]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Convert stderr message calling error_get_pretty() to error_report()
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 32;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107 static bool mig_throttle_on;
108 static int dirty_rate_high_cnt;
109 static void check_guest_throttling(void);
110
111 /***********************************************************/
112 /* ram save/restore */
113
114 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
115 #define RAM_SAVE_FLAG_COMPRESS 0x02
116 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
117 #define RAM_SAVE_FLAG_PAGE 0x08
118 #define RAM_SAVE_FLAG_EOS 0x10
119 #define RAM_SAVE_FLAG_CONTINUE 0x20
120 #define RAM_SAVE_FLAG_XBZRLE 0x40
121 /* 0x80 is reserved in migration.h start with 0x100 next */
122
123
124 static struct defconfig_file {
125 const char *filename;
126 /* Indicates it is an user config file (disabled by -no-user-config) */
127 bool userconfig;
128 } default_config_files[] = {
129 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
130 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
131 { NULL }, /* end of list */
132 };
133
134
135 int qemu_read_default_config_files(bool userconfig)
136 {
137 int ret;
138 struct defconfig_file *f;
139
140 for (f = default_config_files; f->filename; f++) {
141 if (!userconfig && f->userconfig) {
142 continue;
143 }
144 ret = qemu_read_config_file(f->filename);
145 if (ret < 0 && ret != -ENOENT) {
146 return ret;
147 }
148 }
149
150 return 0;
151 }
152
153 static inline bool is_zero_page(uint8_t *p)
154 {
155 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
156 TARGET_PAGE_SIZE;
157 }
158
159 /* struct contains XBZRLE cache and a static page
160 used by the compression */
161 static struct {
162 /* buffer used for XBZRLE encoding */
163 uint8_t *encoded_buf;
164 /* buffer for storing page content */
165 uint8_t *current_buf;
166 /* buffer used for XBZRLE decoding */
167 uint8_t *decoded_buf;
168 /* Cache for XBZRLE */
169 PageCache *cache;
170 } XBZRLE = {
171 .encoded_buf = NULL,
172 .current_buf = NULL,
173 .decoded_buf = NULL,
174 .cache = NULL,
175 };
176
177
178 int64_t xbzrle_cache_resize(int64_t new_size)
179 {
180 if (XBZRLE.cache != NULL) {
181 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
182 TARGET_PAGE_SIZE;
183 }
184 return pow2floor(new_size);
185 }
186
187 /* accounting for migration statistics */
188 typedef struct AccountingInfo {
189 uint64_t dup_pages;
190 uint64_t skipped_pages;
191 uint64_t norm_pages;
192 uint64_t iterations;
193 uint64_t xbzrle_bytes;
194 uint64_t xbzrle_pages;
195 uint64_t xbzrle_cache_miss;
196 uint64_t xbzrle_overflows;
197 } AccountingInfo;
198
199 static AccountingInfo acct_info;
200
201 static void acct_clear(void)
202 {
203 memset(&acct_info, 0, sizeof(acct_info));
204 }
205
206 uint64_t dup_mig_bytes_transferred(void)
207 {
208 return acct_info.dup_pages * TARGET_PAGE_SIZE;
209 }
210
211 uint64_t dup_mig_pages_transferred(void)
212 {
213 return acct_info.dup_pages;
214 }
215
216 uint64_t skipped_mig_bytes_transferred(void)
217 {
218 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
219 }
220
221 uint64_t skipped_mig_pages_transferred(void)
222 {
223 return acct_info.skipped_pages;
224 }
225
226 uint64_t norm_mig_bytes_transferred(void)
227 {
228 return acct_info.norm_pages * TARGET_PAGE_SIZE;
229 }
230
231 uint64_t norm_mig_pages_transferred(void)
232 {
233 return acct_info.norm_pages;
234 }
235
