]> git.proxmox.com Git - qemu.git/blob - arch_init.c
smbios: Make multiple -smbios type= accumulate sanely
[qemu.git] / arch_init.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 32;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107 static bool mig_throttle_on;
108 static int dirty_rate_high_cnt;
109 static void check_guest_throttling(void);
110
111 /***********************************************************/
112 /* ram save/restore */
113
114 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
115 #define RAM_SAVE_FLAG_COMPRESS 0x02
116 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
117 #define RAM_SAVE_FLAG_PAGE 0x08
118 #define RAM_SAVE_FLAG_EOS 0x10
119 #define RAM_SAVE_FLAG_CONTINUE 0x20
120 #define RAM_SAVE_FLAG_XBZRLE 0x40
121 /* 0x80 is reserved in migration.h start with 0x100 next */
122
123
124 static struct defconfig_file {
125 const char *filename;
126 /* Indicates it is an user config file (disabled by -no-user-config) */
127 bool userconfig;
128 } default_config_files[] = {
129 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
130 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
131 { NULL }, /* end of list */
132 };
133
134
135 int qemu_read_default_config_files(bool userconfig)
136 {
137 int ret;
138 struct defconfig_file *f;
139
140 for (f = default_config_files; f->filename; f++) {
141 if (!userconfig && f->userconfig) {
142 continue;
143 }
144 ret = qemu_read_config_file(f->filename);
145 if (ret < 0 && ret != -ENOENT) {
146 return ret;
147 }
148 }
149
150 return 0;
151 }
152
153 static inline bool is_zero_page(uint8_t *p)
154 {
155 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
156 TARGET_PAGE_SIZE;
157 }
158
159 /* struct contains XBZRLE cache and a static page
160 used by the compression */
161 static struct {
162 /* buffer used for XBZRLE encoding */
163 uint8_t *encoded_buf;
164 /* buffer for storing page content */
165 uint8_t *current_buf;
166 /* buffer used for XBZRLE decoding */
167 uint8_t *decoded_buf;
168 /* Cache for XBZRLE */
169 PageCache *cache;
170 } XBZRLE = {
171 .encoded_buf = NULL,
172 .current_buf = NULL,
173 .decoded_buf = NULL,
174 .cache = NULL,
175 };
176
177
178 int64_t xbzrle_cache_resize(int64_t new_size)
179 {
180 if (XBZRLE.cache != NULL) {
181 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
182 TARGET_PAGE_SIZE;
183 }
184 return pow2floor(new_size);
185 }
186
187 /* accounting for migration statistics */
188 typedef struct AccountingInfo {
189 uint64_t dup_pages;
190 uint64_t skipped_pages;
191 uint64_t norm_pages;
192 uint64_t iterations;
193 uint64_t xbzrle_bytes;
194 uint64_t xbzrle_pages;
195 uint64_t xbzrle_cache_miss;
196 uint64_t xbzrle_overflows;
197 } AccountingInfo;
198
199 static AccountingInfo acct_info;
200
201 static void acct_clear(void)
202 {
203 memset(&acct_info, 0, sizeof(acct_info));
204 }
205
206 uint64_t dup_mig_bytes_transferred(void)
207 {
208 return acct_info.dup_pages * TARGET_PAGE_SIZE;
209 }
210
211 uint64_t dup_mig_pages_transferred(void)
212 {
213 return acct_info.dup_pages;
214 }
215
216 uint64_t skipped_mig_bytes_transferred(void)
217 {
218 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
219 }
220
221 uint64_t skipped_mig_pages_transferred(void)
222 {
223 return acct_info.skipped_pages;
224 }
225
226 uint64_t norm_mig_bytes_transferred(void)
227 {
228 return acct_info.norm_pages * TARGET_PAGE_SIZE;
229 }
230
231 uint64_t norm_mig_pages_transferred(void)
232 {
233 return acct_info.norm_pages;
234 }
235
236 uint64_t xbzrle_mig_bytes_transferred(void)
237 {
238 return acct_info.xbzrle_bytes;
239 }
240
241 uint64_t xbzrle_mig_pages_transferred(void)
242 {
243 return acct_info.xbzrle_pages;
244 }
245
246 uint64_t xbzrle_mig_pages_cache_miss(void)
247 {
248 return acct_info.xbzrle_cache_miss;
249 }
250
251 uint64_t xbzrle_mig_pages_overflow(void)
252 {
253 return acct_info.xbzrle_overflows;
254 }
255
256 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
257 int cont, int flag)
258 {
259 size_t size;
260
261 qemu_put_be64(f, offset | cont | flag);
262 size = 8;
263
264 if (!cont) {
265 qemu_put_byte(f, strlen(block->idstr));
266 qemu_put_buffer(f, (uint8_t *)block->idstr,
267 strlen(block->idstr));
268 size += 1 + strlen(block->idstr);
269 }
270 return size;
271 }
272
273 #define ENCODING_FLAG_XBZRLE 0x1
274
275 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
