]> git.proxmox.com Git - qemu.git/blob - block.c
Merge remote-tracking branch 'mjt/mjt-iov2' into staging
[qemu.git] / block.c
1 /*
2 * QEMU System Emulator block driver
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52 BDRV_REQ_COPY_ON_READ = 0x1,
53 BDRV_REQ_ZERO_WRITE = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59 BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62 BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64 int64_t sector_num, int nb_sectors,
65 QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67 int64_t sector_num, int nb_sectors,
68 QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71 BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74 BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76 int64_t sector_num,
77 QEMUIOVector *qiov,
78 int nb_sectors,
79 BlockDriverCompletionFunc *cb,
80 void *opaque,
81 bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
84 int64_t sector_num, int nb_sectors);
85
86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
87 bool is_write, double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
89 double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
91 bool is_write, int64_t *wait);
92
93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
94 QTAILQ_HEAD_INITIALIZER(bdrv_states);
95
96 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
97 QLIST_HEAD_INITIALIZER(bdrv_drivers);
98
99 /* The device to use for VM snapshots */
100 static BlockDriverState *bs_snapshots;
101
102 /* If non-zero, use only whitelisted block drivers */
103 static int use_bdrv_whitelist;
104
105 #ifdef _WIN32
106 static int is_windows_drive_prefix(const char *filename)
107 {
108 return (((filename[0] >= 'a' && filename[0] <= 'z') ||
109 (filename[0] >= 'A' && filename[0] <= 'Z')) &&
110 filename[1] == ':');
111 }
112
113 int is_windows_drive(const char *filename)
114 {
115 if (is_windows_drive_prefix(filename) &&
116 filename[2] == '\0')
117 return 1;
118 if (strstart(filename, "\\\\.\\", NULL) ||
119 strstart(filename, "//./", NULL))
120 return 1;
121 return 0;
122 }
123 #endif
124
125 /* throttling disk I/O limits */
126 void bdrv_io_limits_disable(BlockDriverState *bs)
127 {
128 bs->io_limits_enabled = false;
129
130 while (qemu_co_queue_next(&bs->throttled_reqs));
131
132 if (bs->block_timer) {
133 qemu_del_timer(bs->block_timer);
134 qemu_free_timer(bs->block_timer);
135 bs->block_timer = NULL;
136 }
137
138 bs->slice_start = 0;
139 bs->slice_end = 0;
140 bs->slice_time = 0;
141 memset(&bs->io_base, 0, sizeof(bs->io_base));
142 }
143
144 static void bdrv_block_timer(void *opaque)
145 {
146 BlockDriverState *bs = opaque;
147
148 qemu_co_queue_next(&bs->throttled_reqs);
149 }
150
151 void bdrv_io_limits_enable(BlockDriverState *bs)
152 {
153 qemu_co_queue_init(&bs->throttled_reqs);
154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
156 bs->slice_start = qemu_get_clock_ns(vm_clock);
157 bs->slice_end = bs->slice_start + bs->slice_time;
158 memset(&bs->io_base, 0, sizeof(bs->io_base));
159 bs->io_limits_enabled = true;
160 }
161
162 bool bdrv_io_limits_enabled(BlockDriverState *bs)
163 {
164 BlockIOLimit *io_limits = &bs->io_limits;
165 return io_limits->bps[BLOCK_IO_LIMIT_READ]
166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
168 || io_limits->iops[BLOCK_IO_LIMIT_READ]
169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
171 }
172
173 static void bdrv_io_limits_intercept(BlockDriverState *bs,
174 bool is_write, int nb_sectors)
175 {
176 int64_t wait_time = -1;
177
178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
179 qemu_co_queue_wait(&bs->throttled_reqs);
180 }
181
182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next
183 * throttled requests will not be dequeued until the current request is
184 * allowed to be serviced. So if the current request still exceeds the
185 * limits, it will be inserted to the head. All requests followed it will
186 * be still in throttled_reqs queue.
