Generating certificates for VNC
1509
1510The GNU TLS packages provides a command called @code{certtool} which can
1511be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1512is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1513each server. If using certificates for authentication, then each client
1514will also need to be issued a certificate. The recommendation is for the
1515server to keep its certificates in either @code{/etc/pki/qemu} or for
1516unprivileged users in @code{$HOME/.pki/qemu}.
1517
1518@menu
1519* vnc_generate_ca::
1520* vnc_generate_server::
1521* vnc_generate_client::
1522@end menu
1523@node vnc_generate_ca
1524@subsubsection Setup the Certificate Authority
1525
1526This step only needs to be performed once per organization / organizational
1527unit. First the CA needs a private key. This key must be kept VERY secret
1528and secure. If this key is compromised the entire trust chain of the certificates
1529issued with it is lost.
1530
1531@example
1532# certtool --generate-privkey > ca-key.pem
1533@end example
1534
1535A CA needs to have a public certificate. For simplicity it can be a self-signed
1536certificate, or one issue by a commercial certificate issuing authority. To
1537generate a self-signed certificate requires one core piece of information, the
1538name of the organization.
1539
1540@example
1541# cat > ca.info <<EOF
1542cn = Name of your organization
1543ca
1544cert_signing_key
1545EOF
1546# certtool --generate-self-signed \
1547 --load-privkey ca-key.pem
1548 --template ca.info \
1549 --outfile ca-cert.pem
1550@end example
1551
1552The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1553TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1554
1555@node vnc_generate_server
1556@subsubsection Issuing server certificates
1557
1558Each server (or host) needs to be issued with a key and certificate. When connecting
1559the certificate is sent to the client which validates it against the CA certificate.
1560The core piece of information for a server certificate is the hostname. This should
1561be the fully qualified hostname that the client will connect with, since the client
1562will typically also verify the hostname in the certificate. On the host holding the
1563secure CA private key:
1564
1565@example
1566# cat > server.info <<EOF
1567organization = Name of your organization
1568cn = server.foo.example.com
1569tls_www_server
1570encryption_key
1571signing_key
1572EOF
1573# certtool --generate-privkey > server-key.pem
1574# certtool --generate-certificate \
1575 --load-ca-certificate ca-cert.pem \
1576 --load-ca-privkey ca-key.pem \
1577 --load-privkey server server-key.pem \
1578 --template server.info \
1579 --outfile server-cert.pem
1580@end example
1581
1582The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1583to the server for which they were generated. The @code{server-key.pem} is security
1584sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1585
1586@node vnc_generate_client
1587@subsubsection Issuing client certificates
1588
1589If the QEMU VNC server is to use the @code{x509verify} option to validate client
1590certificates as its authentication mechanism, each client also needs to be issued
1591a certificate. The client certificate contains enough metadata to uniquely identify
1592the client, typically organization, state, city, building, etc. On the host holding
1593the secure CA private key:
1594
1595@example
1596# cat > client.info <<EOF
1597country = GB
1598state = London
1599locality = London
1600organiazation = Name of your organization
1601cn = client.foo.example.com
1602tls_www_client
1603encryption_key
1604signing_key
1605EOF
1606# certtool --generate-privkey > client-key.pem
1607# certtool --generate-certificate \
1608 --load-ca-certificate ca-cert.pem \
1609 --load-ca-privkey ca-key.pem \
1610 --load-privkey client-key.pem \
1611 --template client.info \
1612 --outfile client-cert.pem
1613@end example
1614
1615The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1616copied to the client for which they were generated.
1617
2f9606b3
AL
1618
1619@node vnc_setup_sasl
1620
1621@subsection Configuring SASL mechanisms
1622
1623The following documentation assumes use of the Cyrus SASL implementation on a
1624Linux host, but the principals should apply to any other SASL impl. When SASL
1625is enabled, the mechanism configuration will be loaded from system default
1626SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1627unprivileged user, an environment variable SASL_CONF_PATH can be used
1628to make it search alternate locations for the service config.
1629
1630The default configuration might contain
1631
1632@example
1633mech_list: digest-md5
1634sasldb_path: /etc/qemu/passwd.db
1635@end example
1636
1637This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1638Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1639in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1640command. While this mechanism is easy to configure and use, it is not
1641considered secure by modern standards, so only suitable for developers /
1642ad-hoc testing.
1643
1644A more serious deployment might use Kerberos, which is done with the 'gssapi'
1645mechanism
1646
1647@example
1648mech_list: gssapi
1649keytab: /etc/qemu/krb5.tab
1650@end example
1651
1652For this to work the administrator of your KDC must generate a Kerberos
1653principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1654replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1655machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1656
1657Other configurations will be left as an exercise for the reader. It should
1658be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1659encryption. For all other mechanisms, VNC should always be configured to
1660use TLS and x509 certificates to protect security credentials from snooping.
1661
0806e3f6 1662@node gdb_usage
da415d54
FB
1663@section GDB usage
1664
1665QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1666'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1667
b65ee4fa 1668In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1669gdb connection:
1670@example
3804da9d
SW
1671qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1672 -append "root=/dev/hda"
da415d54
FB
1673Connected to host network interface: tun0
1674Waiting gdb connection on port 1234
1675@end example
1676
1677Then launch gdb on the 'vmlinux' executable:
1678@example
1679> gdb vmlinux
1680@end example
1681
1682In gdb, connect to QEMU:
1683@example
6c9bf893 1684(gdb) target remote localhost:1234
da415d54
FB
1685@end example
1686
1687Then you can use gdb normally. For example, type 'c' to launch the kernel:
1688@example
1689(gdb) c
1690@end example
1691
0806e3f6
FB
1692Here are some useful tips in order to use gdb on system code:
1693
1694@enumerate
1695@item
1696Use @code{info reg} to display all the CPU registers.