236 uint64_t xbzrle_mig_bytes_transferred(void)
237 {
238 return acct_info.xbzrle_bytes;
239 }
240
241 uint64_t xbzrle_mig_pages_transferred(void)
242 {
243 return acct_info.xbzrle_pages;
244 }
245
246 uint64_t xbzrle_mig_pages_cache_miss(void)
247 {
248 return acct_info.xbzrle_cache_miss;
249 }
250
251 uint64_t xbzrle_mig_pages_overflow(void)
252 {
253 return acct_info.xbzrle_overflows;
254 }
255
256 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
257 int cont, int flag)
258 {
259 size_t size;
260
261 qemu_put_be64(f, offset | cont | flag);
262 size = 8;
263
264 if (!cont) {
265 qemu_put_byte(f, strlen(block->idstr));
266 qemu_put_buffer(f, (uint8_t *)block->idstr,
267 strlen(block->idstr));
268 size += 1 + strlen(block->idstr);
269 }
270 return size;
271 }
272
273 #define ENCODING_FLAG_XBZRLE 0x1
274
275 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
276 ram_addr_t current_addr, RAMBlock *block,
277 ram_addr_t offset, int cont, bool last_stage)
278 {
279 int encoded_len = 0, bytes_sent = -1;
280 uint8_t *prev_cached_page;
281
282 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
283 if (!last_stage) {
284 cache_insert(XBZRLE.cache, current_addr, current_data);
285 }
286 acct_info.xbzrle_cache_miss++;
287 return -1;
288 }
289
290 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
291
292 /* save current buffer into memory */
293 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
294
295 /* XBZRLE encoding (if there is no overflow) */
296 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
297 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
298 TARGET_PAGE_SIZE);
299 if (encoded_len == 0) {
300 DPRINTF("Skipping unmodified page\n");
301 return 0;
302 } else if (encoded_len == -1) {
303 DPRINTF("Overflow\n");
304 acct_info.xbzrle_overflows++;
305 /* update data in the cache */
306 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
307 return -1;
308 }
309
310 /* we need to update the data in the cache, in order to get the same data */
311 if (!last_stage) {
312 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
313 }
314
315 /* Send XBZRLE based compressed page */
316 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
317 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
318 qemu_put_be16(f, encoded_len);
319 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
320 bytes_sent += encoded_len + 1 + 2;
321 acct_info.xbzrle_pages++;
322 acct_info.xbzrle_bytes += bytes_sent;
323
324 return bytes_sent;
325 }
326
327
328 /* This is the last block that we have visited serching for dirty pages
329 */
330 static RAMBlock *last_seen_block;
331 /* This is the last block from where we have sent data */
332 static RAMBlock *last_sent_block;
333 static ram_addr_t last_offset;
334 static unsigned long *migration_bitmap;
335 static uint64_t migration_dirty_pages;
336 static uint32_t last_version;
337 static bool ram_bulk_stage;
338
339 static inline
340 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
341 ram_addr_t start)
342 {
343 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
344 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
345 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
346
347 unsigned long next;
348
349 if (ram_bulk_stage && nr > base) {
350 next = nr + 1;
351 } else {
352 next = find_next_bit(migration_bitmap, size, nr);
353 }
354
355 if (next < size) {
356 clear_bit(next, migration_bitmap);
357 migration_dirty_pages--;
358 }
359 return (next - base) << TARGET_PAGE_BITS;