187 */
188
189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
190 qemu_mod_timer(bs->block_timer,
191 wait_time + qemu_get_clock_ns(vm_clock));
192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
193 }
194
195 qemu_co_queue_next(&bs->throttled_reqs);
196 }
197
198 /* check if the path starts with "<protocol>:" */
199 static int path_has_protocol(const char *path)
200 {
201 const char *p;
202
203 #ifdef _WIN32
204 if (is_windows_drive(path) ||
205 is_windows_drive_prefix(path)) {
206 return 0;
207 }
208 p = path + strcspn(path, ":/\\");
209 #else
210 p = path + strcspn(path, ":/");
211 #endif
212
213 return *p == ':';
214 }
215
216 int path_is_absolute(const char *path)
217 {
218 #ifdef _WIN32
219 /* specific case for names like: "\\.\d:" */
220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
221 return 1;
222 }
223 return (*path == '/' || *path == '\\');
224 #else
225 return (*path == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230 path to it by considering it is relative to base_path. URL are
231 supported. */
232 void path_combine(char *dest, int dest_size,
233 const char *base_path,
234 const char *filename)
235 {
236 const char *p, *p1;
237 int len;
238
239 if (dest_size <= 0)
240 return;
241 if (path_is_absolute(filename)) {
242 pstrcpy(dest, dest_size, filename);
243 } else {
244 p = strchr(base_path, ':');
245 if (p)
246 p++;
247 else
248 p = base_path;
249 p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251 {
252 const char *p2;
253 p2 = strrchr(base_path, '\\');
254 if (!p1 || p2 > p1)
255 p1 = p2;
256 }
257 #endif
258 if (p1)
259 p1++;
260 else
261 p1 = base_path;
262 if (p1 > p)
263 p = p1;
264 len = p - base_path;
265 if (len > dest_size - 1)
266 len = dest_size - 1;
267 memcpy(dest, base_path, len);
268 dest[len] = '\0';
269 pstrcat(dest, dest_size, filename);
270 }
271 }
272
273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
274 {
275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
276 pstrcpy(dest, sz, bs->backing_file);
277 } else {
278 path_combine(dest, sz, bs->filename, bs->backing_file);
279 }
280 }
281
282 void bdrv_register(BlockDriver *bdrv)
283 {
284 /* Block drivers without coroutine functions need emulation */
285 if (!bdrv->bdrv_co_readv) {
286 bdrv->bdrv_co_readv = bdrv_co_readv_em;
287 bdrv->bdrv_co_writev = bdrv_co_writev_em;
288
289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
290 * the block driver lacks aio we need to emulate that too.
291 */
292 if (!bdrv->bdrv_aio_readv) {
293 /* add AIO emulation layer */
294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
296 }
297 }
298
299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
300 }
301
302 /* create a new block device (by default it is empty) */
303 BlockDriverState *bdrv_new(const char *device_name)
304 {
305 BlockDriverState *bs;
306
307 bs = g_malloc0(sizeof(BlockDriverState));
308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
309 if (device_name[0] != '\0') {
310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
311 }
312 bdrv_iostatus_disable(bs);
313 return bs;
314 }
315
316 BlockDriver *bdrv_find_format(const char *format_name)
317 {
318 BlockDriver *drv1;
319 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
320 if (!strcmp(drv1->format_name, format_name)) {
321 return drv1;
322 }
323 }
324 return NULL;
325 }
326
327 static int bdrv_is_whitelisted(BlockDriver *drv)
328 {
329 static const char *whitelist[] = {
330 CONFIG_BDRV_WHITELIST
331 };
332 const char **p;
333
334 if (!whitelist[0])
335 return 1; /* no whitelist, anything goes */
336
337 for (p = whitelist; *p; p++) {
338 if (!strcmp(drv->format_name, *p)) {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
346 {
347 BlockDriver *drv = bdrv_find_format(format_name);
348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
349 }
350
351 typedef struct CreateCo {
352 BlockDriver *drv;
353 char *filename;
354 QEMUOptionParameter *options;
355 int ret;
356 } CreateCo;
357
358 static void coroutine_fn bdrv_create_co_entry(void *opaque)
359 {
360 CreateCo *cco = opaque;
361 assert(cco->drv);
362
363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
364 }
365
366 int bdrv_create(BlockDriver *drv, const char* filename,
367 QEMUOptionParameter *options)
368 {
369 int ret;
370
371 Coroutine *co;
372 CreateCo cco = {
373 .drv = drv,
374 .filename = g_strdup(filename),
375 .options = options,
376 .ret = NOT_DONE,
377 };
378
379 if (!drv->bdrv_create) {
380 return -ENOTSUP;
381 }
382
383 if (qemu_in_coroutine()) {
384 /* Fast-path if already in coroutine context */
385 bdrv_create_co_entry(&cco);
386 } else {
387 co = qemu_coroutine_create(bdrv_create_co_entry);
388 qemu_coroutine_enter(co, &cco);
389 while (cco.ret == NOT_DONE) {
390 qemu_aio_wait();
391 }
392 }
393
394 ret = cco.ret;
395 g_free(cco.filename);
396
397 return ret;
398 }
399
400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
401 {
402 BlockDriver *drv;
403
404 drv = bdrv_find_protocol(filename);
405 if (drv == NULL) {
406 return -ENOENT;
407 }
408
409 return bdrv_create(drv, filename, options);
410 }
411
412 /*
413 * Create a uniquely-named empty temporary file.
