]> git.proxmox.com Git - qemu.git/blob - arch_init.c
migration: add an indicator for bulk state of ram migration
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107
108 /***********************************************************/
109 /* ram save/restore */
110
111 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
112 #define RAM_SAVE_FLAG_COMPRESS 0x02
113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
114 #define RAM_SAVE_FLAG_PAGE 0x08
115 #define RAM_SAVE_FLAG_EOS 0x10
116 #define RAM_SAVE_FLAG_CONTINUE 0x20
117 #define RAM_SAVE_FLAG_XBZRLE 0x40
118
119
120 static struct defconfig_file {
121 const char *filename;
122 /* Indicates it is an user config file (disabled by -no-user-config) */
123 bool userconfig;
124 } default_config_files[] = {
125 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
126 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
127 { NULL }, /* end of list */
128 };
129
130
131 int qemu_read_default_config_files(bool userconfig)
132 {
133 int ret;
134 struct defconfig_file *f;
135
136 for (f = default_config_files; f->filename; f++) {
137 if (!userconfig && f->userconfig) {
138 continue;
139 }
140 ret = qemu_read_config_file(f->filename);
141 if (ret < 0 && ret != -ENOENT) {
142 return ret;
143 }
144 }
145
146 return 0;
147 }
148
149 static inline bool is_zero_page(uint8_t *p)
150 {
151 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
152 TARGET_PAGE_SIZE;
153 }
154
155 /* struct contains XBZRLE cache and a static page
156 used by the compression */
157 static struct {
158 /* buffer used for XBZRLE encoding */
159 uint8_t *encoded_buf;
160 /* buffer for storing page content */
161 uint8_t *current_buf;
162 /* buffer used for XBZRLE decoding */
163 uint8_t *decoded_buf;
164 /* Cache for XBZRLE */
165 PageCache *cache;
166 } XBZRLE = {
167 .encoded_buf = NULL,
168 .current_buf = NULL,
169 .decoded_buf = NULL,
170 .cache = NULL,
171 };
172
173
174 int64_t xbzrle_cache_resize(int64_t new_size)
175 {
176 if (XBZRLE.cache != NULL) {
177 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
178 TARGET_PAGE_SIZE;
179 }
180 return pow2floor(new_size);
181 }
182
183 /* accounting for migration statistics */
184 typedef struct AccountingInfo {
185 uint64_t dup_pages;
186 uint64_t norm_pages;
187 uint64_t iterations;
188 uint64_t xbzrle_bytes;
189 uint64_t xbzrle_pages;
190 uint64_t xbzrle_cache_miss;
191 uint64_t xbzrle_overflows;
192 } AccountingInfo;
193
194 static AccountingInfo acct_info;
195
196 static void acct_clear(void)
197 {
198 memset(&acct_info, 0, sizeof(acct_info));
199 }
200
201 uint64_t dup_mig_bytes_transferred(void)
202 {
203 return acct_info.dup_pages * TARGET_PAGE_SIZE;
204 }
205
206 uint64_t dup_mig_pages_transferred(void)
207 {
208 return acct_info.dup_pages;
209 }
210
211 uint64_t norm_mig_bytes_transferred(void)
212 {
213 return acct_info.norm_pages * TARGET_PAGE_SIZE;
214 }
215
216 uint64_t norm_mig_pages_transferred(void)
217 {
218 return acct_info.norm_pages;
219 }
220
221 uint64_t xbzrle_mig_bytes_transferred(void)
222 {
223 return acct_info.xbzrle_bytes;
224 }
225
226 uint64_t xbzrle_mig_pages_transferred(void)
227 {
228 return acct_info.xbzrle_pages;
229 }
230
231 uint64_t xbzrle_mig_pages_cache_miss(void)
232 {
233 return acct_info.xbzrle_cache_miss;
234 }
235
236 uint64_t xbzrle_mig_pages_overflow(void)
237 {
238 return acct_info.xbzrle_overflows;
239 }
240
241 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
242 int cont, int flag)
243 {
244 size_t size;
245
246 qemu_put_be64(f, offset | cont | flag);
247 size = 8;
248
249 if (!cont) {
250 qemu_put_byte(f, strlen(block->idstr));
251 qemu_put_buffer(f, (uint8_t *)block->idstr,
252 strlen(block->idstr));
253 size += 1 + strlen(block->idstr);
254 }
255 return size;
256 }
257
258 #define ENCODING_FLAG_XBZRLE 0x1
259
260 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
261 ram_addr_t current_addr, RAMBlock *block,
262 ram_addr_t offset, int cont, bool last_stage)
263 {
264 int encoded_len = 0, bytes_sent = -1;
265 uint8_t *prev_cached_page;
266