360 }
361
362 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
363 ram_addr_t offset)
364 {
365 bool ret;
366 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
367
368 ret = test_and_set_bit(nr, migration_bitmap);
369
370 if (!ret) {
371 migration_dirty_pages++;
372 }
373 return ret;
374 }
375
376 /* Needs iothread lock! */
377
378 static void migration_bitmap_sync(void)
379 {
380 RAMBlock *block;
381 ram_addr_t addr;
382 uint64_t num_dirty_pages_init = migration_dirty_pages;
383 MigrationState *s = migrate_get_current();
384 static int64_t start_time;
385 static int64_t bytes_xfer_prev;
386 static int64_t num_dirty_pages_period;
387 int64_t end_time;
388 int64_t bytes_xfer_now;
389
390 if (!bytes_xfer_prev) {
391 bytes_xfer_prev = ram_bytes_transferred();
392 }
393
394 if (!start_time) {
395 start_time = qemu_get_clock_ms(rt_clock);
396 }
397
398 trace_migration_bitmap_sync_start();
399 address_space_sync_dirty_bitmap(&address_space_memory);
400
401 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
402 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
403 if (memory_region_test_and_clear_dirty(block->mr,
404 addr, TARGET_PAGE_SIZE,
405 DIRTY_MEMORY_MIGRATION)) {
406 migration_bitmap_set_dirty(block->mr, addr);
407 }
408 }
409 }
410 trace_migration_bitmap_sync_end(migration_dirty_pages
411 - num_dirty_pages_init);
412 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
413 end_time = qemu_get_clock_ms(rt_clock);
414
415 /* more than 1 second = 1000 millisecons */
416 if (end_time > start_time + 1000) {
417 if (migrate_auto_converge()) {
418 /* The following detection logic can be refined later. For now:
419 Check to see if the dirtied bytes is 50% more than the approx.
420 amount of bytes that just got transferred since the last time we
421 were in this routine. If that happens >N times (for now N==4)
422 we turn on the throttle down logic */
423 bytes_xfer_now = ram_bytes_transferred();
424 if (s->dirty_pages_rate &&
425 (num_dirty_pages_period * TARGET_PAGE_SIZE >
426 (bytes_xfer_now - bytes_xfer_prev)/2) &&
427 (dirty_rate_high_cnt++ > 4)) {
428 trace_migration_throttle();
429 mig_throttle_on = true;
430 dirty_rate_high_cnt = 0;
431 }
432 bytes_xfer_prev = bytes_xfer_now;
433 } else {
434 mig_throttle_on = false;
435 }
436 s->dirty_pages_rate = num_dirty_pages_period * 1000
437 / (end_time - start_time);
438 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
439 start_time = end_time;
440 num_dirty_pages_period = 0;
441 }
442 }
443
444 /*
445 * ram_save_block: Writes a page of memory to the stream f
446 *
447 * Returns: The number of bytes written.
448 * 0 means no dirty pages
449 */
450
451 static int ram_save_block(QEMUFile *f, bool last_stage)
452 {
453 RAMBlock *block = last_seen_block;
454 ram_addr_t offset = last_offset;
455 bool complete_round = false;
456 int bytes_sent = 0;
457 MemoryRegion *mr;
458 ram_addr_t current_addr;
459
460 if (!block)
461 block = QTAILQ_FIRST(&ram_list.blocks);
462
463 while (true) {
464 mr = block->mr;
465 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
466 if (complete_round && block == last_seen_block &&
467 offset >= last_offset) {
468 break;
469 }
470 if (offset >= block->length) {
471 offset = 0;
472 block = QTAILQ_NEXT(block, next);
473 if (!block) {
474 block = QTAILQ_FIRST(&ram_list.blocks);
475 complete_round = true;
476 ram_bulk_stage = false;
477 }
478 } else {
479 int ret;
480 uint8_t *p;
481 int cont = (block == last_sent_block) ?