1697@item
1698Use @code{x/10i $eip} to display the code at the PC position.
1699@item
1700Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1701@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1702@end enumerate
1703
60897d36
EI
1704Advanced debugging options:
1705
1706The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1707@table @code
60897d36
EI
1708@item maintenance packet qqemu.sstepbits
1709
1710This will display the MASK bits used to control the single stepping IE:
1711@example
1712(gdb) maintenance packet qqemu.sstepbits
1713sending: "qqemu.sstepbits"
1714received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1715@end example
1716@item maintenance packet qqemu.sstep
1717
1718This will display the current value of the mask used when single stepping IE:
1719@example
1720(gdb) maintenance packet qqemu.sstep
1721sending: "qqemu.sstep"
1722received: "0x7"
1723@end example
1724@item maintenance packet Qqemu.sstep=HEX_VALUE
1725
1726This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1727@example
1728(gdb) maintenance packet Qqemu.sstep=0x5
1729sending: "qemu.sstep=0x5"
1730received: "OK"
1731@end example
94d45e44 1732@end table
60897d36 1733
debc7065 1734@node pcsys_os_specific
1a084f3d
FB
1735@section Target OS specific information
1736
1737@subsection Linux
1738
15a34c63
FB
1739To have access to SVGA graphic modes under X11, use the @code{vesa} or
1740the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1741color depth in the guest and the host OS.
1a084f3d 1742
e3371e62
FB
1743When using a 2.6 guest Linux kernel, you should add the option
1744@code{clock=pit} on the kernel command line because the 2.6 Linux
1745kernels make very strict real time clock checks by default that QEMU
1746cannot simulate exactly.
1747
7c3fc84d
FB
1748When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1749not activated because QEMU is slower with this patch. The QEMU
1750Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1751Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1752patch by default. Newer kernels don't have it.
1753
1a084f3d
FB
1754@subsection Windows
1755
1756If you have a slow host, using Windows 95 is better as it gives the
1757best speed. Windows 2000 is also a good choice.
1758
e3371e62
FB
1759@subsubsection SVGA graphic modes support
1760
1761QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1762card. All Windows versions starting from Windows 95 should recognize
1763and use this graphic card. For optimal performances, use 16 bit color
1764depth in the guest and the host OS.
1a084f3d 1765
3cb0853a
FB
1766If you are using Windows XP as guest OS and if you want to use high
1767resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17681280x1024x16), then you should use the VESA VBE virtual graphic card
1769(option @option{-std-vga}).
1770
e3371e62
FB
1771@subsubsection CPU usage reduction
1772
1773Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1774instruction. The result is that it takes host CPU cycles even when
1775idle. You can install the utility from
1776@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1777problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1778
9d0a8e6f 1779@subsubsection Windows 2000 disk full problem
e3371e62 1780
9d0a8e6f
FB
1781Windows 2000 has a bug which gives a disk full problem during its
1782installation. When installing it, use the @option{-win2k-hack} QEMU
1783option to enable a specific workaround. After Windows 2000 is
1784installed, you no longer need this option (this option slows down the
1785IDE transfers).
e3371e62 1786
6cc721cf
FB
1787@subsubsection Windows 2000 shutdown
1788
1789Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1790can. It comes from the fact that Windows 2000 does not automatically
1791use the APM driver provided by the BIOS.
1792
1793In order to correct that, do the following (thanks to Struan
1794Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1795Add/Troubleshoot a device => Add a new device & Next => No, select the
1796hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1797(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1798correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1799
1800@subsubsection Share a directory between Unix and Windows
1801
1802See @ref{sec_invocation} about the help of the option @option{-smb}.
1803
2192c332 1804@subsubsection Windows XP security problem
e3371e62
FB
1805
1806Some releases of Windows XP install correctly but give a security
1807error when booting:
1808@example
1809A problem is preventing Windows from accurately checking the
1810license for this computer. Error code: 0x800703e6.
1811@end example
e3371e62 1812
2192c332
FB
1813The workaround is to install a service pack for XP after a boot in safe
1814mode. Then reboot, and the problem should go away. Since there is no
1815network while in safe mode, its recommended to download the full
1816installation of SP1 or SP2 and transfer that via an ISO or using the
1817vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1818
a0a821a4
FB
1819@subsection MS-DOS and FreeDOS
1820
1821@subsubsection CPU usage reduction
1822
1823DOS does not correctly use the CPU HLT instruction. The result is that
1824it takes host CPU cycles even when idle. You can install the utility
1825from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1826problem.
1827
debc7065 1828@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1829@chapter QEMU System emulator for non PC targets
1830
1831QEMU is a generic emulator and it emulates many non PC
1832machines. Most of the options are similar to the PC emulator. The
4be456f1 1833differences are mentioned in the following sections.
3f9f3aa1 1834
debc7065 1835@menu
7544a042 1836* PowerPC System emulator::
24d4de45
TS
1837* Sparc32 System emulator::
1838* Sparc64 System emulator::
1839* MIPS System emulator::
1840* ARM System emulator::
1841* ColdFire System emulator::
7544a042
SW
1842* Cris System emulator::
1843* Microblaze System emulator::
1844* SH4 System emulator::
3aeaea65 1845* Xtensa System emulator::
debc7065
FB
1846@end menu
1847
7544a042
SW
1848@node PowerPC System emulator
1849@section PowerPC System emulator
1850@cindex system emulation (PowerPC)
1a084f3d 1851
15a34c63
FB
1852Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1853or PowerMac PowerPC system.
