]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
scsi: fix incorrect ?: use
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
0ef849d7 83@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 94@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
95@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 97@end itemize
386405f7 98
48c50a62 99For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 100
debc7065 101@node Installation
5b9f457a
FB
102@chapter Installation
103
15a34c63
FB
104If you want to compile QEMU yourself, see @ref{compilation}.
105
debc7065
FB
106@menu
107* install_linux:: Linux
108* install_windows:: Windows
109* install_mac:: Macintosh
110@end menu
111
112@node install_linux
1f673135
FB
113@section Linux
114
7c3fc84d
FB
115If a precompiled package is available for your distribution - you just
116have to install it. Otherwise, see @ref{compilation}.
5b9f457a 117
debc7065 118@node install_windows
1f673135 119@section Windows
8cd0ac2f 120
15a34c63 121Download the experimental binary installer at
debc7065 122@url{http://www.free.oszoo.org/@/download.html}.
d691f669 123
debc7065 124@node install_mac
1f673135 125@section Mac OS X
d691f669 126
15a34c63 127Download the experimental binary installer at
debc7065 128@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 129
debc7065 130@node QEMU PC System emulator
3f9f3aa1 131@chapter QEMU PC System emulator
1eb20527 132
debc7065
FB
133@menu
134* pcsys_introduction:: Introduction
135* pcsys_quickstart:: Quick Start
136* sec_invocation:: Invocation
137* pcsys_keys:: Keys
138* pcsys_monitor:: QEMU Monitor
139* disk_images:: Disk Images
140* pcsys_network:: Network emulation
141* direct_linux_boot:: Direct Linux Boot
142* pcsys_usb:: USB emulation
f858dcae 143* vnc_security:: VNC security
debc7065
FB
144* gdb_usage:: GDB usage
145* pcsys_os_specific:: Target OS specific information
146@end menu
147
148@node pcsys_introduction
0806e3f6
FB
149@section Introduction
150
151@c man begin DESCRIPTION
152
3f9f3aa1
FB
153The QEMU PC System emulator simulates the
154following peripherals:
0806e3f6
FB
155
156@itemize @minus
5fafdf24 157@item
15a34c63 158i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 159@item
15a34c63
FB
160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161extensions (hardware level, including all non standard modes).
0806e3f6
FB
162@item
163PS/2 mouse and keyboard
5fafdf24 164@item
15a34c63 1652 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
166@item
167Floppy disk
5fafdf24 168@item
3a2eeac0 169PCI and ISA network adapters
0806e3f6 170@item
05d5818c
FB
171Serial ports
172@item
c0fe3827
FB
173Creative SoundBlaster 16 sound card
174@item
175ENSONIQ AudioPCI ES1370 sound card
176@item
e5c9a13e
AZ
177Intel 82801AA AC97 Audio compatible sound card
178@item
c0fe3827 179Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 180@item
26463dbc
AZ
181Gravis Ultrasound GF1 sound card
182@item
cc53d26d 183CS4231A compatible sound card
184@item
b389dbfb 185PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
186@end itemize
187
3f9f3aa1
FB
188SMP is supported with up to 255 CPUs.
189
1d1f8c33 190Note that adlib, gus and cs4231a are only available when QEMU was
191configured with --audio-card-list option containing the name(s) of
e5178e8d 192required card(s).
c0fe3827 193
15a34c63
FB
194QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195VGA BIOS.
196
c0fe3827
FB
197QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
26463dbc
AZ
199QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200by Tibor "TS" Schütz.
423d65f4 201
720036a5 202Not that, by default, GUS shares IRQ(7) with parallel ports and so
203qemu must be told to not have parallel ports to have working GUS
204
205@example
206qemu dos.img -soundhw gus -parallel none
207@end example
208
209Alternatively:
210@example
211qemu dos.img -device gus,irq=5
212@end example
213
214Or some other unclaimed IRQ.
215
cc53d26d 216CS4231A is the chip used in Windows Sound System and GUSMAX products
217
0806e3f6
FB
218@c man end
219
debc7065 220@node pcsys_quickstart
1eb20527
FB
221@section Quick Start
222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
285dc330 226qemu linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
89dfe898 236usage: qemu [options] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
debc7065 248@node pcsys_keys
3e11db9a
FB
249@section Keys
250
251@c man begin OPTIONS
252
a1b74fe8
FB
253During the graphical emulation, you can use the following keys:
254@table @key
f9859310 255@item Ctrl-Alt-f
a1b74fe8 256Toggle full screen
a0a821a4 257
c4a735f9 258@item Ctrl-Alt-u
259Restore the screen's un-scaled dimensions
260
f9859310 261@item Ctrl-Alt-n
a0a821a4
FB
262Switch to virtual console 'n'. Standard console mappings are:
263@table @emph
264@item 1
265Target system display
266@item 2
267Monitor
268@item 3
269Serial port
a1b74fe8
FB
270@end table
271
f9859310 272@item Ctrl-Alt
a0a821a4
FB
273Toggle mouse and keyboard grab.
274@end table
275
3e11db9a
FB
276In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
277@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
278
a0a821a4
FB
279During emulation, if you are using the @option{-nographic} option, use
280@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
281
282@table @key
a1b74fe8 283@item Ctrl-a h
d2c639d6 284@item Ctrl-a ?
ec410fc9 285Print this help
3b46e624 286@item Ctrl-a x
366dfc52 287Exit emulator
3b46e624 288@item Ctrl-a s
1f47a922 289Save disk data back to file (if -snapshot)
20d8a3ed 290@item Ctrl-a t
d2c639d6 291Toggle console timestamps
a1b74fe8 292@item Ctrl-a b
1f673135 293Send break (magic sysrq in Linux)
a1b74fe8 294@item Ctrl-a c
1f673135 295Switch between console and monitor
a1b74fe8
FB
296@item Ctrl-a Ctrl-a
297Send Ctrl-a
ec410fc9 298@end table
0806e3f6
FB
299@c man end
300
301@ignore
302
1f673135
FB
303@c man begin SEEALSO
304The HTML documentation of QEMU for more precise information and Linux
305user mode emulator invocation.
306@c man end
307
308@c man begin AUTHOR
309Fabrice Bellard
310@c man end
311
312@end ignore
313
debc7065 314@node pcsys_monitor
1f673135
FB
315@section QEMU Monitor
316
317The QEMU monitor is used to give complex commands to the QEMU
318emulator. You can use it to:
319
320@itemize @minus
321
322@item
e598752a 323Remove or insert removable media images
89dfe898 324(such as CD-ROM or floppies).
1f673135 325
5fafdf24 326@item
1f673135
FB
327Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
328from a disk file.
329
330@item Inspect the VM state without an external debugger.