482 RAM_SAVE_FLAG_CONTINUE : 0;
483
484 p = memory_region_get_ram_ptr(mr) + offset;
485
486 /* In doubt sent page as normal */
487 bytes_sent = -1;
488 ret = ram_control_save_page(f, block->offset,
489 offset, TARGET_PAGE_SIZE, &bytes_sent);
490
491 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
492 if (ret != RAM_SAVE_CONTROL_DELAYED) {
493 if (bytes_sent > 0) {
494 acct_info.norm_pages++;
495 } else if (bytes_sent == 0) {
496 acct_info.dup_pages++;
497 }
498 }
499 } else if (is_zero_page(p)) {
500 acct_info.dup_pages++;
501 bytes_sent = save_block_hdr(f, block, offset, cont,
502 RAM_SAVE_FLAG_COMPRESS);
503 qemu_put_byte(f, 0);
504 bytes_sent++;
505 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
506 current_addr = block->offset + offset;
507 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
508 offset, cont, last_stage);
509 if (!last_stage) {
510 p = get_cached_data(XBZRLE.cache, current_addr);
511 }
512 }
513
514 /* XBZRLE overflow or normal page */
515 if (bytes_sent == -1) {
516 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
517 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
518 bytes_sent += TARGET_PAGE_SIZE;
519 acct_info.norm_pages++;
520 }
521
522 /* if page is unmodified, continue to the next */
523 if (bytes_sent > 0) {
524 last_sent_block = block;
525 break;
526 }
527 }
528 }
529 last_seen_block = block;
530 last_offset = offset;
531
532 return bytes_sent;
533 }
534
535 static uint64_t bytes_transferred;
536
537 void acct_update_position(QEMUFile *f, size_t size, bool zero)
538 {
539 uint64_t pages = size / TARGET_PAGE_SIZE;
540 if (zero) {
541 acct_info.dup_pages += pages;
542 } else {
543 acct_info.norm_pages += pages;
544 bytes_transferred += size;
545 qemu_update_position(f, size);
546 }
547 }
548
549 static ram_addr_t ram_save_remaining(void)
550 {
551 return migration_dirty_pages;
552 }
553
554 uint64_t ram_bytes_remaining(void)
555 {
556 return ram_save_remaining() * TARGET_PAGE_SIZE;
557 }
558
559 uint64_t ram_bytes_transferred(void)
560 {
561 return bytes_transferred;
562 }
563
564 uint64_t ram_bytes_total(void)
565 {
566 RAMBlock *block;
567 uint64_t total = 0;
568
569 QTAILQ_FOREACH(block, &ram_list.blocks, next)
570 total += block->length;
571
572 return total;
573 }
574
575 static void migration_end(void)
576 {
577 if (migration_bitmap) {
578 memory_global_dirty_log_stop();
579 g_free(migration_bitmap);
580 migration_bitmap = NULL;
581 }
582
583 if (XBZRLE.cache) {
584 cache_fini(XBZRLE.cache);
585 g_free(XBZRLE.cache);
586 g_free(XBZRLE.encoded_buf);
587 g_free(XBZRLE.current_buf);
588 g_free(XBZRLE.decoded_buf);
589 XBZRLE.cache = NULL;
590 }
591 }
592
593 static void ram_migration_cancel(void *opaque)
594 {
595 migration_end();
596 }
597
598 static void reset_ram_globals(void)
599 {
600 last_seen_block = NULL;
601 last_sent_block = NULL;
602 last_offset = 0;
603 last_version = ram_list.version;
604 ram_bulk_stage = true;
605 }
606
607 #define MAX_WAIT 50 /* ms, half buffered_file limit */
608
609 static int ram_save_setup(QEMUFile *f, void *opaque)
610 {
611 RAMBlock *block;
612 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
613
614 migration_bitmap = bitmap_new(ram_pages);
615 bitmap_set(migration_bitmap, 0, ram_pages);
616 migration_dirty_pages = ram_pages;
617 mig_throttle_on = false;
618 dirty_rate_high_cnt = 0;
619
620 if (migrate_use_xbzrle()) {
621 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
622 TARGET_PAGE_SIZE,
623 TARGET_PAGE_SIZE);
624 if (!XBZRLE.cache) {
625 DPRINTF("Error creating cache\n");
626 return -1;
627 }
628 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
629 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
630 acct_clear();
631 }
632
633 qemu_mutex_lock_iothread();
634 qemu_mutex_lock_ramlist();
635 bytes_transferred = 0;
636 reset_ram_globals();
637
638 memory_global_dirty_log_start();
639 migration_bitmap_sync();
640 qemu_mutex_unlock_iothread();
641
642 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
643
644 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
645 qemu_put_byte(f, strlen(block->idstr));
646 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
647 qemu_put_be64(f, block->length);
648 }
649
650 qemu_mutex_unlock_ramlist();
651
652 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
653 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
654
655 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
656
657 return 0;
658 }
659