414 * Return 0 upon success, otherwise a negative errno value.
415 */
416 int get_tmp_filename(char *filename, int size)
417 {
418 #ifdef _WIN32
419 char temp_dir[MAX_PATH];
420 /* GetTempFileName requires that its output buffer (4th param)
421 have length MAX_PATH or greater. */
422 assert(size >= MAX_PATH);
423 return (GetTempPath(MAX_PATH, temp_dir)
424 && GetTempFileName(temp_dir, "qem", 0, filename)
425 ? 0 : -GetLastError());
426 #else
427 int fd;
428 const char *tmpdir;
429 tmpdir = getenv("TMPDIR");
430 if (!tmpdir)
431 tmpdir = "/tmp";
432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
433 return -EOVERFLOW;
434 }
435 fd = mkstemp(filename);
436 if (fd < 0 || close(fd)) {
437 return -errno;
438 }
439 return 0;
440 #endif
441 }
442
443 /*
444 * Detect host devices. By convention, /dev/cdrom[N] is always
445 * recognized as a host CDROM.
446 */
447 static BlockDriver *find_hdev_driver(const char *filename)
448 {
449 int score_max = 0, score;
450 BlockDriver *drv = NULL, *d;
451
452 QLIST_FOREACH(d, &bdrv_drivers, list) {
453 if (d->bdrv_probe_device) {
454 score = d->bdrv_probe_device(filename);
455 if (score > score_max) {
456 score_max = score;
457 drv = d;
458 }
459 }
460 }
461
462 return drv;
463 }
464
465 BlockDriver *bdrv_find_protocol(const char *filename)
466 {
467 BlockDriver *drv1;
468 char protocol[128];
469 int len;
470 const char *p;
471
472 /* TODO Drivers without bdrv_file_open must be specified explicitly */
473
474 /*
475 * XXX(hch): we really should not let host device detection
476 * override an explicit protocol specification, but moving this
477 * later breaks access to device names with colons in them.
478 * Thanks to the brain-dead persistent naming schemes on udev-
479 * based Linux systems those actually are quite common.
480 */
481 drv1 = find_hdev_driver(filename);
482 if (drv1) {
483 return drv1;
484 }
485
486 if (!path_has_protocol(filename)) {
487 return bdrv_find_format("file");
488 }
489 p = strchr(filename, ':');
490 assert(p != NULL);
491 len = p - filename;
492 if (len > sizeof(protocol) - 1)
493 len = sizeof(protocol) - 1;
494 memcpy(protocol, filename, len);
495 protocol[len] = '\0';
496 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
497 if (drv1->protocol_name &&
498 !strcmp(drv1->protocol_name, protocol)) {
499 return drv1;
500 }
501 }
502 return NULL;
503 }
504
505 static int find_image_format(const char *filename, BlockDriver **pdrv)
506 {
507 int ret, score, score_max;
508 BlockDriver *drv1, *drv;
509 uint8_t buf[2048];
510 BlockDriverState *bs;
511
512 ret = bdrv_file_open(&bs, filename, 0);
513 if (ret < 0) {
514 *pdrv = NULL;
515 return ret;
516 }
517
518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
519 if (bs->sg || !bdrv_is_inserted(bs)) {
520 bdrv_delete(bs);
521 drv = bdrv_find_format("raw");
522 if (!drv) {
523 ret = -ENOENT;
524 }
525 *pdrv = drv;
526 return ret;
527 }
528
529 ret = bdrv_pread(bs, 0, buf, sizeof(buf));
530 bdrv_delete(bs);
531 if (ret < 0) {
532 *pdrv = NULL;
533 return ret;
534 }
535
536 score_max = 0;
537 drv = NULL;
538 QLIST_FOREACH(drv1, &bdrv_drivers, list) {
539 if (drv1->bdrv_probe) {
540 score = drv1->bdrv_probe(buf, ret, filename);
541 if (score > score_max) {
542 score_max = score;
543 drv = drv1;
544 }
545 }
546 }
547 if (!drv) {
548 ret = -ENOENT;
549 }
550 *pdrv = drv;
551 return ret;
552 }
553
554 /**
555 * Set the current 'total_sectors' value
556 */
557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
558 {
559 BlockDriver *drv = bs->drv;
560
561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
562 if (bs->sg)
563 return 0;
564
565 /* query actual device if possible, otherwise just trust the hint */
566 if (drv->bdrv_getlength) {
567 int64_t length = drv->bdrv_getlength(bs);
568 if (length < 0) {
569 return length;
570 }
571 hint = length >> BDRV_SECTOR_BITS;
572 }
573
574 bs->total_sectors = hint;
575 return 0;
576 }
577
578 /**
579 * Set open flags for a given cache mode
580 *
581 * Return 0 on success, -1 if the cache mode was invalid.
