]> git.proxmox.com Git - qemu.git/blob - arch_init.c
migration: calculate expected_downtime
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103
104 const uint32_t arch_type = QEMU_ARCH;
105
106 /***********************************************************/
107 /* ram save/restore */
108
109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE 0x08
113 #define RAM_SAVE_FLAG_EOS 0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE 0x40
116
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE vector unsigned char
120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123 * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE __m128i
129 #define SPLAT(p) _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE unsigned long
133 #define SPLAT(p) (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136
137
138 static struct defconfig_file {
139 const char *filename;
140 /* Indicates it is an user config file (disabled by -no-user-config) */
141 bool userconfig;
142 } default_config_files[] = {
143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145 { NULL }, /* end of list */
146 };
147
148
149 int qemu_read_default_config_files(bool userconfig)
150 {
151 int ret;
152 struct defconfig_file *f;
153
154 for (f = default_config_files; f->filename; f++) {
155 if (!userconfig && f->userconfig) {
156 continue;
157 }
158 ret = qemu_read_config_file(f->filename);
159 if (ret < 0 && ret != -ENOENT) {
160 return ret;
161 }
162 }
163
164 return 0;
165 }
166
167 static int is_dup_page(uint8_t *page)
168 {
169 VECTYPE *p = (VECTYPE *)page;
170 VECTYPE val = SPLAT(page);
171 int i;
172
173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174 if (!ALL_EQ(val, p[i])) {
175 return 0;
176 }
177 }
178
179 return 1;
180 }
181
182 /* struct contains XBZRLE cache and a static page
183 used by the compression */
184 static struct {
185 /* buffer used for XBZRLE encoding */
186 uint8_t *encoded_buf;
187 /* buffer for storing page content */
188 uint8_t *current_buf;
189 /* buffer used for XBZRLE decoding */
190 uint8_t *decoded_buf;
191 /* Cache for XBZRLE */
192 PageCache *cache;
193 } XBZRLE = {
194 .encoded_buf = NULL,
195 .current_buf = NULL,
196 .decoded_buf = NULL,
197 .cache = NULL,
198 };
199
200
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203 if (XBZRLE.cache != NULL) {
204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205 TARGET_PAGE_SIZE;
206 }
207 return pow2floor(new_size);
208 }
209
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212 uint64_t dup_pages;
213 uint64_t norm_pages;
214 uint64_t iterations;
215 uint64_t xbzrle_bytes;
216 uint64_t xbzrle_pages;
217 uint64_t xbzrle_cache_miss;
218 uint64_t xbzrle_overflows;
219 } AccountingInfo;
220
221 static AccountingInfo acct_info;
222
223 static void acct_clear(void)
224 {
225 memset(&acct_info, 0, sizeof(acct_info));
226 }
227
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230 return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232
233 uint64_t dup_mig_pages_transferred(void)
234 {
235 return acct_info.dup_pages;
236 }
237
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240 return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242
243 uint64_t norm_mig_pages_transferred(void)
244 {
245 return acct_info.norm_pages;
246 }
247
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250 return acct_info.xbzrle_bytes;
251 }
252
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255 return acct_info.xbzrle_pages;
256 }
257
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260 return acct_info.xbzrle_cache_miss;
261 }
262
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265 return acct_info.xbzrle_overflows;
266 }
267
268 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269 int cont, int flag)
270 {
271 size_t size;
272
273 qemu_put_be64(f, offset | cont | flag);
274 size = 8;
275
276 if (!cont) {
277 qemu_put_byte(f, strlen(block->idstr));
278 qemu_put_buffer(f, (uint8_t *)block->idstr,
279 strlen(block->idstr));
280 size += 1 + strlen(block->idstr);
281 }
282 return size;
283 }
284
285 #define ENCODING_FLAG_XBZRLE 0x1
286
287 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
288 ram_addr_t current_addr, RAMBlock *block,
289 ram_addr_t offset, int cont, bool last_stage)
290 {
291 int encoded_len = 0, bytes_sent = -1;
292 uint8_t *prev_cached_page;
293
294 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
295 if (!last_stage) {
296 cache_insert(XBZRLE.cache, current_addr,
297 g_memdup(current_data, TARGET_PAGE_SIZE));
298 }
299 acct_info.xbzrle_cache_miss++;
300 return -1;
301 }
302