267 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
268 if (!last_stage) {
269 cache_insert(XBZRLE.cache, current_addr, current_data);
270 }
271 acct_info.xbzrle_cache_miss++;
272 return -1;
273 }
274
275 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
276
277 /* save current buffer into memory */
278 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
279
280 /* XBZRLE encoding (if there is no overflow) */
281 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
282 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
283 TARGET_PAGE_SIZE);
284 if (encoded_len == 0) {
285 DPRINTF("Skipping unmodified page\n");
286 return 0;
287 } else if (encoded_len == -1) {
288 DPRINTF("Overflow\n");
289 acct_info.xbzrle_overflows++;
290 /* update data in the cache */
291 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
292 return -1;
293 }
294
295 /* we need to update the data in the cache, in order to get the same data */
296 if (!last_stage) {
297 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
298 }
299
300 /* Send XBZRLE based compressed page */
301 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
302 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
303 qemu_put_be16(f, encoded_len);
304 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
305 bytes_sent += encoded_len + 1 + 2;
306 acct_info.xbzrle_pages++;
307 acct_info.xbzrle_bytes += bytes_sent;
308
309 return bytes_sent;
310 }
311
312
313 /* This is the last block that we have visited serching for dirty pages
314 */
315 static RAMBlock *last_seen_block;
316 /* This is the last block from where we have sent data */
317 static RAMBlock *last_sent_block;
318 static ram_addr_t last_offset;
319 static unsigned long *migration_bitmap;
320 static uint64_t migration_dirty_pages;
321 static uint32_t last_version;
322 static bool ram_bulk_stage;
323
324 static inline
325 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
326 ram_addr_t start)
327 {
328 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
329 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
330 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
331
332 unsigned long next = find_next_bit(migration_bitmap, size, nr);
333
334 if (next < size) {
335 clear_bit(next, migration_bitmap);
336 migration_dirty_pages--;
337 }
338 return (next - base) << TARGET_PAGE_BITS;
339 }
340
341 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
342 ram_addr_t offset)
343 {
344 bool ret;
345 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
346
347 ret = test_and_set_bit(nr, migration_bitmap);
348
349 if (!ret) {
350 migration_dirty_pages++;
351 }
352 return ret;
353 }
354
355 /* Needs iothread lock! */
356
357 static void migration_bitmap_sync(void)
358 {
359 RAMBlock *block;
360 ram_addr_t addr;
361 uint64_t num_dirty_pages_init = migration_dirty_pages;
362 MigrationState *s = migrate_get_current();
363 static int64_t start_time;
364 static int64_t num_dirty_pages_period;
365 int64_t end_time;
366
367 if (!start_time) {
368 start_time = qemu_get_clock_ms(rt_clock);
369 }
370
371 trace_migration_bitmap_sync_start();
372 memory_global_sync_dirty_bitmap(get_system_memory());
373
374 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
375 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
376 if (memory_region_test_and_clear_dirty(block->mr,
377 addr, TARGET_PAGE_SIZE,
378 DIRTY_MEMORY_MIGRATION)) {
379 migration_bitmap_set_dirty(block->mr, addr);
380 }
381 }
382 }
383 trace_migration_bitmap_sync_end(migration_dirty_pages
384 - num_dirty_pages_init);
385 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
386 end_time = qemu_get_clock_ms(rt_clock);
387
388 /* more than 1 second = 1000 millisecons */
389 if (end_time > start_time + 1000) {
390 s->dirty_pages_rate = num_dirty_pages_period * 1000
391 / (end_time - start_time);
392 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
393 start_time = end_time;
394 num_dirty_pages_period = 0;
395 }
396 }
397
398 /*
399 * ram_save_block: Writes a page of memory to the stream f
400 *
401 * Returns: The number of bytes written.
