]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
target-moxie: Fix pointer-to-integer conversion (MinGW-w64)
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
1a1a0e20 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 230QEMU must be told to not have parallel ports to have working GUS.
720036a5 231
232@example
3804da9d 233qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 234@end example
235
236Alternatively:
237@example
3804da9d 238qemu-system-i386 dos.img -device gus,irq=5
720036a5 239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
3804da9d 254qemu-system-i386 linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
3804da9d 264usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
de1db2a1
BH
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
a1b74fe8 286@table @key
f9859310 287@item Ctrl-Alt-f
7544a042 288@kindex Ctrl-Alt-f
a1b74fe8 289Toggle full screen
a0a821a4 290
d6a65ba3
JK
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
c4a735f9 299@item Ctrl-Alt-u
7544a042 300@kindex Ctrl-Alt-u
c4a735f9 301Restore the screen's un-scaled dimensions
302
f9859310 303@item Ctrl-Alt-n
7544a042 304@kindex Ctrl-Alt-n
a0a821a4
FB
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
a1b74fe8
FB
313@end table
314
f9859310 315@item Ctrl-Alt
7544a042 316@kindex Ctrl-Alt
a0a821a4
FB
317Toggle mouse and keyboard grab.
318@end table
319
7544a042
SW
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
3e11db9a
FB
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
7544a042 327@kindex Ctrl-a h
a0a821a4
FB
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
330
331@table @key
a1b74fe8 332@item Ctrl-a h
7544a042 333@kindex Ctrl-a h
d2c639d6 334@item Ctrl-a ?
7544a042 335@kindex Ctrl-a ?
ec410fc9 336Print this help
3b46e624 337@item Ctrl-a x
7544a042 338@kindex Ctrl-a x
366dfc52 339Exit emulator
3b46e624 340@item Ctrl-a s
7544a042 341@kindex Ctrl-a s
1f47a922 342Save disk data back to file (if -snapshot)
20d8a3ed 343@item Ctrl-a t
7544a042 344@kindex Ctrl-a t
d2c639d6 345Toggle console timestamps
a1b74fe8 346@item Ctrl-a b
7544a042 347@kindex Ctrl-a b
1f673135 348Send break (magic sysrq in Linux)
a1b74fe8 349@item Ctrl-a c
7544a042 350@kindex Ctrl-a c
1f673135 351Switch between console and monitor
a1b74fe8 352@item Ctrl-a Ctrl-a
7544a042 353@kindex Ctrl-a a
a1b74fe8 354Send Ctrl-a
ec410fc9 355@end table
0806e3f6
FB
356@c man end
357
358@ignore
359
1f673135
FB
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
debc7065 371@node pcsys_monitor
1f673135 372@section QEMU Monitor
7544a042 373@cindex QEMU monitor
1f673135
FB
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
e598752a 381Remove or insert removable media images
89dfe898 382(such as CD-ROM or floppies).
1f673135 383
5fafdf24 384@item
1f673135
FB
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
2313086a 396@include qemu-monitor.texi
0806e3f6 397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 419* disk_images_formats:: Disk image file formats
19cb3738 420* host_drives:: Using host drives
debc7065 421* disk_images_fat_images:: Virtual FAT disk images
75818250 422* disk_images_nbd:: NBD access
42af9c30 423* disk_images_sheepdog:: Sheepdog disk images
00984e39 424* disk_images_iscsi:: iSCSI LUNs
8809e289 425* disk_images_gluster:: GlusterFS disk images
debc7065
FB
426@end menu
427
428@node disk_images_quickstart
acd935ef
FB
429@subsection Quick start for disk image creation
430
431You can create a disk image with the command:
1f47a922 432@example
acd935ef 433qemu-img create myimage.img mysize
1f47a922 434@end example
acd935ef
FB
435where @var{myimage.img} is the disk image filename and @var{mysize} is its
436size in kilobytes. You can add an @code{M} suffix to give the size in
437megabytes and a @code{G} suffix for gigabytes.
438
debc7065 439See @ref{qemu_img_invocation} for more information.
1f47a922 440
debc7065 441@node disk_images_snapshot_mode
1f47a922
FB
442@subsection Snapshot mode
443
444If you use the option @option{-snapshot}, all disk images are
445considered as read only. When sectors in written, they are written in
446a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
447write back to the raw disk images by using the @code{commit} monitor
448command (or @key{C-a s} in the serial console).
1f47a922 449
13a2e80f
FB
450@node vm_snapshots
451@subsection VM snapshots
452
453VM snapshots are snapshots of the complete virtual machine including
454CPU state, RAM, device state and the content of all the writable
455disks. In order to use VM snapshots, you must have at least one non
456removable and writable block device using the @code{qcow2} disk image
457format. Normally this device is the first virtual hard drive.
458
459Use the monitor command @code{savevm} to create a new VM snapshot or
460replace an existing one. A human readable name can be assigned to each
19d36792 461snapshot in addition to its numerical ID.
13a2e80f
FB
462
463Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
464a VM snapshot. @code{info snapshots} lists the available snapshots
465with their associated information:
466
467@example
468(qemu) info snapshots
469Snapshot devices: hda
470Snapshot list (from hda):
471ID TAG VM SIZE DATE VM CLOCK
4721 start 41M 2006-08-06 12:38:02 00:00:14.954
4732 40M 2006-08-06 12:43:29 00:00:18.633
4743 msys 40M 2006-08-06 12:44:04 00:00:23.514
475@end example
476
477A VM snapshot is made of a VM state info (its size is shown in
478@code{info snapshots}) and a snapshot of every writable disk image.
479The VM state info is stored in the first @code{qcow2} non removable
480and writable block device. The disk image snapshots are stored in
481every disk image. The size of a snapshot in a disk image is difficult
482to evaluate and is not shown by @code{info snapshots} because the
483associated disk sectors are shared among all the snapshots to save
19d36792
FB
484disk space (otherwise each snapshot would need a full copy of all the
485disk images).
13a2e80f
FB
486
487When using the (unrelated) @code{-snapshot} option
488(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
489but they are deleted as soon as you exit QEMU.
490
491VM snapshots currently have the following known limitations:
492@itemize
5fafdf24 493@item
13a2e80f
FB
494They cannot cope with removable devices if they are removed or
495inserted after a snapshot is done.
5fafdf24 496@item
13a2e80f
FB
497A few device drivers still have incomplete snapshot support so their
498state is not saved or restored properly (in particular USB).
499@end itemize
500
acd935ef
FB
501@node qemu_img_invocation
502@subsection @code{qemu-img} Invocation
1f47a922 503
acd935ef 504@include qemu-img.texi
05efe46e 505
975b092b
TS
506@node qemu_nbd_invocation
507@subsection @code{qemu-nbd} Invocation
508
509@include qemu-nbd.texi
510
d3067b02
KW
511@node disk_images_formats
512@subsection Disk image file formats
513
514QEMU supports many image file formats that can be used with VMs as well as with
515any of the tools (like @code{qemu-img}). This includes the preferred formats
516raw and qcow2 as well as formats that are supported for compatibility with
517older QEMU versions or other hypervisors.
518
519Depending on the image format, different options can be passed to
520@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
521This section describes each format and the options that are supported for it.
522
523@table @option
524@item raw
525
526Raw disk image format. This format has the advantage of
527being simple and easily exportable to all other emulators. If your
528file system supports @emph{holes} (for example in ext2 or ext3 on
529Linux or NTFS on Windows), then only the written sectors will reserve
530space. Use @code{qemu-img info} to know the real size used by the
531image or @code{ls -ls} on Unix/Linux.
532
533@item qcow2
534QEMU image format, the most versatile format. Use it to have smaller
535images (useful if your filesystem does not supports holes, for example
536on Windows), optional AES encryption, zlib based compression and
537support of multiple VM snapshots.
538
539Supported options:
540@table @code
541@item compat
542Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
543image format that can be read by any QEMU since 0.10 (this is the default).
544@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
545newer understand. Amongst others, this includes zero clusters, which allow
546efficient copy-on-read for sparse images.
547
548@item backing_file
549File name of a base image (see @option{create} subcommand)
550@item backing_fmt
551Image format of the base image
552@item encryption
553If this option is set to @code{on}, the image is encrypted.
554
555Encryption uses the AES format which is very secure (128 bit keys). Use
556a long password (16 characters) to get maximum protection.
557
558@item cluster_size
559Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
560sizes can improve the image file size whereas larger cluster sizes generally
561provide better performance.
562
563@item preallocation
564Preallocation mode (allowed values: off, metadata). An image with preallocated
565metadata is initially larger but can improve performance when the image needs
566to grow.
567
568@item lazy_refcounts
569If this option is set to @code{on}, reference count updates are postponed with
570the goal of avoiding metadata I/O and improving performance. This is
571particularly interesting with @option{cache=writethrough} which doesn't batch
572metadata updates. The tradeoff is that after a host crash, the reference count
573tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
574check -r all} is required, which may take some time.
575
576This option can only be enabled if @code{compat=1.1} is specified.
577
578@end table
579
580@item qed
581Old QEMU image format with support for backing files and compact image files
582(when your filesystem or transport medium does not support holes).
583
584When converting QED images to qcow2, you might want to consider using the
585@code{lazy_refcounts=on} option to get a more QED-like behaviour.
586
587Supported options:
588@table @code
589@item backing_file
590File name of a base image (see @option{create} subcommand).
591@item backing_fmt
592Image file format of backing file (optional). Useful if the format cannot be
593autodetected because it has no header, like some vhd/vpc files.
594@item cluster_size
595Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
596cluster sizes can improve the image file size whereas larger cluster sizes
597generally provide better performance.
598@item table_size
599Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
600and 16). There is normally no need to change this value but this option can be
601used for performance benchmarking.
602@end table
603
604@item qcow
605Old QEMU image format with support for backing files, compact image files,
606encryption and compression.
607
608Supported options:
609@table @code
610@item backing_file
611File name of a base image (see @option{create} subcommand)
612@item encryption
613If this option is set to @code{on}, the image is encrypted.
614@end table
615
616@item cow
617User Mode Linux Copy On Write image format. It is supported only for
618compatibility with previous versions.