276 ram_addr_t current_addr, RAMBlock *block,
277 ram_addr_t offset, int cont, bool last_stage)
278 {
279 int encoded_len = 0, bytes_sent = -1;
280 uint8_t *prev_cached_page;
281
282 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
283 if (!last_stage) {
284 cache_insert(XBZRLE.cache, current_addr, current_data);
285 }
286 acct_info.xbzrle_cache_miss++;
287 return -1;
288 }
289
290 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
291
292 /* save current buffer into memory */
293 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
294
295 /* XBZRLE encoding (if there is no overflow) */
296 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
297 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
298 TARGET_PAGE_SIZE);
299 if (encoded_len == 0) {
300 DPRINTF("Skipping unmodified page\n");
301 return 0;
302 } else if (encoded_len == -1) {
303 DPRINTF("Overflow\n");
304 acct_info.xbzrle_overflows++;
305 /* update data in the cache */
306 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
307 return -1;
308 }
309
310 /* we need to update the data in the cache, in order to get the same data */
311 if (!last_stage) {
312 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
313 }
314
315 /* Send XBZRLE based compressed page */
316 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
317 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
318 qemu_put_be16(f, encoded_len);
319 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
320 bytes_sent += encoded_len + 1 + 2;
321 acct_info.xbzrle_pages++;
322 acct_info.xbzrle_bytes += bytes_sent;
323
324 return bytes_sent;
325 }
326
327
328 /* This is the last block that we have visited serching for dirty pages
329 */
330 static RAMBlock *last_seen_block;
331 /* This is the last block from where we have sent data */
332 static RAMBlock *last_sent_block;
333 static ram_addr_t last_offset;
334 static unsigned long *migration_bitmap;
335 static uint64_t migration_dirty_pages;
336 static uint32_t last_version;
337 static bool ram_bulk_stage;
338
339 static inline
340 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
341 ram_addr_t start)
342 {
343 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
344 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
345 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
346 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
347
348 unsigned long next;
349
350 if (ram_bulk_stage && nr > base) {
351 next = nr + 1;
352 } else {
353 next = find_next_bit(migration_bitmap, size, nr);
354 }
355
356 if (next < size) {
357 clear_bit(next, migration_bitmap);
358 migration_dirty_pages--;
359 }
360 return (next - base) << TARGET_PAGE_BITS;
361 }
362
363 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
364 ram_addr_t offset)
365 {
366 bool ret;
367 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
368
369 ret = test_and_set_bit(nr, migration_bitmap);
370
371 if (!ret) {
372 migration_dirty_pages++;
373 }
374 return ret;
375 }
376
377 /* Needs iothread lock! */
378
379 static void migration_bitmap_sync(void)
380 {
381 RAMBlock *block;
382 ram_addr_t addr;
383 uint64_t num_dirty_pages_init = migration_dirty_pages;
384 MigrationState *s = migrate_get_current();
385 static int64_t start_time;
386 static int64_t bytes_xfer_prev;
387 static int64_t num_dirty_pages_period;
388 int64_t end_time;
389 int64_t bytes_xfer_now;
390
391 if (!bytes_xfer_prev) {
392 bytes_xfer_prev = ram_bytes_transferred();
393 }
394
395 if (!start_time) {
396 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
397 }
398
399 trace_migration_bitmap_sync_start();
400 address_space_sync_dirty_bitmap(&address_space_memory);
401
402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
403 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
404 if (memory_region_test_and_clear_dirty(block->mr,
405 addr, TARGET_PAGE_SIZE,
406 DIRTY_MEMORY_MIGRATION)) {
407 migration_bitmap_set_dirty(block->mr, addr);
408 }
409 }
410 }
411 trace_migration_bitmap_sync_end(migration_dirty_pages
412 - num_dirty_pages_init);
413 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
414 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
415
416 /* more than 1 second = 1000 millisecons */
417 if (end_time > start_time + 1000) {
418 if (migrate_auto_converge()) {
419 /* The following detection logic can be refined later. For now:
420 Check to see if the dirtied bytes is 50% more than the approx.
421 amount of bytes that just got transferred since the last time we
422 were in this routine. If that happens >N times (for now N==4)
423 we turn on the throttle down logic */
424 bytes_xfer_now = ram_bytes_transferred();
425 if (s->dirty_pages_rate &&
426 (num_dirty_pages_period * TARGET_PAGE_SIZE >
427 (bytes_xfer_now - bytes_xfer_prev)/2) &&
428 (dirty_rate_high_cnt++ > 4)) {
429 trace_migration_throttle();
430 mig_throttle_on = true;
431 dirty_rate_high_cnt = 0;
432 }
433 bytes_xfer_prev = bytes_xfer_now;
434 } else {
435 mig_throttle_on = false;
436 }
437 s->dirty_pages_rate = num_dirty_pages_period * 1000
438 / (end_time - start_time);
439 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
440 start_time = end_time;
441 num_dirty_pages_period = 0;
442 }
443 }
444
445 /*
446 * ram_save_block: Writes a page of memory to the stream f
447 *
448 * Returns: The number of bytes written.
449 * 0 means no dirty pages
450 */
451
452 static int ram_save_block(QEMUFile *f, bool last_stage)
453 {
454 RAMBlock *block = last_seen_block;
455 ram_addr_t offset = last_offset;
456 bool complete_round = false;
457 int bytes_sent = 0;
458 MemoryRegion *mr;
459 ram_addr_t current_addr;
460
461 if (!block)
462 block = QTAILQ_FIRST(&ram_list.blocks);
463
464 while (true) {
465 mr = block->mr;
466 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
467 if (complete_round && block == last_seen_block &&
468 offset >= last_offset) {
469 break;
470 }
471 if (offset >= block->length) {
472 offset = 0;
473 block = QTAILQ_NEXT(block, next);
474 if (!block) {
475 block = QTAILQ_FIRST(&ram_list.blocks);
476 complete_round = true;
477 ram_bulk_stage = false;
478 }
479 } else {
480 int ret;
481 uint8_t *p;
482 int cont = (block == last_sent_block) ?
483 RAM_SAVE_FLAG_CONTINUE : 0;
484
485 p = memory_region_get_ram_ptr(mr) + offset;
486
487 /* In doubt sent page as normal */
488 bytes_sent = -1;
489 ret = ram_control_save_page(f, block->offset,
490 offset, TARGET_PAGE_SIZE, &bytes_sent);
491
492 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
493 if (ret != RAM_SAVE_CONTROL_DELAYED) {
494 if (bytes_sent > 0) {
495 acct_info.norm_pages++;
496 } else if (bytes_sent == 0) {
497 acct_info.dup_pages++;
498 }
499 }
500 } else if (is_zero_page(p)) {
501 acct_info.dup_pages++;
502 bytes_sent = save_block_hdr(f, block, offset, cont,
503 RAM_SAVE_FLAG_COMPRESS);
504 qemu_put_byte(f, 0);
505 bytes_sent++;
506 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
507 current_addr = block->offset + offset;
508 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
509 offset, cont, last_stage);
510 if (!last_stage) {
511 p = get_cached_data(XBZRLE.cache, current_addr);
512 }
513 }
514
515 /* XBZRLE overflow or normal page */
516 if (bytes_sent == -1) {
517 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
518 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
519 bytes_sent += TARGET_PAGE_SIZE;
520 acct_info.norm_pages++;
521 }
522
523 /* if page is unmodified, continue to the next */
524 if (bytes_sent > 0) {
525 last_sent_block = block;
526 break;
527 }
528 }
529 }
530 last_seen_block = block;
531 last_offset = offset;
532
533 return bytes_sent;
534 }
535
536 static uint64_t bytes_transferred;
537
538 void acct_update_position(QEMUFile *f, size_t size, bool zero)
539 {
540 uint64_t pages = size / TARGET_PAGE_SIZE;
541 if (zero) {
542 acct_info.dup_pages += pages;
543 } else {
544 acct_info.norm_pages += pages;
545 bytes_transferred += size;
546 qemu_update_position(f, size);
547 }
548 }
549
550 static ram_addr_t ram_save_remaining(void)
551 {
552 return migration_dirty_pages;
553 }
554
555 uint64_t ram_bytes_remaining(void)
556 {
