]> git.proxmox.com Git - qemu.git/blob - arch_init.c
acpi: move declarations from pc.h to acpi.h
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "hw/acpi/acpi.h"
53
54 #ifdef DEBUG_ARCH_INIT
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
61
62 #ifdef TARGET_SPARC
63 int graphic_width = 1024;
64 int graphic_height = 768;
65 int graphic_depth = 8;
66 #else
67 int graphic_width = 800;
68 int graphic_height = 600;
69 int graphic_depth = 15;
70 #endif
71
72
73 #if defined(TARGET_ALPHA)
74 #define QEMU_ARCH QEMU_ARCH_ALPHA
75 #elif defined(TARGET_ARM)
76 #define QEMU_ARCH QEMU_ARCH_ARM
77 #elif defined(TARGET_CRIS)
78 #define QEMU_ARCH QEMU_ARCH_CRIS
79 #elif defined(TARGET_I386)
80 #define QEMU_ARCH QEMU_ARCH_I386
81 #elif defined(TARGET_M68K)
82 #define QEMU_ARCH QEMU_ARCH_M68K
83 #elif defined(TARGET_LM32)
84 #define QEMU_ARCH QEMU_ARCH_LM32
85 #elif defined(TARGET_MICROBLAZE)
86 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
87 #elif defined(TARGET_MIPS)
88 #define QEMU_ARCH QEMU_ARCH_MIPS
89 #elif defined(TARGET_MOXIE)
90 #define QEMU_ARCH QEMU_ARCH_MOXIE
91 #elif defined(TARGET_OPENRISC)
92 #define QEMU_ARCH QEMU_ARCH_OPENRISC
93 #elif defined(TARGET_PPC)
94 #define QEMU_ARCH QEMU_ARCH_PPC
95 #elif defined(TARGET_S390X)
96 #define QEMU_ARCH QEMU_ARCH_S390X
97 #elif defined(TARGET_SH4)
98 #define QEMU_ARCH QEMU_ARCH_SH4
99 #elif defined(TARGET_SPARC)
100 #define QEMU_ARCH QEMU_ARCH_SPARC
101 #elif defined(TARGET_XTENSA)
102 #define QEMU_ARCH QEMU_ARCH_XTENSA
103 #elif defined(TARGET_UNICORE32)
104 #define QEMU_ARCH QEMU_ARCH_UNICORE32
105 #endif
106
107 const uint32_t arch_type = QEMU_ARCH;
108
109 /***********************************************************/
110 /* ram save/restore */
111
112 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
113 #define RAM_SAVE_FLAG_COMPRESS 0x02
114 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
115 #define RAM_SAVE_FLAG_PAGE 0x08
116 #define RAM_SAVE_FLAG_EOS 0x10
117 #define RAM_SAVE_FLAG_CONTINUE 0x20
118 #define RAM_SAVE_FLAG_XBZRLE 0x40
119
120
121 static struct defconfig_file {
122 const char *filename;
123 /* Indicates it is an user config file (disabled by -no-user-config) */
124 bool userconfig;
125 } default_config_files[] = {
126 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
127 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
128 { NULL }, /* end of list */
129 };
130
131
132 int qemu_read_default_config_files(bool userconfig)
133 {
134 int ret;
135 struct defconfig_file *f;
136
137 for (f = default_config_files; f->filename; f++) {
138 if (!userconfig && f->userconfig) {
139 continue;
140 }
141 ret = qemu_read_config_file(f->filename);
142 if (ret < 0 && ret != -ENOENT) {
143 return ret;
144 }
145 }
146
147 return 0;
148 }
149
150 static inline bool is_zero_page(uint8_t *p)
151 {
152 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
153 TARGET_PAGE_SIZE;
154 }
155
156 /* struct contains XBZRLE cache and a static page
157 used by the compression */
158 static struct {
159 /* buffer used for XBZRLE encoding */
160 uint8_t *encoded_buf;
161 /* buffer for storing page content */
162 uint8_t *current_buf;
163 /* buffer used for XBZRLE decoding */
164 uint8_t *decoded_buf;
165 /* Cache for XBZRLE */
166 PageCache *cache;
167 } XBZRLE = {
168 .encoded_buf = NULL,
169 .current_buf = NULL,
170 .decoded_buf = NULL,
171 .cache = NULL,
172 };
173
174
175 int64_t xbzrle_cache_resize(int64_t new_size)
176 {
177 if (XBZRLE.cache != NULL) {
178 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
179 TARGET_PAGE_SIZE;
180 }
181 return pow2floor(new_size);