331
332@end itemize
333
334@subsection Commands
335
336The following commands are available:
337
2313086a 338@include qemu-monitor.texi
0806e3f6 339
1f673135
FB
340@subsection Integer expressions
341
342The monitor understands integers expressions for every integer
343argument. You can use register names to get the value of specifics
344CPU registers by prefixing them with @emph{$}.
ec410fc9 345
1f47a922
FB
346@node disk_images
347@section Disk Images
348
acd935ef
FB
349Since version 0.6.1, QEMU supports many disk image formats, including
350growable disk images (their size increase as non empty sectors are
13a2e80f
FB
351written), compressed and encrypted disk images. Version 0.8.3 added
352the new qcow2 disk image format which is essential to support VM
353snapshots.
1f47a922 354
debc7065
FB
355@menu
356* disk_images_quickstart:: Quick start for disk image creation
357* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 358* vm_snapshots:: VM snapshots
debc7065 359* qemu_img_invocation:: qemu-img Invocation
975b092b 360* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 361* host_drives:: Using host drives
debc7065 362* disk_images_fat_images:: Virtual FAT disk images
75818250 363* disk_images_nbd:: NBD access
debc7065
FB
364@end menu
365
366@node disk_images_quickstart
acd935ef
FB
367@subsection Quick start for disk image creation
368
369You can create a disk image with the command:
1f47a922 370@example
acd935ef 371qemu-img create myimage.img mysize
1f47a922 372@end example
acd935ef
FB
373where @var{myimage.img} is the disk image filename and @var{mysize} is its
374size in kilobytes. You can add an @code{M} suffix to give the size in
375megabytes and a @code{G} suffix for gigabytes.
376
debc7065 377See @ref{qemu_img_invocation} for more information.
1f47a922 378
debc7065 379@node disk_images_snapshot_mode
1f47a922
FB
380@subsection Snapshot mode
381
382If you use the option @option{-snapshot}, all disk images are
383considered as read only. When sectors in written, they are written in
384a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
385write back to the raw disk images by using the @code{commit} monitor
386command (or @key{C-a s} in the serial console).
1f47a922 387
13a2e80f
FB
388@node vm_snapshots
389@subsection VM snapshots
390
391VM snapshots are snapshots of the complete virtual machine including
392CPU state, RAM, device state and the content of all the writable
393disks. In order to use VM snapshots, you must have at least one non
394removable and writable block device using the @code{qcow2} disk image
395format. Normally this device is the first virtual hard drive.
396
397Use the monitor command @code{savevm} to create a new VM snapshot or
398replace an existing one. A human readable name can be assigned to each
19d36792 399snapshot in addition to its numerical ID.
13a2e80f
FB
400
401Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
402a VM snapshot. @code{info snapshots} lists the available snapshots
403with their associated information:
404
405@example
406(qemu) info snapshots
407Snapshot devices: hda
408Snapshot list (from hda):
409ID TAG VM SIZE DATE VM CLOCK
4101 start 41M 2006-08-06 12:38:02 00:00:14.954
4112 40M 2006-08-06 12:43:29 00:00:18.633
4123 msys 40M 2006-08-06 12:44:04 00:00:23.514
413@end example
414
415A VM snapshot is made of a VM state info (its size is shown in
416@code{info snapshots}) and a snapshot of every writable disk image.
417The VM state info is stored in the first @code{qcow2} non removable
418and writable block device. The disk image snapshots are stored in
419every disk image. The size of a snapshot in a disk image is difficult
420to evaluate and is not shown by @code{info snapshots} because the
421associated disk sectors are shared among all the snapshots to save
19d36792
FB
422disk space (otherwise each snapshot would need a full copy of all the
423disk images).
13a2e80f
FB
424
425When using the (unrelated) @code{-snapshot} option
426(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
427but they are deleted as soon as you exit QEMU.
428
429VM snapshots currently have the following known limitations:
430@itemize
5fafdf24 431@item
13a2e80f
FB
432They cannot cope with removable devices if they are removed or
433inserted after a snapshot is done.
5fafdf24 434@item
13a2e80f
FB
435A few device drivers still have incomplete snapshot support so their
436state is not saved or restored properly (in particular USB).
437@end itemize
438
acd935ef
FB
439@node qemu_img_invocation
440@subsection @code{qemu-img} Invocation
1f47a922 441
acd935ef 442@include qemu-img.texi
05efe46e 443
975b092b
TS
444@node qemu_nbd_invocation
445@subsection @code{qemu-nbd} Invocation
446
447@include qemu-nbd.texi
448
19cb3738
FB
449@node host_drives
450@subsection Using host drives
451
452In addition to disk image files, QEMU can directly access host
453devices. We describe here the usage for QEMU version >= 0.8.3.
454
455@subsubsection Linux
456
457On Linux, you can directly use the host device filename instead of a
4be456f1 458disk image filename provided you have enough privileges to access
19cb3738
FB
459it. For example, use @file{/dev/cdrom} to access to the CDROM or
460@file{/dev/fd0} for the floppy.
461
f542086d 462@table @code
19cb3738
FB
463@item CD
464You can specify a CDROM device even if no CDROM is loaded. QEMU has
465specific code to detect CDROM insertion or removal. CDROM ejection by
466the guest OS is supported. Currently only data CDs are supported.
467@item Floppy
468You can specify a floppy device even if no floppy is loaded. Floppy
469removal is currently not detected accurately (if you change floppy
470without doing floppy access while the floppy is not loaded, the guest
471OS will think that the same floppy is loaded).
472@item Hard disks
473Hard disks can be used. Normally you must specify the whole disk
474(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
475see it as a partitioned disk. WARNING: unless you know what you do, it
476is better to only make READ-ONLY accesses to the hard disk otherwise
477you may corrupt your host data (use the @option{-snapshot} command
478line option or modify the device permissions accordingly).
479@end table
480
481@subsubsection Windows
482
01781963
FB
483@table @code
484@item CD
4be456f1 485The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
486alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
487supported as an alias to the first CDROM drive.
19cb3738 488
e598752a 489Currently there is no specific code to handle removable media, so it
19cb3738
FB
490is better to use the @code{change} or @code{eject} monitor commands to
491change or eject media.
01781963 492@item Hard disks
89dfe898 493Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
494where @var{N} is the drive number (0 is the first hard disk).
495
496WARNING: unless you know what you do, it is better to only make
497READ-ONLY accesses to the hard disk otherwise you may corrupt your
498host data (use the @option{-snapshot} command line so that the
499modifications are written in a temporary file).
500@end table
501
19cb3738
FB
502
503@subsubsection Mac OS X
504
5fafdf24 505@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 506
e598752a 507Currently there is no specific code to handle removable media, so it
19cb3738
FB
508is better to use the @code{change} or @code{eject} monitor commands to
509change or eject media.
