]> git.proxmox.com Git - qemu.git/blob - arch_init.c
savevm: Migrate RAM based on name/offset
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #ifndef _WIN32
27 #include <sys/types.h>
28 #include <sys/mman.h>
29 #endif
30 #include "config.h"
31 #include "monitor.h"
32 #include "sysemu.h"
33 #include "arch_init.h"
34 #include "audio/audio.h"
35 #include "hw/pc.h"
36 #include "hw/pci.h"
37 #include "hw/audiodev.h"
38 #include "kvm.h"
39 #include "migration.h"
40 #include "net.h"
41 #include "gdbstub.h"
42 #include "hw/smbios.h"
43
44 #ifdef TARGET_SPARC
45 int graphic_width = 1024;
46 int graphic_height = 768;
47 int graphic_depth = 8;
48 #else
49 int graphic_width = 800;
50 int graphic_height = 600;
51 int graphic_depth = 15;
52 #endif
53
54 const char arch_config_name[] = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf";
55
56 #if defined(TARGET_ALPHA)
57 #define QEMU_ARCH QEMU_ARCH_ALPHA
58 #elif defined(TARGET_ARM)
59 #define QEMU_ARCH QEMU_ARCH_ARM
60 #elif defined(TARGET_CRIS)
61 #define QEMU_ARCH QEMU_ARCH_CRIS
62 #elif defined(TARGET_I386)
63 #define QEMU_ARCH QEMU_ARCH_I386
64 #elif defined(TARGET_M68K)
65 #define QEMU_ARCH QEMU_ARCH_M68K
66 #elif defined(TARGET_MICROBLAZE)
67 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
68 #elif defined(TARGET_MIPS)
69 #define QEMU_ARCH QEMU_ARCH_MIPS
70 #elif defined(TARGET_PPC)
71 #define QEMU_ARCH QEMU_ARCH_PPC
72 #elif defined(TARGET_S390X)
73 #define QEMU_ARCH QEMU_ARCH_S390X
74 #elif defined(TARGET_SH4)
75 #define QEMU_ARCH QEMU_ARCH_SH4
76 #elif defined(TARGET_SPARC)
77 #define QEMU_ARCH QEMU_ARCH_SPARC
78 #endif
79
80 const uint32_t arch_type = QEMU_ARCH;
81
82 /***********************************************************/
83 /* ram save/restore */
84
85 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
86 #define RAM_SAVE_FLAG_COMPRESS 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90
91 static int is_dup_page(uint8_t *page, uint8_t ch)
92 {
93 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
94 uint32_t *array = (uint32_t *)page;
95 int i;
96
97 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
98 if (array[i] != val) {
99 return 0;
100 }
101 }
102
103 return 1;
104 }
105
106 static int ram_save_block(QEMUFile *f)
107 {
108 static ram_addr_t current_addr = 0;
109 ram_addr_t saved_addr = current_addr;
110 ram_addr_t addr = 0;
111 uint64_t total_ram = ram_bytes_total();
112 int bytes_sent = 0;
113
114 while (addr < total_ram) {
115 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
116 RAMBlock *block;
117 ram_addr_t offset;
118 uint8_t *p;
119
120 cpu_physical_memory_reset_dirty(current_addr,
121 current_addr + TARGET_PAGE_SIZE,
122 MIGRATION_DIRTY_FLAG);
123
124 QLIST_FOREACH(block, &ram_list.blocks, next) {
125 if (current_addr - block->offset < block->length)
126 break;
127 }
128 offset = current_addr - block->offset;
129 p = block->host + offset;
130
131 if (is_dup_page(p, *p)) {
132 qemu_put_be64(f, offset | RAM_SAVE_FLAG_COMPRESS);
133 qemu_put_byte(f, strlen(block->idstr));
134 qemu_put_buffer(f, (uint8_t *)block->idstr,
135 strlen(block->idstr));
136 qemu_put_byte(f, *p);
137 bytes_sent = 1;
138 } else {
139 qemu_put_be64(f, offset | RAM_SAVE_FLAG_PAGE);
140 qemu_put_byte(f, strlen(block->idstr));