619Supported options:
620@table @code
621@item backing_file
622File name of a base image (see @option{create} subcommand)
623@end table
624
625@item vdi
626VirtualBox 1.1 compatible image format.
627Supported options:
628@table @code
629@item static
630If this option is set to @code{on}, the image is created with metadata
631preallocation.
632@end table
633
634@item vmdk
635VMware 3 and 4 compatible image format.
636
637Supported options:
638@table @code
639@item backing_file
640File name of a base image (see @option{create} subcommand).
641@item compat6
642Create a VMDK version 6 image (instead of version 4)
643@item subformat
644Specifies which VMDK subformat to use. Valid options are
645@code{monolithicSparse} (default),
646@code{monolithicFlat},
647@code{twoGbMaxExtentSparse},
648@code{twoGbMaxExtentFlat} and
649@code{streamOptimized}.
650@end table
651
652@item vpc
653VirtualPC compatible image format (VHD).
654Supported options:
655@table @code
656@item subformat
657Specifies which VHD subformat to use. Valid options are
658@code{dynamic} (default) and @code{fixed}.
659@end table
660@end table
661
662@subsubsection Read-only formats
663More disk image file formats are supported in a read-only mode.
664@table @option
665@item bochs
666Bochs images of @code{growing} type.
667@item cloop
668Linux Compressed Loop image, useful only to reuse directly compressed
669CD-ROM images present for example in the Knoppix CD-ROMs.
670@item dmg
671Apple disk image.
672@item parallels
673Parallels disk image format.
674@end table
675
676
19cb3738
FB
677@node host_drives
678@subsection Using host drives
679
680In addition to disk image files, QEMU can directly access host
681devices. We describe here the usage for QEMU version >= 0.8.3.
682
683@subsubsection Linux
684
685On Linux, you can directly use the host device filename instead of a
4be456f1 686disk image filename provided you have enough privileges to access
19cb3738
FB
687it. For example, use @file{/dev/cdrom} to access to the CDROM or
688@file{/dev/fd0} for the floppy.
689
f542086d 690@table @code
19cb3738
FB
691@item CD
692You can specify a CDROM device even if no CDROM is loaded. QEMU has
693specific code to detect CDROM insertion or removal. CDROM ejection by
694the guest OS is supported. Currently only data CDs are supported.
695@item Floppy
696You can specify a floppy device even if no floppy is loaded. Floppy
697removal is currently not detected accurately (if you change floppy
698without doing floppy access while the floppy is not loaded, the guest
699OS will think that the same floppy is loaded).
700@item Hard disks
701Hard disks can be used. Normally you must specify the whole disk
702(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
703see it as a partitioned disk. WARNING: unless you know what you do, it
704is better to only make READ-ONLY accesses to the hard disk otherwise
705you may corrupt your host data (use the @option{-snapshot} command
706line option or modify the device permissions accordingly).
707@end table
708
709@subsubsection Windows
710
01781963
FB
711@table @code
712@item CD
4be456f1 713The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
714alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
715supported as an alias to the first CDROM drive.
19cb3738 716
e598752a 717Currently there is no specific code to handle removable media, so it
19cb3738
FB
718is better to use the @code{change} or @code{eject} monitor commands to
719change or eject media.
01781963 720@item Hard disks
89dfe898 721Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
722where @var{N} is the drive number (0 is the first hard disk).
723
724WARNING: unless you know what you do, it is better to only make
725READ-ONLY accesses to the hard disk otherwise you may corrupt your
726host data (use the @option{-snapshot} command line so that the
727modifications are written in a temporary file).
728@end table
729
19cb3738
FB
730
731@subsubsection Mac OS X
732
5fafdf24 733@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 734
e598752a 735Currently there is no specific code to handle removable media, so it
19cb3738
FB
736is better to use the @code{change} or @code{eject} monitor commands to
737change or eject media.
738
debc7065 739@node disk_images_fat_images
2c6cadd4
FB
740@subsection Virtual FAT disk images
741
742QEMU can automatically create a virtual FAT disk image from a
743directory tree. In order to use it, just type:
744
5fafdf24 745@example
3804da9d 746qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
747@end example
748
749Then you access access to all the files in the @file{/my_directory}
750directory without having to copy them in a disk image or to export
751them via SAMBA or NFS. The default access is @emph{read-only}.
752
753Floppies can be emulated with the @code{:floppy:} option:
754
5fafdf24 755@example
3804da9d 756qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
757@end example
758
759A read/write support is available for testing (beta stage) with the
760@code{:rw:} option:
761
5fafdf24 762@example
3804da9d 763qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
764@end example
765
766What you should @emph{never} do:
767@itemize
768@item use non-ASCII filenames ;
769@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
770@item expect it to work when loadvm'ing ;
771@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
772@end itemize
773
75818250
TS
774@node disk_images_nbd
775@subsection NBD access
776
777QEMU can access directly to block device exported using the Network Block Device
778protocol.
779
780@example
1d7d2a9d 781qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
782@end example
783
784If the NBD server is located on the same host, you can use an unix socket instead
785of an inet socket:
786
787@example
1d7d2a9d 788qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
789@end example
790
791In this case, the block device must be exported using qemu-nbd:
792
793@example
794qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
795@end example
796
797The use of qemu-nbd allows to share a disk between several guests:
798@example
799qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
800@end example
801
1d7d2a9d 802@noindent
75818250
TS
803and then you can use it with two guests:
804@example
1d7d2a9d
PB
805qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
806qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
807@end example
808
1d7d2a9d
PB
809If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
810own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 811@example
1d7d2a9d
PB
812qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
813qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
814@end example
815
816The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
817also available. Here are some example of the older syntax:
818@example
819qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
820qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
821qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
822@end example
823
42af9c30
MK
824@node disk_images_sheepdog
825@subsection Sheepdog disk images
826
827Sheepdog is a distributed storage system for QEMU. It provides highly
828available block level storage volumes that can be attached to
829QEMU-based virtual machines.
830
831You can create a Sheepdog disk image with the command:
832@example
5d6768e3 833qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
834@end example
835where @var{image} is the Sheepdog image name and @var{size} is its
836size.
837
838To import the existing @var{filename} to Sheepdog, you can use a
839convert command.
840@example
5d6768e3 841qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
842@end example
843
844You can boot from the Sheepdog disk image with the command:
845@example
5d6768e3 846qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
847@end example
848
849You can also create a snapshot of the Sheepdog image like qcow2.
850@example
5d6768e3 851qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
852@end example
853where @var{tag} is a tag name of the newly created snapshot.
854
855To boot from the Sheepdog snapshot, specify the tag name of the
856snapshot.
857@example
5d6768e3 858qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
859@end example
860
861You can create a cloned image from the existing snapshot.
862@example
5d6768e3 863qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
864@end example
865where @var{base} is a image name of the source snapshot and @var{tag}
866is its tag name.
867
1b8bbb46
MK
868You can use an unix socket instead of an inet socket:
869
870@example
871qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
872@end example
873
42af9c30
MK
874If the Sheepdog daemon doesn't run on the local host, you need to
875specify one of the Sheepdog servers to connect to.
876@example
5d6768e3
MK
877qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
878qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
879@end example
880
00984e39
RS
881@node disk_images_iscsi
882@subsection iSCSI LUNs
883
884iSCSI is a popular protocol used to access SCSI devices across a computer
885network.
886
887There are two different ways iSCSI devices can be used by QEMU.
888
889The first method is to mount the iSCSI LUN on the host, and make it appear as
890any other ordinary SCSI device on the host and then to access this device as a
891/dev/sd device from QEMU. How to do this differs between host OSes.
892
893The second method involves using the iSCSI initiator that is built into
894QEMU. This provides a mechanism that works the same way regardless of which
895host OS you are running QEMU on. This section will describe this second method
896of using iSCSI together with QEMU.
897
898In QEMU, iSCSI devices are described using special iSCSI URLs
899
900@example
901URL syntax:
902iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
903@end example
904
905Username and password are optional and only used if your target is set up
906using CHAP authentication for access control.
907Alternatively the username and password can also be set via environment
908variables to have these not show up in the process list
909
910@example
911export LIBISCSI_CHAP_USERNAME=<username>
912export LIBISCSI_CHAP_PASSWORD=<password>
913iscsi://<host>/<target-iqn-name>/<lun>
914@end example
915
f9dadc98
RS
916Various session related parameters can be set via special options, either
917in a configuration file provided via '-readconfig' or directly on the
918command line.
919
31459f46
RS
920If the initiator-name is not specified qemu will use a default name
921of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
922virtual machine.
923
924
f9dadc98
RS
925@example
926Setting a specific initiator name to use when logging in to the target
927-iscsi initiator-name=iqn.qemu.test:my-initiator
928@end example
929
930@example
931Controlling which type of header digest to negotiate with the target
932-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
933@end example
934
935These can also be set via a configuration file
936@example
937[iscsi]
938 user = "CHAP username"
939 password = "CHAP password"
940 initiator-name = "iqn.qemu.test:my-initiator"
941 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
942 header-digest = "CRC32C"
943@end example
944
945
946Setting the target name allows different options for different targets
947@example
948[iscsi "iqn.target.name"]
949 user = "CHAP username"
950 password = "CHAP password"
951 initiator-name = "iqn.qemu.test:my-initiator"
952 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
953 header-digest = "CRC32C"
954@end example
955
956
957Howto use a configuration file to set iSCSI configuration options:
958@example
959cat >iscsi.conf <<EOF
960[iscsi]
961 user = "me"
962 password = "my password"
963 initiator-name = "iqn.qemu.test:my-initiator"
964 header-digest = "CRC32C"
965EOF
966
967qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
968 -readconfig iscsi.conf
969@end example
970
971
00984e39
RS
972Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
973@example
974This example shows how to set up an iSCSI target with one CDROM and one DISK
975using the Linux STGT software target. This target is available on Red Hat based
976systems as the package 'scsi-target-utils'.
977
978tgtd --iscsi portal=127.0.0.1:3260
979tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
980tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
981 -b /IMAGES/disk.img --device-type=disk
982tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
983 -b /IMAGES/cd.iso --device-type=cd
984tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
985
f9dadc98
RS
986qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
987 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
988 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
989@end example
990
8809e289
BR
991@node disk_images_gluster
992@subsection GlusterFS disk images
00984e39 993
8809e289
BR
994GlusterFS is an user space distributed file system.