402 * 0 means no dirty pages
403 */
404
405 static int ram_save_block(QEMUFile *f, bool last_stage)
406 {
407 RAMBlock *block = last_seen_block;
408 ram_addr_t offset = last_offset;
409 bool complete_round = false;
410 int bytes_sent = 0;
411 MemoryRegion *mr;
412 ram_addr_t current_addr;
413
414 if (!block)
415 block = QTAILQ_FIRST(&ram_list.blocks);
416
417 while (true) {
418 mr = block->mr;
419 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
420 if (complete_round && block == last_seen_block &&
421 offset >= last_offset) {
422 break;
423 }
424 if (offset >= block->length) {
425 offset = 0;
426 block = QTAILQ_NEXT(block, next);
427 if (!block) {
428 block = QTAILQ_FIRST(&ram_list.blocks);
429 complete_round = true;
430 ram_bulk_stage = false;
431 }
432 } else {
433 uint8_t *p;
434 int cont = (block == last_sent_block) ?
435 RAM_SAVE_FLAG_CONTINUE : 0;
436
437 p = memory_region_get_ram_ptr(mr) + offset;
438
439 /* In doubt sent page as normal */
440 bytes_sent = -1;
441 if (is_zero_page(p)) {
442 acct_info.dup_pages++;
443 bytes_sent = save_block_hdr(f, block, offset, cont,
444 RAM_SAVE_FLAG_COMPRESS);
445 qemu_put_byte(f, 0);
446 bytes_sent++;
447 } else if (migrate_use_xbzrle()) {
448 current_addr = block->offset + offset;
449 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
450 offset, cont, last_stage);
451 if (!last_stage) {
452 p = get_cached_data(XBZRLE.cache, current_addr);
453 }
454 }
455
456 /* XBZRLE overflow or normal page */
457 if (bytes_sent == -1) {
458 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
459 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
460 bytes_sent += TARGET_PAGE_SIZE;
461 acct_info.norm_pages++;
462 }
463
464 /* if page is unmodified, continue to the next */
465 if (bytes_sent > 0) {
466 last_sent_block = block;
467 break;
468 }
469 }
470 }
471 last_seen_block = block;
472 last_offset = offset;
473
474 return bytes_sent;
475 }
476
477 static uint64_t bytes_transferred;
478
479 static ram_addr_t ram_save_remaining(void)
480 {
481 return migration_dirty_pages;
482 }
483
484 uint64_t ram_bytes_remaining(void)
485 {
486 return ram_save_remaining() * TARGET_PAGE_SIZE;
487 }
488
489 uint64_t ram_bytes_transferred(void)
490 {
491 return bytes_transferred;
492 }
493
494 uint64_t ram_bytes_total(void)
495 {
496 RAMBlock *block;
497 uint64_t total = 0;
498
499 QTAILQ_FOREACH(block, &ram_list.blocks, next)
500 total += block->length;
501
502 return total;
503 }
504
505 static void migration_end(void)
506 {
507 if (migration_bitmap) {
508 memory_global_dirty_log_stop();
509 g_free(migration_bitmap);
510 migration_bitmap = NULL;
511 }
512
513 if (XBZRLE.cache) {
514 cache_fini(XBZRLE.cache);
515 g_free(XBZRLE.cache);
516 g_free(XBZRLE.encoded_buf);
517 g_free(XBZRLE.current_buf);
518 g_free(XBZRLE.decoded_buf);
519 XBZRLE.cache = NULL;
520 }
521 }
522
523 static void ram_migration_cancel(void *opaque)
524 {
525 migration_end();
526 }
527
528 static void reset_ram_globals(void)
529 {
530 last_seen_block = NULL;
531 last_sent_block = NULL;
532 last_offset = 0;
533 last_version = ram_list.version;
534 ram_bulk_stage = true;
535 }
536
537 #define MAX_WAIT 50 /* ms, half buffered_file limit */
538
539 static int ram_save_setup(QEMUFile *f, void *opaque)