303 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
304
305 /* save current buffer into memory */
306 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
307
308 /* XBZRLE encoding (if there is no overflow) */
309 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
310 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
311 TARGET_PAGE_SIZE);
312 if (encoded_len == 0) {
313 DPRINTF("Skipping unmodified page\n");
314 return 0;
315 } else if (encoded_len == -1) {
316 DPRINTF("Overflow\n");
317 acct_info.xbzrle_overflows++;
318 /* update data in the cache */
319 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
320 return -1;
321 }
322
323 /* we need to update the data in the cache, in order to get the same data */
324 if (!last_stage) {
325 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
326 }
327
328 /* Send XBZRLE based compressed page */
329 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
330 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
331 qemu_put_be16(f, encoded_len);
332 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
333 bytes_sent += encoded_len + 1 + 2;
334 acct_info.xbzrle_pages++;
335 acct_info.xbzrle_bytes += bytes_sent;
336
337 return bytes_sent;
338 }
339
340
341 /* This is the last block that we have visited serching for dirty pages
342 */
343 static RAMBlock *last_seen_block;
344 /* This is the last block from where we have sent data */
345 static RAMBlock *last_sent_block;
346 static ram_addr_t last_offset;
347 static unsigned long *migration_bitmap;
348 static uint64_t migration_dirty_pages;
349 static uint32_t last_version;
350
351 static inline
352 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
353 ram_addr_t start)
354 {
355 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
356 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
357 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
358
359 unsigned long next = find_next_bit(migration_bitmap, size, nr);
360
361 if (next < size) {
362 clear_bit(next, migration_bitmap);
363 migration_dirty_pages--;
364 }
365 return (next - base) << TARGET_PAGE_BITS;
366 }
367
368 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
369 ram_addr_t offset)
370 {
371 bool ret;
372 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
373
374 ret = test_and_set_bit(nr, migration_bitmap);
375
376 if (!ret) {
377 migration_dirty_pages++;
378 }
379 return ret;
380 }
381
382 static void migration_bitmap_sync(void)
383 {
384 RAMBlock *block;
385 ram_addr_t addr;
386 uint64_t num_dirty_pages_init = migration_dirty_pages;
387 MigrationState *s = migrate_get_current();
388 static int64_t start_time;
389 static int64_t num_dirty_pages_period;
390 int64_t end_time;
391
392 if (!start_time) {
393 start_time = qemu_get_clock_ms(rt_clock);
394 }
395
396 trace_migration_bitmap_sync_start();
397 memory_global_sync_dirty_bitmap(get_system_memory());
398
399 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
400 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
401 if (memory_region_test_and_clear_dirty(block->mr,
402 addr, TARGET_PAGE_SIZE,
403 DIRTY_MEMORY_MIGRATION)) {
404 migration_bitmap_set_dirty(block->mr, addr);
405 }
406 }
407 }
408 trace_migration_bitmap_sync_end(migration_dirty_pages
409 - num_dirty_pages_init);
410 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
411 end_time = qemu_get_clock_ms(rt_clock);
412
413 /* more than 1 second = 1000 millisecons */
414 if (end_time > start_time + 1000) {
415 s->dirty_pages_rate = num_dirty_pages_period * 1000
416 / (end_time - start_time);
417 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
418 start_time = end_time;
419 num_dirty_pages_period = 0;
420 }
421 }
422
423 /*
424 * ram_save_block: Writes a page of memory to the stream f
425 *
426 * Returns: The number of bytes written.
427 * 0 means no dirty pages
428 */
429
430 static int ram_save_block(QEMUFile *f, bool last_stage)
431 {
432 RAMBlock *block = last_seen_block;
433 ram_addr_t offset = last_offset;
434 bool complete_round = false;
435 int bytes_sent = 0;
436 MemoryRegion *mr;
437 ram_addr_t current_addr;
438
439 if (!block)
440 block = QTAILQ_FIRST(&ram_list.blocks);
441
442 while (true) {
443 mr = block->mr;
444 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
445 if (complete_round && block == last_seen_block &&
446 offset >= last_offset) {
447 break;
448 }
449 if (offset >= block->length) {
450 offset = 0;
451 block = QTAILQ_NEXT(block, next);
452 if (!block) {
453 block = QTAILQ_FIRST(&ram_list.blocks);
454 complete_round = true;
455 }
456 } else {
457 uint8_t *p;
458 int cont = (block == last_sent_block) ?