995
996You can boot from the GlusterFS disk image with the command:
997@example
998qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
999@end example
1000
1001@var{gluster} is the protocol.
1002
1003@var{transport} specifies the transport type used to connect to gluster
1004management daemon (glusterd). Valid transport types are
1005tcp, unix and rdma. If a transport type isn't specified, then tcp
1006type is assumed.
1007
1008@var{server} specifies the server where the volume file specification for
1009the given volume resides. This can be either hostname, ipv4 address
1010or ipv6 address. ipv6 address needs to be within square brackets [ ].
1011If transport type is unix, then @var{server} field should not be specifed.
1012Instead @var{socket} field needs to be populated with the path to unix domain
1013socket.
1014
1015@var{port} is the port number on which glusterd is listening. This is optional
1016and if not specified, QEMU will send 0 which will make gluster to use the
1017default port. If the transport type is unix, then @var{port} should not be
1018specified.
1019
1020@var{volname} is the name of the gluster volume which contains the disk image.
1021
1022@var{image} is the path to the actual disk image that resides on gluster volume.
1023
1024You can create a GlusterFS disk image with the command:
1025@example
1026qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1027@end example
1028
1029Examples
1030@example
1031qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1032qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1033qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1034qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1035qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1036qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1037qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1038qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1039@end example
00984e39 1040
debc7065 1041@node pcsys_network
9d4fb82e
FB
1042@section Network emulation
1043
4be456f1 1044QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1045target) and can connect them to an arbitrary number of Virtual Local
1046Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1047VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1048simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1049network stack can replace the TAP device to have a basic network
1050connection.
1051
1052@subsection VLANs
9d4fb82e 1053
41d03949
FB
1054QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1055connection between several network devices. These devices can be for
1056example QEMU virtual Ethernet cards or virtual Host ethernet devices
1057(TAP devices).
9d4fb82e 1058
41d03949
FB
1059@subsection Using TAP network interfaces
1060
1061This is the standard way to connect QEMU to a real network. QEMU adds
1062a virtual network device on your host (called @code{tapN}), and you
1063can then configure it as if it was a real ethernet card.
9d4fb82e 1064
8f40c388
FB
1065@subsubsection Linux host
1066
9d4fb82e
FB
1067As an example, you can download the @file{linux-test-xxx.tar.gz}
1068archive and copy the script @file{qemu-ifup} in @file{/etc} and
1069configure properly @code{sudo} so that the command @code{ifconfig}
1070contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1071that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1072device @file{/dev/net/tun} must be present.
1073
ee0f4751
FB
1074See @ref{sec_invocation} to have examples of command lines using the
1075TAP network interfaces.
9d4fb82e 1076
8f40c388
FB
1077@subsubsection Windows host
1078
1079There is a virtual ethernet driver for Windows 2000/XP systems, called
1080TAP-Win32. But it is not included in standard QEMU for Windows,
1081so you will need to get it separately. It is part of OpenVPN package,
1082so download OpenVPN from : @url{http://openvpn.net/}.
1083
9d4fb82e
FB
1084@subsection Using the user mode network stack
1085
41d03949
FB
1086By using the option @option{-net user} (default configuration if no
1087@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1088network stack (you don't need root privilege to use the virtual
41d03949 1089network). The virtual network configuration is the following:
9d4fb82e
FB
1090
1091@example
1092
41d03949
FB
1093 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1094 | (10.0.2.2)
9d4fb82e 1095 |
2518bd0d 1096 ----> DNS server (10.0.2.3)
3b46e624 1097 |
2518bd0d 1098 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1099@end example
1100
1101The QEMU VM behaves as if it was behind a firewall which blocks all
1102incoming connections. You can use a DHCP client to automatically
41d03949
FB
1103configure the network in the QEMU VM. The DHCP server assign addresses
1104to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1105
1106In order to check that the user mode network is working, you can ping
1107the address 10.0.2.2 and verify that you got an address in the range
110810.0.2.x from the QEMU virtual DHCP server.
1109
b415a407 1110Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1111would require root privileges. It means you can only ping the local
b415a407
FB
1112router (10.0.2.2).
1113
9bf05444
FB
1114When using the built-in TFTP server, the router is also the TFTP
1115server.
1116
1117When using the @option{-redir} option, TCP or UDP connections can be
1118redirected from the host to the guest. It allows for example to
1119redirect X11, telnet or SSH connections.
443f1376 1120
41d03949
FB
1121@subsection Connecting VLANs between QEMU instances
1122
1123Using the @option{-net socket} option, it is possible to make VLANs
1124that span several QEMU instances. See @ref{sec_invocation} to have a
1125basic example.
1126
576fd0a1 1127@node pcsys_other_devs
6cbf4c8c
CM
1128@section Other Devices
1129
1130@subsection Inter-VM Shared Memory device
1131
1132With KVM enabled on a Linux host, a shared memory device is available. Guests
1133map a POSIX shared memory region into the guest as a PCI device that enables
1134zero-copy communication to the application level of the guests. The basic
1135syntax is:
1136
1137@example
3804da9d 1138qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1139@end example
1140
1141If desired, interrupts can be sent between guest VMs accessing the same shared
1142memory region. Interrupt support requires using a shared memory server and
1143using a chardev socket to connect to it. The code for the shared memory server
1144is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1145memory server is:
1146
1147@example
3804da9d
SW
1148qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1149 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1150qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1151@end example
1152
1153When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1154using the same server to communicate via interrupts. Guests can read their
1155VM ID from a device register (see example code). Since receiving the shared
1156memory region from the server is asynchronous, there is a (small) chance the
1157guest may boot before the shared memory is attached. To allow an application
1158to ensure shared memory is attached, the VM ID register will return -1 (an
1159invalid VM ID) until the memory is attached. Once the shared memory is
1160attached, the VM ID will return the guest's valid VM ID. With these semantics,
1161the guest application can check to ensure the shared memory is attached to the
1162guest before proceeding.
1163
1164The @option{role} argument can be set to either master or peer and will affect
1165how the shared memory is migrated. With @option{role=master}, the guest will
1166copy the shared memory on migration to the destination host. With
1167@option{role=peer}, the guest will not be able to migrate with the device attached.
1168With the @option{peer} case, the device should be detached and then reattached
1169after migration using the PCI hotplug support.
1170
9d4fb82e
FB
1171@node direct_linux_boot
1172@section Direct Linux Boot
1f673135
FB
1173
1174This section explains how to launch a Linux kernel inside QEMU without
1175having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1176kernel testing.
1f673135 1177
ee0f4751 1178The syntax is:
1f673135 1179@example
3804da9d 1180qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1181@end example
1182
ee0f4751
FB
1183Use @option{-kernel} to provide the Linux kernel image and
1184@option{-append} to give the kernel command line arguments. The
1185@option{-initrd} option can be used to provide an INITRD image.
1f673135 1186
ee0f4751
FB
1187When using the direct Linux boot, a disk image for the first hard disk
1188@file{hda} is required because its boot sector is used to launch the
1189Linux kernel.
1f673135 1190
ee0f4751
FB
1191If you do not need graphical output, you can disable it and redirect
1192the virtual serial port and the QEMU monitor to the console with the
1193@option{-nographic} option. The typical command line is:
1f673135 1194@example
3804da9d
SW
1195qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1196 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1197@end example
1198
ee0f4751
FB
1199Use @key{Ctrl-a c} to switch between the serial console and the
1200monitor (@pxref{pcsys_keys}).
1f673135 1201
debc7065 1202@node pcsys_usb
b389dbfb
FB
1203@section USB emulation
1204
0aff66b5
PB
1205QEMU emulates a PCI UHCI USB controller. You can virtually plug
1206virtual USB devices or real host USB devices (experimental, works only
071c9394 1207on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1208as necessary to connect multiple USB devices.
b389dbfb 1209
0aff66b5
PB
1210@menu
1211* usb_devices::
1212* host_usb_devices::
1213@end menu
1214@node usb_devices
1215@subsection Connecting USB devices
b389dbfb 1216
0aff66b5
PB
1217USB devices can be connected with the @option{-usbdevice} commandline option
1218or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1219
db380c06
AZ
1220@table @code
1221@item mouse
0aff66b5 1222Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1223@item tablet
c6d46c20 1224Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1225This means QEMU is able to report the mouse position without having
0aff66b5 1226to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1227@item disk:@var{file}
0aff66b5 1228Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1229@item host:@var{bus.addr}
0aff66b5
PB
1230Pass through the host device identified by @var{bus.addr}
1231(Linux only)
db380c06 1232@item host:@var{vendor_id:product_id}
0aff66b5
PB
1233Pass through the host device identified by @var{vendor_id:product_id}
1234(Linux only)
db380c06 1235@item wacom-tablet
f6d2a316
AZ
1236Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1237above but it can be used with the tslib library because in addition to touch
1238coordinates it reports touch pressure.
db380c06 1239@item keyboard
47b2d338 1240Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1241@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1242Serial converter. This emulates an FTDI FT232BM chip connected to host character
1243device @var{dev}. The available character devices are the same as for the
1244@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1245used to override the default 0403:6001. For instance,
db380c06
AZ
1246@example
1247usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1248@end example
1249will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1250serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1251@item braille
1252Braille device. This will use BrlAPI to display the braille output on a real
1253or fake device.
9ad97e65
AZ
1254@item net:@var{options}
1255Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1256specifies NIC options as with @code{-net nic,}@var{options} (see description).
1257For instance, user-mode networking can be used with
6c9f886c 1258@example
3804da9d 1259qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1260@end example
1261Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1262@item bt[:@var{hci-type}]
1263Bluetooth dongle whose type is specified in the same format as with
1264the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1265no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1266This USB device implements the USB Transport Layer of HCI. Example
1267usage:
1268@example
3804da9d 1269qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1270@end example
0aff66b5 1271@end table
b389dbfb 1272
0aff66b5 1273@node host_usb_devices
b389dbfb
FB
1274@subsection Using host USB devices on a Linux host
1275
1276WARNING: this is an experimental feature. QEMU will slow down when
1277using it. USB devices requiring real time streaming (i.e. USB Video
1278Cameras) are not supported yet.