1a084f3d 1854
b671f9ed 1855QEMU emulates the following PowerMac peripherals:
1a084f3d 1856
15a34c63 1857@itemize @minus
5fafdf24 1858@item
006f3a48 1859UniNorth or Grackle PCI Bridge
15a34c63
FB
1860@item
1861PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1862@item
15a34c63 18632 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1864@item
15a34c63
FB
1865NE2000 PCI adapters
1866@item
1867Non Volatile RAM
1868@item
1869VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1870@end itemize
1871
b671f9ed 1872QEMU emulates the following PREP peripherals:
52c00a5f
FB
1873
1874@itemize @minus
5fafdf24 1875@item
15a34c63
FB
1876PCI Bridge
1877@item
1878PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1879@item
52c00a5f
FB
18802 IDE interfaces with hard disk and CD-ROM support
1881@item
1882Floppy disk
5fafdf24 1883@item
15a34c63 1884NE2000 network adapters
52c00a5f
FB
1885@item
1886Serial port
1887@item
1888PREP Non Volatile RAM
15a34c63
FB
1889@item
1890PC compatible keyboard and mouse.
52c00a5f
FB
1891@end itemize
1892
15a34c63 1893QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1894@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1895
992e5acd 1896Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1897for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1898v2) portable firmware implementation. The goal is to implement a 100%
1899IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1900
15a34c63
FB
1901@c man begin OPTIONS
1902
1903The following options are specific to the PowerPC emulation:
1904
1905@table @option
1906
4e257e5e 1907@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1908
1909Set the initial VGA graphic mode. The default is 800x600x15.
1910
4e257e5e 1911@item -prom-env @var{string}
95efd11c
BS
1912
1913Set OpenBIOS variables in NVRAM, for example:
1914
1915@example
1916qemu-system-ppc -prom-env 'auto-boot?=false' \
1917 -prom-env 'boot-device=hd:2,\yaboot' \
1918 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1919@end example
1920
1921These variables are not used by Open Hack'Ware.
1922
15a34c63
FB
1923@end table
1924
5fafdf24 1925@c man end
15a34c63
FB
1926
1927
52c00a5f 1928More information is available at
3f9f3aa1 1929@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1930
24d4de45
TS
1931@node Sparc32 System emulator
1932@section Sparc32 System emulator
7544a042 1933@cindex system emulation (Sparc32)
e80cfcfc 1934
34a3d239
BS
1935Use the executable @file{qemu-system-sparc} to simulate the following
1936Sun4m architecture machines:
1937@itemize @minus
1938@item
1939SPARCstation 4
1940@item
1941SPARCstation 5
1942@item
1943SPARCstation 10
1944@item
1945SPARCstation 20
1946@item
1947SPARCserver 600MP
1948@item
1949SPARCstation LX
1950@item
1951SPARCstation Voyager
1952@item
1953SPARCclassic
1954@item
1955SPARCbook
1956@end itemize
1957
1958The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1959but Linux limits the number of usable CPUs to 4.
e80cfcfc 1960
6a4e1771 1961QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1962
1963@itemize @minus
3475187d 1964@item
6a4e1771 1965IOMMU
e80cfcfc
FB
1966@item
1967TCX Frame buffer
5fafdf24 1968@item
e80cfcfc
FB
1969Lance (Am7990) Ethernet
1970@item
34a3d239 1971Non Volatile RAM M48T02/M48T08
e80cfcfc 1972@item
3475187d
FB
1973Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1974and power/reset logic
1975@item
1976ESP SCSI controller with hard disk and CD-ROM support
1977@item
6a3b9cc9 1978Floppy drive (not on SS-600MP)
a2502b58
BS
1979@item
1980CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1981@end itemize
1982
6a3b9cc9
BS
1983The number of peripherals is fixed in the architecture. Maximum
1984memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1985others 2047MB.
3475187d 1986
30a604f3 1987Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1988@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1989firmware implementation. The goal is to implement a 100% IEEE
19901275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1991
1992A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1993the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1994some kernel versions work. Please note that currently Solaris kernels
1995don't work probably due to interface issues between OpenBIOS and
1996Solaris.
3475187d
FB
1997
1998@c man begin OPTIONS
1999
a2502b58 2000The following options are specific to the Sparc32 emulation:
3475187d
FB
2001
2002@table @option
2003
4e257e5e 2004@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2005
a2502b58
BS
2006Set the initial TCX graphic mode. The default is 1024x768x8, currently
2007the only other possible mode is 1024x768x24.
3475187d 2008
4e257e5e 2009@item -prom-env @var{string}
66508601
BS
2010
2011Set OpenBIOS variables in NVRAM, for example:
2012
2013@example
2014qemu-system-sparc -prom-env 'auto-boot?=false' \
2015 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2016@end example
2017
6a4e1771 2018@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2019
2020Set the emulated machine type. Default is SS-5.
2021
3475187d
FB
2022@end table
2023
5fafdf24 2024@c man end
3475187d 2025
24d4de45
TS
2026@node Sparc64 System emulator
2027@section Sparc64 System emulator
7544a042 2028@cindex system emulation (Sparc64)
e80cfcfc 2029
34a3d239
BS
2030Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2031(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2032Niagara (T1) machine. The emulator is not usable for anything yet, but
2033it can launch some kernels.
b756921a 2034
c7ba218d 2035QEMU emulates the following peripherals:
83469015
FB
2036
2037@itemize @minus
2038@item
5fafdf24 2039UltraSparc IIi APB PCI Bridge
83469015
FB
2040@item
2041PCI VGA compatible card with VESA Bochs Extensions
2042@item
34a3d239
BS
2043PS/2 mouse and keyboard
2044@item
83469015
FB
2045Non Volatile RAM M48T59
2046@item
2047PC-compatible serial ports
c7ba218d
BS
2048@item
20492 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2050@item
2051Floppy disk
83469015
FB
2052@end itemize
2053
c7ba218d
BS
2054@c man begin OPTIONS
2055
2056The following options are specific to the Sparc64 emulation:
2057
2058@table @option
2059
4e257e5e 2060@item -prom-env @var{string}
34a3d239
BS
2061
2062Set OpenBIOS variables in NVRAM, for example:
2063
2064@example
2065qemu-system-sparc64 -prom-env 'auto-boot?=false'
2066@end example
2067
2068@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2069
2070Set the emulated machine type. The default is sun4u.