540 {
541 RAMBlock *block;
542 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
543
544 migration_bitmap = bitmap_new(ram_pages);
545 bitmap_set(migration_bitmap, 0, ram_pages);
546 migration_dirty_pages = ram_pages;
547
548 if (migrate_use_xbzrle()) {
549 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
550 TARGET_PAGE_SIZE,
551 TARGET_PAGE_SIZE);
552 if (!XBZRLE.cache) {
553 DPRINTF("Error creating cache\n");
554 return -1;
555 }
556 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
557 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
558 acct_clear();
559 }
560
561 qemu_mutex_lock_iothread();
562 qemu_mutex_lock_ramlist();
563 bytes_transferred = 0;
564 reset_ram_globals();
565
566 memory_global_dirty_log_start();
567 migration_bitmap_sync();
568 qemu_mutex_unlock_iothread();
569
570 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
571
572 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
573 qemu_put_byte(f, strlen(block->idstr));
574 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
575 qemu_put_be64(f, block->length);
576 }
577
578 qemu_mutex_unlock_ramlist();
579 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
580
581 return 0;
582 }
583
584 static int ram_save_iterate(QEMUFile *f, void *opaque)
585 {
586 int ret;
587 int i;
588 int64_t t0;
589 int total_sent = 0;
590
591 qemu_mutex_lock_ramlist();
592
593 if (ram_list.version != last_version) {
594 reset_ram_globals();
595 }
596
597 t0 = qemu_get_clock_ns(rt_clock);
598 i = 0;
599 while ((ret = qemu_file_rate_limit(f)) == 0) {
600 int bytes_sent;
601
602 bytes_sent = ram_save_block(f, false);
603 /* no more blocks to sent */
604 if (bytes_sent == 0) {
605 break;
606 }
607 total_sent += bytes_sent;
608 acct_info.iterations++;
609 /* we want to check in the 1st loop, just in case it was the 1st time
610 and we had to sync the dirty bitmap.
611 qemu_get_clock_ns() is a bit expensive, so we only check each some
612 iterations
613 */
614 if ((i & 63) == 0) {
615 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
616 if (t1 > MAX_WAIT) {
617 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
618 t1, i);
619 break;
620 }
621 }
622 i++;
623 }
624
625 qemu_mutex_unlock_ramlist();
626
627 if (ret < 0) {
628 bytes_transferred += total_sent;
629 return ret;
630 }
631
632 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
633 total_sent += 8;
634 bytes_transferred += total_sent;
635
636 return total_sent;
637 }
638
639 static int ram_save_complete(QEMUFile *f, void *opaque)
640 {
641 qemu_mutex_lock_ramlist();
642 migration_bitmap_sync();
643
644 /* try transferring iterative blocks of memory */
645
646 /* flush all remaining blocks regardless of rate limiting */
647 while (true) {
648 int bytes_sent;
649
650 bytes_sent = ram_save_block(f, true);
651 /* no more blocks to sent */
652 if (bytes_sent == 0) {
653 break;
654 }
655 bytes_transferred += bytes_sent;
656 }
657 migration_end();
658
659 qemu_mutex_unlock_ramlist();
660 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
661
662 return 0;
663 }
664
665 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
666 {
667 uint64_t remaining_size;
668
669 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
670
671 if (remaining_size < max_size) {
