]> git.proxmox.com Git - qemu.git/blob - arch_init.c
migration: move include files to include/migration/
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu.h"
34 #include "bitops.h"
35 #include "bitmap.h"
36 #include "arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu-config.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51
52 #ifdef DEBUG_ARCH_INIT
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #ifdef TARGET_SPARC
61 int graphic_width = 1024;
62 int graphic_height = 768;
63 int graphic_depth = 8;
64 #else
65 int graphic_width = 800;
66 int graphic_height = 600;
67 int graphic_depth = 15;
68 #endif
69
70
71 #if defined(TARGET_ALPHA)
72 #define QEMU_ARCH QEMU_ARCH_ALPHA
73 #elif defined(TARGET_ARM)
74 #define QEMU_ARCH QEMU_ARCH_ARM
75 #elif defined(TARGET_CRIS)
76 #define QEMU_ARCH QEMU_ARCH_CRIS
77 #elif defined(TARGET_I386)
78 #define QEMU_ARCH QEMU_ARCH_I386
79 #elif defined(TARGET_M68K)
80 #define QEMU_ARCH QEMU_ARCH_M68K
81 #elif defined(TARGET_LM32)
82 #define QEMU_ARCH QEMU_ARCH_LM32
83 #elif defined(TARGET_MICROBLAZE)
84 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
85 #elif defined(TARGET_MIPS)
86 #define QEMU_ARCH QEMU_ARCH_MIPS
87 #elif defined(TARGET_OPENRISC)
88 #define QEMU_ARCH QEMU_ARCH_OPENRISC
89 #elif defined(TARGET_PPC)
90 #define QEMU_ARCH QEMU_ARCH_PPC
91 #elif defined(TARGET_S390X)
92 #define QEMU_ARCH QEMU_ARCH_S390X
93 #elif defined(TARGET_SH4)
94 #define QEMU_ARCH QEMU_ARCH_SH4
95 #elif defined(TARGET_SPARC)
96 #define QEMU_ARCH QEMU_ARCH_SPARC
97 #elif defined(TARGET_XTENSA)
98 #define QEMU_ARCH QEMU_ARCH_XTENSA
99 #elif defined(TARGET_UNICORE32)
100 #define QEMU_ARCH QEMU_ARCH_UNICORE32
101 #endif
102
103 const uint32_t arch_type = QEMU_ARCH;
104
105 /***********************************************************/
106 /* ram save/restore */
107
108 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
109 #define RAM_SAVE_FLAG_COMPRESS 0x02
110 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
111 #define RAM_SAVE_FLAG_PAGE 0x08
112 #define RAM_SAVE_FLAG_EOS 0x10
113 #define RAM_SAVE_FLAG_CONTINUE 0x20
114 #define RAM_SAVE_FLAG_XBZRLE 0x40
115
116 #ifdef __ALTIVEC__
117 #include <altivec.h>
118 #define VECTYPE vector unsigned char
119 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
120 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
121 /* altivec.h may redefine the bool macro as vector type.