660 static int ram_save_iterate(QEMUFile *f, void *opaque)
661 {
662 int ret;
663 int i;
664 int64_t t0;
665 int total_sent = 0;
666
667 qemu_mutex_lock_ramlist();
668
669 if (ram_list.version != last_version) {
670 reset_ram_globals();
671 }
672
673 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
674
675 t0 = qemu_get_clock_ns(rt_clock);
676 i = 0;
677 while ((ret = qemu_file_rate_limit(f)) == 0) {
678 int bytes_sent;
679
680 bytes_sent = ram_save_block(f, false);
681 /* no more blocks to sent */
682 if (bytes_sent == 0) {
683 break;
684 }
685 total_sent += bytes_sent;
686 acct_info.iterations++;
687 check_guest_throttling();
688 /* we want to check in the 1st loop, just in case it was the 1st time
689 and we had to sync the dirty bitmap.
690 qemu_get_clock_ns() is a bit expensive, so we only check each some
691 iterations
692 */
693 if ((i & 63) == 0) {
694 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
695 if (t1 > MAX_WAIT) {
696 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
697 t1, i);
698 break;
699 }
700 }
701 i++;
702 }
703
704 qemu_mutex_unlock_ramlist();
705
706 /*
707 * Must occur before EOS (or any QEMUFile operation)
708 * because of RDMA protocol.
709 */
710 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
711
712 if (ret < 0) {
713 bytes_transferred += total_sent;
714 return ret;
715 }
716
717 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
718 total_sent += 8;
719 bytes_transferred += total_sent;
720
721 return total_sent;
722 }
723
724 static int ram_save_complete(QEMUFile *f, void *opaque)
725 {
726 qemu_mutex_lock_ramlist();
727 migration_bitmap_sync();
728
729 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
730
731 /* try transferring iterative blocks of memory */
732
733 /* flush all remaining blocks regardless of rate limiting */
734 while (true) {
735 int bytes_sent;
736
737 bytes_sent = ram_save_block(f, true);
738 /* no more blocks to sent */
739 if (bytes_sent == 0) {
740 break;
741 }
742 bytes_transferred += bytes_sent;
743 }
744
745 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
746 migration_end();
747
748 qemu_mutex_unlock_ramlist();
749 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
750
751 return 0;
752 }
753
754 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
755 {
756 uint64_t remaining_size;
757
758 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
759
760 if (remaining_size < max_size) {
761 qemu_mutex_lock_iothread();
762 migration_bitmap_sync();
763 qemu_mutex_unlock_iothread();
764 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
765 }
766 return remaining_size;
767 }
768
769 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
770 {
771 int ret, rc = 0;
772 unsigned int xh_len;
773 int xh_flags;
774
775 if (!XBZRLE.decoded_buf) {
776 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
777 }
778
779 /* extract RLE header */
780 xh_flags = qemu_get_byte(f);
781 xh_len = qemu_get_be16(f);
782
783 if (xh_flags != ENCODING_FLAG_XBZRLE) {
784 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
785 return -1;
786 }
787
788 if (xh_len > TARGET_PAGE_SIZE) {
789 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
790 return -1;
791 }
792 /* load data and decode */
793 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
794
795 /* decode RLE */
796 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
797 TARGET_PAGE_SIZE);
798 if (ret == -1) {
799 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
800 rc = -1;
801 } else if (ret > TARGET_PAGE_SIZE) {
802 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
803 ret, TARGET_PAGE_SIZE);
804 abort();
805 }
806
807 return rc;
808 }
809
810 static inline void *host_from_stream_offset(QEMUFile *f,
811 ram_addr_t offset,
812 int flags)
813 {
814 static RAMBlock *block = NULL;
815 char id[256];
816 uint8_t len;
817
818 if (flags & RAM_SAVE_FLAG_CONTINUE) {
819 if (!block) {
820 fprintf(stderr, "Ack, bad migration stream!\n");
821 return NULL;
822 }
823
824 return memory_region_get_ram_ptr(block->mr) + offset;
825 }
826
827 len = qemu_get_byte(f);
828 qemu_get_buffer(f, (uint8_t *)id, len);
829 id[len] = 0;
830
831 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
832 if (!strncmp(id, block->idstr, sizeof(id)))
833 return memory_region_get_ram_ptr(block->mr) + offset;
834 }
835
836 fprintf(stderr, "Can't find block %s!\n", id);
837 return NULL;
838 }
839
840 /*
841 * If a page (or a whole RDMA chunk) has been
842 * determined to be zero, then zap it.