1279
1280@enumerate
5fafdf24 1281@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1282is actually using the USB device. A simple way to do that is simply to
1283disable the corresponding kernel module by renaming it from @file{mydriver.o}
1284to @file{mydriver.o.disabled}.
1285
1286@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1287@example
1288ls /proc/bus/usb
1289001 devices drivers
1290@end example
1291
1292@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1293@example
1294chown -R myuid /proc/bus/usb
1295@end example
1296
1297@item Launch QEMU and do in the monitor:
5fafdf24 1298@example
b389dbfb
FB
1299info usbhost
1300 Device 1.2, speed 480 Mb/s
1301 Class 00: USB device 1234:5678, USB DISK
1302@end example
1303You should see the list of the devices you can use (Never try to use
1304hubs, it won't work).
1305
1306@item Add the device in QEMU by using:
5fafdf24 1307@example
b389dbfb
FB
1308usb_add host:1234:5678
1309@end example
1310
1311Normally the guest OS should report that a new USB device is
1312plugged. You can use the option @option{-usbdevice} to do the same.
1313
1314@item Now you can try to use the host USB device in QEMU.
1315
1316@end enumerate
1317
1318When relaunching QEMU, you may have to unplug and plug again the USB
1319device to make it work again (this is a bug).
1320
f858dcae
TS
1321@node vnc_security
1322@section VNC security
1323
1324The VNC server capability provides access to the graphical console
1325of the guest VM across the network. This has a number of security
1326considerations depending on the deployment scenarios.
1327
1328@menu
1329* vnc_sec_none::
1330* vnc_sec_password::
1331* vnc_sec_certificate::
1332* vnc_sec_certificate_verify::
1333* vnc_sec_certificate_pw::
2f9606b3
AL
1334* vnc_sec_sasl::
1335* vnc_sec_certificate_sasl::
f858dcae 1336* vnc_generate_cert::
2f9606b3 1337* vnc_setup_sasl::
f858dcae
TS
1338@end menu
1339@node vnc_sec_none
1340@subsection Without passwords
1341
1342The simplest VNC server setup does not include any form of authentication.
1343For this setup it is recommended to restrict it to listen on a UNIX domain
1344socket only. For example
1345
1346@example
3804da9d 1347qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1348@end example
1349
1350This ensures that only users on local box with read/write access to that
1351path can access the VNC server. To securely access the VNC server from a
1352remote machine, a combination of netcat+ssh can be used to provide a secure
1353tunnel.
1354
1355@node vnc_sec_password
1356@subsection With passwords
1357
1358The VNC protocol has limited support for password based authentication. Since
1359the protocol limits passwords to 8 characters it should not be considered
1360to provide high security. The password can be fairly easily brute-forced by
1361a client making repeat connections. For this reason, a VNC server using password
1362authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1363or UNIX domain sockets. Password authentication is not supported when operating
1364in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1365authentication is requested with the @code{password} option, and then once QEMU
1366is running the password is set with the monitor. Until the monitor is used to
1367set the password all clients will be rejected.
f858dcae
TS
1368
1369@example
3804da9d 1370qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1371(qemu) change vnc password
1372Password: ********
1373(qemu)
1374@end example
1375
1376@node vnc_sec_certificate
1377@subsection With x509 certificates
1378
1379The QEMU VNC server also implements the VeNCrypt extension allowing use of
1380TLS for encryption of the session, and x509 certificates for authentication.
1381The use of x509 certificates is strongly recommended, because TLS on its
1382own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1383support provides a secure session, but no authentication. This allows any
1384client to connect, and provides an encrypted session.
1385
1386@example
3804da9d 1387qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1388@end example
1389
1390In the above example @code{/etc/pki/qemu} should contain at least three files,
1391@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1392users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1393NB the @code{server-key.pem} file should be protected with file mode 0600 to
1394only be readable by the user owning it.
1395
1396@node vnc_sec_certificate_verify
1397@subsection With x509 certificates and client verification
1398
1399Certificates can also provide a means to authenticate the client connecting.
1400The server will request that the client provide a certificate, which it will
1401then validate against the CA certificate. This is a good choice if deploying
1402in an environment with a private internal certificate authority.
1403
1404@example
3804da9d 1405qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1406@end example
1407
1408
1409@node vnc_sec_certificate_pw
1410@subsection With x509 certificates, client verification and passwords
1411
1412Finally, the previous method can be combined with VNC password authentication
1413to provide two layers of authentication for clients.
1414
1415@example
3804da9d 1416qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1417(qemu) change vnc password
1418Password: ********
1419(qemu)
1420@end example
1421
2f9606b3
AL
1422
1423@node vnc_sec_sasl
1424@subsection With SASL authentication
1425
1426The SASL authentication method is a VNC extension, that provides an
1427easily extendable, pluggable authentication method. This allows for
1428integration with a wide range of authentication mechanisms, such as
1429PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1430The strength of the authentication depends on the exact mechanism
1431configured. If the chosen mechanism also provides a SSF layer, then
1432it will encrypt the datastream as well.
1433
1434Refer to the later docs on how to choose the exact SASL mechanism
1435used for authentication, but assuming use of one supporting SSF,
1436then QEMU can be launched with:
1437
1438@example
3804da9d 1439qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1440@end example
1441
1442@node vnc_sec_certificate_sasl
1443@subsection With x509 certificates and SASL authentication
1444
1445If the desired SASL authentication mechanism does not supported
1446SSF layers, then it is strongly advised to run it in combination
1447with TLS and x509 certificates. This provides securely encrypted
1448data stream, avoiding risk of compromising of the security
1449credentials. This can be enabled, by combining the 'sasl' option
1450with the aforementioned TLS + x509 options:
1451
1452@example
3804da9d 1453qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1454@end example
1455
1456
f858dcae
TS
1457@node vnc_generate_cert
1458@subsection Generating certificates for VNC
1459
1460The GNU TLS packages provides a command called @code{certtool} which can
1461be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1462is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1463each server. If using certificates for authentication, then each client
1464will also need to be issued a certificate. The recommendation is for the
1465server to keep its certificates in either @code{/etc/pki/qemu} or for
1466unprivileged users in @code{$HOME/.pki/qemu}.
1467
1468@menu
1469* vnc_generate_ca::
1470* vnc_generate_server::
1471* vnc_generate_client::
1472@end menu
1473@node vnc_generate_ca
1474@subsubsection Setup the Certificate Authority
1475
1476This step only needs to be performed once per organization / organizational
1477unit. First the CA needs a private key. This key must be kept VERY secret
1478and secure. If this key is compromised the entire trust chain of the certificates
1479issued with it is lost.
1480
1481@example
1482# certtool --generate-privkey > ca-key.pem
1483@end example
1484
1485A CA needs to have a public certificate. For simplicity it can be a self-signed
1486certificate, or one issue by a commercial certificate issuing authority. To
1487generate a self-signed certificate requires one core piece of information, the
1488name of the organization.
1489
1490@example
1491# cat > ca.info <<EOF
1492cn = Name of your organization
1493ca
1494cert_signing_key
1495EOF
1496# certtool --generate-self-signed \
1497 --load-privkey ca-key.pem
1498 --template ca.info \
1499 --outfile ca-cert.pem
1500@end example
1501
1502The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1503TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1504
1505@node vnc_generate_server
1506@subsubsection Issuing server certificates
1507
1508Each server (or host) needs to be issued with a key and certificate. When connecting
1509the certificate is sent to the client which validates it against the CA certificate.
1510The core piece of information for a server certificate is the hostname. This should
1511be the fully qualified hostname that the client will connect with, since the client
1512will typically also verify the hostname in the certificate. On the host holding the
1513secure CA private key:
1514
1515@example
1516# cat > server.info <<EOF
1517organization = Name of your organization
1518cn = server.foo.example.com
1519tls_www_server
1520encryption_key
1521signing_key
1522EOF
1523# certtool --generate-privkey > server-key.pem
1524# certtool --generate-certificate \
1525 --load-ca-certificate ca-cert.pem \
1526 --load-ca-privkey ca-key.pem \
1527 --load-privkey server server-key.pem \
1528 --template server.info \
1529 --outfile server-cert.pem
1530@end example
1531
1532The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1533to the server for which they were generated. The @code{server-key.pem} is security
1534sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1535
1536@node vnc_generate_client
1537@subsubsection Issuing client certificates
1538
1539If the QEMU VNC server is to use the @code{x509verify} option to validate client
1540certificates as its authentication mechanism, each client also needs to be issued
1541a certificate. The client certificate contains enough metadata to uniquely identify
1542the client, typically organization, state, city, building, etc. On the host holding
1543the secure CA private key:
1544
1545@example
1546# cat > client.info <<EOF
1547country = GB
1548state = London
1549locality = London
1550organiazation = Name of your organization
1551cn = client.foo.example.com
1552tls_www_client
1553encryption_key
1554signing_key
1555EOF
1556# certtool --generate-privkey > client-key.pem
1557# certtool --generate-certificate \
1558 --load-ca-certificate ca-cert.pem \
1559 --load-ca-privkey ca-key.pem \
1560 --load-privkey client-key.pem \
1561 --template client.info \
1562 --outfile client-cert.pem
1563@end example
1564
1565The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1566copied to the client for which they were generated.
1567
2f9606b3
AL
1568
1569@node vnc_setup_sasl
1570
1571@subsection Configuring SASL mechanisms
1572
1573The following documentation assumes use of the Cyrus SASL implementation on a
1574Linux host, but the principals should apply to any other SASL impl. When SASL
1575is enabled, the mechanism configuration will be loaded from system default
1576SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1577unprivileged user, an environment variable SASL_CONF_PATH can be used
1578to make it search alternate locations for the service config.
1579
1580The default configuration might contain
1581
1582@example
1583mech_list: digest-md5
1584sasldb_path: /etc/qemu/passwd.db
1585@end example
1586
1587This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1588Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1589in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1590command. While this mechanism is easy to configure and use, it is not
1591considered secure by modern standards, so only suitable for developers /
1592ad-hoc testing.