122 * Reset it to POSIX semantics. */
123 #undef bool
124 #define bool _Bool
125 #elif defined __SSE2__
126 #include <emmintrin.h>
127 #define VECTYPE __m128i
128 #define SPLAT(p) _mm_set1_epi8(*(p))
129 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
130 #else
131 #define VECTYPE unsigned long
132 #define SPLAT(p) (*(p) * (~0UL / 255))
133 #define ALL_EQ(v1, v2) ((v1) == (v2))
134 #endif
135
136
137 static struct defconfig_file {
138 const char *filename;
139 /* Indicates it is an user config file (disabled by -no-user-config) */
140 bool userconfig;
141 } default_config_files[] = {
142 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
143 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
144 { NULL }, /* end of list */
145 };
146
147
148 int qemu_read_default_config_files(bool userconfig)
149 {
150 int ret;
151 struct defconfig_file *f;
152
153 for (f = default_config_files; f->filename; f++) {
154 if (!userconfig && f->userconfig) {
155 continue;
156 }
157 ret = qemu_read_config_file(f->filename);
158 if (ret < 0 && ret != -ENOENT) {
159 return ret;
160 }
161 }
162
163 return 0;
164 }
165
166 static int is_dup_page(uint8_t *page)
167 {
168 VECTYPE *p = (VECTYPE *)page;
169 VECTYPE val = SPLAT(page);
170 int i;
171
172 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
173 if (!ALL_EQ(val, p[i])) {
174 return 0;
175 }
176 }
177
178 return 1;
179 }
180
181 /* struct contains XBZRLE cache and a static page
182 used by the compression */
183 static struct {
184 /* buffer used for XBZRLE encoding */
185 uint8_t *encoded_buf;
186 /* buffer for storing page content */
187 uint8_t *current_buf;
188 /* buffer used for XBZRLE decoding */
189 uint8_t *decoded_buf;
190 /* Cache for XBZRLE */
191 PageCache *cache;
192 } XBZRLE = {
193 .encoded_buf = NULL,
194 .current_buf = NULL,
195 .decoded_buf = NULL,
196 .cache = NULL,
197 };
198
199
200 int64_t xbzrle_cache_resize(int64_t new_size)
201 {
202 if (XBZRLE.cache != NULL) {
203 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
204 TARGET_PAGE_SIZE;
205 }
206 return pow2floor(new_size);
207 }
208
209 /* accounting for migration statistics */
210 typedef struct AccountingInfo {
211 uint64_t dup_pages;
212 uint64_t norm_pages;
213 uint64_t iterations;
214 uint64_t xbzrle_bytes;
215 uint64_t xbzrle_pages;
216 uint64_t xbzrle_cache_miss;
217 uint64_t xbzrle_overflows;
218 } AccountingInfo;
219
220 static AccountingInfo acct_info;
221
222 static void acct_clear(void)
223 {
224 memset(&acct_info, 0, sizeof(acct_info));
225 }
226
227 uint64_t dup_mig_bytes_transferred(void)
228 {
229 return acct_info.dup_pages * TARGET_PAGE_SIZE;
230 }
231
232 uint64_t dup_mig_pages_transferred(void)
233 {
234 return acct_info.dup_pages;
235 }
236
237 uint64_t norm_mig_bytes_transferred(void)
238 {
239 return acct_info.norm_pages * TARGET_PAGE_SIZE;
240 }
241
242 uint64_t norm_mig_pages_transferred(void)
243 {
244 return acct_info.norm_pages;
245 }
246
247 uint64_t xbzrle_mig_bytes_transferred(void)
248 {
249 return acct_info.xbzrle_bytes;
250 }
251
252 uint64_t xbzrle_mig_pages_transferred(void)
253 {
254 return acct_info.xbzrle_pages;
255 }
256
257 uint64_t xbzrle_mig_pages_cache_miss(void)
258 {
259 return acct_info.xbzrle_cache_miss;
260 }
261
262 uint64_t xbzrle_mig_pages_overflow(void)
263 {
264 return acct_info.xbzrle_overflows;
265 }
266
267 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
268 int cont, int flag)
269 {
270 qemu_put_be64(f, offset | cont | flag);