672 qemu_mutex_lock_iothread();
673 migration_bitmap_sync();
674 qemu_mutex_unlock_iothread();
675 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
676 }
677 return remaining_size;
678 }
679
680 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
681 {
682 int ret, rc = 0;
683 unsigned int xh_len;
684 int xh_flags;
685
686 if (!XBZRLE.decoded_buf) {
687 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
688 }
689
690 /* extract RLE header */
691 xh_flags = qemu_get_byte(f);
692 xh_len = qemu_get_be16(f);
693
694 if (xh_flags != ENCODING_FLAG_XBZRLE) {
695 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
696 return -1;
697 }
698
699 if (xh_len > TARGET_PAGE_SIZE) {
700 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
701 return -1;
702 }
703 /* load data and decode */
704 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
705
706 /* decode RLE */
707 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
708 TARGET_PAGE_SIZE);
709 if (ret == -1) {
710 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
711 rc = -1;
712 } else if (ret > TARGET_PAGE_SIZE) {
713 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
714 ret, TARGET_PAGE_SIZE);
715 abort();
716 }
717
718 return rc;
719 }
720
721 static inline void *host_from_stream_offset(QEMUFile *f,
722 ram_addr_t offset,
723 int flags)
724 {
725 static RAMBlock *block = NULL;
726 char id[256];
727 uint8_t len;
728
729 if (flags & RAM_SAVE_FLAG_CONTINUE) {
730 if (!block) {
731 fprintf(stderr, "Ack, bad migration stream!\n");
732 return NULL;
733 }
734
735 return memory_region_get_ram_ptr(block->mr) + offset;
736 }
737
738 len = qemu_get_byte(f);
739 qemu_get_buffer(f, (uint8_t *)id, len);
740 id[len] = 0;
741
742 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
743 if (!strncmp(id, block->idstr, sizeof(id)))
744 return memory_region_get_ram_ptr(block->mr) + offset;
745 }
746
747 fprintf(stderr, "Can't find block %s!\n", id);
748 return NULL;
749 }
750
751 static int ram_load(QEMUFile *f, void *opaque, int version_id)
752 {
753 ram_addr_t addr;
754 int flags, ret = 0;
755 int error;
756 static uint64_t seq_iter;
757
758 seq_iter++;
759
760 if (version_id < 4 || version_id > 4) {
761 return -EINVAL;
762 }
763
764 do {
765 addr = qemu_get_be64(f);
766
767 flags = addr & ~TARGET_PAGE_MASK;
768 addr &= TARGET_PAGE_MASK;
769
770 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
771 if (version_id == 4) {
772 /* Synchronize RAM block list */
773 char id[256];
774 ram_addr_t length;
775 ram_addr_t total_ram_bytes = addr;
776
777 while (total_ram_bytes) {
778 RAMBlock *block;
779 uint8_t len;
780
781 len = qemu_get_byte(f);
782 qemu_get_buffer(f, (uint8_t *)id, len);
783 id[len] = 0;
784 length = qemu_get_be64(f);
785
786 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
787 if (!strncmp(id, block->idstr, sizeof(id))) {
788 if (block->length != length) {
789 ret = -EINVAL;
790 goto done;
791 }
792 break;
793 }
794 }
795
796 if (!block) {
797 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
798 "accept migration\n", id);
799 ret = -EINVAL;
800 goto done;
801 }
802
803 total_ram_bytes -= length;
804 }
805 }
806 }
807
808 if (flags & RAM_SAVE_FLAG_COMPRESS) {
809 void *host;
810 uint8_t ch;
811