1593
1594A more serious deployment might use Kerberos, which is done with the 'gssapi'
1595mechanism
1596
1597@example
1598mech_list: gssapi
1599keytab: /etc/qemu/krb5.tab
1600@end example
1601
1602For this to work the administrator of your KDC must generate a Kerberos
1603principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1604replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1605machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1606
1607Other configurations will be left as an exercise for the reader. It should
1608be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1609encryption. For all other mechanisms, VNC should always be configured to
1610use TLS and x509 certificates to protect security credentials from snooping.
1611
0806e3f6 1612@node gdb_usage
da415d54
FB
1613@section GDB usage
1614
1615QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1616'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1617
b65ee4fa 1618In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1619gdb connection:
1620@example
3804da9d
SW
1621qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1622 -append "root=/dev/hda"
da415d54
FB
1623Connected to host network interface: tun0
1624Waiting gdb connection on port 1234
1625@end example
1626
1627Then launch gdb on the 'vmlinux' executable:
1628@example
1629> gdb vmlinux
1630@end example
1631
1632In gdb, connect to QEMU:
1633@example
6c9bf893 1634(gdb) target remote localhost:1234
da415d54
FB
1635@end example
1636
1637Then you can use gdb normally. For example, type 'c' to launch the kernel:
1638@example
1639(gdb) c
1640@end example
1641
0806e3f6
FB
1642Here are some useful tips in order to use gdb on system code:
1643
1644@enumerate
1645@item
1646Use @code{info reg} to display all the CPU registers.
1647@item
1648Use @code{x/10i $eip} to display the code at the PC position.
1649@item
1650Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1651@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1652@end enumerate
1653
60897d36
EI
1654Advanced debugging options:
1655
1656The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1657@table @code
60897d36
EI
1658@item maintenance packet qqemu.sstepbits
1659
1660This will display the MASK bits used to control the single stepping IE:
1661@example
1662(gdb) maintenance packet qqemu.sstepbits
1663sending: "qqemu.sstepbits"
1664received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1665@end example
1666@item maintenance packet qqemu.sstep
1667
1668This will display the current value of the mask used when single stepping IE:
1669@example
1670(gdb) maintenance packet qqemu.sstep
1671sending: "qqemu.sstep"
1672received: "0x7"
1673@end example
1674@item maintenance packet Qqemu.sstep=HEX_VALUE
1675
1676This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1677@example
1678(gdb) maintenance packet Qqemu.sstep=0x5
1679sending: "qemu.sstep=0x5"
1680received: "OK"
1681@end example
94d45e44 1682@end table
60897d36 1683
debc7065 1684@node pcsys_os_specific
1a084f3d
FB
1685@section Target OS specific information
1686
1687@subsection Linux
1688
15a34c63
FB
1689To have access to SVGA graphic modes under X11, use the @code{vesa} or
1690the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1691color depth in the guest and the host OS.
1a084f3d 1692
e3371e62
FB
1693When using a 2.6 guest Linux kernel, you should add the option
1694@code{clock=pit} on the kernel command line because the 2.6 Linux
1695kernels make very strict real time clock checks by default that QEMU
1696cannot simulate exactly.
1697
7c3fc84d
FB
1698When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1699not activated because QEMU is slower with this patch. The QEMU
1700Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1701Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1702patch by default. Newer kernels don't have it.
1703
1a084f3d
FB
1704@subsection Windows
1705
1706If you have a slow host, using Windows 95 is better as it gives the
1707best speed. Windows 2000 is also a good choice.
1708
e3371e62
FB
1709@subsubsection SVGA graphic modes support
1710
1711QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1712card. All Windows versions starting from Windows 95 should recognize
1713and use this graphic card. For optimal performances, use 16 bit color
1714depth in the guest and the host OS.
1a084f3d 1715
3cb0853a
FB
1716If you are using Windows XP as guest OS and if you want to use high
1717resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17181280x1024x16), then you should use the VESA VBE virtual graphic card
1719(option @option{-std-vga}).
1720
e3371e62
FB
1721@subsubsection CPU usage reduction
1722
1723Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1724instruction. The result is that it takes host CPU cycles even when
1725idle. You can install the utility from
1726@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1727problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1728
9d0a8e6f 1729@subsubsection Windows 2000 disk full problem
e3371e62 1730
9d0a8e6f
FB
1731Windows 2000 has a bug which gives a disk full problem during its
1732installation. When installing it, use the @option{-win2k-hack} QEMU
1733option to enable a specific workaround. After Windows 2000 is
1734installed, you no longer need this option (this option slows down the
1735IDE transfers).
e3371e62 1736
6cc721cf
FB
1737@subsubsection Windows 2000 shutdown
1738
1739Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1740can. It comes from the fact that Windows 2000 does not automatically
1741use the APM driver provided by the BIOS.
1742
1743In order to correct that, do the following (thanks to Struan
1744Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1745Add/Troubleshoot a device => Add a new device & Next => No, select the
1746hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1747(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1748correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1749
1750@subsubsection Share a directory between Unix and Windows
1751
1752See @ref{sec_invocation} about the help of the option @option{-smb}.
1753
2192c332 1754@subsubsection Windows XP security problem
e3371e62
FB
1755
1756Some releases of Windows XP install correctly but give a security
1757error when booting:
1758@example
1759A problem is preventing Windows from accurately checking the
1760license for this computer. Error code: 0x800703e6.
1761@end example
e3371e62 1762
2192c332
FB
1763The workaround is to install a service pack for XP after a boot in safe
1764mode. Then reboot, and the problem should go away. Since there is no
1765network while in safe mode, its recommended to download the full
1766installation of SP1 or SP2 and transfer that via an ISO or using the
1767vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1768
a0a821a4
FB
1769@subsection MS-DOS and FreeDOS
1770
1771@subsubsection CPU usage reduction
1772
1773DOS does not correctly use the CPU HLT instruction. The result is that
1774it takes host CPU cycles even when idle. You can install the utility
1775from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1776problem.
1777
debc7065 1778@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1779@chapter QEMU System emulator for non PC targets
1780
1781QEMU is a generic emulator and it emulates many non PC
1782machines. Most of the options are similar to the PC emulator. The
4be456f1 1783differences are mentioned in the following sections.
3f9f3aa1 1784
debc7065 1785@menu
7544a042 1786* PowerPC System emulator::
24d4de45
TS
1787* Sparc32 System emulator::
1788* Sparc64 System emulator::
1789* MIPS System emulator::
1790* ARM System emulator::
1791* ColdFire System emulator::
7544a042
SW
1792* Cris System emulator::
1793* Microblaze System emulator::
1794* SH4 System emulator::
3aeaea65 1795* Xtensa System emulator::
debc7065
FB
1796@end menu
1797
7544a042
SW
1798@node PowerPC System emulator
1799@section PowerPC System emulator
1800@cindex system emulation (PowerPC)
1a084f3d 1801
15a34c63
FB
1802Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1803or PowerMac PowerPC system.
1a084f3d 1804
b671f9ed 1805QEMU emulates the following PowerMac peripherals:
1a084f3d 1806
15a34c63 1807@itemize @minus
5fafdf24 1808@item
006f3a48 1809UniNorth or Grackle PCI Bridge
15a34c63
FB
1810@item
1811PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1812@item
15a34c63 18132 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1814@item
15a34c63
FB
1815NE2000 PCI adapters
1816@item
1817Non Volatile RAM
1818@item
1819VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1820@end itemize
1821
b671f9ed 1822QEMU emulates the following PREP peripherals:
52c00a5f
FB
1823
1824@itemize @minus
5fafdf24 1825@item
15a34c63
FB
1826PCI Bridge
1827@item
1828PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1829@item
52c00a5f
FB
18302 IDE interfaces with hard disk and CD-ROM support
1831@item
1832Floppy disk
5fafdf24 1833@item
15a34c63 1834NE2000 network adapters
52c00a5f
FB
1835@item
1836Serial port
1837@item
1838PREP Non Volatile RAM
15a34c63
FB
1839@item
1840PC compatible keyboard and mouse.
52c00a5f
FB
1841@end itemize
1842
15a34c63 1843QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1844@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1845
992e5acd 1846Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1847for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1848v2) portable firmware implementation. The goal is to implement a 100%
1849IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1850
15a34c63
FB
1851@c man begin OPTIONS
1852
1853The following options are specific to the PowerPC emulation:
1854
1855@table @option
1856
4e257e5e 1857@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1858
1859Set the initial VGA graphic mode. The default is 800x600x15.
1860
4e257e5e 1861@item -prom-env @var{string}
95efd11c
BS
1862
1863Set OpenBIOS variables in NVRAM, for example:
1864
1865@example
1866qemu-system-ppc -prom-env 'auto-boot?=false' \
1867 -prom-env 'boot-device=hd:2,\yaboot' \
1868 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1869@end example
1870
1871These variables are not used by Open Hack'Ware.
1872
15a34c63
FB
1873@end table
1874
5fafdf24 1875@c man end
15a34c63
FB
1876
1877
52c00a5f 1878More information is available at
3f9f3aa1 1879@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1880
24d4de45
TS
1881@node Sparc32 System emulator
1882@section Sparc32 System emulator
7544a042 1883@cindex system emulation (Sparc32)
e80cfcfc 1884
34a3d239
BS
1885Use the executable @file{qemu-system-sparc} to simulate the following
1886Sun4m architecture machines:
1887@itemize @minus
1888@item
1889SPARCstation 4
1890@item
1891SPARCstation 5
1892@item
1893SPARCstation 10
1894@item
1895SPARCstation 20
1896@item
1897SPARCserver 600MP
1898@item
1899SPARCstation LX
1900@item
1901SPARCstation Voyager
1902@item
1903SPARCclassic
1904@item
1905SPARCbook
1906@end itemize
1907
1908The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1909but Linux limits the number of usable CPUs to 4.
e80cfcfc 1910
34a3d239
BS
1911It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1912SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1913emulators are not usable yet.