271 if (!cont) {
272 qemu_put_byte(f, strlen(block->idstr));
273 qemu_put_buffer(f, (uint8_t *)block->idstr,
274 strlen(block->idstr));
275 }
276
277 }
278
279 #define ENCODING_FLAG_XBZRLE 0x1
280
281 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
282 ram_addr_t current_addr, RAMBlock *block,
283 ram_addr_t offset, int cont, bool last_stage)
284 {
285 int encoded_len = 0, bytes_sent = -1;
286 uint8_t *prev_cached_page;
287
288 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
289 if (!last_stage) {
290 cache_insert(XBZRLE.cache, current_addr,
291 g_memdup(current_data, TARGET_PAGE_SIZE));
292 }
293 acct_info.xbzrle_cache_miss++;
294 return -1;
295 }
296
297 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
298
299 /* save current buffer into memory */
300 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
301
302 /* XBZRLE encoding (if there is no overflow) */
303 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
304 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
305 TARGET_PAGE_SIZE);
306 if (encoded_len == 0) {
307 DPRINTF("Skipping unmodified page\n");
308 return 0;
309 } else if (encoded_len == -1) {
310 DPRINTF("Overflow\n");
311 acct_info.xbzrle_overflows++;
312 /* update data in the cache */
313 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
314 return -1;
315 }
316
317 /* we need to update the data in the cache, in order to get the same data */
318 if (!last_stage) {
319 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
320 }
321
322 /* Send XBZRLE based compressed page */
323 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
324 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
325 qemu_put_be16(f, encoded_len);
326 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
327 bytes_sent = encoded_len + 1 + 2;
328 acct_info.xbzrle_pages++;
329 acct_info.xbzrle_bytes += bytes_sent;
330
331 return bytes_sent;
332 }
333
334 static RAMBlock *last_block;
335 static ram_addr_t last_offset;
336 static unsigned long *migration_bitmap;
337 static uint64_t migration_dirty_pages;
338
339 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr,
340 ram_addr_t offset)
341 {
342 bool ret;
343 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
344
345 ret = test_and_clear_bit(nr, migration_bitmap);
346
347 if (ret) {
348 migration_dirty_pages--;
349 }
350 return ret;
351 }
352
353 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
354 ram_addr_t offset)
355 {
356 bool ret;
357 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
358
359 ret = test_and_set_bit(nr, migration_bitmap);
360
361 if (!ret) {
362 migration_dirty_pages++;
363 }
364 return ret;
365 }
366
367 static void migration_bitmap_sync(void)
368 {
369 RAMBlock *block;
370 ram_addr_t addr;
371 uint64_t num_dirty_pages_init = migration_dirty_pages;
372 MigrationState *s = migrate_get_current();
373 static int64_t start_time;
374 static int64_t num_dirty_pages_period;
375 int64_t end_time;
376
377 if (!start_time) {
378 start_time = qemu_get_clock_ms(rt_clock);
379 }
380
381 trace_migration_bitmap_sync_start();
382 memory_global_sync_dirty_bitmap(get_system_memory());
383
384 QLIST_FOREACH(block, &ram_list.blocks, next) {
385 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
386 if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
387 DIRTY_MEMORY_MIGRATION)) {
388 migration_bitmap_set_dirty(block->mr, addr);
389 }
390 }
391 memory_region_reset_dirty(block->mr, 0, block->length,
392 DIRTY_MEMORY_MIGRATION);