182 }
183
184 /* accounting for migration statistics */
185 typedef struct AccountingInfo {
186 uint64_t dup_pages;
187 uint64_t skipped_pages;
188 uint64_t norm_pages;
189 uint64_t iterations;
190 uint64_t xbzrle_bytes;
191 uint64_t xbzrle_pages;
192 uint64_t xbzrle_cache_miss;
193 uint64_t xbzrle_overflows;
194 } AccountingInfo;
195
196 static AccountingInfo acct_info;
197
198 static void acct_clear(void)
199 {
200 memset(&acct_info, 0, sizeof(acct_info));
201 }
202
203 uint64_t dup_mig_bytes_transferred(void)
204 {
205 return acct_info.dup_pages * TARGET_PAGE_SIZE;
206 }
207
208 uint64_t dup_mig_pages_transferred(void)
209 {
210 return acct_info.dup_pages;
211 }
212
213 uint64_t skipped_mig_bytes_transferred(void)
214 {
215 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
216 }
217
218 uint64_t skipped_mig_pages_transferred(void)
219 {
220 return acct_info.skipped_pages;
221 }
222
223 uint64_t norm_mig_bytes_transferred(void)
224 {
225 return acct_info.norm_pages * TARGET_PAGE_SIZE;
226 }
227
228 uint64_t norm_mig_pages_transferred(void)
229 {
230 return acct_info.norm_pages;
231 }
232
233 uint64_t xbzrle_mig_bytes_transferred(void)
234 {
235 return acct_info.xbzrle_bytes;
236 }
237
238 uint64_t xbzrle_mig_pages_transferred(void)
239 {
240 return acct_info.xbzrle_pages;
241 }
242
243 uint64_t xbzrle_mig_pages_cache_miss(void)
244 {
245 return acct_info.xbzrle_cache_miss;
246 }
247
248 uint64_t xbzrle_mig_pages_overflow(void)
249 {
250 return acct_info.xbzrle_overflows;
251 }
252
253 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
254 int cont, int flag)
255 {
256 size_t size;
257
258 qemu_put_be64(f, offset | cont | flag);
259 size = 8;
260
261 if (!cont) {
262 qemu_put_byte(f, strlen(block->idstr));
263 qemu_put_buffer(f, (uint8_t *)block->idstr,
264 strlen(block->idstr));
265 size += 1 + strlen(block->idstr);
266 }
267 return size;
268 }
269
270 #define ENCODING_FLAG_XBZRLE 0x1
271
272 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
273 ram_addr_t current_addr, RAMBlock *block,
274 ram_addr_t offset, int cont, bool last_stage)
275 {
276 int encoded_len = 0, bytes_sent = -1;
277 uint8_t *prev_cached_page;
278
279 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
280 if (!last_stage) {
281 cache_insert(XBZRLE.cache, current_addr, current_data);
282 }
283 acct_info.xbzrle_cache_miss++;
284 return -1;
285 }
286
287 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
288
289 /* save current buffer into memory */
290 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
291
292 /* XBZRLE encoding (if there is no overflow) */
293 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
294 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
295 TARGET_PAGE_SIZE);
296 if (encoded_len == 0) {
297 DPRINTF("Skipping unmodified page\n");
298 return 0;
299 } else if (encoded_len == -1) {
300 DPRINTF("Overflow\n");
301 acct_info.xbzrle_overflows++;
302 /* update data in the cache */
303 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
304 return -1;
305 }
306
307 /* we need to update the data in the cache, in order to get the same data */
308 if (!last_stage) {
309 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
310 }
311
312 /* Send XBZRLE based compressed page */
313 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
314 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
315 qemu_put_be16(f, encoded_len);
316 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
317 bytes_sent += encoded_len + 1 + 2;
318 acct_info.xbzrle_pages++;
319 acct_info.xbzrle_bytes += bytes_sent;
320
321 return bytes_sent;