510
debc7065 511@node disk_images_fat_images
2c6cadd4
FB
512@subsection Virtual FAT disk images
513
514QEMU can automatically create a virtual FAT disk image from a
515directory tree. In order to use it, just type:
516
5fafdf24 517@example
2c6cadd4
FB
518qemu linux.img -hdb fat:/my_directory
519@end example
520
521Then you access access to all the files in the @file{/my_directory}
522directory without having to copy them in a disk image or to export
523them via SAMBA or NFS. The default access is @emph{read-only}.
524
525Floppies can be emulated with the @code{:floppy:} option:
526
5fafdf24 527@example
2c6cadd4
FB
528qemu linux.img -fda fat:floppy:/my_directory
529@end example
530
531A read/write support is available for testing (beta stage) with the
532@code{:rw:} option:
533
5fafdf24 534@example
2c6cadd4
FB
535qemu linux.img -fda fat:floppy:rw:/my_directory
536@end example
537
538What you should @emph{never} do:
539@itemize
540@item use non-ASCII filenames ;
541@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
542@item expect it to work when loadvm'ing ;
543@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
544@end itemize
545
75818250
TS
546@node disk_images_nbd
547@subsection NBD access
548
549QEMU can access directly to block device exported using the Network Block Device
550protocol.
551
552@example
553qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
554@end example
555
556If the NBD server is located on the same host, you can use an unix socket instead
557of an inet socket:
558
559@example
560qemu linux.img -hdb nbd:unix:/tmp/my_socket
561@end example
562
563In this case, the block device must be exported using qemu-nbd:
564
565@example
566qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
567@end example
568
569The use of qemu-nbd allows to share a disk between several guests:
570@example
571qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
572@end example
573
574and then you can use it with two guests:
575@example
576qemu linux1.img -hdb nbd:unix:/tmp/my_socket
577qemu linux2.img -hdb nbd:unix:/tmp/my_socket
578@end example
579
debc7065 580@node pcsys_network
9d4fb82e
FB
581@section Network emulation
582
4be456f1 583QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
584target) and can connect them to an arbitrary number of Virtual Local
585Area Networks (VLANs). Host TAP devices can be connected to any QEMU
586VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 587simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
588network stack can replace the TAP device to have a basic network
589connection.
590
591@subsection VLANs
9d4fb82e 592
41d03949
FB
593QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
594connection between several network devices. These devices can be for
595example QEMU virtual Ethernet cards or virtual Host ethernet devices
596(TAP devices).
9d4fb82e 597
41d03949
FB
598@subsection Using TAP network interfaces
599
600This is the standard way to connect QEMU to a real network. QEMU adds
601a virtual network device on your host (called @code{tapN}), and you
602can then configure it as if it was a real ethernet card.
9d4fb82e 603
8f40c388
FB
604@subsubsection Linux host
605
9d4fb82e
FB
606As an example, you can download the @file{linux-test-xxx.tar.gz}
607archive and copy the script @file{qemu-ifup} in @file{/etc} and
608configure properly @code{sudo} so that the command @code{ifconfig}
609contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 610that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
611device @file{/dev/net/tun} must be present.
612
ee0f4751
FB
613See @ref{sec_invocation} to have examples of command lines using the
614TAP network interfaces.
9d4fb82e 615
8f40c388
FB
616@subsubsection Windows host
617
618There is a virtual ethernet driver for Windows 2000/XP systems, called
619TAP-Win32. But it is not included in standard QEMU for Windows,
620so you will need to get it separately. It is part of OpenVPN package,
621so download OpenVPN from : @url{http://openvpn.net/}.
622
9d4fb82e
FB
623@subsection Using the user mode network stack
624
41d03949
FB
625By using the option @option{-net user} (default configuration if no
626@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 627network stack (you don't need root privilege to use the virtual
41d03949 628network). The virtual network configuration is the following:
9d4fb82e
FB
629
630@example
631
41d03949
FB
632 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
633 | (10.0.2.2)
9d4fb82e 634 |
2518bd0d 635 ----> DNS server (10.0.2.3)
3b46e624 636 |
2518bd0d 637 ----> SMB server (10.0.2.4)
9d4fb82e
FB
638@end example
639
640The QEMU VM behaves as if it was behind a firewall which blocks all
641incoming connections. You can use a DHCP client to automatically
41d03949
FB
642configure the network in the QEMU VM. The DHCP server assign addresses
643to the hosts starting from 10.0.2.15.
9d4fb82e
FB
644
645In order to check that the user mode network is working, you can ping
646the address 10.0.2.2 and verify that you got an address in the range
64710.0.2.x from the QEMU virtual DHCP server.
648
b415a407 649Note that @code{ping} is not supported reliably to the internet as it
4be456f1 650would require root privileges. It means you can only ping the local
b415a407
FB
651router (10.0.2.2).
652
9bf05444
FB
653When using the built-in TFTP server, the router is also the TFTP
654server.
655
656When using the @option{-redir} option, TCP or UDP connections can be
657redirected from the host to the guest. It allows for example to
658redirect X11, telnet or SSH connections.
443f1376 659
41d03949
FB
660@subsection Connecting VLANs between QEMU instances
661
662Using the @option{-net socket} option, it is possible to make VLANs
663that span several QEMU instances. See @ref{sec_invocation} to have a
664basic example.
665
9d4fb82e
FB
666@node direct_linux_boot
667@section Direct Linux Boot
1f673135
FB
668
669This section explains how to launch a Linux kernel inside QEMU without
670having to make a full bootable image. It is very useful for fast Linux
ee0f4751 671kernel testing.
1f673135 672
ee0f4751 673The syntax is:
1f673135 674@example
ee0f4751 675qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
676@end example
677
ee0f4751
FB
678Use @option{-kernel} to provide the Linux kernel image and
679@option{-append} to give the kernel command line arguments. The
680@option{-initrd} option can be used to provide an INITRD image.
1f673135 681
ee0f4751
FB
682When using the direct Linux boot, a disk image for the first hard disk
683@file{hda} is required because its boot sector is used to launch the
684Linux kernel.
1f673135 685
ee0f4751
FB
686If you do not need graphical output, you can disable it and redirect
687the virtual serial port and the QEMU monitor to the console with the
688@option{-nographic} option. The typical command line is:
1f673135 689@example
ee0f4751
FB
690qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
691 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
692@end example
693
ee0f4751
FB
694Use @key{Ctrl-a c} to switch between the serial console and the
695monitor (@pxref{pcsys_keys}).