582 */
583 int bdrv_parse_cache_flags(const char *mode, int *flags)
584 {
585 *flags &= ~BDRV_O_CACHE_MASK;
586
587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
589 } else if (!strcmp(mode, "directsync")) {
590 *flags |= BDRV_O_NOCACHE;
591 } else if (!strcmp(mode, "writeback")) {
592 *flags |= BDRV_O_CACHE_WB;
593 } else if (!strcmp(mode, "unsafe")) {
594 *flags |= BDRV_O_CACHE_WB;
595 *flags |= BDRV_O_NO_FLUSH;
596 } else if (!strcmp(mode, "writethrough")) {
597 /* this is the default */
598 } else {
599 return -1;
600 }
601
602 return 0;
603 }
604
605 /**
606 * The copy-on-read flag is actually a reference count so multiple users may
607 * use the feature without worrying about clobbering its previous state.
608 * Copy-on-read stays enabled until all users have called to disable it.
609 */
610 void bdrv_enable_copy_on_read(BlockDriverState *bs)
611 {
612 bs->copy_on_read++;
613 }
614
615 void bdrv_disable_copy_on_read(BlockDriverState *bs)
616 {
617 assert(bs->copy_on_read > 0);
618 bs->copy_on_read--;
619 }
620
621 /*
622 * Common part for opening disk images and files
623 */
624 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
625 int flags, BlockDriver *drv)
626 {
627 int ret, open_flags;
628
629 assert(drv != NULL);
630 assert(bs->file == NULL);
631
632 trace_bdrv_open_common(bs, filename, flags, drv->format_name);
633
634 bs->open_flags = flags;
635 bs->buffer_alignment = 512;
636
637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
639 bdrv_enable_copy_on_read(bs);
640 }
641
642 pstrcpy(bs->filename, sizeof(bs->filename), filename);
643
644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
645 return -ENOTSUP;
646 }
647
648 bs->drv = drv;
649 bs->opaque = g_malloc0(drv->instance_size);
650
651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
652 open_flags = flags | BDRV_O_CACHE_WB;
653
654 /*
655 * Clear flags that are internal to the block layer before opening the
656 * image.
657 */
658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
659
660 /*
661 * Snapshots should be writable.
662 */
663 if (bs->is_temporary) {
664 open_flags |= BDRV_O_RDWR;
665 }
666
667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
668
669 /* Open the image, either directly or using a protocol */
670 if (drv->bdrv_file_open) {
671 ret = drv->bdrv_file_open(bs, filename, open_flags);
672 } else {
673 ret = bdrv_file_open(&bs->file, filename, open_flags);
674 if (ret >= 0) {
675 ret = drv->bdrv_open(bs, open_flags);
676 }
677 }
678
679 if (ret < 0) {
680 goto free_and_fail;
681 }
682
683 ret = refresh_total_sectors(bs, bs->total_sectors);
684 if (ret < 0) {
685 goto free_and_fail;
686 }
687
688 #ifndef _WIN32
689 if (bs->is_temporary) {
690 unlink(filename);
691 }
692 #endif
693 return 0;
694
695 free_and_fail:
696 if (bs->file) {
697 bdrv_delete(bs->file);
698 bs->file = NULL;
699 }
700 g_free(bs->opaque);
701 bs->opaque = NULL;
702 bs->drv = NULL;
703 return ret;
704 }
705
706 /*
707 * Opens a file using a protocol (file, host_device, nbd, ...)