322 }
323
324
325 /* This is the last block that we have visited serching for dirty pages
326 */
327 static RAMBlock *last_seen_block;
328 /* This is the last block from where we have sent data */
329 static RAMBlock *last_sent_block;
330 static ram_addr_t last_offset;
331 static unsigned long *migration_bitmap;
332 static uint64_t migration_dirty_pages;
333 static uint32_t last_version;
334 static bool ram_bulk_stage;
335
336 static inline
337 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
338 ram_addr_t start)
339 {
340 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
341 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
342 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
343
344 unsigned long next;
345
346 if (ram_bulk_stage && nr > base) {
347 next = nr + 1;
348 } else {
349 next = find_next_bit(migration_bitmap, size, nr);
350 }
351
352 if (next < size) {
353 clear_bit(next, migration_bitmap);
354 migration_dirty_pages--;
355 }
356 return (next - base) << TARGET_PAGE_BITS;
357 }
358
359 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
360 ram_addr_t offset)
361 {
362 bool ret;
363 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
364
365 ret = test_and_set_bit(nr, migration_bitmap);
366
367 if (!ret) {
368 migration_dirty_pages++;
369 }
370 return ret;
371 }
372
373 /* Needs iothread lock! */
374
375 static void migration_bitmap_sync(void)
376 {
377 RAMBlock *block;
378 ram_addr_t addr;
379 uint64_t num_dirty_pages_init = migration_dirty_pages;
380 MigrationState *s = migrate_get_current();
381 static int64_t start_time;
382 static int64_t num_dirty_pages_period;
383 int64_t end_time;
384
385 if (!start_time) {
386 start_time = qemu_get_clock_ms(rt_clock);
387 }
388
389 trace_migration_bitmap_sync_start();
390 memory_global_sync_dirty_bitmap(get_system_memory());
391
392 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
393 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
394 if (memory_region_test_and_clear_dirty(block->mr,
395 addr, TARGET_PAGE_SIZE,
396 DIRTY_MEMORY_MIGRATION)) {
397 migration_bitmap_set_dirty(block->mr, addr);
398 }
399 }
400 }
401 trace_migration_bitmap_sync_end(migration_dirty_pages
402 - num_dirty_pages_init);
403 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
404 end_time = qemu_get_clock_ms(rt_clock);
405
406 /* more than 1 second = 1000 millisecons */
407 if (end_time > start_time + 1000) {
408 s->dirty_pages_rate = num_dirty_pages_period * 1000
409 / (end_time - start_time);
410 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
411 start_time = end_time;
412 num_dirty_pages_period = 0;
413 }
414 }
415
416 /*
417 * ram_save_block: Writes a page of memory to the stream f
418 *
419 * Returns: The number of bytes written.
420 * 0 means no dirty pages
421 */
422
423 static int ram_save_block(QEMUFile *f, bool last_stage)
424 {
425 RAMBlock *block = last_seen_block;
426 ram_addr_t offset = last_offset;
427 bool complete_round = false;
428 int bytes_sent = 0;
429 MemoryRegion *mr;
430 ram_addr_t current_addr;
431
432 if (!block)
433 block = QTAILQ_FIRST(&ram_list.blocks);
434
435 while (true) {
436 mr = block->mr;
437 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
438 if (complete_round && block == last_seen_block &&
439 offset >= last_offset) {
440 break;
441 }
442 if (offset >= block->length) {
443 offset = 0;
444 block = QTAILQ_NEXT(block, next);
445 if (!block) {
446 block = QTAILQ_FIRST(&ram_list.blocks);
447 complete_round = true;
448 ram_bulk_stage = false;
449 }
450 } else {
451 uint8_t *p;
452 int cont = (block == last_sent_block) ?