1f673135 696
debc7065 697@node pcsys_usb
b389dbfb
FB
698@section USB emulation
699
0aff66b5
PB
700QEMU emulates a PCI UHCI USB controller. You can virtually plug
701virtual USB devices or real host USB devices (experimental, works only
702on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 703as necessary to connect multiple USB devices.
b389dbfb 704
0aff66b5
PB
705@menu
706* usb_devices::
707* host_usb_devices::
708@end menu
709@node usb_devices
710@subsection Connecting USB devices
b389dbfb 711
0aff66b5
PB
712USB devices can be connected with the @option{-usbdevice} commandline option
713or the @code{usb_add} monitor command. Available devices are:
b389dbfb 714
db380c06
AZ
715@table @code
716@item mouse
0aff66b5 717Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 718@item tablet
c6d46c20 719Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
720This means qemu is able to report the mouse position without having
721to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 722@item disk:@var{file}
0aff66b5 723Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 724@item host:@var{bus.addr}
0aff66b5
PB
725Pass through the host device identified by @var{bus.addr}
726(Linux only)
db380c06 727@item host:@var{vendor_id:product_id}
0aff66b5
PB
728Pass through the host device identified by @var{vendor_id:product_id}
729(Linux only)
db380c06 730@item wacom-tablet
f6d2a316
AZ
731Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
732above but it can be used with the tslib library because in addition to touch
733coordinates it reports touch pressure.
db380c06 734@item keyboard
47b2d338 735Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
736@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
737Serial converter. This emulates an FTDI FT232BM chip connected to host character
738device @var{dev}. The available character devices are the same as for the
739@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 740used to override the default 0403:6001. For instance,
db380c06
AZ
741@example
742usb_add serial:productid=FA00:tcp:192.168.0.2:4444
743@end example
744will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
745serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
746@item braille
747Braille device. This will use BrlAPI to display the braille output on a real
748or fake device.
9ad97e65
AZ
749@item net:@var{options}
750Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
751specifies NIC options as with @code{-net nic,}@var{options} (see description).
752For instance, user-mode networking can be used with
6c9f886c 753@example
9ad97e65 754qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
755@end example
756Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
757@item bt[:@var{hci-type}]
758Bluetooth dongle whose type is specified in the same format as with
759the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
760no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
761This USB device implements the USB Transport Layer of HCI. Example
762usage:
763@example
764qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
765@end example
0aff66b5 766@end table
b389dbfb 767
0aff66b5 768@node host_usb_devices
b389dbfb
FB
769@subsection Using host USB devices on a Linux host
770
771WARNING: this is an experimental feature. QEMU will slow down when
772using it. USB devices requiring real time streaming (i.e. USB Video
773Cameras) are not supported yet.
774
775@enumerate
5fafdf24 776@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
777is actually using the USB device. A simple way to do that is simply to
778disable the corresponding kernel module by renaming it from @file{mydriver.o}
779to @file{mydriver.o.disabled}.
780
781@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
782@example
783ls /proc/bus/usb
784001 devices drivers
785@end example
786
787@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
788@example
789chown -R myuid /proc/bus/usb
790@end example
791
792@item Launch QEMU and do in the monitor:
5fafdf24 793@example
b389dbfb
FB
794info usbhost
795 Device 1.2, speed 480 Mb/s
796 Class 00: USB device 1234:5678, USB DISK
797@end example
798You should see the list of the devices you can use (Never try to use
799hubs, it won't work).
800
801@item Add the device in QEMU by using:
5fafdf24 802@example
b389dbfb
FB
803usb_add host:1234:5678
804@end example
805
806Normally the guest OS should report that a new USB device is
807plugged. You can use the option @option{-usbdevice} to do the same.
808
809@item Now you can try to use the host USB device in QEMU.
810
811@end enumerate
812
813When relaunching QEMU, you may have to unplug and plug again the USB
814device to make it work again (this is a bug).
815
f858dcae
TS
816@node vnc_security
817@section VNC security
818
819The VNC server capability provides access to the graphical console
820of the guest VM across the network. This has a number of security
821considerations depending on the deployment scenarios.
822
823@menu
824* vnc_sec_none::
825* vnc_sec_password::
826* vnc_sec_certificate::
827* vnc_sec_certificate_verify::
828* vnc_sec_certificate_pw::
2f9606b3
AL
829* vnc_sec_sasl::
830* vnc_sec_certificate_sasl::
f858dcae 831* vnc_generate_cert::
2f9606b3 832* vnc_setup_sasl::
f858dcae
TS
833@end menu
834@node vnc_sec_none
835@subsection Without passwords
836
837The simplest VNC server setup does not include any form of authentication.
838For this setup it is recommended to restrict it to listen on a UNIX domain
839socket only. For example
840
841@example
842qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
843@end example
844
845This ensures that only users on local box with read/write access to that
846path can access the VNC server. To securely access the VNC server from a
847remote machine, a combination of netcat+ssh can be used to provide a secure
848tunnel.
849
850@node vnc_sec_password
851@subsection With passwords
852
853The VNC protocol has limited support for password based authentication. Since
854the protocol limits passwords to 8 characters it should not be considered
855to provide high security. The password can be fairly easily brute-forced by
856a client making repeat connections. For this reason, a VNC server using password
857authentication should be restricted to only listen on the loopback interface
34a3d239 858or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
859option, and then once QEMU is running the password is set with the monitor. Until
860the monitor is used to set the password all clients will be rejected.
861
862@example
863qemu [...OPTIONS...] -vnc :1,password -monitor stdio
864(qemu) change vnc password
865Password: ********
866(qemu)
867@end example
868
869@node vnc_sec_certificate
870@subsection With x509 certificates
871
872The QEMU VNC server also implements the VeNCrypt extension allowing use of
873TLS for encryption of the session, and x509 certificates for authentication.
874The use of x509 certificates is strongly recommended, because TLS on its
875own is susceptible to man-in-the-middle attacks. Basic x509 certificate
876support provides a secure session, but no authentication. This allows any
877client to connect, and provides an encrypted session.
878
879@example
880qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
881@end example
882
883In the above example @code{/etc/pki/qemu} should contain at least three files,
884@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
885users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
886NB the @code{server-key.pem} file should be protected with file mode 0600 to
887only be readable by the user owning it.
888
889@node vnc_sec_certificate_verify
890@subsection With x509 certificates and client verification
891
892Certificates can also provide a means to authenticate the client connecting.
893The server will request that the client provide a certificate, which it will
894then validate against the CA certificate. This is a good choice if deploying
895in an environment with a private internal certificate authority.
896
897@example
898qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
899@end example
900
901
902@node vnc_sec_certificate_pw
903@subsection With x509 certificates, client verification and passwords
904
905Finally, the previous method can be combined with VNC password authentication
906to provide two layers of authentication for clients.
