]> git.proxmox.com Git - qemu.git/blob - arch_init.c
Merge remote-tracking branch 'stefanha/block' into staging
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 size_t size;
272
273 qemu_put_be64(f, offset | cont | flag);
274 size = 8;
275
276 if (!cont) {
277 qemu_put_byte(f, strlen(block->idstr));
278 qemu_put_buffer(f, (uint8_t *)block->idstr,
279 strlen(block->idstr));
280 size += 1 + strlen(block->idstr);
281 }
282 return size;
283 }
284
285 #define ENCODING_FLAG_XBZRLE 0x1
286
287 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
288 ram_addr_t current_addr, RAMBlock *block,
289 ram_addr_t offset, int cont, bool last_stage)
290 {
291 int encoded_len = 0, bytes_sent = -1;
292 uint8_t *prev_cached_page;
293
294 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
295 if (!last_stage) {
296 cache_insert(XBZRLE.cache, current_addr,
297 g_memdup(current_data, TARGET_PAGE_SIZE));
298 }
299 acct_info.xbzrle_cache_miss++;
300 return -1;
301 }
302
303 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
304
305 /* save current buffer into memory */
306 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
307
308 /* XBZRLE encoding (if there is no overflow) */
309 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
310 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
311 TARGET_PAGE_SIZE);
312 if (encoded_len == 0) {
313 DPRINTF("Skipping unmodified page\n");
314 return 0;
315 } else if (encoded_len == -1) {
316 DPRINTF("Overflow\n");
317 acct_info.xbzrle_overflows++;
318 /* update data in the cache */
319 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
320 return -1;
321 }
322
323 /* we need to update the data in the cache, in order to get the same data */
324 if (!last_stage) {
325 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
326 }
327
328 /* Send XBZRLE based compressed page */
329 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
330 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
331 qemu_put_be16(f, encoded_len);
332 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
333 bytes_sent += encoded_len + 1 + 2;
334 acct_info.xbzrle_pages++;
335 acct_info.xbzrle_bytes += bytes_sent;
336
337 return bytes_sent;
338 }
339
340
341 /* This is the last block that we have visited serching for dirty pages
342 */
343 static RAMBlock *last_seen_block;
344 /* This is the last block from where we have sent data */
345 static RAMBlock *last_sent_block;
346 static ram_addr_t last_offset;
347 static unsigned long *migration_bitmap;
348 static uint64_t migration_dirty_pages;
349 static uint32_t last_version;
350
351 static inline
352 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
353 ram_addr_t start)
354 {
355 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
356 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
357 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
358
359 unsigned long next = find_next_bit(migration_bitmap, size, nr);
360
361 if (next < size) {
362 clear_bit(next, migration_bitmap);
363 migration_dirty_pages--;
364 }
365 return (next - base) << TARGET_PAGE_BITS;
366 }
367
368 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
369 ram_addr_t offset)
370 {
371 bool ret;
372 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
373
374 ret = test_and_set_bit(nr, migration_bitmap);
375
376 if (!ret) {
377 migration_dirty_pages++;
378 }
379 return ret;
380 }
381
382 static void migration_bitmap_sync(void)
383 {
384 RAMBlock *block;
385 ram_addr_t addr;
386 uint64_t num_dirty_pages_init = migration_dirty_pages;
387 MigrationState *s = migrate_get_current();
388 static int64_t start_time;
389 static int64_t num_dirty_pages_period;
390 int64_t end_time;
391
392 if (!start_time) {
393 start_time = qemu_get_clock_ms(rt_clock);
394 }
395
396 trace_migration_bitmap_sync_start();
397 memory_global_sync_dirty_bitmap(get_system_memory());
398
399 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
400 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
401 if (memory_region_test_and_clear_dirty(block->mr,
402 addr, TARGET_PAGE_SIZE,
403 DIRTY_MEMORY_MIGRATION)) {
404 migration_bitmap_set_dirty(block->mr, addr);
405 }
406 }
407 }
408 trace_migration_bitmap_sync_end(migration_dirty_pages
409 - num_dirty_pages_init);
410 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
411 end_time = qemu_get_clock_ms(rt_clock);
412
413 /* more than 1 second = 1000 millisecons */
414 if (end_time > start_time + 1000) {
415 s->dirty_pages_rate = num_dirty_pages_period * 1000
416 / (end_time - start_time);
417 start_time = end_time;
418 num_dirty_pages_period = 0;
419 }
420 }
421
422 /*
423 * ram_save_block: Writes a page of memory to the stream f
424 *
425 * Returns: The number of bytes written.