453 RAM_SAVE_FLAG_CONTINUE : 0;
454
455 p = memory_region_get_ram_ptr(mr) + offset;
456
457 /* In doubt sent page as normal */
458 bytes_sent = -1;
459 if (is_zero_page(p)) {
460 acct_info.dup_pages++;
461 if (!ram_bulk_stage) {
462 bytes_sent = save_block_hdr(f, block, offset, cont,
463 RAM_SAVE_FLAG_COMPRESS);
464 qemu_put_byte(f, 0);
465 bytes_sent++;
466 } else {
467 acct_info.skipped_pages++;
468 bytes_sent = 0;
469 }
470 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
471 current_addr = block->offset + offset;
472 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
473 offset, cont, last_stage);
474 if (!last_stage) {
475 p = get_cached_data(XBZRLE.cache, current_addr);
476 }
477 }
478
479 /* XBZRLE overflow or normal page */
480 if (bytes_sent == -1) {
481 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
482 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
483 bytes_sent += TARGET_PAGE_SIZE;
484 acct_info.norm_pages++;
485 }
486
487 /* if page is unmodified, continue to the next */
488 if (bytes_sent > 0) {
489 last_sent_block = block;
490 break;
491 }
492 }
493 }
494 last_seen_block = block;
495 last_offset = offset;
496
497 return bytes_sent;
498 }
499
500 static uint64_t bytes_transferred;
501
502 static ram_addr_t ram_save_remaining(void)
503 {
504 return migration_dirty_pages;
505 }
506
507 uint64_t ram_bytes_remaining(void)
508 {
509 return ram_save_remaining() * TARGET_PAGE_SIZE;
510 }
511
512 uint64_t ram_bytes_transferred(void)
513 {
514 return bytes_transferred;
515 }
516
517 uint64_t ram_bytes_total(void)
518 {
519 RAMBlock *block;
520 uint64_t total = 0;
521
522 QTAILQ_FOREACH(block, &ram_list.blocks, next)
523 total += block->length;
524
525 return total;
526 }
527
528 static void migration_end(void)
529 {
530 if (migration_bitmap) {
531 memory_global_dirty_log_stop();
532 g_free(migration_bitmap);
533 migration_bitmap = NULL;
534 }
535
536 if (XBZRLE.cache) {
537 cache_fini(XBZRLE.cache);
538 g_free(XBZRLE.cache);
539 g_free(XBZRLE.encoded_buf);
540 g_free(XBZRLE.current_buf);
541 g_free(XBZRLE.decoded_buf);
542 XBZRLE.cache = NULL;
543 }
544 }
545
546 static void ram_migration_cancel(void *opaque)
547 {
548 migration_end();
549 }
550
551 static void reset_ram_globals(void)
552 {
553 last_seen_block = NULL;
554 last_sent_block = NULL;
555 last_offset = 0;
556 last_version = ram_list.version;
557 ram_bulk_stage = true;
558 }
559
560 #define MAX_WAIT 50 /* ms, half buffered_file limit */
561
562 static int ram_save_setup(QEMUFile *f, void *opaque)
563 {
564 RAMBlock *block;
565 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
566
567 migration_bitmap = bitmap_new(ram_pages);
568 bitmap_set(migration_bitmap, 0, ram_pages);
569 migration_dirty_pages = ram_pages;
570
571 if (migrate_use_xbzrle()) {
572 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
573 TARGET_PAGE_SIZE,
574 TARGET_PAGE_SIZE);
575 if (!XBZRLE.cache) {
576 DPRINTF("Error creating cache\n");
577 return -1;
578 }
579 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
580 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
581 acct_clear();
582 }
583
584 qemu_mutex_lock_iothread();
585 qemu_mutex_lock_ramlist();
586 bytes_transferred = 0;
587 reset_ram_globals();
588
589 memory_global_dirty_log_start();
590 migration_bitmap_sync();
591 qemu_mutex_unlock_iothread();
592
593 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
594
595 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
596 qemu_put_byte(f, strlen(block->idstr));
597 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
598 qemu_put_be64(f, block->length);
599 }
600
601 qemu_mutex_unlock_ramlist();
602 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
603
604 return 0;
605 }
606
607 static int ram_save_iterate(QEMUFile *f, void *opaque)
608 {
609 int ret;
610 int i;
611 int64_t t0;
612 int total_sent = 0;
613
614 qemu_mutex_lock_ramlist();
615
616 if (ram_list.version != last_version) {
617 reset_ram_globals();
618 }
619
620 t0 = qemu_get_clock_ns(rt_clock);
621 i = 0;
622 while ((ret = qemu_file_rate_limit(f)) == 0) {
623 int bytes_sent;
624
625 bytes_sent = ram_save_block(f, false);
626 /* no more blocks to sent */
627 if (bytes_sent == 0) {
628 break;
629 }
630 total_sent += bytes_sent;
631 acct_info.iterations++;
632 /* we want to check in the 1st loop, just in case it was the 1st time
633 and we had to sync the dirty bitmap.