708 */
709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
710 {
711 BlockDriverState *bs;
712 BlockDriver *drv;
713 int ret;
714
715 drv = bdrv_find_protocol(filename);
716 if (!drv) {
717 return -ENOENT;
718 }
719
720 bs = bdrv_new("");
721 ret = bdrv_open_common(bs, filename, flags, drv);
722 if (ret < 0) {
723 bdrv_delete(bs);
724 return ret;
725 }
726 bs->growable = 1;
727 *pbs = bs;
728 return 0;
729 }
730
731 /*
732 * Opens a disk image (raw, qcow2, vmdk, ...)
733 */
734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
735 BlockDriver *drv)
736 {
737 int ret;
738 char tmp_filename[PATH_MAX];
739
740 if (flags & BDRV_O_SNAPSHOT) {
741 BlockDriverState *bs1;
742 int64_t total_size;
743 int is_protocol = 0;
744 BlockDriver *bdrv_qcow2;
745 QEMUOptionParameter *options;
746 char backing_filename[PATH_MAX];
747
748 /* if snapshot, we create a temporary backing file and open it
749 instead of opening 'filename' directly */
750
751 /* if there is a backing file, use it */
752 bs1 = bdrv_new("");
753 ret = bdrv_open(bs1, filename, 0, drv);
754 if (ret < 0) {
755 bdrv_delete(bs1);
756 return ret;
757 }
758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
759
760 if (bs1->drv && bs1->drv->protocol_name)
761 is_protocol = 1;
762
763 bdrv_delete(bs1);
764
765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
766 if (ret < 0) {
767 return ret;
768 }
769
770 /* Real path is meaningless for protocols */
771 if (is_protocol)
772 snprintf(backing_filename, sizeof(backing_filename),
773 "%s", filename);
774 else if (!realpath(filename, backing_filename))
775 return -errno;
776
777 bdrv_qcow2 = bdrv_find_format("qcow2");
778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
779
780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
782 if (drv) {
783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
784 drv->format_name);
785 }
786
787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
788 free_option_parameters(options);
789 if (ret < 0) {
790 return ret;
791 }
792
793 filename = tmp_filename;
794 drv = bdrv_qcow2;
795 bs->is_temporary = 1;
796 }
797
798 /* Find the right image format driver */
799 if (!drv) {
800 ret = find_image_format(filename, &drv);
801 }
802
803 if (!drv) {
804 goto unlink_and_fail;
805 }
806
807 /* Open the image */
808 ret = bdrv_open_common(bs, filename, flags, drv);
809 if (ret < 0) {
810 goto unlink_and_fail;
811 }
812
813 /* If there is a backing file, use it */
814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
815 char backing_filename[PATH_MAX];
816 int back_flags;
817 BlockDriver *back_drv = NULL;
818
819 bs->backing_hd = bdrv_new("");
820 bdrv_get_full_backing_filename(bs, backing_filename,
821 sizeof(backing_filename));
822
823 if (bs->backing_format[0] != '\0') {
824 back_drv = bdrv_find_format(bs->backing_format);
825 }
826
827 /* backing files always opened read-only */
828 back_flags =
829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
830
831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
832 if (ret < 0) {
833 bdrv_close(bs);
834 return ret;
835 }
836 if (bs->is_temporary) {
837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
838 } else {
839 /* base image inherits from "parent" */
840 bs->backing_hd->keep_read_only = bs->keep_read_only;
841 }
842 }
843
844 if (!bdrv_key_required(bs)) {
845 bdrv_dev_change_media_cb(bs, true);
846 }
847
848 /* throttling disk I/O limits */