426 * 0 means no dirty pages
427 */
428
429 static int ram_save_block(QEMUFile *f, bool last_stage)
430 {
431 RAMBlock *block = last_seen_block;
432 ram_addr_t offset = last_offset;
433 bool complete_round = false;
434 int bytes_sent = 0;
435 MemoryRegion *mr;
436 ram_addr_t current_addr;
437
438 if (!block)
439 block = QTAILQ_FIRST(&ram_list.blocks);
440
441 while (true) {
442 mr = block->mr;
443 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
444 if (complete_round && block == last_seen_block &&
445 offset >= last_offset) {
446 break;
447 }
448 if (offset >= block->length) {
449 offset = 0;
450 block = QTAILQ_NEXT(block, next);
451 if (!block) {
452 block = QTAILQ_FIRST(&ram_list.blocks);
453 complete_round = true;
454 }
455 } else {
456 uint8_t *p;
457 int cont = (block == last_sent_block) ?
458 RAM_SAVE_FLAG_CONTINUE : 0;
459
460 p = memory_region_get_ram_ptr(mr) + offset;
461
462 /* In doubt sent page as normal */
463 bytes_sent = -1;
464 if (is_dup_page(p)) {
465 acct_info.dup_pages++;
466 bytes_sent = save_block_hdr(f, block, offset, cont,
467 RAM_SAVE_FLAG_COMPRESS);
468 qemu_put_byte(f, *p);
469 bytes_sent += 1;
470 } else if (migrate_use_xbzrle()) {
471 current_addr = block->offset + offset;
472 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
473 offset, cont, last_stage);
474 if (!last_stage) {
475 p = get_cached_data(XBZRLE.cache, current_addr);
476 }
477 }
478
479 /* XBZRLE overflow or normal page */
480 if (bytes_sent == -1) {
481 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
482 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
483 bytes_sent += TARGET_PAGE_SIZE;
484 acct_info.norm_pages++;
485 }
486
487 /* if page is unmodified, continue to the next */
488 if (bytes_sent > 0) {
489 last_sent_block = block;
490 break;
491 }
492 }
493 }
494 last_seen_block = block;
495 last_offset = offset;
496
497 return bytes_sent;
498 }
499
500 static uint64_t bytes_transferred;
501
502 static ram_addr_t ram_save_remaining(void)
503 {
504 return migration_dirty_pages;
505 }
506
507 uint64_t ram_bytes_remaining(void)
508 {
509 return ram_save_remaining() * TARGET_PAGE_SIZE;
510 }
511
512 uint64_t ram_bytes_transferred(void)
513 {
514 return bytes_transferred;
515 }
516
517 uint64_t ram_bytes_total(void)
518 {
519 RAMBlock *block;
520 uint64_t total = 0;
521
522 QTAILQ_FOREACH(block, &ram_list.blocks, next)
523 total += block->length;
524
525 return total;
526 }
527
528 static void migration_end(void)
529 {
530 if (migration_bitmap) {
531 memory_global_dirty_log_stop();
532 g_free(migration_bitmap);
533 migration_bitmap = NULL;
534 }
535
536 if (XBZRLE.cache) {
537 cache_fini(XBZRLE.cache);
538 g_free(XBZRLE.cache);
539 g_free(XBZRLE.encoded_buf);
540 g_free(XBZRLE.current_buf);
541 g_free(XBZRLE.decoded_buf);
542 XBZRLE.cache = NULL;
543 }
544 }
545
546 static void ram_migration_cancel(void *opaque)
547 {
548 migration_end();
549 }
550
551 static void reset_ram_globals(void)
552 {
553 last_seen_block = NULL;
554 last_sent_block = NULL;
555 last_offset = 0;
556 last_version = ram_list.version;
557 }
558
559 #define MAX_WAIT 50 /* ms, half buffered_file limit */
560
561 static int ram_save_setup(QEMUFile *f, void *opaque)
562 {
563 RAMBlock *block;