459 RAM_SAVE_FLAG_CONTINUE : 0;
460
461 p = memory_region_get_ram_ptr(mr) + offset;
462
463 /* In doubt sent page as normal */
464 bytes_sent = -1;
465 if (is_dup_page(p)) {
466 acct_info.dup_pages++;
467 bytes_sent = save_block_hdr(f, block, offset, cont,
468 RAM_SAVE_FLAG_COMPRESS);
469 qemu_put_byte(f, *p);
470 bytes_sent += 1;
471 } else if (migrate_use_xbzrle()) {
472 current_addr = block->offset + offset;
473 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
474 offset, cont, last_stage);
475 if (!last_stage) {
476 p = get_cached_data(XBZRLE.cache, current_addr);
477 }
478 }
479
480 /* XBZRLE overflow or normal page */
481 if (bytes_sent == -1) {
482 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
483 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
484 bytes_sent += TARGET_PAGE_SIZE;
485 acct_info.norm_pages++;
486 }
487
488 /* if page is unmodified, continue to the next */
489 if (bytes_sent > 0) {
490 last_sent_block = block;
491 break;
492 }
493 }
494 }
495 last_seen_block = block;
496 last_offset = offset;
497
498 return bytes_sent;
499 }
500
501 static uint64_t bytes_transferred;
502
503 static ram_addr_t ram_save_remaining(void)
504 {
505 return migration_dirty_pages;
506 }
507
508 uint64_t ram_bytes_remaining(void)
509 {
510 return ram_save_remaining() * TARGET_PAGE_SIZE;
511 }
512
513 uint64_t ram_bytes_transferred(void)
514 {
515 return bytes_transferred;
516 }
517
518 uint64_t ram_bytes_total(void)
519 {
520 RAMBlock *block;
521 uint64_t total = 0;
522
523 QTAILQ_FOREACH(block, &ram_list.blocks, next)
524 total += block->length;
525
526 return total;
527 }
528
529 static void migration_end(void)
530 {
531 if (migration_bitmap) {
532 memory_global_dirty_log_stop();
533 g_free(migration_bitmap);
534 migration_bitmap = NULL;
535 }
536
537 if (XBZRLE.cache) {
538 cache_fini(XBZRLE.cache);
539 g_free(XBZRLE.cache);
540 g_free(XBZRLE.encoded_buf);
541 g_free(XBZRLE.current_buf);
542 g_free(XBZRLE.decoded_buf);
543 XBZRLE.cache = NULL;
544 }
545 }
546
547 static void ram_migration_cancel(void *opaque)
548 {
549 migration_end();
550 }
551
552 static void reset_ram_globals(void)
553 {
554 last_seen_block = NULL;
555 last_sent_block = NULL;
556 last_offset = 0;
557 last_version = ram_list.version;
558 }
559
560 #define MAX_WAIT 50 /* ms, half buffered_file limit */
561
562 static int ram_save_setup(QEMUFile *f, void *opaque)
563 {
564 RAMBlock *block;
565 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
566
567 migration_bitmap = bitmap_new(ram_pages);
568 bitmap_set(migration_bitmap, 0, ram_pages);
569 migration_dirty_pages = ram_pages;
570
571 qemu_mutex_lock_ramlist();
572 bytes_transferred = 0;
573 reset_ram_globals();
574
575 if (migrate_use_xbzrle()) {
576 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
577 TARGET_PAGE_SIZE,
578 TARGET_PAGE_SIZE);
579 if (!XBZRLE.cache) {
580 DPRINTF("Error creating cache\n");
581 return -1;
582 }
583 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
584 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
585 acct_clear();
586 }
587
588 memory_global_dirty_log_start();
589 migration_bitmap_sync();
590
591 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
592
593 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
594 qemu_put_byte(f, strlen(block->idstr));
595 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
596 qemu_put_be64(f, block->length);
597 }
598
599 qemu_mutex_unlock_ramlist();
600 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
601
602 return 0;
603 }
604
605 static int ram_save_iterate(QEMUFile *f, void *opaque)
606 {
607 int ret;
608 int i;
609 int64_t t0;
610 int total_sent = 0;
611
612 qemu_mutex_lock_ramlist();
613
614 if (ram_list.version != last_version) {
615 reset_ram_globals();
616 }
617
618 t0 = qemu_get_clock_ns(rt_clock);
619 i = 0;
620 while ((ret = qemu_file_rate_limit(f)) == 0) {
621 int bytes_sent;
622
623 bytes_sent = ram_save_block(f, false);
624 /* no more blocks to sent */
625 if (bytes_sent == 0) {
626 break;
627 }
628 total_sent += bytes_sent;
629 acct_info.iterations++;
630 /* we want to check in the 1st loop, just in case it was the 1st time
631 and we had to sync the dirty bitmap.