393 }
394 trace_migration_bitmap_sync_end(migration_dirty_pages
395 - num_dirty_pages_init);
396 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
397 end_time = qemu_get_clock_ms(rt_clock);
398
399 /* more than 1 second = 1000 millisecons */
400 if (end_time > start_time + 1000) {
401 s->dirty_pages_rate = num_dirty_pages_period * 1000
402 / (end_time - start_time);
403 start_time = end_time;
404 num_dirty_pages_period = 0;
405 }
406 }
407
408
409 /*
410 * ram_save_block: Writes a page of memory to the stream f
411 *
412 * Returns: 0: if the page hasn't changed
413 * -1: if there are no more dirty pages
414 * n: the amount of bytes written in other case
415 */
416
417 static int ram_save_block(QEMUFile *f, bool last_stage)
418 {
419 RAMBlock *block = last_block;
420 ram_addr_t offset = last_offset;
421 int bytes_sent = -1;
422 MemoryRegion *mr;
423 ram_addr_t current_addr;
424
425 if (!block)
426 block = QLIST_FIRST(&ram_list.blocks);
427
428 do {
429 mr = block->mr;
430 if (migration_bitmap_test_and_reset_dirty(mr, offset)) {
431 uint8_t *p;
432 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
433
434 p = memory_region_get_ram_ptr(mr) + offset;
435
436 if (is_dup_page(p)) {
437 acct_info.dup_pages++;
438 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
439 qemu_put_byte(f, *p);
440 bytes_sent = 1;
441 } else if (migrate_use_xbzrle()) {
442 current_addr = block->offset + offset;
443 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
444 offset, cont, last_stage);
445 if (!last_stage) {
446 p = get_cached_data(XBZRLE.cache, current_addr);
447 }
448 }
449
450 /* either we didn't send yet (we may have had XBZRLE overflow) */
451 if (bytes_sent == -1) {
452 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
453 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
454 bytes_sent = TARGET_PAGE_SIZE;
455 acct_info.norm_pages++;
456 }
457
458 /* if page is unmodified, continue to the next */
459 if (bytes_sent != 0) {
460 break;
461 }
462 }
463
464 offset += TARGET_PAGE_SIZE;
465 if (offset >= block->length) {
466 offset = 0;
467 block = QLIST_NEXT(block, next);
468 if (!block)
469 block = QLIST_FIRST(&ram_list.blocks);
470 }
471 } while (block != last_block || offset != last_offset);
472
473 last_block = block;
474 last_offset = offset;
475
476 return bytes_sent;
477 }
478
479 static uint64_t bytes_transferred;
480
481 static ram_addr_t ram_save_remaining(void)
482 {
483 return migration_dirty_pages;
484 }
485
486 uint64_t ram_bytes_remaining(void)
487 {
488 return ram_save_remaining() * TARGET_PAGE_SIZE;
489 }
490
491 uint64_t ram_bytes_transferred(void)
492 {
493 return bytes_transferred;
494 }
495
496 uint64_t ram_bytes_total(void)
497 {
498 RAMBlock *block;
499 uint64_t total = 0;
500
501 QLIST_FOREACH(block, &ram_list.blocks, next)
502 total += block->length;
503
504 return total;
505 }
506
507 static int block_compar(const void *a, const void *b)
508 {
509 RAMBlock * const *ablock = a;
510 RAMBlock * const *bblock = b;
511
512 return strcmp((*ablock)->idstr, (*bblock)->idstr);
513 }
514
515 static void sort_ram_list(void)
516 {
517 RAMBlock *block, *nblock, **blocks;
518 int n;
519 n = 0;
520 QLIST_FOREACH(block, &ram_list.blocks, next) {
521 ++n;
522 }
523 blocks = g_malloc(n * sizeof *blocks);
524 n = 0;
525 QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
526 blocks[n++] = block;
527 QLIST_REMOVE(block, next);
528 }
529 qsort(blocks, n, sizeof *blocks, block_compar);
530 while (--n >= 0) {