564 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
565
566 migration_bitmap = bitmap_new(ram_pages);
567 bitmap_set(migration_bitmap, 0, ram_pages);
568 migration_dirty_pages = ram_pages;
569
570 qemu_mutex_lock_ramlist();
571 bytes_transferred = 0;
572 reset_ram_globals();
573
574 if (migrate_use_xbzrle()) {
575 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
576 TARGET_PAGE_SIZE,
577 TARGET_PAGE_SIZE);
578 if (!XBZRLE.cache) {
579 DPRINTF("Error creating cache\n");
580 return -1;
581 }
582 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
583 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
584 acct_clear();
585 }
586
587 memory_global_dirty_log_start();
588 migration_bitmap_sync();
589
590 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
591
592 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
593 qemu_put_byte(f, strlen(block->idstr));
594 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
595 qemu_put_be64(f, block->length);
596 }
597
598 qemu_mutex_unlock_ramlist();
599 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
600
601 return 0;
602 }
603
604 static int ram_save_iterate(QEMUFile *f, void *opaque)
605 {
606 int ret;
607 int i;
608 int64_t t0;
609 int total_sent = 0;
610
611 qemu_mutex_lock_ramlist();
612
613 if (ram_list.version != last_version) {
614 reset_ram_globals();
615 }
616
617 t0 = qemu_get_clock_ns(rt_clock);
618 i = 0;
619 while ((ret = qemu_file_rate_limit(f)) == 0) {
620 int bytes_sent;
621
622 bytes_sent = ram_save_block(f, false);
623 /* no more blocks to sent */
624 if (bytes_sent == 0) {
625 break;
626 }
627 total_sent += bytes_sent;
628 acct_info.iterations++;
629 /* we want to check in the 1st loop, just in case it was the 1st time
630 and we had to sync the dirty bitmap.
631 qemu_get_clock_ns() is a bit expensive, so we only check each some
632 iterations
633 */
634 if ((i & 63) == 0) {
635 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
636 if (t1 > MAX_WAIT) {
637 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
638 t1, i);
639 break;
640 }
641 }
642 i++;
643 }
644
645 qemu_mutex_unlock_ramlist();
646
647 if (ret < 0) {
648 bytes_transferred += total_sent;
649 return ret;
650 }
651
652 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
653 total_sent += 8;
654 bytes_transferred += total_sent;
655
656 return total_sent;
657 }
658
659 static int ram_save_complete(QEMUFile *f, void *opaque)
660 {
661 qemu_mutex_lock_ramlist();
662 migration_bitmap_sync();
663
664 /* try transferring iterative blocks of memory */
665
666 /* flush all remaining blocks regardless of rate limiting */
667 while (true) {
668 int bytes_sent;
669
670 bytes_sent = ram_save_block(f, true);
671 /* no more blocks to sent */
672 if (bytes_sent == 0) {
673 break;
674 }
675 bytes_transferred += bytes_sent;
676 }
677 migration_end();
678
679 qemu_mutex_unlock_ramlist();
680 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
681
682 return 0;
683 }
684
685 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
686 {
687 uint64_t remaining_size;
688
689 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
690
691 if (remaining_size < max_size) {
692 migration_bitmap_sync();