812 host = host_from_stream_offset(f, addr, flags);
813 if (!host) {
814 return -EINVAL;
815 }
816
817 ch = qemu_get_byte(f);
818 memset(host, ch, TARGET_PAGE_SIZE);
819 #ifndef _WIN32
820 if (ch == 0 &&
821 (!kvm_enabled() || kvm_has_sync_mmu()) &&
822 getpagesize() <= TARGET_PAGE_SIZE) {
823 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
824 }
825 #endif
826 } else if (flags & RAM_SAVE_FLAG_PAGE) {
827 void *host;
828
829 host = host_from_stream_offset(f, addr, flags);
830 if (!host) {
831 return -EINVAL;
832 }
833
834 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
835 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
836 void *host = host_from_stream_offset(f, addr, flags);
837 if (!host) {
838 return -EINVAL;
839 }
840
841 if (load_xbzrle(f, addr, host) < 0) {
842 ret = -EINVAL;
843 goto done;
844 }
845 }
846 error = qemu_file_get_error(f);
847 if (error) {
848 ret = error;
849 goto done;
850 }
851 } while (!(flags & RAM_SAVE_FLAG_EOS));
852
853 done:
854 DPRINTF("Completed load of VM with exit code %d seq iteration "
855 "%" PRIu64 "\n", ret, seq_iter);
856 return ret;
857 }
858
859 SaveVMHandlers savevm_ram_handlers = {
860 .save_live_setup = ram_save_setup,
861 .save_live_iterate = ram_save_iterate,
862 .save_live_complete = ram_save_complete,
863 .save_live_pending = ram_save_pending,
864 .load_state = ram_load,
865 .cancel = ram_migration_cancel,
866 };
867
868 #ifdef HAS_AUDIO
869 struct soundhw {
870 const char *name;
871 const char *descr;
872 int enabled;
873 int isa;
874 union {
875 int (*init_isa) (ISABus *bus);
876 int (*init_pci) (PCIBus *bus);
877 } init;
878 };
879
880 static struct soundhw soundhw[] = {
881 #ifdef HAS_AUDIO_CHOICE
882 #ifdef CONFIG_PCSPK
883 {
884 "pcspk",
885 "PC speaker",
886 0,
887 1,
888 { .init_isa = pcspk_audio_init }
889 },
890 #endif
891
892 #ifdef CONFIG_SB16
893 {
894 "sb16",
895 "Creative Sound Blaster 16",
896 0,
897 1,
898 { .init_isa = SB16_init }
899 },
900 #endif
901
902 #ifdef CONFIG_CS4231A
903 {
904 "cs4231a",
905 "CS4231A",
906 0,
907 1,
908 { .init_isa = cs4231a_init }
909 },
910 #endif
911
912 #ifdef CONFIG_ADLIB
913 {
914 "adlib",
915 #ifdef HAS_YMF262
916 "Yamaha YMF262 (OPL3)",
917 #else
918 "Yamaha YM3812 (OPL2)",
919 #endif
920 0,
921 1,
922 { .init_isa = Adlib_init }
923 },
924 #endif
925
926 #ifdef CONFIG_GUS
927 {
928 "gus",
929 "Gravis Ultrasound GF1",
930 0,
931 1,
932 { .init_isa = GUS_init }
933 },
934 #endif
935
936 #ifdef CONFIG_AC97
937 {
938 "ac97",
939 "Intel 82801AA AC97 Audio",
940 0,
941 0,
942 { .init_pci = ac97_init }
943 },
944 #endif
945
946 #ifdef CONFIG_ES1370
947 {
948 "es1370",
949 "ENSONIQ AudioPCI ES1370",
950 0,
951 0,
952 { .init_pci = es1370_init }
953 },
954 #endif
955
956 #ifdef CONFIG_HDA
957 {
958 "hda",
959 "Intel HD Audio",
960 0,
961 0,
962 { .init_pci = intel_hda_and_codec_init }
963 },
964 #endif
965
966 #endif /* HAS_AUDIO_CHOICE */
967
968 { NULL, NULL, 0, 0, { NULL } }
969 };
970
971 void select_soundhw(const char *optarg)
972 {
973 struct soundhw *c;
974
975 if (is_help_option(optarg)) {
976 show_valid_cards:
977
978 #ifdef HAS_AUDIO_CHOICE
979 printf("Valid sound card names (comma separated):\n");
980 for (c = soundhw; c->name; ++c) {
981 printf ("%-11s %s\n", c->name, c->descr);
982 }