634 qemu_get_clock_ns() is a bit expensive, so we only check each some
635 iterations
636 */
637 if ((i & 63) == 0) {
638 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
639 if (t1 > MAX_WAIT) {
640 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
641 t1, i);
642 break;
643 }
644 }
645 i++;
646 }
647
648 qemu_mutex_unlock_ramlist();
649
650 if (ret < 0) {
651 bytes_transferred += total_sent;
652 return ret;
653 }
654
655 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
656 total_sent += 8;
657 bytes_transferred += total_sent;
658
659 return total_sent;
660 }
661
662 static int ram_save_complete(QEMUFile *f, void *opaque)
663 {
664 qemu_mutex_lock_ramlist();
665 migration_bitmap_sync();
666
667 /* try transferring iterative blocks of memory */
668
669 /* flush all remaining blocks regardless of rate limiting */
670 while (true) {
671 int bytes_sent;
672
673 bytes_sent = ram_save_block(f, true);
674 /* no more blocks to sent */
675 if (bytes_sent == 0) {
676 break;
677 }
678 bytes_transferred += bytes_sent;
679 }
680 migration_end();
681
682 qemu_mutex_unlock_ramlist();
683 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
684
685 return 0;
686 }
687
688 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
689 {
690 uint64_t remaining_size;
691
692 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
693
694 if (remaining_size < max_size) {
695 qemu_mutex_lock_iothread();
696 migration_bitmap_sync();
697 qemu_mutex_unlock_iothread();
698 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
699 }
700 return remaining_size;
701 }
702
703 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
704 {
705 int ret, rc = 0;
706 unsigned int xh_len;
707 int xh_flags;
708
709 if (!XBZRLE.decoded_buf) {
710 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
711 }
712
713 /* extract RLE header */
714 xh_flags = qemu_get_byte(f);
715 xh_len = qemu_get_be16(f);
716
717 if (xh_flags != ENCODING_FLAG_XBZRLE) {
718 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
719 return -1;
720 }
721
722 if (xh_len > TARGET_PAGE_SIZE) {
723 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
724 return -1;
725 }
726 /* load data and decode */
727 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
728
729 /* decode RLE */
730 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
731 TARGET_PAGE_SIZE);
732 if (ret == -1) {
733 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
734 rc = -1;
735 } else if (ret > TARGET_PAGE_SIZE) {
736 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
737 ret, TARGET_PAGE_SIZE);
738 abort();
739 }
740
741 return rc;
742 }
743
744 static inline void *host_from_stream_offset(QEMUFile *f,
745 ram_addr_t offset,
746 int flags)
747 {
748 static RAMBlock *block = NULL;
749 char id[256];
750 uint8_t len;
751
752 if (flags & RAM_SAVE_FLAG_CONTINUE) {
753 if (!block) {
754 fprintf(stderr, "Ack, bad migration stream!\n");
755 return NULL;
756 }
757
758 return memory_region_get_ram_ptr(block->mr) + offset;
759 }
760
761 len = qemu_get_byte(f);
762 qemu_get_buffer(f, (uint8_t *)id, len);
763 id[len] = 0;
764
765 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
766 if (!strncmp(id, block->idstr, sizeof(id)))
767 return memory_region_get_ram_ptr(block->mr) + offset;
768 }
769
770 fprintf(stderr, "Can't find block %s!\n", id);
771 return NULL;
772 }
773
774 static int ram_load(QEMUFile *f, void *opaque, int version_id)
775 {
776 ram_addr_t addr;
777 int flags, ret = 0;
778 int error;
779 static uint64_t seq_iter;
780
781 seq_iter++;
782
783 if (version_id < 4 || version_id > 4) {
784 return -EINVAL;
785 }
786
787 do {
788 addr = qemu_get_be64(f);
789
790 flags = addr & ~TARGET_PAGE_MASK;
791 addr &= TARGET_PAGE_MASK;
792
793 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