843 */
844 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
845 {
846 if (ch != 0 || !is_zero_page(host)) {
847 memset(host, ch, size);
848 #ifndef _WIN32
849 if (ch == 0 &&
850 (!kvm_enabled() || kvm_has_sync_mmu()) &&
851 getpagesize() <= TARGET_PAGE_SIZE) {
852 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
853 }
854 #endif
855 }
856 }
857
858 static int ram_load(QEMUFile *f, void *opaque, int version_id)
859 {
860 ram_addr_t addr;
861 int flags, ret = 0;
862 int error;
863 static uint64_t seq_iter;
864
865 seq_iter++;
866
867 if (version_id < 4 || version_id > 4) {
868 return -EINVAL;
869 }
870
871 do {
872 addr = qemu_get_be64(f);
873
874 flags = addr & ~TARGET_PAGE_MASK;
875 addr &= TARGET_PAGE_MASK;
876
877 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
878 if (version_id == 4) {
879 /* Synchronize RAM block list */
880 char id[256];
881 ram_addr_t length;
882 ram_addr_t total_ram_bytes = addr;
883
884 while (total_ram_bytes) {
885 RAMBlock *block;
886 uint8_t len;
887
888 len = qemu_get_byte(f);
889 qemu_get_buffer(f, (uint8_t *)id, len);
890 id[len] = 0;
891 length = qemu_get_be64(f);
892
893 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
894 if (!strncmp(id, block->idstr, sizeof(id))) {
895 if (block->length != length) {
896 fprintf(stderr,
897 "Length mismatch: %s: " RAM_ADDR_FMT
898 " in != " RAM_ADDR_FMT "\n", id, length,
899 block->length);
900 ret = -EINVAL;
901 goto done;
902 }
903 break;
904 }
905 }
906
907 if (!block) {
908 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
909 "accept migration\n", id);
910 ret = -EINVAL;
911 goto done;
912 }
913
914 total_ram_bytes -= length;
915 }
916 }
917 }
918
919 if (flags & RAM_SAVE_FLAG_COMPRESS) {
920 void *host;
921 uint8_t ch;
922
923 host = host_from_stream_offset(f, addr, flags);
924 if (!host) {
925 return -EINVAL;
926 }
927
928 ch = qemu_get_byte(f);
929 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
930 } else if (flags & RAM_SAVE_FLAG_PAGE) {
931 void *host;
932
933 host = host_from_stream_offset(f, addr, flags);
934 if (!host) {
935 return -EINVAL;
936 }
937
938 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
939 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
940 void *host = host_from_stream_offset(f, addr, flags);
941 if (!host) {
942 return -EINVAL;
943 }
944
945 if (load_xbzrle(f, addr, host) < 0) {
946 ret = -EINVAL;
947 goto done;
948 }
949 } else if (flags & RAM_SAVE_FLAG_HOOK) {
950 ram_control_load_hook(f, flags);
951 }
952 error = qemu_file_get_error(f);
953 if (error) {
954 ret = error;
955 goto done;
956 }
957 } while (!(flags & RAM_SAVE_FLAG_EOS));
958
959 done:
960 DPRINTF("Completed load of VM with exit code %d seq iteration "
961 "%" PRIu64 "\n", ret, seq_iter);
962 return ret;
963 }
964
965 SaveVMHandlers savevm_ram_handlers = {
966 .save_live_setup = ram_save_setup,
967 .save_live_iterate = ram_save_iterate,
968 .save_live_complete = ram_save_complete,
969 .save_live_pending = ram_save_pending,