693 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
694 }
695 return remaining_size;
696 }
697
698 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
699 {
700 int ret, rc = 0;
701 unsigned int xh_len;
702 int xh_flags;
703
704 if (!XBZRLE.decoded_buf) {
705 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
706 }
707
708 /* extract RLE header */
709 xh_flags = qemu_get_byte(f);
710 xh_len = qemu_get_be16(f);
711
712 if (xh_flags != ENCODING_FLAG_XBZRLE) {
713 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
714 return -1;
715 }
716
717 if (xh_len > TARGET_PAGE_SIZE) {
718 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
719 return -1;
720 }
721 /* load data and decode */
722 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
723
724 /* decode RLE */
725 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
726 TARGET_PAGE_SIZE);
727 if (ret == -1) {
728 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
729 rc = -1;
730 } else if (ret > TARGET_PAGE_SIZE) {
731 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
732 ret, TARGET_PAGE_SIZE);
733 abort();
734 }
735
736 return rc;
737 }
738
739 static inline void *host_from_stream_offset(QEMUFile *f,
740 ram_addr_t offset,
741 int flags)
742 {
743 static RAMBlock *block = NULL;
744 char id[256];
745 uint8_t len;
746
747 if (flags & RAM_SAVE_FLAG_CONTINUE) {
748 if (!block) {
749 fprintf(stderr, "Ack, bad migration stream!\n");
750 return NULL;
751 }
752
753 return memory_region_get_ram_ptr(block->mr) + offset;
754 }
755
756 len = qemu_get_byte(f);
757 qemu_get_buffer(f, (uint8_t *)id, len);
758 id[len] = 0;
759
760 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
761 if (!strncmp(id, block->idstr, sizeof(id)))
762 return memory_region_get_ram_ptr(block->mr) + offset;
763 }
764
765 fprintf(stderr, "Can't find block %s!\n", id);
766 return NULL;
767 }
768
769 static int ram_load(QEMUFile *f, void *opaque, int version_id)
770 {
771 ram_addr_t addr;
772 int flags, ret = 0;
773 int error;
774 static uint64_t seq_iter;
775
776 seq_iter++;
777
778 if (version_id < 4 || version_id > 4) {
779 return -EINVAL;
780 }
781
782 do {
783 addr = qemu_get_be64(f);
784
785 flags = addr & ~TARGET_PAGE_MASK;
786 addr &= TARGET_PAGE_MASK;
787
788 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
789 if (version_id == 4) {
790 /* Synchronize RAM block list */
791 char id[256];
792 ram_addr_t length;
793 ram_addr_t total_ram_bytes = addr;
794
795 while (total_ram_bytes) {
796 RAMBlock *block;
797 uint8_t len;
798
799 len = qemu_get_byte(f);
800 qemu_get_buffer(f, (uint8_t *)id, len);
801 id[len] = 0;
802 length = qemu_get_be64(f);
803
804 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
805 if (!strncmp(id, block->idstr, sizeof(id))) {
806 if (block->length != length) {
807 ret = -EINVAL;
808 goto done;
809 }
810 break;
811 }
812 }
813
814 if (!block) {
815 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
816 "accept migration\n", id);
817 ret = -EINVAL;
818 goto done;
819 }
820
821 total_ram_bytes -= length;
822 }
823 }
824 }
825
826 if (flags & RAM_SAVE_FLAG_COMPRESS) {
827 void *host;
828 uint8_t ch;
829
830 host = host_from_stream_offset(f, addr, flags);
831 if (!host) {
832 return -EINVAL;
833 }
834