983 printf("\n-soundhw all will enable all of the above\n");
984 #else
985 printf("Machine has no user-selectable audio hardware "
986 "(it may or may not have always-present audio hardware).\n");
987 #endif
988 exit(!is_help_option(optarg));
989 }
990 else {
991 size_t l;
992 const char *p;
993 char *e;
994 int bad_card = 0;
995
996 if (!strcmp(optarg, "all")) {
997 for (c = soundhw; c->name; ++c) {
998 c->enabled = 1;
999 }
1000 return;
1001 }
1002
1003 p = optarg;
1004 while (*p) {
1005 e = strchr(p, ',');
1006 l = !e ? strlen(p) : (size_t) (e - p);
1007
1008 for (c = soundhw; c->name; ++c) {
1009 if (!strncmp(c->name, p, l) && !c->name[l]) {
1010 c->enabled = 1;
1011 break;
1012 }
1013 }
1014
1015 if (!c->name) {
1016 if (l > 80) {
1017 fprintf(stderr,
1018 "Unknown sound card name (too big to show)\n");
1019 }
1020 else {
1021 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1022 (int) l, p);
1023 }
1024 bad_card = 1;
1025 }
1026 p += l + (e != NULL);
1027 }
1028
1029 if (bad_card) {
1030 goto show_valid_cards;
1031 }
1032 }
1033 }
1034
1035 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1036 {
1037 struct soundhw *c;
1038
1039 for (c = soundhw; c->name; ++c) {
1040 if (c->enabled) {
1041 if (c->isa) {
1042 if (isa_bus) {
1043 c->init.init_isa(isa_bus);
1044 }
1045 } else {
1046 if (pci_bus) {
1047 c->init.init_pci(pci_bus);
1048 }
1049 }
1050 }
1051 }
1052 }
1053 #else
1054 void select_soundhw(const char *optarg)
1055 {
1056 }
1057 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1058 {
1059 }
1060 #endif
1061
1062 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1063 {
1064 int ret;
1065
1066 if (strlen(str) != 36) {
1067 return -1;
1068 }
1069
1070 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1071 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1072 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1073 &uuid[15]);
1074
1075 if (ret != 16) {
1076 return -1;
1077 }
1078 #ifdef TARGET_I386
1079 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1080 #endif
1081 return 0;
1082 }
1083
1084 void do_acpitable_option(const char *optarg)
1085 {
1086 #ifdef TARGET_I386
1087 if (acpi_table_add(optarg) < 0) {
1088 fprintf(stderr, "Wrong acpi table provided\n");
1089 exit(1);
1090 }
1091 #endif
1092 }
1093
1094 void do_smbios_option(const char *optarg)
1095 {
1096 #ifdef TARGET_I386
1097 if (smbios_entry_add(optarg) < 0) {
1098 fprintf(stderr, "Wrong smbios provided\n");
1099 exit(1);
1100 }
1101 #endif
1102 }
1103
1104 void cpudef_init(void)
1105 {
1106 #if defined(cpudef_setup)
1107 cpudef_setup(); /* parse cpu definitions in target config file */
1108 #endif
1109 }
1110
1111 int audio_available(void)
1112 {
1113 #ifdef HAS_AUDIO
1114 return 1;
1115 #else
1116 return 0;
1117 #endif
1118 }
1119
1120 int tcg_available(void)
1121 {
1122 return 1;
1123 }
1124
1125 int kvm_available(void)
1126 {
1127 #ifdef CONFIG_KVM
1128 return 1;
1129 #else
1130 return 0;
1131 #endif
1132 }
1133
1134 int xen_available(void)
1135 {
1136 #ifdef CONFIG_XEN
1137 return 1;
1138 #else
1139 return 0;
1140 #endif
1141 }
1142
1143
1144 TargetInfo *qmp_query_target(Error **errp)
1145 {
1146 TargetInfo *info = g_malloc0(sizeof(*info));
1147
1148 info->arch = TARGET_TYPE;
1149
1150 return info;
1151 }