141 qemu_put_buffer(f, (uint8_t *)block->idstr,
142 strlen(block->idstr));
143 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
144 bytes_sent = TARGET_PAGE_SIZE;
145 }
146
147 break;
148 }
149 addr += TARGET_PAGE_SIZE;
150 current_addr = (saved_addr + addr) % total_ram;
151 }
152
153 return bytes_sent;
154 }
155
156 static uint64_t bytes_transferred;
157
158 static ram_addr_t ram_save_remaining(void)
159 {
160 ram_addr_t addr;
161 ram_addr_t count = 0;
162 uint64_t total_ram = ram_bytes_total();
163
164 for (addr = 0; addr < total_ram; addr += TARGET_PAGE_SIZE) {
165 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) {
166 count++;
167 }
168 }
169
170 return count;
171 }
172
173 uint64_t ram_bytes_remaining(void)
174 {
175 return ram_save_remaining() * TARGET_PAGE_SIZE;
176 }
177
178 uint64_t ram_bytes_transferred(void)
179 {
180 return bytes_transferred;
181 }
182
183 uint64_t ram_bytes_total(void)
184 {
185 RAMBlock *block;
186 uint64_t total = 0;
187
188 QLIST_FOREACH(block, &ram_list.blocks, next)
189 total += block->length;
190
191 return total;
192 }
193
194 int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
195 {
196 ram_addr_t addr;
197 uint64_t bytes_transferred_last;
198 double bwidth = 0;
199 uint64_t expected_time = 0;
200
201 if (stage < 0) {
202 cpu_physical_memory_set_dirty_tracking(0);
203 return 0;
204 }
205
206 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
207 qemu_file_set_error(f);
208 return 0;
209 }
210
211 if (stage == 1) {
212 RAMBlock *block;
213 uint64_t total_ram = ram_bytes_total();
214 bytes_transferred = 0;
215
216 /* Make sure all dirty bits are set */
217 for (addr = 0; addr < total_ram; addr += TARGET_PAGE_SIZE) {
218 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) {
219 cpu_physical_memory_set_dirty(addr);
220 }
221 }
222
223 /* Enable dirty memory tracking */
224 cpu_physical_memory_set_dirty_tracking(1);
225
226 qemu_put_be64(f, total_ram | RAM_SAVE_FLAG_MEM_SIZE);
227
228 QLIST_FOREACH(block, &ram_list.blocks, next) {
229 qemu_put_byte(f, strlen(block->idstr));
230 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
231 qemu_put_be64(f, block->length);
232 }
233 }
234
235 bytes_transferred_last = bytes_transferred;
236 bwidth = qemu_get_clock_ns(rt_clock);
237
238 while (!qemu_file_rate_limit(f)) {
239 int bytes_sent;
240
241 bytes_sent = ram_save_block(f);
242 bytes_transferred += bytes_sent;
243 if (bytes_sent == 0) { /* no more blocks */
244 break;
245 }
246 }
247
248 bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
249 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
250
251 /* if we haven't transferred anything this round, force expected_time to a
252 * a very high value, but without crashing */
253 if (bwidth == 0) {
254 bwidth = 0.000001;
255 }
256
257 /* try transferring iterative blocks of memory */
258 if (stage == 3) {
259 int bytes_sent;
260
261 /* flush all remaining blocks regardless of rate limiting */
262 while ((bytes_sent = ram_save_block(f)) != 0) {
263 bytes_transferred += bytes_sent;
264 }
265 cpu_physical_memory_set_dirty_tracking(0);
266 }
267
268 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
269
270 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
271