2071
2072@end table
2073
2074@c man end
2075
24d4de45
TS
2076@node MIPS System emulator
2077@section MIPS System emulator
7544a042 2078@cindex system emulation (MIPS)
9d0a8e6f 2079
d9aedc32
TS
2080Four executables cover simulation of 32 and 64-bit MIPS systems in
2081both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2082@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2083Five different machine types are emulated:
24d4de45
TS
2084
2085@itemize @minus
2086@item
2087A generic ISA PC-like machine "mips"
2088@item
2089The MIPS Malta prototype board "malta"
2090@item
d9aedc32 2091An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2092@item
f0fc6f8f 2093MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2094@item
2095A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2096@end itemize
2097
2098The generic emulation is supported by Debian 'Etch' and is able to
2099install Debian into a virtual disk image. The following devices are
2100emulated:
3f9f3aa1
FB
2101
2102@itemize @minus
5fafdf24 2103@item
6bf5b4e8 2104A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2105@item
2106PC style serial port
2107@item
24d4de45
TS
2108PC style IDE disk
2109@item
3f9f3aa1
FB
2110NE2000 network card
2111@end itemize
2112
24d4de45
TS
2113The Malta emulation supports the following devices:
2114
2115@itemize @minus
2116@item
0b64d008 2117Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2118@item
2119PIIX4 PCI/USB/SMbus controller
2120@item
2121The Multi-I/O chip's serial device
2122@item
3a2eeac0 2123PCI network cards (PCnet32 and others)
24d4de45
TS
2124@item
2125Malta FPGA serial device
2126@item
1f605a76 2127Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2128@end itemize
2129
2130The ACER Pica emulation supports:
2131
2132@itemize @minus
2133@item
2134MIPS R4000 CPU
2135@item
2136PC-style IRQ and DMA controllers
2137@item
2138PC Keyboard
2139@item
2140IDE controller
2141@end itemize
3f9f3aa1 2142
b5e4946f 2143The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2144to what the proprietary MIPS emulator uses for running Linux.
2145It supports:
6bf5b4e8
TS
2146
2147@itemize @minus
2148@item
2149A range of MIPS CPUs, default is the 24Kf
2150@item
2151PC style serial port
2152@item
2153MIPSnet network emulation
2154@end itemize
2155
88cb0a02
AJ
2156The MIPS Magnum R4000 emulation supports:
2157
2158@itemize @minus
2159@item
2160MIPS R4000 CPU
2161@item
2162PC-style IRQ controller
2163@item
2164PC Keyboard
2165@item
2166SCSI controller
2167@item
2168G364 framebuffer
2169@end itemize
2170
2171
24d4de45
TS
2172@node ARM System emulator
2173@section ARM System emulator
7544a042 2174@cindex system emulation (ARM)
3f9f3aa1
FB
2175
2176Use the executable @file{qemu-system-arm} to simulate a ARM
2177machine. The ARM Integrator/CP board is emulated with the following
2178devices:
2179
2180@itemize @minus
2181@item
9ee6e8bb 2182ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2183@item
2184Two PL011 UARTs
5fafdf24 2185@item
3f9f3aa1 2186SMC 91c111 Ethernet adapter
00a9bf19
PB
2187@item
2188PL110 LCD controller
2189@item
2190PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2191@item
2192PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2193@end itemize
2194
2195The ARM Versatile baseboard is emulated with the following devices:
2196
2197@itemize @minus
2198@item
9ee6e8bb 2199ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2200@item
2201PL190 Vectored Interrupt Controller
2202@item
2203Four PL011 UARTs
5fafdf24 2204@item
00a9bf19
PB
2205SMC 91c111 Ethernet adapter
2206@item
2207PL110 LCD controller
2208@item
2209PL050 KMI with PS/2 keyboard and mouse.
2210@item
2211PCI host bridge. Note the emulated PCI bridge only provides access to
2212PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2213This means some devices (eg. ne2k_pci NIC) are not usable, and others
2214(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2215mapped control registers.
e6de1bad
PB
2216@item
2217PCI OHCI USB controller.
2218@item
2219LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2220@item
2221PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2222@end itemize
2223
21a88941
PB
2224Several variants of the ARM RealView baseboard are emulated,
2225including the EB, PB-A8 and PBX-A9. Due to interactions with the
2226bootloader, only certain Linux kernel configurations work out
2227of the box on these boards.
2228
2229Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2230enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2231should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2232disabled and expect 1024M RAM.