907
908@example
909qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
910(qemu) change vnc password
911Password: ********
912(qemu)
913@end example
914
2f9606b3
AL
915
916@node vnc_sec_sasl
917@subsection With SASL authentication
918
919The SASL authentication method is a VNC extension, that provides an
920easily extendable, pluggable authentication method. This allows for
921integration with a wide range of authentication mechanisms, such as
922PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
923The strength of the authentication depends on the exact mechanism
924configured. If the chosen mechanism also provides a SSF layer, then
925it will encrypt the datastream as well.
926
927Refer to the later docs on how to choose the exact SASL mechanism
928used for authentication, but assuming use of one supporting SSF,
929then QEMU can be launched with:
930
931@example
932qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
933@end example
934
935@node vnc_sec_certificate_sasl
936@subsection With x509 certificates and SASL authentication
937
938If the desired SASL authentication mechanism does not supported
939SSF layers, then it is strongly advised to run it in combination
940with TLS and x509 certificates. This provides securely encrypted
941data stream, avoiding risk of compromising of the security
942credentials. This can be enabled, by combining the 'sasl' option
943with the aforementioned TLS + x509 options:
944
945@example
946qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
947@end example
948
949
f858dcae
TS
950@node vnc_generate_cert
951@subsection Generating certificates for VNC
952
953The GNU TLS packages provides a command called @code{certtool} which can
954be used to generate certificates and keys in PEM format. At a minimum it
955is neccessary to setup a certificate authority, and issue certificates to
956each server. If using certificates for authentication, then each client
957will also need to be issued a certificate. The recommendation is for the
958server to keep its certificates in either @code{/etc/pki/qemu} or for
959unprivileged users in @code{$HOME/.pki/qemu}.
960
961@menu
962* vnc_generate_ca::
963* vnc_generate_server::
964* vnc_generate_client::
965@end menu
966@node vnc_generate_ca
967@subsubsection Setup the Certificate Authority
968
969This step only needs to be performed once per organization / organizational
970unit. First the CA needs a private key. This key must be kept VERY secret
971and secure. If this key is compromised the entire trust chain of the certificates
972issued with it is lost.
973
974@example
975# certtool --generate-privkey > ca-key.pem
976@end example
977
978A CA needs to have a public certificate. For simplicity it can be a self-signed
979certificate, or one issue by a commercial certificate issuing authority. To
980generate a self-signed certificate requires one core piece of information, the
981name of the organization.
982
983@example
984# cat > ca.info <<EOF
985cn = Name of your organization
986ca
987cert_signing_key
988EOF
989# certtool --generate-self-signed \
990 --load-privkey ca-key.pem
991 --template ca.info \
992 --outfile ca-cert.pem
993@end example
994
995The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
996TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
997
998@node vnc_generate_server
999@subsubsection Issuing server certificates
1000
1001Each server (or host) needs to be issued with a key and certificate. When connecting
1002the certificate is sent to the client which validates it against the CA certificate.
1003The core piece of information for a server certificate is the hostname. This should
1004be the fully qualified hostname that the client will connect with, since the client
1005will typically also verify the hostname in the certificate. On the host holding the
1006secure CA private key:
1007
1008@example
1009# cat > server.info <<EOF
1010organization = Name of your organization
1011cn = server.foo.example.com
1012tls_www_server
1013encryption_key
1014signing_key
1015EOF
1016# certtool --generate-privkey > server-key.pem
1017# certtool --generate-certificate \
1018 --load-ca-certificate ca-cert.pem \
1019 --load-ca-privkey ca-key.pem \
1020 --load-privkey server server-key.pem \
1021 --template server.info \
1022 --outfile server-cert.pem
1023@end example
1024
1025The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1026to the server for which they were generated. The @code{server-key.pem} is security
1027sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1028
1029@node vnc_generate_client
1030@subsubsection Issuing client certificates
1031
1032If the QEMU VNC server is to use the @code{x509verify} option to validate client
1033certificates as its authentication mechanism, each client also needs to be issued
1034a certificate. The client certificate contains enough metadata to uniquely identify
1035the client, typically organization, state, city, building, etc. On the host holding
1036the secure CA private key:
1037
1038@example
1039# cat > client.info <<EOF
1040country = GB
1041state = London
1042locality = London
1043organiazation = Name of your organization
1044cn = client.foo.example.com
1045tls_www_client
1046encryption_key
1047signing_key
1048EOF
1049# certtool --generate-privkey > client-key.pem
1050# certtool --generate-certificate \
1051 --load-ca-certificate ca-cert.pem \
1052 --load-ca-privkey ca-key.pem \
1053 --load-privkey client-key.pem \
1054 --template client.info \
1055 --outfile client-cert.pem
1056@end example
1057
1058The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1059copied to the client for which they were generated.
1060
2f9606b3
AL
1061
1062@node vnc_setup_sasl
1063
1064@subsection Configuring SASL mechanisms
1065
1066The following documentation assumes use of the Cyrus SASL implementation on a
1067Linux host, but the principals should apply to any other SASL impl. When SASL
1068is enabled, the mechanism configuration will be loaded from system default
1069SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1070unprivileged user, an environment variable SASL_CONF_PATH can be used
1071to make it search alternate locations for the service config.
1072
1073The default configuration might contain
1074
1075@example
1076mech_list: digest-md5
1077sasldb_path: /etc/qemu/passwd.db
1078@end example
1079
1080This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1081Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1082in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1083command. While this mechanism is easy to configure and use, it is not
1084considered secure by modern standards, so only suitable for developers /
1085ad-hoc testing.
1086
1087A more serious deployment might use Kerberos, which is done with the 'gssapi'
1088mechanism
1089
1090@example
1091mech_list: gssapi
1092keytab: /etc/qemu/krb5.tab
1093@end example
1094
1095For this to work the administrator of your KDC must generate a Kerberos
1096principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1097replacing 'somehost.example.com' with the fully qualified host name of the
1098machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1099
1100Other configurations will be left as an exercise for the reader. It should
1101be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1102encryption. For all other mechanisms, VNC should always be configured to
1103use TLS and x509 certificates to protect security credentials from snooping.
1104
0806e3f6 1105@node gdb_usage
da415d54
FB
1106@section GDB usage
1107
1108QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1109'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1110
9d4520d0 1111In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1112gdb connection:
1113@example
debc7065
FB
1114> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1115 -append "root=/dev/hda"
da415d54
FB
1116Connected to host network interface: tun0
1117Waiting gdb connection on port 1234
1118@end example
1119
1120Then launch gdb on the 'vmlinux' executable:
1121@example
1122> gdb vmlinux
1123@end example
1124
1125In gdb, connect to QEMU:
1126@example
6c9bf893 1127(gdb) target remote localhost:1234
da415d54
FB
1128@end example
1129
1130Then you can use gdb normally. For example, type 'c' to launch the kernel:
1131@example
1132(gdb) c
1133@end example
1134
0806e3f6
FB
1135Here are some useful tips in order to use gdb on system code:
1136
1137@enumerate
1138@item
1139Use @code{info reg} to display all the CPU registers.