557 return ram_save_remaining() * TARGET_PAGE_SIZE;
558 }
559
560 uint64_t ram_bytes_transferred(void)
561 {
562 return bytes_transferred;
563 }
564
565 uint64_t ram_bytes_total(void)
566 {
567 RAMBlock *block;
568 uint64_t total = 0;
569
570 QTAILQ_FOREACH(block, &ram_list.blocks, next)
571 total += block->length;
572
573 return total;
574 }
575
576 static void migration_end(void)
577 {
578 if (migration_bitmap) {
579 memory_global_dirty_log_stop();
580 g_free(migration_bitmap);
581 migration_bitmap = NULL;
582 }
583
584 if (XBZRLE.cache) {
585 cache_fini(XBZRLE.cache);
586 g_free(XBZRLE.cache);
587 g_free(XBZRLE.encoded_buf);
588 g_free(XBZRLE.current_buf);
589 g_free(XBZRLE.decoded_buf);
590 XBZRLE.cache = NULL;
591 }
592 }
593
594 static void ram_migration_cancel(void *opaque)
595 {
596 migration_end();
597 }
598
599 static void reset_ram_globals(void)
600 {
601 last_seen_block = NULL;
602 last_sent_block = NULL;
603 last_offset = 0;
604 last_version = ram_list.version;
605 ram_bulk_stage = true;
606 }
607
608 #define MAX_WAIT 50 /* ms, half buffered_file limit */
609
610 static int ram_save_setup(QEMUFile *f, void *opaque)
611 {
612 RAMBlock *block;
613 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
614
615 migration_bitmap = bitmap_new(ram_pages);
616 bitmap_set(migration_bitmap, 0, ram_pages);
617 migration_dirty_pages = ram_pages;
618 mig_throttle_on = false;
619 dirty_rate_high_cnt = 0;
620
621 if (migrate_use_xbzrle()) {
622 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
623 TARGET_PAGE_SIZE,
624 TARGET_PAGE_SIZE);
625 if (!XBZRLE.cache) {
626 DPRINTF("Error creating cache\n");
627 return -1;
628 }
629 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
630 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
631 acct_clear();
632 }
633
634 qemu_mutex_lock_iothread();
635 qemu_mutex_lock_ramlist();
636 bytes_transferred = 0;
637 reset_ram_globals();
638
639 memory_global_dirty_log_start();
640 migration_bitmap_sync();
641 qemu_mutex_unlock_iothread();
642
643 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
644
645 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
646 qemu_put_byte(f, strlen(block->idstr));
647 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
648 qemu_put_be64(f, block->length);
649 }
650
651 qemu_mutex_unlock_ramlist();
652
653 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
654 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
655
656 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
657
658 return 0;
659 }
660
661 static int ram_save_iterate(QEMUFile *f, void *opaque)
662 {
663 int ret;
664 int i;
665 int64_t t0;
666 int total_sent = 0;
667
668 qemu_mutex_lock_ramlist();
669
670 if (ram_list.version != last_version) {
671 reset_ram_globals();
672 }
673
674 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
675
676 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
677 i = 0;
678 while ((ret = qemu_file_rate_limit(f)) == 0) {
679 int bytes_sent;
680
681 bytes_sent = ram_save_block(f, false);
682 /* no more blocks to sent */
683 if (bytes_sent == 0) {
684 break;
685 }
686 total_sent += bytes_sent;
687 acct_info.iterations++;
688 check_guest_throttling();
689 /* we want to check in the 1st loop, just in case it was the 1st time
690 and we had to sync the dirty bitmap.
691 qemu_get_clock_ns() is a bit expensive, so we only check each some
692 iterations
693 */
694 if ((i & 63) == 0) {
695 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
696 if (t1 > MAX_WAIT) {
697 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
698 t1, i);
699 break;
700 }
701 }
702 i++;
703 }
704
705 qemu_mutex_unlock_ramlist();
706
707 /*
708 * Must occur before EOS (or any QEMUFile operation)
709 * because of RDMA protocol.