2233
40c5c6cd 2234The following devices are emulated:
d7739d75
PB
2235
2236@itemize @minus
2237@item
f7c70325 2238ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2239@item
2240ARM AMBA Generic/Distributed Interrupt Controller
2241@item
2242Four PL011 UARTs
5fafdf24 2243@item
0ef849d7 2244SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2245@item
2246PL110 LCD controller
2247@item
2248PL050 KMI with PS/2 keyboard and mouse
2249@item
2250PCI host bridge
2251@item
2252PCI OHCI USB controller
2253@item
2254LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2255@item
2256PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2257@end itemize
2258
b00052e4
AZ
2259The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2260and "Terrier") emulation includes the following peripherals:
2261
2262@itemize @minus
2263@item
2264Intel PXA270 System-on-chip (ARM V5TE core)
2265@item
2266NAND Flash memory
2267@item
2268IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2269@item
2270On-chip OHCI USB controller
2271@item
2272On-chip LCD controller
2273@item
2274On-chip Real Time Clock
2275@item
2276TI ADS7846 touchscreen controller on SSP bus
2277@item
2278Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2279@item
2280GPIO-connected keyboard controller and LEDs
2281@item
549444e1 2282Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2283@item
2284Three on-chip UARTs
2285@item
2286WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2287@end itemize
2288
02645926
AZ
2289The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2290following elements:
2291
2292@itemize @minus
2293@item
2294Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2295@item
2296ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2297@item
2298On-chip LCD controller
2299@item
2300On-chip Real Time Clock
2301@item
2302TI TSC2102i touchscreen controller / analog-digital converter / Audio
2303CODEC, connected through MicroWire and I@math{^2}S busses
2304@item
2305GPIO-connected matrix keypad
2306@item
2307Secure Digital card connected to OMAP MMC/SD host
2308@item
2309Three on-chip UARTs
2310@end itemize
2311
c30bb264
AZ
2312Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2313emulation supports the following elements:
2314
2315@itemize @minus
2316@item
2317Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2318@item
2319RAM and non-volatile OneNAND Flash memories
2320@item
2321Display connected to EPSON remote framebuffer chip and OMAP on-chip
2322display controller and a LS041y3 MIPI DBI-C controller
2323@item
2324TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2325driven through SPI bus
2326@item
2327National Semiconductor LM8323-controlled qwerty keyboard driven
2328through I@math{^2}C bus
2329@item
2330Secure Digital card connected to OMAP MMC/SD host
2331@item
2332Three OMAP on-chip UARTs and on-chip STI debugging console
2333@item
40c5c6cd 2334A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2335@item
c30bb264
AZ
2336Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2337TUSB6010 chip - only USB host mode is supported
2338@item
2339TI TMP105 temperature sensor driven through I@math{^2}C bus
2340@item
2341TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2342@item
2343Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2344through CBUS
2345@end itemize
2346
9ee6e8bb
PB
2347The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2348devices:
2349
2350@itemize @minus
2351@item
2352Cortex-M3 CPU core.
2353@item
235464k Flash and 8k SRAM.
2355@item
2356Timers, UARTs, ADC and I@math{^2}C interface.
2357@item
2358OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2359@end itemize
2360
2361The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2362devices:
2363
2364@itemize @minus
2365@item
2366Cortex-M3 CPU core.
2367@item
2368256k Flash and 64k SRAM.
2369@item
2370Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2371@item
2372OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2373@end itemize
2374
57cd6e97
AZ
2375The Freecom MusicPal internet radio emulation includes the following
2376elements:
2377
2378@itemize @minus
2379@item
2380Marvell MV88W8618 ARM core.
2381@item
238232 MB RAM, 256 KB SRAM, 8 MB flash.
2383@item
2384Up to 2 16550 UARTs
2385@item
2386MV88W8xx8 Ethernet controller
2387@item
2388MV88W8618 audio controller, WM8750 CODEC and mixer
2389@item
e080e785 2390128×64 display with brightness control
57cd6e97
AZ
2391@item
23922 buttons, 2 navigation wheels with button function
2393@end itemize
2394
997641a8 2395The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2396The emulation includes the following elements:
997641a8
AZ
2397
2398@itemize @minus
2399@item
2400Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2401@item
2402ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2403V1
24041 Flash of 16MB and 1 Flash of 8MB
2405V2
24061 Flash of 32MB
2407@item
2408On-chip LCD controller
2409@item
2410On-chip Real Time Clock
2411@item
2412Secure Digital card connected to OMAP MMC/SD host
2413@item
2414Three on-chip UARTs
2415@end itemize
2416
3f9f3aa1
FB
2417A Linux 2.6 test image is available on the QEMU web site. More
2418information is available in the QEMU mailing-list archive.
9d0a8e6f 2419
d2c639d6
BS
2420@c man begin OPTIONS
2421
2422The following options are specific to the ARM emulation:
2423
2424@table @option
2425
2426@item -semihosting
2427Enable semihosting syscall emulation.
2428
2429On ARM this implements the "Angel" interface.
2430
2431Note that this allows guest direct access to the host filesystem,
2432so should only be used with trusted guest OS.
2433
2434@end table
2435
24d4de45
TS
2436@node ColdFire System emulator
2437@section ColdFire System emulator
7544a042
SW
2438@cindex system emulation (ColdFire)
2439@cindex system emulation (M68K)
209a4e69
PB
2440
2441Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2442The emulator is able to boot a uClinux kernel.
707e011b
PB
2443
2444The M5208EVB emulation includes the following devices:
2445
2446@itemize @minus
5fafdf24 2447@item
707e011b
PB
2448MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2449@item
2450Three Two on-chip UARTs.
2451@item
2452Fast Ethernet Controller (FEC)
2453@end itemize
2454
2455The AN5206 emulation includes the following devices:
209a4e69
PB
2456
2457@itemize @minus
5fafdf24 2458@item
209a4e69
PB
2459MCF5206 ColdFire V2 Microprocessor.
2460@item
2461Two on-chip UARTs.