794 if (version_id == 4) {
795 /* Synchronize RAM block list */
796 char id[256];
797 ram_addr_t length;
798 ram_addr_t total_ram_bytes = addr;
799
800 while (total_ram_bytes) {
801 RAMBlock *block;
802 uint8_t len;
803
804 len = qemu_get_byte(f);
805 qemu_get_buffer(f, (uint8_t *)id, len);
806 id[len] = 0;
807 length = qemu_get_be64(f);
808
809 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
810 if (!strncmp(id, block->idstr, sizeof(id))) {
811 if (block->length != length) {
812 ret = -EINVAL;
813 goto done;
814 }
815 break;
816 }
817 }
818
819 if (!block) {
820 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
821 "accept migration\n", id);
822 ret = -EINVAL;
823 goto done;
824 }
825
826 total_ram_bytes -= length;
827 }
828 }
829 }
830
831 if (flags & RAM_SAVE_FLAG_COMPRESS) {
832 void *host;
833 uint8_t ch;
834
835 host = host_from_stream_offset(f, addr, flags);
836 if (!host) {
837 return -EINVAL;
838 }
839
840 ch = qemu_get_byte(f);
841 memset(host, ch, TARGET_PAGE_SIZE);
842 #ifndef _WIN32
843 if (ch == 0 &&
844 (!kvm_enabled() || kvm_has_sync_mmu()) &&
845 getpagesize() <= TARGET_PAGE_SIZE) {
846 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
847 }
848 #endif
849 } else if (flags & RAM_SAVE_FLAG_PAGE) {
850 void *host;
851
852 host = host_from_stream_offset(f, addr, flags);
853 if (!host) {
854 return -EINVAL;
855 }
856
857 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
858 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
859 void *host = host_from_stream_offset(f, addr, flags);
860 if (!host) {
861 return -EINVAL;
862 }
863
864 if (load_xbzrle(f, addr, host) < 0) {
865 ret = -EINVAL;
866 goto done;
867 }
868 }
869 error = qemu_file_get_error(f);
870 if (error) {
871 ret = error;
872 goto done;
873 }
874 } while (!(flags & RAM_SAVE_FLAG_EOS));
875
876 done:
877 DPRINTF("Completed load of VM with exit code %d seq iteration "
878 "%" PRIu64 "\n", ret, seq_iter);
879 return ret;
880 }
881
882 SaveVMHandlers savevm_ram_handlers = {
883 .save_live_setup = ram_save_setup,
884 .save_live_iterate = ram_save_iterate,
885 .save_live_complete = ram_save_complete,
886 .save_live_pending = ram_save_pending,
887 .load_state = ram_load,
888 .cancel = ram_migration_cancel,
889 };
890
891 #ifdef HAS_AUDIO
892 struct soundhw {
893 const char *name;
894 const char *descr;
895 int enabled;
896 int isa;
897 union {
898 int (*init_isa) (ISABus *bus);
899 int (*init_pci) (PCIBus *bus);
900 } init;
901 };
902
903 static struct soundhw soundhw[] = {
904 #ifdef HAS_AUDIO_CHOICE
905 #ifdef CONFIG_PCSPK
906 {
907 "pcspk",
908 "PC speaker",
909 0,
910 1,
911 { .init_isa = pcspk_audio_init }
912 },
913 #endif
914
915 #ifdef CONFIG_SB16
916 {
917 "sb16",
918 "Creative Sound Blaster 16",
919 0,
920 1,
921 { .init_isa = SB16_init }
922 },
923 #endif
924
925 #ifdef CONFIG_CS4231A
926 {
927 "cs4231a",
928 "CS4231A",
929 0,
930 1,
931 { .init_isa = cs4231a_init }
932 },
933 #endif
934
935 #ifdef CONFIG_ADLIB
936 {
937 "adlib",
938 #ifdef HAS_YMF262
939 "Yamaha YMF262 (OPL3)",
940 #else
941 "Yamaha YM3812 (OPL2)",
942 #endif
943 0,
944 1,
945 { .init_isa = Adlib_init }
946 },
947 #endif
948
949 #ifdef CONFIG_GUS
950 {
951 "gus",
952 "Gravis Ultrasound GF1",
953 0,
954 1,
955 { .init_isa = GUS_init }
956 },
957 #endif
958
959 #ifdef CONFIG_AC97
960 {
961 "ac97",
962 "Intel 82801AA AC97 Audio",
963 0,
964 0,
965 { .init_pci = ac97_init }
966 },
967 #endif
968
969 #ifdef CONFIG_ES1370
970 {
971 "es1370",
972 "ENSONIQ AudioPCI ES1370",
973 0,
974 0,
975 { .init_pci = es1370_init }
976 },
977 #endif
978
979 #ifdef CONFIG_HDA
980 {
981 "hda",
982 "Intel HD Audio",
983 0,
984 0,
985 { .init_pci = intel_hda_and_codec_init }
986 },
987 #endif
988
989 #endif /* HAS_AUDIO_CHOICE */