849 if (bs->io_limits_enabled) {
850 bdrv_io_limits_enable(bs);
851 }
852
853 return 0;
854
855 unlink_and_fail:
856 if (bs->is_temporary) {
857 unlink(filename);
858 }
859 return ret;
860 }
861
862 void bdrv_close(BlockDriverState *bs)
863 {
864 bdrv_flush(bs);
865 if (bs->drv) {
866 if (bs->job) {
867 block_job_cancel_sync(bs->job);
868 }
869 bdrv_drain_all();
870
871 if (bs == bs_snapshots) {
872 bs_snapshots = NULL;
873 }
874 if (bs->backing_hd) {
875 bdrv_delete(bs->backing_hd);
876 bs->backing_hd = NULL;
877 }
878 bs->drv->bdrv_close(bs);
879 g_free(bs->opaque);
880 #ifdef _WIN32
881 if (bs->is_temporary) {
882 unlink(bs->filename);
883 }
884 #endif
885 bs->opaque = NULL;
886 bs->drv = NULL;
887 bs->copy_on_read = 0;
888 bs->backing_file[0] = '\0';
889 bs->backing_format[0] = '\0';
890 bs->total_sectors = 0;
891 bs->encrypted = 0;
892 bs->valid_key = 0;
893 bs->sg = 0;
894 bs->growable = 0;
895
896 if (bs->file != NULL) {
897 bdrv_delete(bs->file);
898 bs->file = NULL;
899 }
900
901 bdrv_dev_change_media_cb(bs, false);
902 }
903
904 /*throttling disk I/O limits*/
905 if (bs->io_limits_enabled) {
906 bdrv_io_limits_disable(bs);
907 }
908 }
909
910 void bdrv_close_all(void)
911 {
912 BlockDriverState *bs;
913
914 QTAILQ_FOREACH(bs, &bdrv_states, list) {
915 bdrv_close(bs);
916 }
917 }
918
919 /*
920 * Wait for pending requests to complete across all BlockDriverStates
921 *
922 * This function does not flush data to disk, use bdrv_flush_all() for that
923 * after calling this function.
924 *
925 * Note that completion of an asynchronous I/O operation can trigger any
926 * number of other I/O operations on other devices---for example a coroutine
927 * can be arbitrarily complex and a constant flow of I/O can come until the
928 * coroutine is complete. Because of this, it is not possible to have a
929 * function to drain a single device's I/O queue.
930 */
931 void bdrv_drain_all(void)
932 {
933 BlockDriverState *bs;
934 bool busy;
935
936 do {
937 busy = qemu_aio_wait();
938
939 /* FIXME: We do not have timer support here, so this is effectively
940 * a busy wait.
941 */
942 QTAILQ_FOREACH(bs, &bdrv_states, list) {
943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
944 qemu_co_queue_restart_all(&bs->throttled_reqs);
945 busy = true;
946 }
947 }
948 } while (busy);
949
950 /* If requests are still pending there is a bug somewhere */
951 QTAILQ_FOREACH(bs, &bdrv_states, list) {
952 assert(QLIST_EMPTY(&bs->tracked_requests));
953 assert(qemu_co_queue_empty(&bs->throttled_reqs));
954 }
955 }
956
957 /* make a BlockDriverState anonymous by removing from bdrv_state list.
958 Also, NULL terminate the device_name to prevent double remove */
959 void bdrv_make_anon(BlockDriverState *bs)
960 {
961 if (bs->device_name[0] != '\0') {
962 QTAILQ_REMOVE(&bdrv_states, bs, list);
963 }
964 bs->device_name[0] = '\0';
965 }
966
967 static void bdrv_rebind(BlockDriverState *bs)
968 {
969 if (bs->drv && bs->drv->bdrv_rebind) {
970 bs->drv->bdrv_rebind(bs);
971 }
972 }
973
974 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
975 BlockDriverState *bs_src)
976 {
977 /* move some fields that need to stay attached to the device */
978 bs_dest->open_flags = bs_src->open_flags;
979
980 /* dev info */
981 bs_dest->dev_ops = bs_src->dev_ops;
982 bs_dest->dev_opaque = bs_src->dev_opaque;
983 bs_dest->dev = bs_src->dev;
984 bs_dest->buffer_alignment = bs_src->buffer_alignment;