2462@end itemize
2463
d2c639d6
BS
2464@c man begin OPTIONS
2465
7544a042 2466The following options are specific to the ColdFire emulation:
d2c639d6
BS
2467
2468@table @option
2469
2470@item -semihosting
2471Enable semihosting syscall emulation.
2472
2473On M68K this implements the "ColdFire GDB" interface used by libgloss.
2474
2475Note that this allows guest direct access to the host filesystem,
2476so should only be used with trusted guest OS.
2477
2478@end table
2479
7544a042
SW
2480@node Cris System emulator
2481@section Cris System emulator
2482@cindex system emulation (Cris)
2483
2484TODO
2485
2486@node Microblaze System emulator
2487@section Microblaze System emulator
2488@cindex system emulation (Microblaze)
2489
2490TODO
2491
2492@node SH4 System emulator
2493@section SH4 System emulator
2494@cindex system emulation (SH4)
2495
2496TODO
2497
3aeaea65
MF
2498@node Xtensa System emulator
2499@section Xtensa System emulator
2500@cindex system emulation (Xtensa)
2501
2502Two executables cover simulation of both Xtensa endian options,
2503@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2504Two different machine types are emulated:
2505
2506@itemize @minus
2507@item
2508Xtensa emulator pseudo board "sim"
2509@item
2510Avnet LX60/LX110/LX200 board
2511@end itemize
2512
b5e4946f 2513The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2514to one provided by the proprietary Tensilica ISS.
2515It supports:
2516
2517@itemize @minus
2518@item
2519A range of Xtensa CPUs, default is the DC232B
2520@item
2521Console and filesystem access via semihosting calls
2522@end itemize
2523
2524The Avnet LX60/LX110/LX200 emulation supports:
2525
2526@itemize @minus
2527@item
2528A range of Xtensa CPUs, default is the DC232B
2529@item
253016550 UART
2531@item
2532OpenCores 10/100 Mbps Ethernet MAC
2533@end itemize
2534
2535@c man begin OPTIONS
2536
2537The following options are specific to the Xtensa emulation:
2538
2539@table @option
2540
2541@item -semihosting
2542Enable semihosting syscall emulation.
2543
2544Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2545Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2546
2547Note that this allows guest direct access to the host filesystem,
2548so should only be used with trusted guest OS.
2549
2550@end table
5fafdf24
TS
2551@node QEMU User space emulator
2552@chapter QEMU User space emulator
83195237
FB
2553
2554@menu
2555* Supported Operating Systems ::
2556* Linux User space emulator::
84778508 2557* BSD User space emulator ::
83195237
FB
2558@end menu
2559
2560@node Supported Operating Systems
2561@section Supported Operating Systems
2562
2563The following OS are supported in user space emulation:
2564
2565@itemize @minus
2566@item
4be456f1 2567Linux (referred as qemu-linux-user)
83195237 2568@item
84778508 2569BSD (referred as qemu-bsd-user)
83195237
FB
2570@end itemize
2571
2572@node Linux User space emulator
2573@section Linux User space emulator
386405f7 2574
debc7065
FB
2575@menu
2576* Quick Start::
2577* Wine launch::
2578* Command line options::
79737e4a 2579* Other binaries::
debc7065
FB
2580@end menu
2581
2582@node Quick Start
83195237 2583@subsection Quick Start
df0f11a0 2584
1f673135 2585In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2586itself and all the target (x86) dynamic libraries used by it.
386405f7 2587
1f673135 2588@itemize
386405f7 2589
1f673135
FB
2590@item On x86, you can just try to launch any process by using the native
2591libraries:
386405f7 2592
5fafdf24 2593@example
1f673135
FB
2594qemu-i386 -L / /bin/ls
2595@end example
386405f7 2596
1f673135
FB
2597@code{-L /} tells that the x86 dynamic linker must be searched with a
2598@file{/} prefix.
386405f7 2599
b65ee4fa
SW
2600@item Since QEMU is also a linux process, you can launch QEMU with
2601QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2602
5fafdf24 2603@example
1f673135
FB
2604qemu-i386 -L / qemu-i386 -L / /bin/ls
2605@end example
386405f7 2606
1f673135
FB
2607@item On non x86 CPUs, you need first to download at least an x86 glibc
2608(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2609@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2610
1f673135 2611@example
5fafdf24 2612unset LD_LIBRARY_PATH
1f673135 2613@end example
1eb87257 2614
1f673135 2615Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2616
1f673135
FB
2617@example
2618qemu-i386 tests/i386/ls
2619@end example
4c3b5a48 2620You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2621QEMU is automatically launched by the Linux kernel when you try to
2622launch x86 executables. It requires the @code{binfmt_misc} module in the
2623Linux kernel.
1eb87257 2624
1f673135
FB
2625@item The x86 version of QEMU is also included. You can try weird things such as:
2626@example
debc7065
FB
2627qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2628 /usr/local/qemu-i386/bin/ls-i386
1f673135 2629@end example
1eb20527 2630
1f673135 2631@end itemize
1eb20527 2632
debc7065 2633@node Wine launch
83195237 2634@subsection Wine launch
1eb20527 2635
1f673135 2636@itemize
386405f7 2637
1f673135
FB
2638@item Ensure that you have a working QEMU with the x86 glibc
2639distribution (see previous section). In order to verify it, you must be
2640able to do:
386405f7 2641
1f673135
FB
2642@example
2643qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2644@end example
386405f7 2645
1f673135 2646@item Download the binary x86 Wine install
5fafdf24 2647(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2648
1f673135 2649@item Configure Wine on your account. Look at the provided script
debc7065 2650@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2651@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2652
1f673135 2653@item Then you can try the example @file{putty.exe}:
386405f7 2654
1f673135 2655@example
debc7065
FB
2656qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2657 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2658@end example
386405f7 2659
1f673135 2660@end itemize
fd429f2f 2661
debc7065 2662@node Command line options
83195237 2663@subsection Command line options
1eb20527 2664
1f673135 2665@example
68a1c816 2666usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2667@end example
1eb20527 2668
1f673135
FB
2669@table @option
2670@item -h
2671Print the help
3b46e624 2672@item -L path
1f673135
FB
2673Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2674@item -s size
2675Set the x86 stack size in bytes (default=524288)
34a3d239 2676@item -cpu model
c8057f95 2677Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2678@item -E @var{var}=@var{value}
2679Set environment @var{var} to @var{value}.