632 qemu_get_clock_ns() is a bit expensive, so we only check each some
633 iterations
634 */
635 if ((i & 63) == 0) {
636 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
637 if (t1 > MAX_WAIT) {
638 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
639 t1, i);
640 break;
641 }
642 }
643 i++;
644 }
645
646 qemu_mutex_unlock_ramlist();
647
648 if (ret < 0) {
649 bytes_transferred += total_sent;
650 return ret;
651 }
652
653 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
654 total_sent += 8;
655 bytes_transferred += total_sent;
656
657 return total_sent;
658 }
659
660 static int ram_save_complete(QEMUFile *f, void *opaque)
661 {
662 qemu_mutex_lock_ramlist();
663 migration_bitmap_sync();
664
665 /* try transferring iterative blocks of memory */
666
667 /* flush all remaining blocks regardless of rate limiting */
668 while (true) {
669 int bytes_sent;
670
671 bytes_sent = ram_save_block(f, true);
672 /* no more blocks to sent */
673 if (bytes_sent == 0) {
674 break;
675 }
676 bytes_transferred += bytes_sent;
677 }
678 migration_end();
679
680 qemu_mutex_unlock_ramlist();
681 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
682
683 return 0;
684 }
685
686 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
687 {
688 uint64_t remaining_size;
689
690 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
691
692 if (remaining_size < max_size) {
693 migration_bitmap_sync();
694 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
695 }
696 return remaining_size;
697 }
698
699 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
700 {
701 int ret, rc = 0;
702 unsigned int xh_len;
703 int xh_flags;
704
705 if (!XBZRLE.decoded_buf) {
706 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
707 }
708
709 /* extract RLE header */
710 xh_flags = qemu_get_byte(f);
711 xh_len = qemu_get_be16(f);
712
713 if (xh_flags != ENCODING_FLAG_XBZRLE) {
714 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
715 return -1;
716 }
717
718 if (xh_len > TARGET_PAGE_SIZE) {
719 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
720 return -1;
721 }
722 /* load data and decode */
723 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
724
725 /* decode RLE */
726 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
727 TARGET_PAGE_SIZE);
728 if (ret == -1) {
729 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
730 rc = -1;
731 } else if (ret > TARGET_PAGE_SIZE) {
732 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
733 ret, TARGET_PAGE_SIZE);
734 abort();
735 }
736
737 return rc;
738 }
739
740 static inline void *host_from_stream_offset(QEMUFile *f,
741 ram_addr_t offset,
742 int flags)
743 {
744 static RAMBlock *block = NULL;
745 char id[256];
746 uint8_t len;
747
748 if (flags & RAM_SAVE_FLAG_CONTINUE) {
749 if (!block) {
750 fprintf(stderr, "Ack, bad migration stream!\n");
751 return NULL;
752 }
753
754 return memory_region_get_ram_ptr(block->mr) + offset;
755 }
756
757 len = qemu_get_byte(f);
758 qemu_get_buffer(f, (uint8_t *)id, len);
759 id[len] = 0;
760
761 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
762 if (!strncmp(id, block->idstr, sizeof(id)))
763 return memory_region_get_ram_ptr(block->mr) + offset;
764 }
765
766 fprintf(stderr, "Can't find block %s!\n", id);
767 return NULL;
768 }
769
770 static int ram_load(QEMUFile *f, void *opaque, int version_id)
771 {
772 ram_addr_t addr;
773 int flags, ret = 0;
774 int error;
775 static uint64_t seq_iter;
776
777 seq_iter++;
778
779 if (version_id < 4 || version_id > 4) {
780 return -EINVAL;
781 }
782
783 do {
784 addr = qemu_get_be64(f);
785
786 flags = addr & ~TARGET_PAGE_MASK;
787 addr &= TARGET_PAGE_MASK;
788
789 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