985 bs_dest->copy_on_read = bs_src->copy_on_read;
986
987 bs_dest->enable_write_cache = bs_src->enable_write_cache;
988
989 /* i/o timing parameters */
990 bs_dest->slice_time = bs_src->slice_time;
991 bs_dest->slice_start = bs_src->slice_start;
992 bs_dest->slice_end = bs_src->slice_end;
993 bs_dest->io_limits = bs_src->io_limits;
994 bs_dest->io_base = bs_src->io_base;
995 bs_dest->throttled_reqs = bs_src->throttled_reqs;
996 bs_dest->block_timer = bs_src->block_timer;
997 bs_dest->io_limits_enabled = bs_src->io_limits_enabled;
998
999 /* geometry */
1000 bs_dest->cyls = bs_src->cyls;
1001 bs_dest->heads = bs_src->heads;
1002 bs_dest->secs = bs_src->secs;
1003 bs_dest->translation = bs_src->translation;
1004
1005 /* r/w error */
1006 bs_dest->on_read_error = bs_src->on_read_error;
1007 bs_dest->on_write_error = bs_src->on_write_error;
1008
1009 /* i/o status */
1010 bs_dest->iostatus_enabled = bs_src->iostatus_enabled;
1011 bs_dest->iostatus = bs_src->iostatus;
1012
1013 /* dirty bitmap */
1014 bs_dest->dirty_count = bs_src->dirty_count;
1015 bs_dest->dirty_bitmap = bs_src->dirty_bitmap;
1016
1017 /* job */
1018 bs_dest->in_use = bs_src->in_use;
1019 bs_dest->job = bs_src->job;
1020
1021 /* keep the same entry in bdrv_states */
1022 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1023 bs_src->device_name);
1024 bs_dest->list = bs_src->list;
1025 }
1026
1027 /*
1028 * Swap bs contents for two image chains while they are live,
1029 * while keeping required fields on the BlockDriverState that is
1030 * actually attached to a device.
1031 *
1032 * This will modify the BlockDriverState fields, and swap contents
1033 * between bs_new and bs_old. Both bs_new and bs_old are modified.
1034 *
1035 * bs_new is required to be anonymous.
1036 *
1037 * This function does not create any image files.
1038 */
1039 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1040 {
1041 BlockDriverState tmp;
1042
1043 /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1044 assert(bs_new->device_name[0] == '\0');
1045 assert(bs_new->dirty_bitmap == NULL);
1046 assert(bs_new->job == NULL);
1047 assert(bs_new->dev == NULL);
1048 assert(bs_new->in_use == 0);
1049 assert(bs_new->io_limits_enabled == false);
1050 assert(bs_new->block_timer == NULL);
1051
1052 tmp = *bs_new;
1053 *bs_new = *bs_old;
1054 *bs_old = tmp;
1055
1056 /* there are some fields that should not be swapped, move them back */
1057 bdrv_move_feature_fields(&tmp, bs_old);
1058 bdrv_move_feature_fields(bs_old, bs_new);
1059 bdrv_move_feature_fields(bs_new, &tmp);
1060
1061 /* bs_new shouldn't be in bdrv_states even after the swap! */
1062 assert(bs_new->device_name[0] == '\0');
1063
1064 /* Check a few fields that should remain attached to the device */
1065 assert(bs_new->dev == NULL);
1066 assert(bs_new->job == NULL);
1067 assert(bs_new->in_use == 0);
1068 assert(bs_new->io_limits_enabled == false);
1069 assert(bs_new->block_timer == NULL);
1070
1071 bdrv_rebind(bs_new);
1072 bdrv_rebind(bs_old);
1073 }
1074
1075 /*
1076 * Add new bs contents at the top of an image chain while the chain is
1077 * live, while keeping required fields on the top layer.
1078 *
1079 * This will modify the BlockDriverState fields, and swap contents
1080 * between bs_new and bs_top. Both bs_new and bs_top are modified.
1081 *
1082 * bs_new is required to be anonymous.
1083 *
1084 * This function does not create any image files.