1140@item
1141Use @code{x/10i $eip} to display the code at the PC position.
1142@item
1143Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1144@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1145@end enumerate
1146
60897d36
EI
1147Advanced debugging options:
1148
1149The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1150@table @code
60897d36
EI
1151@item maintenance packet qqemu.sstepbits
1152
1153This will display the MASK bits used to control the single stepping IE:
1154@example
1155(gdb) maintenance packet qqemu.sstepbits
1156sending: "qqemu.sstepbits"
1157received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1158@end example
1159@item maintenance packet qqemu.sstep
1160
1161This will display the current value of the mask used when single stepping IE:
1162@example
1163(gdb) maintenance packet qqemu.sstep
1164sending: "qqemu.sstep"
1165received: "0x7"
1166@end example
1167@item maintenance packet Qqemu.sstep=HEX_VALUE
1168
1169This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1170@example
1171(gdb) maintenance packet Qqemu.sstep=0x5
1172sending: "qemu.sstep=0x5"
1173received: "OK"
1174@end example
94d45e44 1175@end table
60897d36 1176
debc7065 1177@node pcsys_os_specific
1a084f3d
FB
1178@section Target OS specific information
1179
1180@subsection Linux
1181
15a34c63
FB
1182To have access to SVGA graphic modes under X11, use the @code{vesa} or
1183the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1184color depth in the guest and the host OS.
1a084f3d 1185
e3371e62
FB
1186When using a 2.6 guest Linux kernel, you should add the option
1187@code{clock=pit} on the kernel command line because the 2.6 Linux
1188kernels make very strict real time clock checks by default that QEMU
1189cannot simulate exactly.
1190
7c3fc84d
FB
1191When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1192not activated because QEMU is slower with this patch. The QEMU
1193Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1194Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1195patch by default. Newer kernels don't have it.
1196
1a084f3d
FB
1197@subsection Windows
1198
1199If you have a slow host, using Windows 95 is better as it gives the
1200best speed. Windows 2000 is also a good choice.
1201
e3371e62
FB
1202@subsubsection SVGA graphic modes support
1203
1204QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1205card. All Windows versions starting from Windows 95 should recognize
1206and use this graphic card. For optimal performances, use 16 bit color
1207depth in the guest and the host OS.
1a084f3d 1208
3cb0853a
FB
1209If you are using Windows XP as guest OS and if you want to use high
1210resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12111280x1024x16), then you should use the VESA VBE virtual graphic card
1212(option @option{-std-vga}).
1213
e3371e62
FB
1214@subsubsection CPU usage reduction
1215
1216Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1217instruction. The result is that it takes host CPU cycles even when
1218idle. You can install the utility from
1219@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1220problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1221
9d0a8e6f 1222@subsubsection Windows 2000 disk full problem
e3371e62 1223
9d0a8e6f
FB
1224Windows 2000 has a bug which gives a disk full problem during its
1225installation. When installing it, use the @option{-win2k-hack} QEMU
1226option to enable a specific workaround. After Windows 2000 is
1227installed, you no longer need this option (this option slows down the
1228IDE transfers).
e3371e62 1229
6cc721cf
FB
1230@subsubsection Windows 2000 shutdown
1231
1232Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1233can. It comes from the fact that Windows 2000 does not automatically
1234use the APM driver provided by the BIOS.
1235
1236In order to correct that, do the following (thanks to Struan
1237Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1238Add/Troubleshoot a device => Add a new device & Next => No, select the
1239hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1240(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1241correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1242
1243@subsubsection Share a directory between Unix and Windows
1244
1245See @ref{sec_invocation} about the help of the option @option{-smb}.
1246
2192c332 1247@subsubsection Windows XP security problem
e3371e62
FB
1248
1249Some releases of Windows XP install correctly but give a security
1250error when booting:
1251@example
1252A problem is preventing Windows from accurately checking the
1253license for this computer. Error code: 0x800703e6.
1254@end example
e3371e62 1255
2192c332
FB
1256The workaround is to install a service pack for XP after a boot in safe
1257mode. Then reboot, and the problem should go away. Since there is no
1258network while in safe mode, its recommended to download the full
1259installation of SP1 or SP2 and transfer that via an ISO or using the
1260vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1261
a0a821a4
FB
1262@subsection MS-DOS and FreeDOS
1263
1264@subsubsection CPU usage reduction
1265
1266DOS does not correctly use the CPU HLT instruction. The result is that
1267it takes host CPU cycles even when idle. You can install the utility
1268from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1269problem.
1270
debc7065 1271@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1272@chapter QEMU System emulator for non PC targets
1273
1274QEMU is a generic emulator and it emulates many non PC
1275machines. Most of the options are similar to the PC emulator. The
4be456f1 1276differences are mentioned in the following sections.
3f9f3aa1 1277
debc7065
FB
1278@menu
1279* QEMU PowerPC System emulator::
24d4de45
TS
1280* Sparc32 System emulator::
1281* Sparc64 System emulator::
1282* MIPS System emulator::
1283* ARM System emulator::
1284* ColdFire System emulator::
debc7065
FB
1285@end menu
1286
1287@node QEMU PowerPC System emulator
3f9f3aa1 1288@section QEMU PowerPC System emulator
1a084f3d 1289
15a34c63
FB
1290Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1291or PowerMac PowerPC system.
1a084f3d 1292
b671f9ed 1293QEMU emulates the following PowerMac peripherals:
1a084f3d 1294
15a34c63 1295@itemize @minus
5fafdf24 1296@item
006f3a48 1297UniNorth or Grackle PCI Bridge
15a34c63
FB
1298@item
1299PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1300@item
15a34c63 13012 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1302@item
15a34c63
FB
1303NE2000 PCI adapters
1304@item
1305Non Volatile RAM
1306@item
1307VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1308@end itemize
1309
b671f9ed 1310QEMU emulates the following PREP peripherals:
52c00a5f
FB
1311
1312@itemize @minus
5fafdf24 1313@item
15a34c63
FB
1314PCI Bridge
1315@item
1316PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1317@item
52c00a5f
FB
13182 IDE interfaces with hard disk and CD-ROM support
1319@item
1320Floppy disk
5fafdf24 1321@item
15a34c63 1322NE2000 network adapters
52c00a5f
FB
1323@item
1324Serial port
1325@item
1326PREP Non Volatile RAM
15a34c63
FB
1327@item
1328PC compatible keyboard and mouse.