2680@item -U @var{var}
2681Remove @var{var} from the environment.
379f6698
PB
2682@item -B offset
2683Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2684the address region required by guest applications is reserved on the host.
2685This option is currently only supported on some hosts.
68a1c816
PB
2686@item -R size
2687Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2688"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2689@end table
2690
1f673135 2691Debug options:
386405f7 2692
1f673135 2693@table @option
989b697d
PM
2694@item -d item1,...
2695Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2696@item -p pagesize
2697Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2698@item -g port
2699Wait gdb connection to port
1b530a6d
AJ
2700@item -singlestep
2701Run the emulation in single step mode.
1f673135 2702@end table
386405f7 2703
b01bcae6
AZ
2704Environment variables:
2705
2706@table @env
2707@item QEMU_STRACE
2708Print system calls and arguments similar to the 'strace' program
2709(NOTE: the actual 'strace' program will not work because the user
2710space emulator hasn't implemented ptrace). At the moment this is
2711incomplete. All system calls that don't have a specific argument
2712format are printed with information for six arguments. Many
2713flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2714@end table
b01bcae6 2715
79737e4a 2716@node Other binaries
83195237 2717@subsection Other binaries
79737e4a 2718
7544a042
SW
2719@cindex user mode (Alpha)
2720@command{qemu-alpha} TODO.
2721
2722@cindex user mode (ARM)
2723@command{qemu-armeb} TODO.
2724
2725@cindex user mode (ARM)
79737e4a
PB
2726@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2727binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2728configurations), and arm-uclinux bFLT format binaries.
2729
7544a042
SW
2730@cindex user mode (ColdFire)
2731@cindex user mode (M68K)
e6e5906b
PB
2732@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2733(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2734coldfire uClinux bFLT format binaries.
2735
79737e4a
PB
2736The binary format is detected automatically.
2737
7544a042
SW
2738@cindex user mode (Cris)
2739@command{qemu-cris} TODO.
2740
2741@cindex user mode (i386)
2742@command{qemu-i386} TODO.
2743@command{qemu-x86_64} TODO.
2744
2745@cindex user mode (Microblaze)
2746@command{qemu-microblaze} TODO.
2747
2748@cindex user mode (MIPS)
2749@command{qemu-mips} TODO.
2750@command{qemu-mipsel} TODO.
2751
2752@cindex user mode (PowerPC)
2753@command{qemu-ppc64abi32} TODO.
2754@command{qemu-ppc64} TODO.
2755@command{qemu-ppc} TODO.
2756
2757@cindex user mode (SH4)
2758@command{qemu-sh4eb} TODO.
2759@command{qemu-sh4} TODO.
2760
2761@cindex user mode (SPARC)
34a3d239
BS
2762@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2763
a785e42e
BS
2764@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2765(Sparc64 CPU, 32 bit ABI).
2766
2767@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2768SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2769
84778508
BS
2770@node BSD User space emulator
2771@section BSD User space emulator
2772
2773@menu
2774* BSD Status::
2775* BSD Quick Start::
2776* BSD Command line options::
2777@end menu
2778
2779@node BSD Status
2780@subsection BSD Status
2781
2782@itemize @minus
2783@item
2784target Sparc64 on Sparc64: Some trivial programs work.
2785@end itemize
2786
2787@node BSD Quick Start
2788@subsection Quick Start
2789
2790In order to launch a BSD process, QEMU needs the process executable
2791itself and all the target dynamic libraries used by it.
2792
2793@itemize
2794
2795@item On Sparc64, you can just try to launch any process by using the native
2796libraries:
2797
2798@example
2799qemu-sparc64 /bin/ls
2800@end example
2801
2802@end itemize
2803
2804@node BSD Command line options
2805@subsection Command line options
2806
2807@example
2808usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2809@end example
2810
2811@table @option
2812@item -h
2813Print the help
2814@item -L path
2815Set the library root path (default=/)
2816@item -s size
2817Set the stack size in bytes (default=524288)
f66724c9
SW
2818@item -ignore-environment
2819Start with an empty environment. Without this option,
40c5c6cd 2820the initial environment is a copy of the caller's environment.
f66724c9
SW
2821@item -E @var{var}=@var{value}
2822Set environment @var{var} to @var{value}.
2823@item -U @var{var}
2824Remove @var{var} from the environment.
84778508
BS
2825@item -bsd type
2826Set the type of the emulated BSD Operating system. Valid values are
2827FreeBSD, NetBSD and OpenBSD (default).
2828@end table
2829
2830Debug options:
2831
2832@table @option
989b697d
PM
2833@item -d item1,...
2834Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2835@item -p pagesize
2836Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2837@item -singlestep
2838Run the emulation in single step mode.