970 .load_state = ram_load,
971 .cancel = ram_migration_cancel,
972 };
973
974 struct soundhw {
975 const char *name;
976 const char *descr;
977 int enabled;
978 int isa;
979 union {
980 int (*init_isa) (ISABus *bus);
981 int (*init_pci) (PCIBus *bus);
982 } init;
983 };
984
985 static struct soundhw soundhw[9];
986 static int soundhw_count;
987
988 void isa_register_soundhw(const char *name, const char *descr,
989 int (*init_isa)(ISABus *bus))
990 {
991 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
992 soundhw[soundhw_count].name = name;
993 soundhw[soundhw_count].descr = descr;
994 soundhw[soundhw_count].isa = 1;
995 soundhw[soundhw_count].init.init_isa = init_isa;
996 soundhw_count++;
997 }
998
999 void pci_register_soundhw(const char *name, const char *descr,
1000 int (*init_pci)(PCIBus *bus))
1001 {
1002 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1003 soundhw[soundhw_count].name = name;
1004 soundhw[soundhw_count].descr = descr;
1005 soundhw[soundhw_count].isa = 0;
1006 soundhw[soundhw_count].init.init_pci = init_pci;
1007 soundhw_count++;
1008 }
1009
1010 void select_soundhw(const char *optarg)
1011 {
1012 struct soundhw *c;
1013
1014 if (is_help_option(optarg)) {
1015 show_valid_cards:
1016
1017 if (soundhw_count) {
1018 printf("Valid sound card names (comma separated):\n");
1019 for (c = soundhw; c->name; ++c) {
1020 printf ("%-11s %s\n", c->name, c->descr);
1021 }
1022 printf("\n-soundhw all will enable all of the above\n");
1023 } else {
1024 printf("Machine has no user-selectable audio hardware "
1025 "(it may or may not have always-present audio hardware).\n");
1026 }
1027 exit(!is_help_option(optarg));
1028 }
1029 else {
1030 size_t l;
1031 const char *p;
1032 char *e;
1033 int bad_card = 0;
1034
1035 if (!strcmp(optarg, "all")) {
1036 for (c = soundhw; c->name; ++c) {
1037 c->enabled = 1;
1038 }
1039 return;
1040 }
1041
1042 p = optarg;
1043 while (*p) {
1044 e = strchr(p, ',');
1045 l = !e ? strlen(p) : (size_t) (e - p);
1046
1047 for (c = soundhw; c->name; ++c) {
1048 if (!strncmp(c->name, p, l) && !c->name[l]) {
1049 c->enabled = 1;
1050 break;
1051 }
1052 }
1053
1054 if (!c->name) {
1055 if (l > 80) {
1056 fprintf(stderr,
1057 "Unknown sound card name (too big to show)\n");
1058 }
1059 else {
1060 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1061 (int) l, p);
1062 }
1063 bad_card = 1;
1064 }
1065 p += l + (e != NULL);
1066 }
1067
1068 if (bad_card) {
1069 goto show_valid_cards;
1070 }
1071 }
1072 }
1073
1074 void audio_init(void)
1075 {
1076 struct soundhw *c;
1077 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1078 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1079
1080 for (c = soundhw; c->name; ++c) {
1081 if (c->enabled) {
1082 if (c->isa) {
1083 if (!isa_bus) {
1084 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1085 exit(1);
1086 }
1087 c->init.init_isa(isa_bus);
1088 } else {
1089 if (!pci_bus) {
1090 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1091 exit(1);
1092 }