531 QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
532 }
533 g_free(blocks);
534 }
535
536 static void migration_end(void)
537 {
538 memory_global_dirty_log_stop();
539
540 if (migrate_use_xbzrle()) {
541 cache_fini(XBZRLE.cache);
542 g_free(XBZRLE.cache);
543 g_free(XBZRLE.encoded_buf);
544 g_free(XBZRLE.current_buf);
545 g_free(XBZRLE.decoded_buf);
546 XBZRLE.cache = NULL;
547 }
548 }
549
550 static void ram_migration_cancel(void *opaque)
551 {
552 migration_end();
553 }
554
555
556 static void reset_ram_globals(void)
557 {
558 last_block = NULL;
559 last_offset = 0;
560 sort_ram_list();
561 }
562
563 #define MAX_WAIT 50 /* ms, half buffered_file limit */
564
565 static int ram_save_setup(QEMUFile *f, void *opaque)
566 {
567 RAMBlock *block;
568 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
569
570 migration_bitmap = bitmap_new(ram_pages);
571 bitmap_set(migration_bitmap, 0, ram_pages);
572 migration_dirty_pages = ram_pages;
573
574 bytes_transferred = 0;
575 reset_ram_globals();
576
577 if (migrate_use_xbzrle()) {
578 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
579 TARGET_PAGE_SIZE,
580 TARGET_PAGE_SIZE);
581 if (!XBZRLE.cache) {
582 DPRINTF("Error creating cache\n");
583 return -1;
584 }
585 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
586 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
587 acct_clear();
588 }
589
590 memory_global_dirty_log_start();
591 migration_bitmap_sync();
592
593 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
594
595 QLIST_FOREACH(block, &ram_list.blocks, next) {
596 qemu_put_byte(f, strlen(block->idstr));
597 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
598 qemu_put_be64(f, block->length);
599 }
600
601 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
602
603 return 0;
604 }
605
606 static int ram_save_iterate(QEMUFile *f, void *opaque)
607 {
608 uint64_t bytes_transferred_last;
609 double bwidth = 0;
610 int ret;
611 int i;
612 uint64_t expected_downtime;
613 MigrationState *s = migrate_get_current();
614
615 bytes_transferred_last = bytes_transferred;
616 bwidth = qemu_get_clock_ns(rt_clock);
617
618 i = 0;
619 while ((ret = qemu_file_rate_limit(f)) == 0) {
620 int bytes_sent;
621
622 bytes_sent = ram_save_block(f, false);
623 /* no more blocks to sent */
624 if (bytes_sent < 0) {
625 break;
626 }
627 bytes_transferred += bytes_sent;
628 acct_info.iterations++;
629 /* we want to check in the 1st loop, just in case it was the 1st time
630 and we had to sync the dirty bitmap.
631 qemu_get_clock_ns() is a bit expensive, so we only check each some
632 iterations
633 */
634 if ((i & 63) == 0) {
635 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
636 if (t1 > MAX_WAIT) {
637 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
638 t1, i);
639 break;
640 }
641 }
642 i++;
643 }
644
645 if (ret < 0) {
646 return ret;
647 }
648
649 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
650 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
651
652 /* if we haven't transferred anything this round, force
653 * expected_downtime to a very high value, but without
654 * crashing */
655 if (bwidth == 0) {
656 bwidth = 0.000001;
657 }
658
659 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
660
661 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
662 DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n",
663 expected_downtime, migrate_max_downtime());
664
665 if (expected_downtime <= migrate_max_downtime()) {