990
991 { NULL, NULL, 0, 0, { NULL } }
992 };
993
994 void select_soundhw(const char *optarg)
995 {
996 struct soundhw *c;
997
998 if (is_help_option(optarg)) {
999 show_valid_cards:
1000
1001 #ifdef HAS_AUDIO_CHOICE
1002 printf("Valid sound card names (comma separated):\n");
1003 for (c = soundhw; c->name; ++c) {
1004 printf ("%-11s %s\n", c->name, c->descr);
1005 }
1006 printf("\n-soundhw all will enable all of the above\n");
1007 #else
1008 printf("Machine has no user-selectable audio hardware "
1009 "(it may or may not have always-present audio hardware).\n");
1010 #endif
1011 exit(!is_help_option(optarg));
1012 }
1013 else {
1014 size_t l;
1015 const char *p;
1016 char *e;
1017 int bad_card = 0;
1018
1019 if (!strcmp(optarg, "all")) {
1020 for (c = soundhw; c->name; ++c) {
1021 c->enabled = 1;
1022 }
1023 return;
1024 }
1025
1026 p = optarg;
1027 while (*p) {
1028 e = strchr(p, ',');
1029 l = !e ? strlen(p) : (size_t) (e - p);
1030
1031 for (c = soundhw; c->name; ++c) {
1032 if (!strncmp(c->name, p, l) && !c->name[l]) {
1033 c->enabled = 1;
1034 break;
1035 }
1036 }
1037
1038 if (!c->name) {
1039 if (l > 80) {
1040 fprintf(stderr,
1041 "Unknown sound card name (too big to show)\n");
1042 }
1043 else {
1044 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1045 (int) l, p);
1046 }
1047 bad_card = 1;
1048 }
1049 p += l + (e != NULL);
1050 }
1051
1052 if (bad_card) {
1053 goto show_valid_cards;
1054 }
1055 }
1056 }
1057
1058 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1059 {
1060 struct soundhw *c;
1061
1062 for (c = soundhw; c->name; ++c) {
1063 if (c->enabled) {
1064 if (c->isa) {
1065 if (isa_bus) {
1066 c->init.init_isa(isa_bus);
1067 }
1068 } else {
1069 if (pci_bus) {
1070 c->init.init_pci(pci_bus);
1071 }
1072 }
1073 }
1074 }
1075 }
1076 #else
1077 void select_soundhw(const char *optarg)
1078 {
1079 }
1080 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1081 {
1082 }
1083 #endif
1084
1085 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1086 {
1087 int ret;
1088
1089 if (strlen(str) != 36) {
1090 return -1;
1091 }
1092
1093 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1094 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1095 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1096 &uuid[15]);
1097
1098 if (ret != 16) {
1099 return -1;
1100 }
1101 #ifdef TARGET_I386
1102 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1103 #endif
1104 return 0;
1105 }
1106
1107 void do_acpitable_option(const QemuOpts *opts)
1108 {
1109 #ifdef TARGET_I386
1110 Error *err = NULL;
1111
1112 acpi_table_add(opts, &err);
1113 if (err) {
1114 fprintf(stderr, "Wrong acpi table provided: %s\n",
1115 error_get_pretty(err));
1116 error_free(err);
1117 exit(1);
1118 }
1119 #endif
1120 }
1121
1122 void do_smbios_option(const char *optarg)
1123 {
1124 #ifdef TARGET_I386
1125 if (smbios_entry_add(optarg) < 0) {
1126 fprintf(stderr, "Wrong smbios provided\n");
1127 exit(1);
1128 }
1129 #endif
1130 }
1131
1132 void cpudef_init(void)
1133 {
1134 #if defined(cpudef_setup)
1135 cpudef_setup(); /* parse cpu definitions in target config file */
1136 #endif
1137 }
1138
1139 int audio_available(void)
1140 {
1141 #ifdef HAS_AUDIO
1142 return 1;
1143 #else
1144 return 0;
1145 #endif
1146 }
1147
1148 int tcg_available(void)
1149 {
1150 return 1;
1151 }
1152
1153 int kvm_available(void)
1154 {
1155 #ifdef CONFIG_KVM
1156 return 1;
1157 #else
1158 return 0;
1159 #endif
1160 }
1161
1162 int xen_available(void)
1163 {
1164 #ifdef CONFIG_XEN
1165 return 1;
1166 #else
1167 return 0;
1168 #endif
1169 }
1170
1171
1172 TargetInfo *qmp_query_target(Error **errp)
1173 {
1174 TargetInfo *info = g_malloc0(sizeof(*info));
1175
1176 info->arch = TARGET_TYPE;
1177
1178 return info;
1179 }