710 */
711 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
712
713 if (ret < 0) {
714 bytes_transferred += total_sent;
715 return ret;
716 }
717
718 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
719 total_sent += 8;
720 bytes_transferred += total_sent;
721
722 return total_sent;
723 }
724
725 static int ram_save_complete(QEMUFile *f, void *opaque)
726 {
727 qemu_mutex_lock_ramlist();
728 migration_bitmap_sync();
729
730 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
731
732 /* try transferring iterative blocks of memory */
733
734 /* flush all remaining blocks regardless of rate limiting */
735 while (true) {
736 int bytes_sent;
737
738 bytes_sent = ram_save_block(f, true);
739 /* no more blocks to sent */
740 if (bytes_sent == 0) {
741 break;
742 }
743 bytes_transferred += bytes_sent;
744 }
745
746 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
747 migration_end();
748
749 qemu_mutex_unlock_ramlist();
750 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
751
752 return 0;
753 }
754
755 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
756 {
757 uint64_t remaining_size;
758
759 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
760
761 if (remaining_size < max_size) {
762 qemu_mutex_lock_iothread();
763 migration_bitmap_sync();
764 qemu_mutex_unlock_iothread();
765 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
766 }
767 return remaining_size;
768 }
769
770 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
771 {
772 int ret, rc = 0;
773 unsigned int xh_len;
774 int xh_flags;
775
776 if (!XBZRLE.decoded_buf) {
777 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
778 }
779
780 /* extract RLE header */
781 xh_flags = qemu_get_byte(f);
782 xh_len = qemu_get_be16(f);
783
784 if (xh_flags != ENCODING_FLAG_XBZRLE) {
785 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
786 return -1;
787 }
788
789 if (xh_len > TARGET_PAGE_SIZE) {
790 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
791 return -1;
792 }
793 /* load data and decode */
794 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
795
796 /* decode RLE */
797 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
798 TARGET_PAGE_SIZE);
799 if (ret == -1) {
800 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
801 rc = -1;
802 } else if (ret > TARGET_PAGE_SIZE) {
803 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
804 ret, TARGET_PAGE_SIZE);
805 abort();
806 }
807
808 return rc;
809 }
810
811 static inline void *host_from_stream_offset(QEMUFile *f,
812 ram_addr_t offset,
813 int flags)
814 {
815 static RAMBlock *block = NULL;
816 char id[256];
817 uint8_t len;
818
819 if (flags & RAM_SAVE_FLAG_CONTINUE) {
820 if (!block) {
821 fprintf(stderr, "Ack, bad migration stream!\n");
822 return NULL;
823 }
824
825 return memory_region_get_ram_ptr(block->mr) + offset;
826 }
827
828 len = qemu_get_byte(f);
829 qemu_get_buffer(f, (uint8_t *)id, len);
830 id[len] = 0;
831
832 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
833 if (!strncmp(id, block->idstr, sizeof(id)))
834 return memory_region_get_ram_ptr(block->mr) + offset;
835 }
836
837 fprintf(stderr, "Can't find block %s!\n", id);
838 return NULL;
839 }
840
841 /*
842 * If a page (or a whole RDMA chunk) has been
843 * determined to be zero, then zap it.
844 */
845 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
846 {
847 if (ch != 0 || !is_zero_page(host)) {
848 memset(host, ch, size);
849 #ifndef _WIN32
850 if (ch == 0 &&
851 (!kvm_enabled() || kvm_has_sync_mmu()) &&
852 getpagesize() <= TARGET_PAGE_SIZE) {
853 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
854 }
855 #endif
856 }
857 }
858
859 static int ram_load(QEMUFile *f, void *opaque, int version_id)
860 {
861 ram_addr_t addr;
862 int flags, ret = 0;
863 int error;
864 static uint64_t seq_iter;
865
866 seq_iter++;
867
868 if (version_id < 4 || version_id > 4) {
869 return -EINVAL;
870 }
871
872 do {
873 addr = qemu_get_be64(f);
874
875 flags = addr & ~TARGET_PAGE_MASK;
876 addr &= TARGET_PAGE_MASK;
877