666 migration_bitmap_sync();
667 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
668 s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */
669
670 return expected_downtime <= migrate_max_downtime();
671 }
672 return 0;
673 }
674
675 static int ram_save_complete(QEMUFile *f, void *opaque)
676 {
677 migration_bitmap_sync();
678
679 /* try transferring iterative blocks of memory */
680
681 /* flush all remaining blocks regardless of rate limiting */
682 while (true) {
683 int bytes_sent;
684
685 bytes_sent = ram_save_block(f, true);
686 /* no more blocks to sent */
687 if (bytes_sent < 0) {
688 break;
689 }
690 bytes_transferred += bytes_sent;
691 }
692 memory_global_dirty_log_stop();
693
694 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
695
696 g_free(migration_bitmap);
697 migration_bitmap = NULL;
698
699 return 0;
700 }
701
702 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
703 {
704 int ret, rc = 0;
705 unsigned int xh_len;
706 int xh_flags;
707
708 if (!XBZRLE.decoded_buf) {
709 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
710 }
711
712 /* extract RLE header */
713 xh_flags = qemu_get_byte(f);
714 xh_len = qemu_get_be16(f);
715
716 if (xh_flags != ENCODING_FLAG_XBZRLE) {
717 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
718 return -1;
719 }
720
721 if (xh_len > TARGET_PAGE_SIZE) {
722 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
723 return -1;
724 }
725 /* load data and decode */
726 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
727
728 /* decode RLE */
729 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
730 TARGET_PAGE_SIZE);
731 if (ret == -1) {
732 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
733 rc = -1;
734 } else if (ret > TARGET_PAGE_SIZE) {
735 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
736 ret, TARGET_PAGE_SIZE);
737 abort();
738 }
739
740 return rc;
741 }
742
743 static inline void *host_from_stream_offset(QEMUFile *f,
744 ram_addr_t offset,
745 int flags)
746 {
747 static RAMBlock *block = NULL;
748 char id[256];
749 uint8_t len;
750
751 if (flags & RAM_SAVE_FLAG_CONTINUE) {
752 if (!block) {
753 fprintf(stderr, "Ack, bad migration stream!\n");
754 return NULL;
755 }
756
757 return memory_region_get_ram_ptr(block->mr) + offset;
758 }
759
760 len = qemu_get_byte(f);
761 qemu_get_buffer(f, (uint8_t *)id, len);
762 id[len] = 0;
763
764 QLIST_FOREACH(block, &ram_list.blocks, next) {
765 if (!strncmp(id, block->idstr, sizeof(id)))
766 return memory_region_get_ram_ptr(block->mr) + offset;
767 }
768
769 fprintf(stderr, "Can't find block %s!\n", id);
770 return NULL;
771 }
772
773 static int ram_load(QEMUFile *f, void *opaque, int version_id)
774 {
775 ram_addr_t addr;
776 int flags, ret = 0;
777 int error;
778 static uint64_t seq_iter;
779
780 seq_iter++;
781
782 if (version_id < 4 || version_id > 4) {
783 return -EINVAL;
784 }
785
786 do {
787 addr = qemu_get_be64(f);
788
789 flags = addr & ~TARGET_PAGE_MASK;
790 addr &= TARGET_PAGE_MASK;
791
792 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
793 if (version_id == 4) {
794 /* Synchronize RAM block list */
795 char id[256];
796 ram_addr_t length;
797 ram_addr_t total_ram_bytes = addr;
798
799 while (total_ram_bytes) {
800 RAMBlock *block;
801 uint8_t len;
802
803 len = qemu_get_byte(f);
804 qemu_get_buffer(f, (uint8_t *)id, len);
805 id[len] = 0;
806 length = qemu_get_be64(f);
807
808 QLIST_FOREACH(block, &ram_list.blocks, next) {
809 if (!strncmp(id, block->idstr, sizeof(id))) {