835 ch = qemu_get_byte(f);
836 memset(host, ch, TARGET_PAGE_SIZE);
837 #ifndef _WIN32
838 if (ch == 0 &&
839 (!kvm_enabled() || kvm_has_sync_mmu()) &&
840 getpagesize() <= TARGET_PAGE_SIZE) {
841 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
842 }
843 #endif
844 } else if (flags & RAM_SAVE_FLAG_PAGE) {
845 void *host;
846
847 host = host_from_stream_offset(f, addr, flags);
848 if (!host) {
849 return -EINVAL;
850 }
851
852 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
853 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
854 void *host = host_from_stream_offset(f, addr, flags);
855 if (!host) {
856 return -EINVAL;
857 }
858
859 if (load_xbzrle(f, addr, host) < 0) {
860 ret = -EINVAL;
861 goto done;
862 }
863 }
864 error = qemu_file_get_error(f);
865 if (error) {
866 ret = error;
867 goto done;
868 }
869 } while (!(flags & RAM_SAVE_FLAG_EOS));
870
871 done:
872 DPRINTF("Completed load of VM with exit code %d seq iteration "
873 "%" PRIu64 "\n", ret, seq_iter);
874 return ret;
875 }
876
877 SaveVMHandlers savevm_ram_handlers = {
878 .save_live_setup = ram_save_setup,
879 .save_live_iterate = ram_save_iterate,
880 .save_live_complete = ram_save_complete,
881 .save_live_pending = ram_save_pending,
882 .load_state = ram_load,
883 .cancel = ram_migration_cancel,
884 };
885
886 #ifdef HAS_AUDIO
887 struct soundhw {
888 const char *name;
889 const char *descr;
890 int enabled;
891 int isa;
892 union {
893 int (*init_isa) (ISABus *bus);
894 int (*init_pci) (PCIBus *bus);
895 } init;
896 };
897
898 static struct soundhw soundhw[] = {
899 #ifdef HAS_AUDIO_CHOICE
900 #ifdef CONFIG_PCSPK
901 {
902 "pcspk",
903 "PC speaker",
904 0,
905 1,
906 { .init_isa = pcspk_audio_init }
907 },
908 #endif
909
910 #ifdef CONFIG_SB16
911 {
912 "sb16",
913 "Creative Sound Blaster 16",
914 0,
915 1,
916 { .init_isa = SB16_init }
917 },
918 #endif
919
920 #ifdef CONFIG_CS4231A
921 {
922 "cs4231a",
923 "CS4231A",
924 0,
925 1,
926 { .init_isa = cs4231a_init }
927 },
928 #endif
929
930 #ifdef CONFIG_ADLIB
931 {
932 "adlib",
933 #ifdef HAS_YMF262
934 "Yamaha YMF262 (OPL3)",
935 #else
936 "Yamaha YM3812 (OPL2)",
937 #endif
938 0,
939 1,
940 { .init_isa = Adlib_init }
941 },
942 #endif
943
944 #ifdef CONFIG_GUS
945 {
946 "gus",
947 "Gravis Ultrasound GF1",
948 0,
949 1,
950 { .init_isa = GUS_init }
951 },
952 #endif
953
954 #ifdef CONFIG_AC97
955 {
956 "ac97",
957 "Intel 82801AA AC97 Audio",
958 0,
959 0,
960 { .init_pci = ac97_init }
961 },
962 #endif
963
964 #ifdef CONFIG_ES1370
965 {
966 "es1370",
967 "ENSONIQ AudioPCI ES1370",
968 0,
969 0,
970 { .init_pci = es1370_init }
971 },
972 #endif
973
974 #ifdef CONFIG_HDA
975 {
976 "hda",
977 "Intel HD Audio",
978 0,
979 0,
980 { .init_pci = intel_hda_and_codec_init }
981 },
982 #endif
983
984 #endif /* HAS_AUDIO_CHOICE */
985
986 { NULL, NULL, 0, 0, { NULL } }
987 };
988
989 void select_soundhw(const char *optarg)
990 {
991 struct soundhw *c;
992
993 if (is_help_option(optarg)) {
994 show_valid_cards:
995
996 #ifdef HAS_AUDIO_CHOICE
997 printf("Valid sound card names (comma separated):\n");
998 for (c = soundhw; c->name; ++c) {
999 printf ("%-11s %s\n", c->name, c->descr);
1000 }
1001 printf("\n-soundhw all will enable all of the above\n");