878 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
879 if (version_id == 4) {
880 /* Synchronize RAM block list */
881 char id[256];
882 ram_addr_t length;
883 ram_addr_t total_ram_bytes = addr;
884
885 while (total_ram_bytes) {
886 RAMBlock *block;
887 uint8_t len;
888
889 len = qemu_get_byte(f);
890 qemu_get_buffer(f, (uint8_t *)id, len);
891 id[len] = 0;
892 length = qemu_get_be64(f);
893
894 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
895 if (!strncmp(id, block->idstr, sizeof(id))) {
896 if (block->length != length) {
897 fprintf(stderr,
898 "Length mismatch: %s: " RAM_ADDR_FMT
899 " in != " RAM_ADDR_FMT "\n", id, length,
900 block->length);
901 ret = -EINVAL;
902 goto done;
903 }
904 break;
905 }
906 }
907
908 if (!block) {
909 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
910 "accept migration\n", id);
911 ret = -EINVAL;
912 goto done;
913 }
914
915 total_ram_bytes -= length;
916 }
917 }
918 }
919
920 if (flags & RAM_SAVE_FLAG_COMPRESS) {
921 void *host;
922 uint8_t ch;
923
924 host = host_from_stream_offset(f, addr, flags);
925 if (!host) {
926 return -EINVAL;
927 }
928
929 ch = qemu_get_byte(f);
930 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
931 } else if (flags & RAM_SAVE_FLAG_PAGE) {
932 void *host;
933
934 host = host_from_stream_offset(f, addr, flags);
935 if (!host) {
936 return -EINVAL;
937 }
938
939 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
940 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
941 void *host = host_from_stream_offset(f, addr, flags);
942 if (!host) {
943 return -EINVAL;
944 }
945
946 if (load_xbzrle(f, addr, host) < 0) {
947 ret = -EINVAL;
948 goto done;
949 }
950 } else if (flags & RAM_SAVE_FLAG_HOOK) {
951 ram_control_load_hook(f, flags);
952 }
953 error = qemu_file_get_error(f);
954 if (error) {
955 ret = error;
956 goto done;
957 }
958 } while (!(flags & RAM_SAVE_FLAG_EOS));
959
960 done:
961 DPRINTF("Completed load of VM with exit code %d seq iteration "
962 "%" PRIu64 "\n", ret, seq_iter);
963 return ret;
964 }
965
966 SaveVMHandlers savevm_ram_handlers = {
967 .save_live_setup = ram_save_setup,
968 .save_live_iterate = ram_save_iterate,
969 .save_live_complete = ram_save_complete,
970 .save_live_pending = ram_save_pending,
971 .load_state = ram_load,
972 .cancel = ram_migration_cancel,
973 };
974
975 struct soundhw {
976 const char *name;
977 const char *descr;
978 int enabled;
979 int isa;
980 union {
981 int (*init_isa) (ISABus *bus);
982 int (*init_pci) (PCIBus *bus);
983 } init;
984 };
985
986 static struct soundhw soundhw[9];
987 static int soundhw_count;
988
989 void isa_register_soundhw(const char *name, const char *descr,
990 int (*init_isa)(ISABus *bus))
991 {
992 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
993 soundhw[soundhw_count].name = name;
994 soundhw[soundhw_count].descr = descr;
995 soundhw[soundhw_count].isa = 1;
996 soundhw[soundhw_count].init.init_isa = init_isa;
997 soundhw_count++;
998 }
999
1000 void pci_register_soundhw(const char *name, const char *descr,
1001 int (*init_pci)(PCIBus *bus))
1002 {
1003 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1004 soundhw[soundhw_count].name = name;
1005 soundhw[soundhw_count].descr = descr;
1006 soundhw[soundhw_count].isa = 0;
1007 soundhw[soundhw_count].init.init_pci = init_pci;
1008 soundhw_count++;
1009 }
1010
1011 void select_soundhw(const char *optarg)
1012 {
1013 struct soundhw *c;
1014
1015 if (is_help_option(optarg)) {
1016 show_valid_cards:
1017
1018 if (soundhw_count) {
1019 printf("Valid sound card names (comma separated):\n");
1020 for (c = soundhw; c->name; ++c) {
1021 printf ("%-11s %s\n", c->name, c->descr);
1022 }
1023 printf("\n-soundhw all will enable all of the above\n");
1024 } else {
1025 printf("Machine has no user-selectable audio hardware "
1026 "(it may or may not have always-present audio hardware).\n");
1027 }
1028 exit(!is_help_option(optarg));
1029 }
1030 else {
1031 size_t l;
1032 const char *p;
1033 char *e;
1034 int bad_card = 0;
1035
1036 if (!strcmp(optarg, "all")) {