810 if (block->length != length) {
811 ret = -EINVAL;
812 goto done;
813 }
814 break;
815 }
816 }
817
818 if (!block) {
819 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
820 "accept migration\n", id);
821 ret = -EINVAL;
822 goto done;
823 }
824
825 total_ram_bytes -= length;
826 }
827 }
828 }
829
830 if (flags & RAM_SAVE_FLAG_COMPRESS) {
831 void *host;
832 uint8_t ch;
833
834 host = host_from_stream_offset(f, addr, flags);
835 if (!host) {
836 return -EINVAL;
837 }
838
839 ch = qemu_get_byte(f);
840 memset(host, ch, TARGET_PAGE_SIZE);
841 #ifndef _WIN32
842 if (ch == 0 &&
843 (!kvm_enabled() || kvm_has_sync_mmu()) &&
844 getpagesize() <= TARGET_PAGE_SIZE) {
845 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
846 }
847 #endif
848 } else if (flags & RAM_SAVE_FLAG_PAGE) {
849 void *host;
850
851 host = host_from_stream_offset(f, addr, flags);
852 if (!host) {
853 return -EINVAL;
854 }
855
856 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
857 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
858 if (!migrate_use_xbzrle()) {
859 return -EINVAL;
860 }
861 void *host = host_from_stream_offset(f, addr, flags);
862 if (!host) {
863 return -EINVAL;
864 }
865
866 if (load_xbzrle(f, addr, host) < 0) {
867 ret = -EINVAL;
868 goto done;
869 }
870 }
871 error = qemu_file_get_error(f);
872 if (error) {
873 ret = error;
874 goto done;
875 }
876 } while (!(flags & RAM_SAVE_FLAG_EOS));
877
878 done:
879 DPRINTF("Completed load of VM with exit code %d seq iteration "
880 "%" PRIu64 "\n", ret, seq_iter);
881 return ret;
882 }
883
884 SaveVMHandlers savevm_ram_handlers = {
885 .save_live_setup = ram_save_setup,
886 .save_live_iterate = ram_save_iterate,
887 .save_live_complete = ram_save_complete,
888 .load_state = ram_load,
889 .cancel = ram_migration_cancel,
890 };
891
892 #ifdef HAS_AUDIO
893 struct soundhw {
894 const char *name;
895 const char *descr;
896 int enabled;
897 int isa;
898 union {
899 int (*init_isa) (ISABus *bus);
900 int (*init_pci) (PCIBus *bus);
901 } init;
902 };
903
904 static struct soundhw soundhw[] = {
905 #ifdef HAS_AUDIO_CHOICE
906 #ifdef CONFIG_PCSPK
907 {
908 "pcspk",
909 "PC speaker",
910 0,
911 1,
912 { .init_isa = pcspk_audio_init }
913 },
914 #endif
915
916 #ifdef CONFIG_SB16
917 {
918 "sb16",
919 "Creative Sound Blaster 16",
920 0,
921 1,
922 { .init_isa = SB16_init }
923 },
924 #endif
925
926 #ifdef CONFIG_CS4231A
927 {
928 "cs4231a",
929 "CS4231A",
930 0,
931 1,
932 { .init_isa = cs4231a_init }
933 },
934 #endif
935
936 #ifdef CONFIG_ADLIB
937 {
938 "adlib",
939 #ifdef HAS_YMF262
940 "Yamaha YMF262 (OPL3)",
941 #else
942 "Yamaha YM3812 (OPL2)",
943 #endif
944 0,
945 1,
946 { .init_isa = Adlib_init }
947 },
948 #endif
949
950 #ifdef CONFIG_GUS
951 {
952 "gus",
953 "Gravis Ultrasound GF1",
954 0,
955 1,
956 { .init_isa = GUS_init }
957 },
958 #endif
959
960 #ifdef CONFIG_AC97
961 {
962 "ac97",
963 "Intel 82801AA AC97 Audio",
964 0,
965 0,
966 { .init_pci = ac97_init }
967 },
968 #endif
969
970 #ifdef CONFIG_ES1370
971 {
972 "es1370",
973 "ENSONIQ AudioPCI ES1370",
974 0,
975 0,
976 { .init_pci = es1370_init }
977 },
978 #endif
979
980 #ifdef CONFIG_HDA
981 {
982 "hda",
983 "Intel HD Audio",
984 0,
985 0,
986 { .init_pci = intel_hda_and_codec_init }
987 },
988 #endif
989
990 #endif /* HAS_AUDIO_CHOICE */
991
992 { NULL, NULL, 0, 0, { NULL } }
993 };
994
995 void select_soundhw(const char *optarg)
996 {
997 struct soundhw *c;
998
999 if (is_help_option(optarg)) {