1002 #else
1003 printf("Machine has no user-selectable audio hardware "
1004 "(it may or may not have always-present audio hardware).\n");
1005 #endif
1006 exit(!is_help_option(optarg));
1007 }
1008 else {
1009 size_t l;
1010 const char *p;
1011 char *e;
1012 int bad_card = 0;
1013
1014 if (!strcmp(optarg, "all")) {
1015 for (c = soundhw; c->name; ++c) {
1016 c->enabled = 1;
1017 }
1018 return;
1019 }
1020
1021 p = optarg;
1022 while (*p) {
1023 e = strchr(p, ',');
1024 l = !e ? strlen(p) : (size_t) (e - p);
1025
1026 for (c = soundhw; c->name; ++c) {
1027 if (!strncmp(c->name, p, l) && !c->name[l]) {
1028 c->enabled = 1;
1029 break;
1030 }
1031 }
1032
1033 if (!c->name) {
1034 if (l > 80) {
1035 fprintf(stderr,
1036 "Unknown sound card name (too big to show)\n");
1037 }
1038 else {
1039 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1040 (int) l, p);
1041 }
1042 bad_card = 1;
1043 }
1044 p += l + (e != NULL);
1045 }
1046
1047 if (bad_card) {
1048 goto show_valid_cards;
1049 }
1050 }
1051 }
1052
1053 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1054 {
1055 struct soundhw *c;
1056
1057 for (c = soundhw; c->name; ++c) {
1058 if (c->enabled) {
1059 if (c->isa) {
1060 if (isa_bus) {
1061 c->init.init_isa(isa_bus);
1062 }
1063 } else {
1064 if (pci_bus) {
1065 c->init.init_pci(pci_bus);
1066 }
1067 }
1068 }
1069 }
1070 }
1071 #else
1072 void select_soundhw(const char *optarg)
1073 {
1074 }
1075 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1076 {
1077 }
1078 #endif
1079
1080 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1081 {
1082 int ret;
1083
1084 if (strlen(str) != 36) {
1085 return -1;
1086 }
1087
1088 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1089 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1090 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1091 &uuid[15]);
1092
1093 if (ret != 16) {
1094 return -1;
1095 }
1096 #ifdef TARGET_I386
1097 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1098 #endif
1099 return 0;
1100 }
1101
1102 void do_acpitable_option(const char *optarg)
1103 {
1104 #ifdef TARGET_I386
1105 if (acpi_table_add(optarg) < 0) {
1106 fprintf(stderr, "Wrong acpi table provided\n");
1107 exit(1);
1108 }
1109 #endif
1110 }
1111
1112 void do_smbios_option(const char *optarg)
1113 {
1114 #ifdef TARGET_I386
1115 if (smbios_entry_add(optarg) < 0) {
1116 fprintf(stderr, "Wrong smbios provided\n");
1117 exit(1);
1118 }
1119 #endif
1120 }
1121
1122 void cpudef_init(void)
1123 {
1124 #if defined(cpudef_setup)
1125 cpudef_setup(); /* parse cpu definitions in target config file */
1126 #endif
1127 }
1128
1129 int audio_available(void)
1130 {
1131 #ifdef HAS_AUDIO
1132 return 1;
1133 #else
1134 return 0;
1135 #endif
1136 }
1137
1138 int tcg_available(void)
1139 {
1140 return 1;
1141 }
1142
1143 int kvm_available(void)
1144 {
1145 #ifdef CONFIG_KVM
1146 return 1;
1147 #else
1148 return 0;
1149 #endif
1150 }
1151
1152 int xen_available(void)
1153 {
1154 #ifdef CONFIG_XEN
1155 return 1;
1156 #else
1157 return 0;
1158 #endif
1159 }
1160
1161
1162 TargetInfo *qmp_query_target(Error **errp)
1163 {
1164 TargetInfo *info = g_malloc0(sizeof(*info));
1165
1166 info->arch = TARGET_TYPE;
1167
1168 return info;
1169 }