1037 for (c = soundhw; c->name; ++c) {
1038 c->enabled = 1;
1039 }
1040 return;
1041 }
1042
1043 p = optarg;
1044 while (*p) {
1045 e = strchr(p, ',');
1046 l = !e ? strlen(p) : (size_t) (e - p);
1047
1048 for (c = soundhw; c->name; ++c) {
1049 if (!strncmp(c->name, p, l) && !c->name[l]) {
1050 c->enabled = 1;
1051 break;
1052 }
1053 }
1054
1055 if (!c->name) {
1056 if (l > 80) {
1057 fprintf(stderr,
1058 "Unknown sound card name (too big to show)\n");
1059 }
1060 else {
1061 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1062 (int) l, p);
1063 }
1064 bad_card = 1;
1065 }
1066 p += l + (e != NULL);
1067 }
1068
1069 if (bad_card) {
1070 goto show_valid_cards;
1071 }
1072 }
1073 }
1074
1075 void audio_init(void)
1076 {
1077 struct soundhw *c;
1078 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1079 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1080
1081 for (c = soundhw; c->name; ++c) {
1082 if (c->enabled) {
1083 if (c->isa) {
1084 if (!isa_bus) {
1085 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1086 exit(1);
1087 }
1088 c->init.init_isa(isa_bus);
1089 } else {
1090 if (!pci_bus) {
1091 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1092 exit(1);
1093 }
1094 c->init.init_pci(pci_bus);
1095 }
1096 }
1097 }
1098 }
1099
1100 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1101 {
1102 int ret;
1103
1104 if (strlen(str) != 36) {
1105 return -1;
1106 }
1107
1108 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1109 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1110 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1111 &uuid[15]);
1112
1113 if (ret != 16) {
1114 return -1;
1115 }
1116 return 0;
1117 }
1118
1119 void do_acpitable_option(const QemuOpts *opts)
1120 {
1121 #ifdef TARGET_I386
1122 Error *err = NULL;
1123
1124 acpi_table_add(opts, &err);
1125 if (err) {
1126 error_report("Wrong acpi table provided: %s",
1127 error_get_pretty(err));
1128 error_free(err);
1129 exit(1);
1130 }
1131 #endif
1132 }
1133
1134 void do_smbios_option(QemuOpts *opts)
1135 {
1136 #ifdef TARGET_I386
1137 smbios_entry_add(opts);
1138 #endif
1139 }
1140
1141 void cpudef_init(void)
1142 {
1143 #if defined(cpudef_setup)
1144 cpudef_setup(); /* parse cpu definitions in target config file */
1145 #endif
1146 }
1147
1148 int tcg_available(void)
1149 {
1150 return 1;
1151 }
1152
1153 int kvm_available(void)
1154 {
1155 #ifdef CONFIG_KVM
1156 return 1;
1157 #else
1158 return 0;
1159 #endif
1160 }
1161
1162 int xen_available(void)
1163 {
1164 #ifdef CONFIG_XEN
1165 return 1;
1166 #else
1167 return 0;
1168 #endif
1169 }
1170
1171
1172 TargetInfo *qmp_query_target(Error **errp)
1173 {
1174 TargetInfo *info = g_malloc0(sizeof(*info));
1175
1176 info->arch = g_strdup(TARGET_NAME);
1177
1178 return info;
1179 }
1180
1181 /* Stub function that's gets run on the vcpu when its brought out of the
1182 VM to run inside qemu via async_run_on_cpu()*/
1183 static void mig_sleep_cpu(void *opq)
1184 {
1185 qemu_mutex_unlock_iothread();
1186 g_usleep(30*1000);
1187 qemu_mutex_lock_iothread();
1188 }
1189
1190 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1191 much time in the VM. The migration thread will try to catchup.
1192 Workload will experience a performance drop.
1193 */
1194 static void mig_throttle_guest_down(void)
1195 {
1196 CPUState *cpu;
1197
1198 qemu_mutex_lock_iothread();
1199 CPU_FOREACH(cpu) {
1200 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1201 }
1202 qemu_mutex_unlock_iothread();
1203 }
1204
1205 static void check_guest_throttling(void)
1206 {
1207 static int64_t t0;
1208 int64_t t1;
1209
1210 if (!mig_throttle_on) {
1211 return;
1212 }
1213
1214 if (!t0) {
1215 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1216 return;
1217 }
1218
1219 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1220
1221 /* If it has been more than 40 ms since the last time the guest
1222 * was throttled then do it again.
1223 */
1224 if (40 < (t1-t0)/1000000) {
1225 mig_throttle_guest_down();
1226 t0 = t1;
1227 }
1228 }