272 return (stage == 2) && (expected_time <= migrate_max_downtime());
273 }
274
275 int ram_load(QEMUFile *f, void *opaque, int version_id)
276 {
277 ram_addr_t addr;
278 int flags;
279
280 if (version_id < 3 || version_id > 4) {
281 return -EINVAL;
282 }
283
284 do {
285 addr = qemu_get_be64(f);
286
287 flags = addr & ~TARGET_PAGE_MASK;
288 addr &= TARGET_PAGE_MASK;
289
290 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
291 if (version_id == 3) {
292 if (addr != ram_bytes_total()) {
293 return -EINVAL;
294 }
295 } else {
296 /* Synchronize RAM block list */
297 char id[256];
298 ram_addr_t length;
299 ram_addr_t total_ram_bytes = addr;
300
301 while (total_ram_bytes) {
302 RAMBlock *block;
303 uint8_t len;
304
305 len = qemu_get_byte(f);
306 qemu_get_buffer(f, (uint8_t *)id, len);
307 id[len] = 0;
308 length = qemu_get_be64(f);
309
310 QLIST_FOREACH(block, &ram_list.blocks, next) {
311 if (!strncmp(id, block->idstr, sizeof(id))) {
312 if (block->length != length)
313 return -EINVAL;
314 break;
315 }
316 }
317
318 if (!block) {
319 if (!qemu_ram_alloc(NULL, id, length))
320 return -ENOMEM;
321 }
322
323 total_ram_bytes -= length;
324 }
325 }
326 }
327
328 if (flags & RAM_SAVE_FLAG_COMPRESS) {
329 void *host;
330 uint8_t ch;
331
332 if (version_id == 3) {
333 host = qemu_get_ram_ptr(addr);
334 } else {
335 RAMBlock *block;
336 char id[256];
337 uint8_t len;
338
339 len = qemu_get_byte(f);
340 qemu_get_buffer(f, (uint8_t *)id, len);
341 id[len] = 0;
342
343 QLIST_FOREACH(block, &ram_list.blocks, next) {
344 if (!strncmp(id, block->idstr, sizeof(id)))
345 break;
346 }
347 if (!block)
348 return -EINVAL;
349
350 host = block->host + addr;
351 }
352 ch = qemu_get_byte(f);
353 memset(host, ch, TARGET_PAGE_SIZE);
354 #ifndef _WIN32
355 if (ch == 0 &&
356 (!kvm_enabled() || kvm_has_sync_mmu())) {
357 madvise(host, TARGET_PAGE_SIZE, MADV_DONTNEED);
358 }
359 #endif
360 } else if (flags & RAM_SAVE_FLAG_PAGE) {
361 void *host;
362
363 if (version_id == 3) {
364 host = qemu_get_ram_ptr(addr);
365 } else {
366 RAMBlock *block;
367 char id[256];
368 uint8_t len;
369
370 len = qemu_get_byte(f);
371 qemu_get_buffer(f, (uint8_t *)id, len);
372 id[len] = 0;
373
374 QLIST_FOREACH(block, &ram_list.blocks, next) {
375 if (!strncmp(id, block->idstr, sizeof(id)))
376 break;
377 }
378 if (!block)
379 return -EINVAL;
380
381 host = block->host + addr;
382 }
383 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
384 }
385 if (qemu_file_has_error(f)) {
386 return -EIO;
387 }
388 } while (!(flags & RAM_SAVE_FLAG_EOS));
389
390 return 0;
391 }
392
393 void qemu_service_io(void)
394 {
395 qemu_notify_event();
396 }
397
398 #ifdef HAS_AUDIO
399 struct soundhw soundhw[] = {
400 #ifdef HAS_AUDIO_CHOICE
401 #if defined(TARGET_I386) || defined(TARGET_MIPS)
402 {
403 "pcspk",
404 "PC speaker",
405 0,
406 1,
407 { .init_isa = pcspk_audio_init }
408 },
409 #endif
410
411 #ifdef CONFIG_SB16
412 {
413 "sb16",
414 "Creative Sound Blaster 16",
415 0,
416 1,
417 { .init_isa = SB16_init }
418 },
419 #endif
420
421 #ifdef CONFIG_CS4231A
422 {
423 "cs4231a",
424 "CS4231A",
425 0,
426 1,
427 { .init_isa = cs4231a_init }
428 },
429 #endif
430
431 #ifdef CONFIG_ADLIB
432 {
433 "adlib",
434 #ifdef HAS_YMF262
435 "Yamaha YMF262 (OPL3)",