790 if (version_id == 4) {
791 /* Synchronize RAM block list */
792 char id[256];
793 ram_addr_t length;
794 ram_addr_t total_ram_bytes = addr;
795
796 while (total_ram_bytes) {
797 RAMBlock *block;
798 uint8_t len;
799
800 len = qemu_get_byte(f);
801 qemu_get_buffer(f, (uint8_t *)id, len);
802 id[len] = 0;
803 length = qemu_get_be64(f);
804
805 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
806 if (!strncmp(id, block->idstr, sizeof(id))) {
807 if (block->length != length) {
808 ret = -EINVAL;
809 goto done;
810 }
811 break;
812 }
813 }
814
815 if (!block) {
816 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
817 "accept migration\n", id);
818 ret = -EINVAL;
819 goto done;
820 }
821
822 total_ram_bytes -= length;
823 }
824 }
825 }
826
827 if (flags & RAM_SAVE_FLAG_COMPRESS) {
828 void *host;
829 uint8_t ch;
830
831 host = host_from_stream_offset(f, addr, flags);
832 if (!host) {
833 return -EINVAL;
834 }
835
836 ch = qemu_get_byte(f);
837 memset(host, ch, TARGET_PAGE_SIZE);
838 #ifndef _WIN32
839 if (ch == 0 &&
840 (!kvm_enabled() || kvm_has_sync_mmu()) &&
841 getpagesize() <= TARGET_PAGE_SIZE) {
842 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
843 }
844 #endif
845 } else if (flags & RAM_SAVE_FLAG_PAGE) {
846 void *host;
847
848 host = host_from_stream_offset(f, addr, flags);
849 if (!host) {
850 return -EINVAL;
851 }
852
853 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
854 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
855 void *host = host_from_stream_offset(f, addr, flags);
856 if (!host) {
857 return -EINVAL;
858 }
859
860 if (load_xbzrle(f, addr, host) < 0) {
861 ret = -EINVAL;
862 goto done;
863 }
864 }
865 error = qemu_file_get_error(f);
866 if (error) {
867 ret = error;
868 goto done;
869 }
870 } while (!(flags & RAM_SAVE_FLAG_EOS));
871
872 done:
873 DPRINTF("Completed load of VM with exit code %d seq iteration "
874 "%" PRIu64 "\n", ret, seq_iter);
875 return ret;
876 }
877
878 SaveVMHandlers savevm_ram_handlers = {
879 .save_live_setup = ram_save_setup,
880 .save_live_iterate = ram_save_iterate,
881 .save_live_complete = ram_save_complete,
882 .save_live_pending = ram_save_pending,
883 .load_state = ram_load,
884 .cancel = ram_migration_cancel,
885 };
886
887 #ifdef HAS_AUDIO
888 struct soundhw {
889 const char *name;
890 const char *descr;
891 int enabled;
892 int isa;
893 union {
894 int (*init_isa) (ISABus *bus);
895 int (*init_pci) (PCIBus *bus);
896 } init;
897 };
898
899 static struct soundhw soundhw[] = {
900 #ifdef HAS_AUDIO_CHOICE
901 #ifdef CONFIG_PCSPK
902 {
903 "pcspk",
904 "PC speaker",
905 0,
906 1,
907 { .init_isa = pcspk_audio_init }
908 },
909 #endif
910
911 #ifdef CONFIG_SB16
912 {
913 "sb16",
914 "Creative Sound Blaster 16",
915 0,
916 1,
917 { .init_isa = SB16_init }
918 },
919 #endif
920
921 #ifdef CONFIG_CS4231A
922 {
923 "cs4231a",
924 "CS4231A",
925 0,
926 1,
927 { .init_isa = cs4231a_init }
928 },
929 #endif
930
931 #ifdef CONFIG_ADLIB
932 {
933 "adlib",
934 #ifdef HAS_YMF262
935 "Yamaha YMF262 (OPL3)",
936 #else
937 "Yamaha YM3812 (OPL2)",
938 #endif
939 0,
940 1,
941 { .init_isa = Adlib_init }
942 },
943 #endif
944
945 #ifdef CONFIG_GUS
946 {
947 "gus",
948 "Gravis Ultrasound GF1",
949 0,
950 1,
951 { .init_isa = GUS_init }
952 },
953 #endif
954
955 #ifdef CONFIG_AC97
956 {
957 "ac97",
958 "Intel 82801AA AC97 Audio",
959 0,
960 0,
961 { .init_pci = ac97_init }
962 },
963 #endif
964
965 #ifdef CONFIG_ES1370
966 {
967 "es1370",
968 "ENSONIQ AudioPCI ES1370",
969 0,
970 0,
971 { .init_pci = es1370_init }
972 },
973 #endif
974
975 #ifdef CONFIG_HDA
976 {
977 "hda",
978 "Intel HD Audio",
979 0,
980 0,
981 { .init_pci = intel_hda_and_codec_init }