84778508
BS
2839@end table
2840
15a34c63
FB
2841@node compilation
2842@chapter Compilation from the sources
2843
debc7065
FB
2844@menu
2845* Linux/Unix::
2846* Windows::
2847* Cross compilation for Windows with Linux::
2848* Mac OS X::
47eacb4f 2849* Make targets::
debc7065
FB
2850@end menu
2851
2852@node Linux/Unix
7c3fc84d
FB
2853@section Linux/Unix
2854
2855@subsection Compilation
2856
2857First you must decompress the sources:
2858@example
2859cd /tmp
2860tar zxvf qemu-x.y.z.tar.gz
2861cd qemu-x.y.z
2862@end example
2863
2864Then you configure QEMU and build it (usually no options are needed):
2865@example
2866./configure
2867make
2868@end example
2869
2870Then type as root user:
2871@example
2872make install
2873@end example
2874to install QEMU in @file{/usr/local}.
2875
debc7065 2876@node Windows
15a34c63
FB
2877@section Windows
2878
2879@itemize
2880@item Install the current versions of MSYS and MinGW from
2881@url{http://www.mingw.org/}. You can find detailed installation
2882instructions in the download section and the FAQ.
2883
5fafdf24 2884@item Download
15a34c63 2885the MinGW development library of SDL 1.2.x
debc7065 2886(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2887@url{http://www.libsdl.org}. Unpack it in a temporary place and
2888edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2889correct SDL directory when invoked.
2890
d0a96f3d
ST
2891@item Install the MinGW version of zlib and make sure
2892@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2893MinGW's default header and linker search paths.
d0a96f3d 2894
15a34c63 2895@item Extract the current version of QEMU.
5fafdf24 2896
15a34c63
FB
2897@item Start the MSYS shell (file @file{msys.bat}).
2898
5fafdf24 2899@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2900@file{make}. If you have problems using SDL, verify that
2901@file{sdl-config} can be launched from the MSYS command line.
2902
c5ec15ea 2903@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2904@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2905@file{Program Files/QEMU}.
15a34c63
FB
2906
2907@end itemize
2908
debc7065 2909@node Cross compilation for Windows with Linux
15a34c63
FB
2910@section Cross compilation for Windows with Linux
2911
2912@itemize
2913@item
2914Install the MinGW cross compilation tools available at
2915@url{http://www.mingw.org/}.
2916
d0a96f3d
ST
2917@item Download
2918the MinGW development library of SDL 1.2.x
2919(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2920@url{http://www.libsdl.org}. Unpack it in a temporary place and
2921edit the @file{sdl-config} script so that it gives the
2922correct SDL directory when invoked. Set up the @code{PATH} environment
2923variable so that @file{sdl-config} can be launched by
15a34c63
FB
2924the QEMU configuration script.
2925
d0a96f3d
ST
2926@item Install the MinGW version of zlib and make sure
2927@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2928MinGW's default header and linker search paths.
d0a96f3d 2929
5fafdf24 2930@item
15a34c63
FB
2931Configure QEMU for Windows cross compilation:
2932@example
d0a96f3d
ST
2933PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2934@end example
2935The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2936MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2937We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2938use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2939You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2940
2941Under Fedora Linux, you can run:
2942@example
2943yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2944@end example
d0a96f3d 2945to get a suitable cross compilation environment.
15a34c63 2946
5fafdf24 2947@item You can install QEMU in the installation directory by typing
d0a96f3d 2948@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2949installation directory.
15a34c63
FB
2950
2951@end itemize
2952
3804da9d
SW
2953Wine can be used to launch the resulting qemu-system-i386.exe
2954and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2955
debc7065 2956@node Mac OS X
15a34c63
FB
2957@section Mac OS X
2958
2959The Mac OS X patches are not fully merged in QEMU, so you should look
2960at the QEMU mailing list archive to have all the necessary
2961information.
2962
47eacb4f
SW
2963@node Make targets
2964@section Make targets
2965
2966@table @code
2967
2968@item make
2969@item make all
2970Make everything which is typically needed.
2971
2972@item install
2973TODO
2974
2975@item install-doc
2976TODO
2977
2978@item make clean
2979Remove most files which were built during make.
2980
2981@item make distclean
2982Remove everything which was built during make.
2983
2984@item make dvi
2985@item make html
2986@item make info
2987@item make pdf
2988Create documentation in dvi, html, info or pdf format.
2989
2990@item make cscope
2991TODO
2992
2993@item make defconfig
2994(Re-)create some build configuration files.
2995User made changes will be overwritten.
2996
2997@item tar
2998@item tarbin
2999TODO
3000
3001@end table
3002
7544a042
SW
3003@node License
3004@appendix License
3005
3006QEMU is a trademark of Fabrice Bellard.
3007
3008QEMU is released under the GNU General Public License (TODO: add link).
3009Parts of QEMU have specific licenses, see file LICENSE.
3010
3011TODO (refer to file LICENSE, include it, include the GPL?)
3012
debc7065 3013@node Index
7544a042
SW
3014@appendix Index
3015@menu
3016* Concept Index::
3017* Function Index::
3018* Keystroke Index::
3019* Program Index::
3020* Data Type Index::
3021* Variable Index::
3022@end menu
3023
3024@node Concept Index
3025@section Concept Index
3026This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3027@printindex cp
3028
7544a042
SW
3029@node Function Index
3030@section Function Index
3031This index could be used for command line options and monitor functions.
3032@printindex fn
3033
3034@node Keystroke Index
3035@section Keystroke Index
3036
3037This is a list of all keystrokes which have a special function
3038in system emulation.
3039
3040@printindex ky
3041
3042@node Program Index
3043@section Program Index
3044@printindex pg
3045
3046@node Data Type Index
3047@section Data Type Index
3048
3049This index could be used for qdev device names and options.
3050
3051@printindex tp
3052
3053@node Variable Index
3054@section Variable Index
3055@printindex vr
3056
debc7065 3057@bye