1000 show_valid_cards:
1001
1002 #ifdef HAS_AUDIO_CHOICE
1003 printf("Valid sound card names (comma separated):\n");
1004 for (c = soundhw; c->name; ++c) {
1005 printf ("%-11s %s\n", c->name, c->descr);
1006 }
1007 printf("\n-soundhw all will enable all of the above\n");
1008 #else
1009 printf("Machine has no user-selectable audio hardware "
1010 "(it may or may not have always-present audio hardware).\n");
1011 #endif
1012 exit(!is_help_option(optarg));
1013 }
1014 else {
1015 size_t l;
1016 const char *p;
1017 char *e;
1018 int bad_card = 0;
1019
1020 if (!strcmp(optarg, "all")) {
1021 for (c = soundhw; c->name; ++c) {
1022 c->enabled = 1;
1023 }
1024 return;
1025 }
1026
1027 p = optarg;
1028 while (*p) {
1029 e = strchr(p, ',');
1030 l = !e ? strlen(p) : (size_t) (e - p);
1031
1032 for (c = soundhw; c->name; ++c) {
1033 if (!strncmp(c->name, p, l) && !c->name[l]) {
1034 c->enabled = 1;
1035 break;
1036 }
1037 }
1038
1039 if (!c->name) {
1040 if (l > 80) {
1041 fprintf(stderr,
1042 "Unknown sound card name (too big to show)\n");
1043 }
1044 else {
1045 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1046 (int) l, p);
1047 }
1048 bad_card = 1;
1049 }
1050 p += l + (e != NULL);
1051 }
1052
1053 if (bad_card) {
1054 goto show_valid_cards;
1055 }
1056 }
1057 }
1058
1059 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1060 {
1061 struct soundhw *c;
1062
1063 for (c = soundhw; c->name; ++c) {
1064 if (c->enabled) {
1065 if (c->isa) {
1066 if (isa_bus) {
1067 c->init.init_isa(isa_bus);
1068 }
1069 } else {
1070 if (pci_bus) {
1071 c->init.init_pci(pci_bus);
1072 }
1073 }
1074 }
1075 }
1076 }
1077 #else
1078 void select_soundhw(const char *optarg)
1079 {
1080 }
1081 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1082 {
1083 }
1084 #endif
1085
1086 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1087 {
1088 int ret;
1089
1090 if (strlen(str) != 36) {
1091 return -1;
1092 }
1093
1094 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1095 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1096 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1097 &uuid[15]);
1098
1099 if (ret != 16) {
1100 return -1;
1101 }
1102 #ifdef TARGET_I386
1103 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1104 #endif
1105 return 0;
1106 }
1107
1108 void do_acpitable_option(const char *optarg)
1109 {
1110 #ifdef TARGET_I386
1111 if (acpi_table_add(optarg) < 0) {
1112 fprintf(stderr, "Wrong acpi table provided\n");
1113 exit(1);
1114 }
1115 #endif
1116 }
1117
1118 void do_smbios_option(const char *optarg)
1119 {
1120 #ifdef TARGET_I386
1121 if (smbios_entry_add(optarg) < 0) {
1122 fprintf(stderr, "Wrong smbios provided\n");
1123 exit(1);
1124 }
1125 #endif
1126 }
1127
1128 void cpudef_init(void)
1129 {
1130 #if defined(cpudef_setup)
1131 cpudef_setup(); /* parse cpu definitions in target config file */
1132 #endif
1133 }
1134
1135 int audio_available(void)
1136 {
1137 #ifdef HAS_AUDIO
1138 return 1;
1139 #else
1140 return 0;
1141 #endif
1142 }
1143
1144 int tcg_available(void)
1145 {
1146 return 1;
1147 }
1148
1149 int kvm_available(void)
1150 {
1151 #ifdef CONFIG_KVM
1152 return 1;
1153 #else
1154 return 0;
1155 #endif
1156 }
1157
1158 int xen_available(void)
1159 {
1160 #ifdef CONFIG_XEN
1161 return 1;
1162 #else
1163 return 0;
1164 #endif
1165 }
1166
1167
1168 TargetInfo *qmp_query_target(Error **errp)
1169 {
1170 TargetInfo *info = g_malloc0(sizeof(*info));
1171
1172 info->arch = TARGET_TYPE;
1173
1174 return info;
1175 }