982 },
983 #endif
984
985 #endif /* HAS_AUDIO_CHOICE */
986
987 { NULL, NULL, 0, 0, { NULL } }
988 };
989
990 void select_soundhw(const char *optarg)
991 {
992 struct soundhw *c;
993
994 if (is_help_option(optarg)) {
995 show_valid_cards:
996
997 #ifdef HAS_AUDIO_CHOICE
998 printf("Valid sound card names (comma separated):\n");
999 for (c = soundhw; c->name; ++c) {
1000 printf ("%-11s %s\n", c->name, c->descr);
1001 }
1002 printf("\n-soundhw all will enable all of the above\n");
1003 #else
1004 printf("Machine has no user-selectable audio hardware "
1005 "(it may or may not have always-present audio hardware).\n");
1006 #endif
1007 exit(!is_help_option(optarg));
1008 }
1009 else {
1010 size_t l;
1011 const char *p;
1012 char *e;
1013 int bad_card = 0;
1014
1015 if (!strcmp(optarg, "all")) {
1016 for (c = soundhw; c->name; ++c) {
1017 c->enabled = 1;
1018 }
1019 return;
1020 }
1021
1022 p = optarg;
1023 while (*p) {
1024 e = strchr(p, ',');
1025 l = !e ? strlen(p) : (size_t) (e - p);
1026
1027 for (c = soundhw; c->name; ++c) {
1028 if (!strncmp(c->name, p, l) && !c->name[l]) {
1029 c->enabled = 1;
1030 break;
1031 }
1032 }
1033
1034 if (!c->name) {
1035 if (l > 80) {
1036 fprintf(stderr,
1037 "Unknown sound card name (too big to show)\n");
1038 }
1039 else {
1040 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1041 (int) l, p);
1042 }
1043 bad_card = 1;
1044 }
1045 p += l + (e != NULL);
1046 }
1047
1048 if (bad_card) {
1049 goto show_valid_cards;
1050 }
1051 }
1052 }
1053
1054 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1055 {
1056 struct soundhw *c;
1057
1058 for (c = soundhw; c->name; ++c) {
1059 if (c->enabled) {
1060 if (c->isa) {
1061 if (isa_bus) {
1062 c->init.init_isa(isa_bus);
1063 }
1064 } else {
1065 if (pci_bus) {
1066 c->init.init_pci(pci_bus);
1067 }
1068 }
1069 }
1070 }
1071 }
1072 #else
1073 void select_soundhw(const char *optarg)
1074 {
1075 }
1076 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1077 {
1078 }
1079 #endif
1080
1081 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1082 {
1083 int ret;
1084
1085 if (strlen(str) != 36) {
1086 return -1;
1087 }
1088
1089 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1090 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1091 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1092 &uuid[15]);
1093
1094 if (ret != 16) {
1095 return -1;
1096 }
1097 #ifdef TARGET_I386
1098 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1099 #endif
1100 return 0;
1101 }
1102
1103 void do_acpitable_option(const char *optarg)
1104 {
1105 #ifdef TARGET_I386
1106 if (acpi_table_add(optarg) < 0) {
1107 fprintf(stderr, "Wrong acpi table provided\n");
1108 exit(1);
1109 }
1110 #endif
1111 }
1112
1113 void do_smbios_option(const char *optarg)
1114 {
1115 #ifdef TARGET_I386
1116 if (smbios_entry_add(optarg) < 0) {
1117 fprintf(stderr, "Wrong smbios provided\n");
1118 exit(1);
1119 }
1120 #endif
1121 }
1122
1123 void cpudef_init(void)
1124 {
1125 #if defined(cpudef_setup)
1126 cpudef_setup(); /* parse cpu definitions in target config file */
1127 #endif
1128 }
1129
1130 int audio_available(void)
1131 {
1132 #ifdef HAS_AUDIO
1133 return 1;
1134 #else
1135 return 0;
1136 #endif
1137 }
1138
1139 int tcg_available(void)
1140 {
1141 return 1;
1142 }
1143
1144 int kvm_available(void)
1145 {
1146 #ifdef CONFIG_KVM
1147 return 1;
1148 #else
1149 return 0;
1150 #endif
1151 }
1152
1153 int xen_available(void)
1154 {
1155 #ifdef CONFIG_XEN
1156 return 1;
1157 #else
1158 return 0;
1159 #endif
1160 }
1161
1162
1163 TargetInfo *qmp_query_target(Error **errp)
1164 {
1165 TargetInfo *info = g_malloc0(sizeof(*info));
1166
1167 info->arch = TARGET_TYPE;
1168
1169 return info;
1170 }