52c00a5f
FB
1329@end itemize
1330
15a34c63 1331QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1332@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1333
992e5acd 1334Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1335for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1336v2) portable firmware implementation. The goal is to implement a 100%
1337IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1338
15a34c63
FB
1339@c man begin OPTIONS
1340
1341The following options are specific to the PowerPC emulation:
1342
1343@table @option
1344
4e257e5e 1345@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1346
1347Set the initial VGA graphic mode. The default is 800x600x15.
1348
4e257e5e 1349@item -prom-env @var{string}
95efd11c
BS
1350
1351Set OpenBIOS variables in NVRAM, for example:
1352
1353@example
1354qemu-system-ppc -prom-env 'auto-boot?=false' \
1355 -prom-env 'boot-device=hd:2,\yaboot' \
1356 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1357@end example
1358
1359These variables are not used by Open Hack'Ware.
1360
15a34c63
FB
1361@end table
1362
5fafdf24 1363@c man end
15a34c63
FB
1364
1365
52c00a5f 1366More information is available at
3f9f3aa1 1367@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1368
24d4de45
TS
1369@node Sparc32 System emulator
1370@section Sparc32 System emulator
e80cfcfc 1371
34a3d239
BS
1372Use the executable @file{qemu-system-sparc} to simulate the following
1373Sun4m architecture machines:
1374@itemize @minus
1375@item
1376SPARCstation 4
1377@item
1378SPARCstation 5
1379@item
1380SPARCstation 10
1381@item
1382SPARCstation 20
1383@item
1384SPARCserver 600MP
1385@item
1386SPARCstation LX
1387@item
1388SPARCstation Voyager
1389@item
1390SPARCclassic
1391@item
1392SPARCbook
1393@end itemize
1394
1395The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1396but Linux limits the number of usable CPUs to 4.
e80cfcfc 1397
34a3d239
BS
1398It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1399SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1400emulators are not usable yet.
1401
1402QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1403
1404@itemize @minus
3475187d 1405@item
7d85892b 1406IOMMU or IO-UNITs
e80cfcfc
FB
1407@item
1408TCX Frame buffer
5fafdf24 1409@item
e80cfcfc
FB
1410Lance (Am7990) Ethernet
1411@item
34a3d239 1412Non Volatile RAM M48T02/M48T08
e80cfcfc 1413@item
3475187d
FB
1414Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1415and power/reset logic
1416@item
1417ESP SCSI controller with hard disk and CD-ROM support
1418@item
6a3b9cc9 1419Floppy drive (not on SS-600MP)
a2502b58
BS
1420@item
1421CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1422@end itemize
1423
6a3b9cc9
BS
1424The number of peripherals is fixed in the architecture. Maximum
1425memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1426others 2047MB.
3475187d 1427
30a604f3 1428Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1429@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1430firmware implementation. The goal is to implement a 100% IEEE
14311275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1432
1433A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1434the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1435some kernel versions work. Please note that currently Solaris kernels
1436don't work probably due to interface issues between OpenBIOS and
1437Solaris.
3475187d
FB
1438
1439@c man begin OPTIONS
1440
a2502b58 1441The following options are specific to the Sparc32 emulation:
3475187d
FB
1442
1443@table @option
1444
4e257e5e 1445@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1446
a2502b58
BS
1447Set the initial TCX graphic mode. The default is 1024x768x8, currently
1448the only other possible mode is 1024x768x24.
3475187d 1449
4e257e5e 1450@item -prom-env @var{string}
66508601
BS
1451
1452Set OpenBIOS variables in NVRAM, for example:
1453
1454@example
1455qemu-system-sparc -prom-env 'auto-boot?=false' \
1456 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1457@end example
1458
34a3d239 1459@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1460
1461Set the emulated machine type. Default is SS-5.
1462
3475187d
FB
1463@end table
1464
5fafdf24 1465@c man end
3475187d 1466
24d4de45
TS
1467@node Sparc64 System emulator
1468@section Sparc64 System emulator
e80cfcfc 1469
34a3d239
BS
1470Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1471(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1472Niagara (T1) machine. The emulator is not usable for anything yet, but
1473it can launch some kernels.
b756921a 1474
c7ba218d 1475QEMU emulates the following peripherals:
83469015
FB
1476
1477@itemize @minus
1478@item
5fafdf24 1479UltraSparc IIi APB PCI Bridge
83469015
FB
1480@item
1481PCI VGA compatible card with VESA Bochs Extensions
1482@item
34a3d239
BS
1483PS/2 mouse and keyboard
1484@item
83469015
FB
1485Non Volatile RAM M48T59
1486@item
1487PC-compatible serial ports
c7ba218d
BS
1488@item
14892 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1490@item
1491Floppy disk
83469015
FB
1492@end itemize
1493
c7ba218d
BS
1494@c man begin OPTIONS
1495
1496The following options are specific to the Sparc64 emulation:
1497
1498@table @option
1499
4e257e5e 1500@item -prom-env @var{string}
34a3d239
BS
1501
1502Set OpenBIOS variables in NVRAM, for example:
1503
1504@example
1505qemu-system-sparc64 -prom-env 'auto-boot?=false'
1506@end example
1507
1508@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1509
1510Set the emulated machine type. The default is sun4u.
1511
1512@end table
1513
1514@c man end
1515
24d4de45
TS
1516@node MIPS System emulator
1517@section MIPS System emulator
9d0a8e6f 1518
d9aedc32
TS
1519Four executables cover simulation of 32 and 64-bit MIPS systems in
1520both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1521@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1522Five different machine types are emulated:
24d4de45
TS
1523
1524@itemize @minus
1525@item
1526A generic ISA PC-like machine "mips"
1527@item
1528The MIPS Malta prototype board "malta"
1529@item
d9aedc32 1530An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1531@item
f0fc6f8f 1532MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1533@item
1534A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1535@end itemize
1536
1537The generic emulation is supported by Debian 'Etch' and is able to
1538install Debian into a virtual disk image. The following devices are
1539emulated:
3f9f3aa1
FB
1540
1541@itemize @minus
5fafdf24 1542@item
6bf5b4e8 1543A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1544@item
1545PC style serial port
1546@item
24d4de45
TS
1547PC style IDE disk
1548@item
3f9f3aa1
FB
1549NE2000 network card
1550@end itemize
1551
24d4de45
TS
1552The Malta emulation supports the following devices:
1553
1554@itemize @minus
1555@item
0b64d008 1556Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1557@item
1558PIIX4 PCI/USB/SMbus controller
1559@item
1560The Multi-I/O chip's serial device
1561@item
3a2eeac0 1562PCI network cards (PCnet32 and others)
24d4de45
TS
1563@item
1564Malta FPGA serial device
1565@item
1f605a76 1566Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1567@end itemize
1568
1569The ACER Pica emulation supports:
1570
1571@itemize @minus
1572@item
1573MIPS R4000 CPU
1574@item
1575PC-style IRQ and DMA controllers
1576@item
1577PC Keyboard
1578@item
1579IDE controller
1580@end itemize
3f9f3aa1 1581
f0fc6f8f
TS
1582The mipssim pseudo board emulation provides an environment similiar
1583to what the proprietary MIPS emulator uses for running Linux.