1093 c->init.init_pci(pci_bus);
1094 }
1095 }
1096 }
1097 }
1098
1099 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1100 {
1101 int ret;
1102
1103 if (strlen(str) != 36) {
1104 return -1;
1105 }
1106
1107 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1108 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1109 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1110 &uuid[15]);
1111
1112 if (ret != 16) {
1113 return -1;
1114 }
1115 #ifdef TARGET_I386
1116 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16);
1117 #endif
1118 return 0;
1119 }
1120
1121 void do_acpitable_option(const QemuOpts *opts)
1122 {
1123 #ifdef TARGET_I386
1124 Error *err = NULL;
1125
1126 acpi_table_add(opts, &err);
1127 if (err) {
1128 error_report("Wrong acpi table provided: %s",
1129 error_get_pretty(err));
1130 error_free(err);
1131 exit(1);
1132 }
1133 #endif
1134 }
1135
1136 void do_smbios_option(const char *optarg)
1137 {
1138 #ifdef TARGET_I386
1139 if (smbios_entry_add(optarg) < 0) {
1140 exit(1);
1141 }
1142 #endif
1143 }
1144
1145 void cpudef_init(void)
1146 {
1147 #if defined(cpudef_setup)
1148 cpudef_setup(); /* parse cpu definitions in target config file */
1149 #endif
1150 }
1151
1152 int tcg_available(void)
1153 {
1154 return 1;
1155 }
1156
1157 int kvm_available(void)
1158 {
1159 #ifdef CONFIG_KVM
1160 return 1;
1161 #else
1162 return 0;
1163 #endif
1164 }
1165
1166 int xen_available(void)
1167 {
1168 #ifdef CONFIG_XEN
1169 return 1;
1170 #else
1171 return 0;
1172 #endif
1173 }
1174
1175
1176 TargetInfo *qmp_query_target(Error **errp)
1177 {
1178 TargetInfo *info = g_malloc0(sizeof(*info));
1179
1180 info->arch = g_strdup(TARGET_NAME);
1181
1182 return info;
1183 }
1184
1185 /* Stub function that's gets run on the vcpu when its brought out of the
1186 VM to run inside qemu via async_run_on_cpu()*/
1187 static void mig_sleep_cpu(void *opq)
1188 {
1189 qemu_mutex_unlock_iothread();
1190 g_usleep(30*1000);
1191 qemu_mutex_lock_iothread();
1192 }
1193
1194 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1195 much time in the VM. The migration thread will try to catchup.
1196 Workload will experience a performance drop.
1197 */
1198 static void mig_throttle_cpu_down(CPUState *cpu, void *data)
1199 {
1200 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1201 }
1202
1203 static void mig_throttle_guest_down(void)
1204 {
1205 qemu_mutex_lock_iothread();
1206 qemu_for_each_cpu(mig_throttle_cpu_down, NULL);
1207 qemu_mutex_unlock_iothread();
1208 }
1209
1210 static void check_guest_throttling(void)
1211 {
1212 static int64_t t0;
1213 int64_t t1;
1214
1215 if (!mig_throttle_on) {
1216 return;
1217 }
1218
1219 if (!t0) {
1220 t0 = qemu_get_clock_ns(rt_clock);
1221 return;
1222 }
1223
1224 t1 = qemu_get_clock_ns(rt_clock);
1225
1226 /* If it has been more than 40 ms since the last time the guest
1227 * was throttled then do it again.
1228 */
1229 if (40 < (t1-t0)/1000000) {
1230 mig_throttle_guest_down();
1231 t0 = t1;
1232 }
1233 }