1914
1915QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1916
1917@itemize @minus
3475187d 1918@item
7d85892b 1919IOMMU or IO-UNITs
e80cfcfc
FB
1920@item
1921TCX Frame buffer
5fafdf24 1922@item
e80cfcfc
FB
1923Lance (Am7990) Ethernet
1924@item
34a3d239 1925Non Volatile RAM M48T02/M48T08
e80cfcfc 1926@item
3475187d
FB
1927Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1928and power/reset logic
1929@item
1930ESP SCSI controller with hard disk and CD-ROM support
1931@item
6a3b9cc9 1932Floppy drive (not on SS-600MP)
a2502b58
BS
1933@item
1934CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1935@end itemize
1936
6a3b9cc9
BS
1937The number of peripherals is fixed in the architecture. Maximum
1938memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1939others 2047MB.
3475187d 1940
30a604f3 1941Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1942@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1943firmware implementation. The goal is to implement a 100% IEEE
19441275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1945
1946A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1947the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1948some kernel versions work. Please note that currently Solaris kernels
1949don't work probably due to interface issues between OpenBIOS and
1950Solaris.
3475187d
FB
1951
1952@c man begin OPTIONS
1953
a2502b58 1954The following options are specific to the Sparc32 emulation:
3475187d
FB
1955
1956@table @option
1957
4e257e5e 1958@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1959
a2502b58
BS
1960Set the initial TCX graphic mode. The default is 1024x768x8, currently
1961the only other possible mode is 1024x768x24.
3475187d 1962
4e257e5e 1963@item -prom-env @var{string}
66508601
BS
1964
1965Set OpenBIOS variables in NVRAM, for example:
1966
1967@example
1968qemu-system-sparc -prom-env 'auto-boot?=false' \
1969 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1970@end example
1971
609c1dac 1972@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1973
1974Set the emulated machine type. Default is SS-5.
1975
3475187d
FB
1976@end table
1977
5fafdf24 1978@c man end
3475187d 1979
24d4de45
TS
1980@node Sparc64 System emulator
1981@section Sparc64 System emulator
7544a042 1982@cindex system emulation (Sparc64)
e80cfcfc 1983
34a3d239
BS
1984Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1985(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1986Niagara (T1) machine. The emulator is not usable for anything yet, but
1987it can launch some kernels.
b756921a 1988
c7ba218d 1989QEMU emulates the following peripherals:
83469015
FB
1990
1991@itemize @minus
1992@item
5fafdf24 1993UltraSparc IIi APB PCI Bridge
83469015
FB
1994@item
1995PCI VGA compatible card with VESA Bochs Extensions
1996@item
34a3d239
BS
1997PS/2 mouse and keyboard
1998@item
83469015
FB
1999Non Volatile RAM M48T59
2000@item
2001PC-compatible serial ports
c7ba218d
BS
2002@item
20032 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2004@item
2005Floppy disk
83469015
FB
2006@end itemize
2007
c7ba218d
BS
2008@c man begin OPTIONS
2009
2010The following options are specific to the Sparc64 emulation:
2011
2012@table @option
2013
4e257e5e 2014@item -prom-env @var{string}
34a3d239
BS
2015
2016Set OpenBIOS variables in NVRAM, for example:
2017
2018@example
2019qemu-system-sparc64 -prom-env 'auto-boot?=false'
2020@end example
2021
2022@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2023
2024Set the emulated machine type. The default is sun4u.
2025
2026@end table
2027
2028@c man end
2029
24d4de45
TS
2030@node MIPS System emulator
2031@section MIPS System emulator
7544a042 2032@cindex system emulation (MIPS)
9d0a8e6f 2033
d9aedc32
TS
2034Four executables cover simulation of 32 and 64-bit MIPS systems in
2035both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2036@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2037Five different machine types are emulated:
24d4de45
TS
2038
2039@itemize @minus
2040@item
2041A generic ISA PC-like machine "mips"
2042@item
2043The MIPS Malta prototype board "malta"
2044@item
d9aedc32 2045An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2046@item
f0fc6f8f 2047MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2048@item
2049A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2050@end itemize
2051
2052The generic emulation is supported by Debian 'Etch' and is able to
2053install Debian into a virtual disk image. The following devices are
2054emulated:
3f9f3aa1
FB
2055
2056@itemize @minus
5fafdf24 2057@item
6bf5b4e8 2058A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2059@item
2060PC style serial port
2061@item
24d4de45
TS
2062PC style IDE disk
2063@item
3f9f3aa1
FB
2064NE2000 network card
2065@end itemize
2066
24d4de45
TS
2067The Malta emulation supports the following devices:
2068
2069@itemize @minus
2070@item
0b64d008 2071Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2072@item
2073PIIX4 PCI/USB/SMbus controller
2074@item
2075The Multi-I/O chip's serial device
2076@item
3a2eeac0 2077PCI network cards (PCnet32 and others)
24d4de45
TS
2078@item
2079Malta FPGA serial device
2080@item
1f605a76 2081Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2082@end itemize
2083
2084The ACER Pica emulation supports:
2085
2086@itemize @minus
2087@item
2088MIPS R4000 CPU
2089@item
2090PC-style IRQ and DMA controllers
2091@item
2092PC Keyboard
2093@item
2094IDE controller
2095@end itemize
3f9f3aa1 2096
b5e4946f 2097The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2098to what the proprietary MIPS emulator uses for running Linux.
2099It supports:
6bf5b4e8
TS
2100
2101@itemize @minus
2102@item
2103A range of MIPS CPUs, default is the 24Kf
2104@item
2105PC style serial port
2106@item
2107MIPSnet network emulation
2108@end itemize
2109
88cb0a02
AJ
2110The MIPS Magnum R4000 emulation supports:
2111
2112@itemize @minus
2113@item
2114MIPS R4000 CPU
2115@item
2116PC-style IRQ controller
2117@item
2118PC Keyboard
2119@item
2120SCSI controller
2121@item
2122G364 framebuffer
2123@end itemize
2124
2125
24d4de45
TS
2126@node ARM System emulator
2127@section ARM System emulator
7544a042 2128@cindex system emulation (ARM)
3f9f3aa1
FB
2129
2130Use the executable @file{qemu-system-arm} to simulate a ARM
2131machine. The ARM Integrator/CP board is emulated with the following
2132devices:
2133
2134@itemize @minus
2135@item
9ee6e8bb 2136ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2137@item
2138Two PL011 UARTs
5fafdf24 2139@item
3f9f3aa1 2140SMC 91c111 Ethernet adapter
00a9bf19
PB
2141@item
2142PL110 LCD controller
2143@item
2144PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2145@item
2146PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2147@end itemize
2148
2149The ARM Versatile baseboard is emulated with the following devices:
2150
2151@itemize @minus
2152@item
9ee6e8bb 2153ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2154@item
2155PL190 Vectored Interrupt Controller
2156@item
2157Four PL011 UARTs
5fafdf24 2158@item
00a9bf19
PB
2159SMC 91c111 Ethernet adapter
2160@item
2161PL110 LCD controller
2162@item
2163PL050 KMI with PS/2 keyboard and mouse.
2164@item
2165PCI host bridge. Note the emulated PCI bridge only provides access to
2166PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2167This means some devices (eg. ne2k_pci NIC) are not usable, and others
2168(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2169mapped control registers.
e6de1bad
PB
2170@item
2171PCI OHCI USB controller.
2172@item
2173LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2174@item
2175PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2176@end itemize
2177
21a88941
PB
2178Several variants of the ARM RealView baseboard are emulated,
2179including the EB, PB-A8 and PBX-A9. Due to interactions with the
2180bootloader, only certain Linux kernel configurations work out
2181of the box on these boards.
2182
2183Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2184enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2185should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2186disabled and expect 1024M RAM.
2187
40c5c6cd 2188The following devices are emulated:
d7739d75
PB
2189
2190@itemize @minus
2191@item
f7c70325 2192ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2193@item
2194ARM AMBA Generic/Distributed Interrupt Controller
2195@item
2196Four PL011 UARTs
5fafdf24 2197@item
0ef849d7 2198SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2199@item
2200PL110 LCD controller
2201@item
2202PL050 KMI with PS/2 keyboard and mouse
2203@item
2204PCI host bridge
2205@item
2206PCI OHCI USB controller
2207@item
2208LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2209@item
2210PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2211@end itemize
2212
b00052e4
AZ
2213The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2214and "Terrier") emulation includes the following peripherals:
2215
2216@itemize @minus
2217@item
2218Intel PXA270 System-on-chip (ARM V5TE core)
2219@item
2220NAND Flash memory
2221@item
2222IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2223@item
2224On-chip OHCI USB controller
2225@item
2226On-chip LCD controller
2227@item
2228On-chip Real Time Clock
2229@item
2230TI ADS7846 touchscreen controller on SSP bus
2231@item
2232Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2233@item
2234GPIO-connected keyboard controller and LEDs
2235@item
549444e1 2236Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2237@item
2238Three on-chip UARTs
2239@item
2240WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2241@end itemize
2242
02645926
AZ
2243The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2244following elements:
2245
2246@itemize @minus
2247@item
2248Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2249@item
2250ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2251@item
2252On-chip LCD controller
2253@item
2254On-chip Real Time Clock
2255@item
2256TI TSC2102i touchscreen controller / analog-digital converter / Audio
2257CODEC, connected through MicroWire and I@math{^2}S busses
2258@item
2259GPIO-connected matrix keypad
2260@item
2261Secure Digital card connected to OMAP MMC/SD host
2262@item
2263Three on-chip UARTs
2264@end itemize
2265
c30bb264
AZ
2266Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2267emulation supports the following elements:
2268
2269@itemize @minus
2270@item
2271Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2272@item
2273RAM and non-volatile OneNAND Flash memories
2274@item
2275Display connected to EPSON remote framebuffer chip and OMAP on-chip
2276display controller and a LS041y3 MIPI DBI-C controller
2277@item
2278TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2279driven through SPI bus
2280@item
2281National Semiconductor LM8323-controlled qwerty keyboard driven
2282through I@math{^2}C bus
2283@item
2284Secure Digital card connected to OMAP MMC/SD host
2285@item
2286Three OMAP on-chip UARTs and on-chip STI debugging console
2287@item
40c5c6cd 2288A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2289@item
c30bb264
AZ
2290Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2291TUSB6010 chip - only USB host mode is supported
2292@item
2293TI TMP105 temperature sensor driven through I@math{^2}C bus
2294@item
2295TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2296@item
2297Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2298through CBUS
2299@end itemize
2300
9ee6e8bb
PB
2301The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2302devices:
2303
2304@itemize @minus
2305@item
2306Cortex-M3 CPU core.