1584It supports:
6bf5b4e8
TS
1585
1586@itemize @minus
1587@item
1588A range of MIPS CPUs, default is the 24Kf
1589@item
1590PC style serial port
1591@item
1592MIPSnet network emulation
1593@end itemize
1594
88cb0a02
AJ
1595The MIPS Magnum R4000 emulation supports:
1596
1597@itemize @minus
1598@item
1599MIPS R4000 CPU
1600@item
1601PC-style IRQ controller
1602@item
1603PC Keyboard
1604@item
1605SCSI controller
1606@item
1607G364 framebuffer
1608@end itemize
1609
1610
24d4de45
TS
1611@node ARM System emulator
1612@section ARM System emulator
3f9f3aa1
FB
1613
1614Use the executable @file{qemu-system-arm} to simulate a ARM
1615machine. The ARM Integrator/CP board is emulated with the following
1616devices:
1617
1618@itemize @minus
1619@item
9ee6e8bb 1620ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1621@item
1622Two PL011 UARTs
5fafdf24 1623@item
3f9f3aa1 1624SMC 91c111 Ethernet adapter
00a9bf19
PB
1625@item
1626PL110 LCD controller
1627@item
1628PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1629@item
1630PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1631@end itemize
1632
1633The ARM Versatile baseboard is emulated with the following devices:
1634
1635@itemize @minus
1636@item
9ee6e8bb 1637ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1638@item
1639PL190 Vectored Interrupt Controller
1640@item
1641Four PL011 UARTs
5fafdf24 1642@item
00a9bf19
PB
1643SMC 91c111 Ethernet adapter
1644@item
1645PL110 LCD controller
1646@item
1647PL050 KMI with PS/2 keyboard and mouse.
1648@item
1649PCI host bridge. Note the emulated PCI bridge only provides access to
1650PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1651This means some devices (eg. ne2k_pci NIC) are not usable, and others
1652(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1653mapped control registers.
e6de1bad
PB
1654@item
1655PCI OHCI USB controller.
1656@item
1657LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1658@item
1659PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1660@end itemize
1661
0ef849d7
PB
1662The ARM RealView Emulation/Platform baseboard is emulated with the following
1663devices:
d7739d75
PB
1664
1665@itemize @minus
1666@item
f7c70325 1667ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1668@item
1669ARM AMBA Generic/Distributed Interrupt Controller
1670@item
1671Four PL011 UARTs
5fafdf24 1672@item
0ef849d7 1673SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1674@item
1675PL110 LCD controller
1676@item
1677PL050 KMI with PS/2 keyboard and mouse
1678@item
1679PCI host bridge
1680@item
1681PCI OHCI USB controller
1682@item
1683LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1684@item
1685PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1686@end itemize
1687
b00052e4
AZ
1688The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1689and "Terrier") emulation includes the following peripherals:
1690
1691@itemize @minus
1692@item
1693Intel PXA270 System-on-chip (ARM V5TE core)
1694@item
1695NAND Flash memory
1696@item
1697IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1698@item
1699On-chip OHCI USB controller
1700@item
1701On-chip LCD controller
1702@item
1703On-chip Real Time Clock
1704@item
1705TI ADS7846 touchscreen controller on SSP bus
1706@item
1707Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1708@item
1709GPIO-connected keyboard controller and LEDs
1710@item
549444e1 1711Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1712@item
1713Three on-chip UARTs
1714@item
1715WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1716@end itemize
1717
02645926
AZ
1718The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1719following elements:
1720
1721@itemize @minus
1722@item
1723Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1724@item
1725ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1726@item
1727On-chip LCD controller
1728@item
1729On-chip Real Time Clock
1730@item
1731TI TSC2102i touchscreen controller / analog-digital converter / Audio
1732CODEC, connected through MicroWire and I@math{^2}S busses
1733@item
1734GPIO-connected matrix keypad
1735@item
1736Secure Digital card connected to OMAP MMC/SD host
1737@item
1738Three on-chip UARTs
1739@end itemize
1740
c30bb264
AZ
1741Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1742emulation supports the following elements:
1743
1744@itemize @minus
1745@item
1746Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1747@item
1748RAM and non-volatile OneNAND Flash memories
1749@item
1750Display connected to EPSON remote framebuffer chip and OMAP on-chip
1751display controller and a LS041y3 MIPI DBI-C controller
1752@item
1753TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1754driven through SPI bus
1755@item
1756National Semiconductor LM8323-controlled qwerty keyboard driven
1757through I@math{^2}C bus
1758@item
1759Secure Digital card connected to OMAP MMC/SD host
1760@item
1761Three OMAP on-chip UARTs and on-chip STI debugging console
1762@item
2d564691
AZ
1763A Bluetooth(R) transciever and HCI connected to an UART
1764@item
c30bb264
AZ
1765Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1766TUSB6010 chip - only USB host mode is supported
1767@item
1768TI TMP105 temperature sensor driven through I@math{^2}C bus
1769@item
1770TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1771@item
1772Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1773through CBUS
1774@end itemize
1775
9ee6e8bb
PB
1776The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1777devices:
1778
1779@itemize @minus
1780@item
1781Cortex-M3 CPU core.
1782@item
178364k Flash and 8k SRAM.
1784@item
1785Timers, UARTs, ADC and I@math{^2}C interface.
1786@item
1787OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1788@end itemize
1789
1790The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1791devices:
1792
1793@itemize @minus
1794@item
1795Cortex-M3 CPU core.
1796@item
1797256k Flash and 64k SRAM.
1798@item
1799Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1800@item
1801OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1802@end itemize
1803
57cd6e97
AZ
1804The Freecom MusicPal internet radio emulation includes the following
1805elements:
1806
1807@itemize @minus
1808@item
1809Marvell MV88W8618 ARM core.
1810@item
181132 MB RAM, 256 KB SRAM, 8 MB flash.
1812@item
1813Up to 2 16550 UARTs
1814@item
1815MV88W8xx8 Ethernet controller
1816@item
1817MV88W8618 audio controller, WM8750 CODEC and mixer
1818@item
1819