436 #else
437 "Yamaha YM3812 (OPL2)",
438 #endif
439 0,
440 1,
441 { .init_isa = Adlib_init }
442 },
443 #endif
444
445 #ifdef CONFIG_GUS
446 {
447 "gus",
448 "Gravis Ultrasound GF1",
449 0,
450 1,
451 { .init_isa = GUS_init }
452 },
453 #endif
454
455 #ifdef CONFIG_AC97
456 {
457 "ac97",
458 "Intel 82801AA AC97 Audio",
459 0,
460 0,
461 { .init_pci = ac97_init }
462 },
463 #endif
464
465 #ifdef CONFIG_ES1370
466 {
467 "es1370",
468 "ENSONIQ AudioPCI ES1370",
469 0,
470 0,
471 { .init_pci = es1370_init }
472 },
473 #endif
474
475 #endif /* HAS_AUDIO_CHOICE */
476
477 { NULL, NULL, 0, 0, { NULL } }
478 };
479
480 void select_soundhw(const char *optarg)
481 {
482 struct soundhw *c;
483
484 if (*optarg == '?') {
485 show_valid_cards:
486
487 printf("Valid sound card names (comma separated):\n");
488 for (c = soundhw; c->name; ++c) {
489 printf ("%-11s %s\n", c->name, c->descr);
490 }
491 printf("\n-soundhw all will enable all of the above\n");
492 exit(*optarg != '?');
493 }
494 else {
495 size_t l;
496 const char *p;
497 char *e;
498 int bad_card = 0;
499
500 if (!strcmp(optarg, "all")) {
501 for (c = soundhw; c->name; ++c) {
502 c->enabled = 1;
503 }
504 return;
505 }
506
507 p = optarg;
508 while (*p) {
509 e = strchr(p, ',');
510 l = !e ? strlen(p) : (size_t) (e - p);
511
512 for (c = soundhw; c->name; ++c) {
513 if (!strncmp(c->name, p, l) && !c->name[l]) {
514 c->enabled = 1;
515 break;
516 }
517 }
518
519 if (!c->name) {
520 if (l > 80) {
521 fprintf(stderr,
522 "Unknown sound card name (too big to show)\n");
523 }
524 else {
525 fprintf(stderr, "Unknown sound card name `%.*s'\n",
526 (int) l, p);
527 }
528 bad_card = 1;
529 }
530 p += l + (e != NULL);
531 }
532
533 if (bad_card) {
534 goto show_valid_cards;
535 }
536 }
537 }
538 #else
539 void select_soundhw(const char *optarg)
540 {
541 }
542 #endif
543
544 int qemu_uuid_parse(const char *str, uint8_t *uuid)
545 {
546 int ret;
547
548 if (strlen(str) != 36) {
549 return -1;
550 }
551
552 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
553 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
554 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
555 &uuid[15]);
556
557 if (ret != 16) {
558 return -1;
559 }
560 #ifdef TARGET_I386
561 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
562 #endif
563 return 0;
564 }
565
566 void do_acpitable_option(const char *optarg)
567 {
568 #ifdef TARGET_I386
569 if (acpi_table_add(optarg) < 0) {
570 fprintf(stderr, "Wrong acpi table provided\n");
571 exit(1);
572 }
573 #endif
574 }
575
576 void do_smbios_option(const char *optarg)
577 {
578 #ifdef TARGET_I386
579 if (smbios_entry_add(optarg) < 0) {
580 fprintf(stderr, "Wrong smbios provided\n");
581 exit(1);
582 }
583 #endif
584 }
585
586 void cpudef_init(void)
587 {
588 #if defined(cpudef_setup)
589 cpudef_setup(); /* parse cpu definitions in target config file */
590 #endif
591 }
592
593 int audio_available(void)
594 {
595 #ifdef HAS_AUDIO
596 return 1;
597 #else
598 return 0;
599 #endif
600 }
601
602 int kvm_available(void)
603 {
604 #ifdef CONFIG_KVM
605 return 1;
606 #else
607 return 0;
608 #endif
609 }
610
611 int xen_available(void)
612 {
613 #ifdef CONFIG_XEN
614 return 1;
615 #else
616 return 0;
617 #endif
618 }