2307@item
230864k Flash and 8k SRAM.
2309@item
2310Timers, UARTs, ADC and I@math{^2}C interface.
2311@item
2312OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2313@end itemize
2314
2315The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2316devices:
2317
2318@itemize @minus
2319@item
2320Cortex-M3 CPU core.
2321@item
2322256k Flash and 64k SRAM.
2323@item
2324Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2325@item
2326OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2327@end itemize
2328
57cd6e97
AZ
2329The Freecom MusicPal internet radio emulation includes the following
2330elements:
2331
2332@itemize @minus
2333@item
2334Marvell MV88W8618 ARM core.
2335@item
233632 MB RAM, 256 KB SRAM, 8 MB flash.
2337@item
2338Up to 2 16550 UARTs
2339@item
2340MV88W8xx8 Ethernet controller
2341@item
2342MV88W8618 audio controller, WM8750 CODEC and mixer
2343@item
e080e785 2344128×64 display with brightness control
57cd6e97
AZ
2345@item
23462 buttons, 2 navigation wheels with button function
2347@end itemize
2348
997641a8 2349The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2350The emulation includes the following elements:
997641a8
AZ
2351
2352@itemize @minus
2353@item
2354Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2355@item
2356ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2357V1
23581 Flash of 16MB and 1 Flash of 8MB
2359V2
23601 Flash of 32MB
2361@item
2362On-chip LCD controller
2363@item
2364On-chip Real Time Clock
2365@item
2366Secure Digital card connected to OMAP MMC/SD host
2367@item
2368Three on-chip UARTs
2369@end itemize
2370
3f9f3aa1
FB
2371A Linux 2.6 test image is available on the QEMU web site. More
2372information is available in the QEMU mailing-list archive.
9d0a8e6f 2373
d2c639d6
BS
2374@c man begin OPTIONS
2375
2376The following options are specific to the ARM emulation:
2377
2378@table @option
2379
2380@item -semihosting
2381Enable semihosting syscall emulation.
2382
2383On ARM this implements the "Angel" interface.
2384
2385Note that this allows guest direct access to the host filesystem,
2386so should only be used with trusted guest OS.
2387
2388@end table
2389
24d4de45
TS
2390@node ColdFire System emulator
2391@section ColdFire System emulator
7544a042
SW
2392@cindex system emulation (ColdFire)
2393@cindex system emulation (M68K)
209a4e69
PB
2394
2395Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2396The emulator is able to boot a uClinux kernel.
707e011b
PB
2397
2398The M5208EVB emulation includes the following devices:
2399
2400@itemize @minus
5fafdf24 2401@item
707e011b
PB
2402MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2403@item
2404Three Two on-chip UARTs.
2405@item
2406Fast Ethernet Controller (FEC)
2407@end itemize
2408
2409The AN5206 emulation includes the following devices:
209a4e69
PB
2410
2411@itemize @minus
5fafdf24 2412@item
209a4e69
PB
2413MCF5206 ColdFire V2 Microprocessor.
2414@item
2415Two on-chip UARTs.
2416@end itemize
2417
d2c639d6
BS
2418@c man begin OPTIONS
2419
7544a042 2420The following options are specific to the ColdFire emulation:
d2c639d6
BS
2421
2422@table @option
2423
2424@item -semihosting
2425Enable semihosting syscall emulation.
2426
2427On M68K this implements the "ColdFire GDB" interface used by libgloss.
2428
2429Note that this allows guest direct access to the host filesystem,
2430so should only be used with trusted guest OS.
2431
2432@end table
2433
7544a042
SW
2434@node Cris System emulator
2435@section Cris System emulator
2436@cindex system emulation (Cris)
2437
2438TODO
2439
2440@node Microblaze System emulator
2441@section Microblaze System emulator
2442@cindex system emulation (Microblaze)
2443
2444TODO
2445
2446@node SH4 System emulator
2447@section SH4 System emulator
2448@cindex system emulation (SH4)
2449
2450TODO
2451
3aeaea65
MF
2452@node Xtensa System emulator
2453@section Xtensa System emulator
2454@cindex system emulation (Xtensa)
2455
2456Two executables cover simulation of both Xtensa endian options,
2457@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2458Two different machine types are emulated:
2459
2460@itemize @minus
2461@item
2462Xtensa emulator pseudo board "sim"
2463@item
2464Avnet LX60/LX110/LX200 board
2465@end itemize
2466
b5e4946f 2467The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2468to one provided by the proprietary Tensilica ISS.
2469It supports:
2470
2471@itemize @minus
2472@item
2473A range of Xtensa CPUs, default is the DC232B
2474@item
2475Console and filesystem access via semihosting calls
2476@end itemize
2477
2478The Avnet LX60/LX110/LX200 emulation supports:
2479
2480@itemize @minus
2481@item
2482A range of Xtensa CPUs, default is the DC232B
2483@item
248416550 UART
2485@item
2486OpenCores 10/100 Mbps Ethernet MAC
2487@end itemize
2488
2489@c man begin OPTIONS
2490
2491The following options are specific to the Xtensa emulation:
2492
2493@table @option
2494
2495@item -semihosting
2496Enable semihosting syscall emulation.
2497
2498Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2499Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2500
2501Note that this allows guest direct access to the host filesystem,
2502so should only be used with trusted guest OS.
2503
2504@end table
5fafdf24
TS
2505@node QEMU User space emulator
2506@chapter QEMU User space emulator
83195237
FB
2507
2508@menu
2509* Supported Operating Systems ::
2510* Linux User space emulator::
84778508 2511* BSD User space emulator ::
83195237
FB
2512@end menu
2513
2514@node Supported Operating Systems
2515@section Supported Operating Systems
2516
2517The following OS are supported in user space emulation:
2518
2519@itemize @minus
2520@item
4be456f1 2521Linux (referred as qemu-linux-user)
83195237 2522@item
84778508 2523BSD (referred as qemu-bsd-user)
83195237
FB
2524@end itemize
2525
2526@node Linux User space emulator
2527@section Linux User space emulator
386405f7 2528
debc7065
FB
2529@menu
2530* Quick Start::
2531* Wine launch::
2532* Command line options::
79737e4a 2533* Other binaries::
debc7065
FB
2534@end menu
2535
2536@node Quick Start
83195237 2537@subsection Quick Start
df0f11a0 2538
1f673135 2539In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2540itself and all the target (x86) dynamic libraries used by it.
386405f7 2541
1f673135 2542@itemize
386405f7 2543
1f673135
FB
2544@item On x86, you can just try to launch any process by using the native
2545libraries:
386405f7 2546
5fafdf24 2547@example
1f673135
FB
2548qemu-i386 -L / /bin/ls
2549@end example
386405f7 2550
1f673135
FB
2551@code{-L /} tells that the x86 dynamic linker must be searched with a
2552@file{/} prefix.
386405f7 2553
b65ee4fa
SW
2554@item Since QEMU is also a linux process, you can launch QEMU with
2555QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2556
5fafdf24 2557@example
1f673135
FB
2558qemu-i386 -L / qemu-i386 -L / /bin/ls
2559@end example
386405f7 2560
1f673135
FB
2561@item On non x86 CPUs, you need first to download at least an x86 glibc
2562(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2563@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2564
1f673135 2565@example
5fafdf24 2566unset LD_LIBRARY_PATH
1f673135 2567@end example
1eb87257 2568
1f673135 2569Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2570
1f673135
FB
2571@example
2572qemu-i386 tests/i386/ls
2573@end example
4c3b5a48 2574You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2575QEMU is automatically launched by the Linux kernel when you try to
2576launch x86 executables. It requires the @code{binfmt_misc} module in the
2577Linux kernel.
1eb87257 2578
1f673135
FB
2579@item The x86 version of QEMU is also included. You can try weird things such as:
2580@example
debc7065
FB
2581qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2582 /usr/local/qemu-i386/bin/ls-i386
1f673135 2583@end example
1eb20527 2584
1f673135 2585@end itemize
1eb20527 2586
debc7065 2587@node Wine launch
83195237 2588@subsection Wine launch
1eb20527 2589
1f673135 2590@itemize
386405f7 2591
1f673135
FB
2592@item Ensure that you have a working QEMU with the x86 glibc
2593distribution (see previous section). In order to verify it, you must be
2594able to do:
386405f7 2595
1f673135
FB
2596@example
2597qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2598@end example
386405f7 2599
1f673135 2600@item Download the binary x86 Wine install
5fafdf24 2601(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2602
1f673135 2603@item Configure Wine on your account. Look at the provided script
debc7065 2604@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2605@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2606
1f673135 2607@item Then you can try the example @file{putty.exe}:
386405f7 2608
1f673135 2609@example
debc7065
FB
2610qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2611 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2612@end example
386405f7 2613
1f673135 2614@end itemize
fd429f2f 2615
debc7065 2616@node Command line options
83195237 2617@subsection Command line options
1eb20527 2618
1f673135 2619@example
68a1c816 2620usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2621@end example
1eb20527 2622
1f673135
FB
2623@table @option
2624@item -h
2625Print the help
3b46e624 2626@item -L path
1f673135
FB
2627Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2628@item -s size
2629Set the x86 stack size in bytes (default=524288)
34a3d239 2630@item -cpu model
c8057f95 2631Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2632@item -ignore-environment
2633Start with an empty environment. Without this option,
40c5c6cd 2634the initial environment is a copy of the caller's environment.
f66724c9
SW
2635@item -E @var{var}=@var{value}
2636Set environment @var{var} to @var{value}.
2637@item -U @var{var}
2638Remove @var{var} from the environment.
379f6698
PB
2639@item -B offset
2640Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2641the address region required by guest applications is reserved on the host.
2642This option is currently only supported on some hosts.
68a1c816
PB
2643@item -R size
2644Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2645"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2646@end table
2647
1f673135 2648Debug options:
386405f7 2649
1f673135 2650@table @option
989b697d
PM
2651@item -d item1,...
2652Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2653@item -p pagesize
2654Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2655@item -g port
2656Wait gdb connection to port
1b530a6d
AJ
2657@item -singlestep
2658Run the emulation in single step mode.
1f673135 2659@end table
386405f7 2660
b01bcae6
AZ
2661Environment variables:
2662
2663@table @env
2664@item QEMU_STRACE
2665Print system calls and arguments similar to the 'strace' program
2666(NOTE: the actual 'strace' program will not work because the user
2667space emulator hasn't implemented ptrace). At the moment this is
2668incomplete. All system calls that don't have a specific argument
2669format are printed with information for six arguments. Many
2670flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2671@end table
b01bcae6 2672
79737e4a 2673@node Other binaries
83195237 2674@subsection Other binaries
79737e4a 2675
7544a042
SW
2676@cindex user mode (Alpha)
2677@command{qemu-alpha} TODO.
2678
2679@cindex user mode (ARM)
2680@command{qemu-armeb} TODO.
2681
2682@cindex user mode (ARM)
79737e4a
PB
2683@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2684binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2685configurations), and arm-uclinux bFLT format binaries.
2686
7544a042
SW
2687@cindex user mode (ColdFire)
2688@cindex user mode (M68K)
e6e5906b
PB
2689@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2690(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2691coldfire uClinux bFLT format binaries.
2692
79737e4a
PB
2693The binary format is detected automatically.
2694
7544a042
SW
2695@cindex user mode (Cris)
2696@command{qemu-cris} TODO.
2697
2698@cindex user mode (i386)
2699@command{qemu-i386} TODO.
2700@command{qemu-x86_64} TODO.
2701
2702@cindex user mode (Microblaze)
2703@command{qemu-microblaze} TODO.
2704
2705@cindex user mode (MIPS)
2706@command{qemu-mips} TODO.
2707@command{qemu-mipsel} TODO.
2708
2709@cindex user mode (PowerPC)
2710@command{qemu-ppc64abi32} TODO.
2711@command{qemu-ppc64} TODO.
2712@command{qemu-ppc} TODO.
2713
2714@cindex user mode (SH4)
2715@command{qemu-sh4eb} TODO.
2716@command{qemu-sh4} TODO.
2717
2718@cindex user mode (SPARC)
34a3d239
BS
2719@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2720
a785e42e
BS
2721@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2722(Sparc64 CPU, 32 bit ABI).
2723
2724@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2725SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2726
84778508
BS
2727@node BSD User space emulator
2728@section BSD User space emulator
2729
2730@menu
2731* BSD Status::
2732* BSD Quick Start::
2733* BSD Command line options::
2734@end menu
2735
2736@node BSD Status
2737@subsection BSD Status
2738
2739@itemize @minus
2740@item
2741target Sparc64 on Sparc64: Some trivial programs work.
2742@end itemize
2743
2744@node BSD Quick Start
2745@subsection Quick Start
2746
2747In order to launch a BSD process, QEMU needs the process executable
2748itself and all the target dynamic libraries used by it.
2749
2750@itemize
2751
2752@item On Sparc64, you can just try to launch any process by using the native
2753libraries:
2754
2755@example
2756qemu-sparc64 /bin/ls
2757@end example
2758
2759@end itemize
2760
2761@node BSD Command line options
2762@subsection Command line options
2763
2764@example
2765usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2766@end example
2767
2768@table @option
2769@item -h
2770Print the help
2771@item -L path
2772Set the library root path (default=/)
2773@item -s size
2774Set the stack size in bytes (default=524288)
f66724c9
SW
2775@item -ignore-environment
2776Start with an empty environment. Without this option,
40c5c6cd 2777the initial environment is a copy of the caller's environment.
f66724c9
SW
2778@item -E @var{var}=@var{value}
2779Set environment @var{var} to @var{value}.
2780@item -U @var{var}
2781Remove @var{var} from the environment.
84778508
BS
2782@item -bsd type
2783Set the type of the emulated BSD Operating system. Valid values are
2784FreeBSD, NetBSD and OpenBSD (default).
2785@end table
2786
2787Debug options:
2788
2789@table @option
989b697d
PM
2790@item -d item1,...
2791Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2792@item -p pagesize
2793Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2794@item -singlestep
2795Run the emulation in single step mode.
84778508
BS
2796@end table
2797
15a34c63
FB
2798@node compilation
2799@chapter Compilation from the sources
2800
debc7065
FB
2801@menu
2802* Linux/Unix::
2803* Windows::
2804* Cross compilation for Windows with Linux::
2805* Mac OS X::
47eacb4f 2806* Make targets::
debc7065
FB
2807@end menu
2808
2809@node Linux/Unix
7c3fc84d
FB
2810@section Linux/Unix
2811
2812@subsection Compilation
2813
2814First you must decompress the sources:
2815@example
2816cd /tmp
2817tar zxvf qemu-x.y.z.tar.gz
2818cd qemu-x.y.z
2819@end example
2820
2821Then you configure QEMU and build it (usually no options are needed):
2822@example
2823./configure
2824make
2825@end example
2826
2827Then type as root user:
2828@example
2829make install
2830@end example
2831to install QEMU in @file{/usr/local}.
2832
debc7065 2833@node Windows
15a34c63
FB
2834@section Windows
2835
2836@itemize
2837@item Install the current versions of MSYS and MinGW from
2838@url{http://www.mingw.org/}. You can find detailed installation
2839instructions in the download section and the FAQ.
2840
5fafdf24 2841@item Download
15a34c63 2842the MinGW development library of SDL 1.2.x
debc7065 2843(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2844@url{http://www.libsdl.org}. Unpack it in a temporary place and
2845edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2846correct SDL directory when invoked.
2847
d0a96f3d
ST
2848@item Install the MinGW version of zlib and make sure
2849@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2850MinGW's default header and linker search paths.
d0a96f3d 2851
15a34c63 2852@item Extract the current version of QEMU.
5fafdf24 2853
15a34c63
FB
2854@item Start the MSYS shell (file @file{msys.bat}).
2855
5fafdf24 2856@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2857@file{make}. If you have problems using SDL, verify that
2858@file{sdl-config} can be launched from the MSYS command line.
2859
c5ec15ea 2860@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2861@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2862@file{Program Files/QEMU}.
15a34c63
FB
2863
2864@end itemize
2865
debc7065 2866@node Cross compilation for Windows with Linux
15a34c63
FB
2867@section Cross compilation for Windows with Linux
2868
2869@itemize
2870@item
2871Install the MinGW cross compilation tools available at
2872@url{http://www.mingw.org/}.
2873
d0a96f3d
ST
2874@item Download
2875the MinGW development library of SDL 1.2.x
2876(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2877@url{http://www.libsdl.org}. Unpack it in a temporary place and
2878edit the @file{sdl-config} script so that it gives the
2879correct SDL directory when invoked. Set up the @code{PATH} environment
2880variable so that @file{sdl-config} can be launched by
15a34c63
FB
2881the QEMU configuration script.
2882
d0a96f3d
ST
2883@item Install the MinGW version of zlib and make sure
2884@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2885MinGW's default header and linker search paths.
d0a96f3d 2886
5fafdf24 2887@item
15a34c63
FB
2888Configure QEMU for Windows cross compilation:
2889@example
d0a96f3d
ST
2890PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2891@end example
2892The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2893MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2894We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2895use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2896You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2897
2898Under Fedora Linux, you can run:
2899@example
2900yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2901@end example
d0a96f3d 2902to get a suitable cross compilation environment.
15a34c63 2903
5fafdf24 2904@item You can install QEMU in the installation directory by typing
d0a96f3d 2905@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2906installation directory.
15a34c63
FB
2907
2908@end itemize
2909
3804da9d
SW
2910Wine can be used to launch the resulting qemu-system-i386.exe
2911and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2912
debc7065 2913@node Mac OS X
15a34c63
FB
2914@section Mac OS X
2915
2916The Mac OS X patches are not fully merged in QEMU, so you should look
2917at the QEMU mailing list archive to have all the necessary
2918information.
2919
47eacb4f
SW
2920@node Make targets
2921@section Make targets
2922
2923@table @code
2924
2925@item make
2926@item make all
2927Make everything which is typically needed.
2928
2929@item install
2930TODO
2931
2932@item install-doc
2933TODO
2934
2935@item make clean
2936Remove most files which were built during make.
2937
2938@item make distclean
2939Remove everything which was built during make.
2940
2941@item make dvi
2942@item make html
2943@item make info
2944@item make pdf
2945Create documentation in dvi, html, info or pdf format.
2946
2947@item make cscope
2948TODO
2949
2950@item make defconfig
2951(Re-)create some build configuration files.
2952User made changes will be overwritten.
2953
2954@item tar
2955@item tarbin
2956TODO
2957
2958@end table
2959
7544a042
SW
2960@node License
2961@appendix License
2962
2963QEMU is a trademark of Fabrice Bellard.
2964
2965QEMU is released under the GNU General Public License (TODO: add link).
2966Parts of QEMU have specific licenses, see file LICENSE.
2967
2968TODO (refer to file LICENSE, include it, include the GPL?)
2969
debc7065 2970@node Index
7544a042
SW
2971@appendix Index
2972@menu
2973* Concept Index::
2974* Function Index::
2975* Keystroke Index::
2976* Program Index::
2977* Data Type Index::
2978* Variable Index::
2979@end menu
2980
2981@node Concept Index
2982@section Concept Index
2983This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2984@printindex cp
2985
7544a042
SW
2986@node Function Index
2987@section Function Index
2988This index could be used for command line options and monitor functions.
2989@printindex fn
2990
2991@node Keystroke Index
2992@section Keystroke Index
2993
2994This is a list of all keystrokes which have a special function
2995in system emulation.
2996
2997@printindex ky
2998
2999@node Program Index
3000@section Program Index
3001@printindex pg
3002
3003@node Data Type Index
3004@section Data Type Index
3005
3006This index could be used for qdev device names and options.
3007
3008@printindex tp
3009
3010@node Variable Index
3011@section Variable Index
3012@printindex vr
3013
debc7065 3014@bye