1085 */
1086 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1087 {
1088 bdrv_swap(bs_new, bs_top);
1089
1090 /* The contents of 'tmp' will become bs_top, as we are
1091 * swapping bs_new and bs_top contents. */
1092 bs_top->backing_hd = bs_new;
1093 bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1094 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1095 bs_new->filename);
1096 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1097 bs_new->drv ? bs_new->drv->format_name : "");
1098 }
1099
1100 void bdrv_delete(BlockDriverState *bs)
1101 {
1102 assert(!bs->dev);
1103 assert(!bs->job);
1104 assert(!bs->in_use);
1105
1106 /* remove from list, if necessary */
1107 bdrv_make_anon(bs);
1108
1109 bdrv_close(bs);
1110
1111 assert(bs != bs_snapshots);
1112 g_free(bs);
1113 }
1114
1115 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1116 /* TODO change to DeviceState *dev when all users are qdevified */
1117 {
1118 if (bs->dev) {
1119 return -EBUSY;
1120 }
1121 bs->dev = dev;
1122 bdrv_iostatus_reset(bs);
1123 return 0;
1124 }
1125
1126 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1127 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1128 {
1129 if (bdrv_attach_dev(bs, dev) < 0) {
1130 abort();
1131 }
1132 }
1133
1134 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1135 /* TODO change to DeviceState *dev when all users are qdevified */
1136 {
1137 assert(bs->dev == dev);
1138 bs->dev = NULL;
1139 bs->dev_ops = NULL;
1140 bs->dev_opaque = NULL;
1141 bs->buffer_alignment = 512;
1142 }
1143
1144 /* TODO change to return DeviceState * when all users are qdevified */
1145 void *bdrv_get_attached_dev(BlockDriverState *bs)
1146 {
1147 return bs->dev;
1148 }
1149
1150 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1151 void *opaque)
1152 {
1153 bs->dev_ops = ops;
1154 bs->dev_opaque = opaque;
1155 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1156 bs_snapshots = NULL;
1157 }
1158 }
1159
1160 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1161 BlockQMPEventAction action, int is_read)
1162 {
1163 QObject *data;
1164 const char *action_str;
1165
1166 switch (action) {
1167 case BDRV_ACTION_REPORT:
1168 action_str = "report";
1169 break;
1170 case BDRV_ACTION_IGNORE:
1171 action_str = "ignore";
1172 break;
1173 case BDRV_ACTION_STOP:
1174 action_str = "stop";
1175 break;
1176 default:
1177 abort();
1178 }
1179
1180 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1181 bdrv->device_name,
1182 action_str,
1183 is_read ? "read" : "write");
1184 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1185
1186 qobject_decref(data);
1187 }
1188
1189 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1190 {
1191 QObject *data;
1192
1193 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1194 bdrv_get_device_name(bs), ejected);
1195 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1196
1197 qobject_decref(data);
1198 }
1199
1200 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1201 {
1202 if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1203 bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1204 bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1205 if (tray_was_closed) {
1206 /* tray open */
1207 bdrv_emit_qmp_eject_event(bs, true);
1208 }
1209 if (load) {
1210 /* tray close */
1211 bdrv_emit_qmp_eject_event(bs, false);
1212 }
1213 }
1214 }
1215
1216 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1217 {
1218 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1219 }
1220
1221 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1222 {
1223 if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1224 bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1225 }
1226 }
1227
1228 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1229 {
1230 if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1231 return bs->dev_ops->is_tray_open(bs->dev_opaque);
1232 }
1233 return false;
1234 }
1235
1236 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1237 {
1238 if (bs->dev_ops && bs->dev_ops->resize_cb) {
1239 bs->dev_ops->resize_cb(bs->dev_opaque);
1240 }
1241 }
1242
1243 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1244 {
1245 if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1246 return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1247 }
1248 return false;
1249 }
1250
1251 /*
1252 * Run consistency checks on an image
1253 *
1254 * Returns 0 if the check could be completed (it doesn't mean that the image is
1255 * free of errors) or -errno when an internal error occurred. The results of the
1256 * check are stored in res.
1257 */
1258 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1259 {
1260 if (bs->drv->bdrv_check == NULL) {
1261 return -ENOTSUP;
1262 }
1263
1264 memset(res, 0, sizeof(*res));
1265 return bs->drv->bdrv_check(bs, res, fix);
1266 }
1267
1268 #define COMMIT_BUF_SECTORS 2048
1269
1270 /* commit COW file into the raw image */
1271 int bdrv_commit(BlockDriverState *bs)
1272 {
1273 BlockDriver *drv = bs->drv;
1274 BlockDriver *backing_drv;
1275 int64_t sector, total_sectors;
1276 int n, ro, open_flags;
1277 int ret = 0, rw_ret = 0;
1278 uint8_t *buf;
1279 char filename[1024];
1280 BlockDriverState *bs_rw, *bs_ro;
1281
1282 if (!drv)
1283 return -ENOMEDIUM;
1284
1285 if (!bs->backing_hd) {
1286 return -ENOTSUP;
1287 }
1288
1289 if (bs->backing_hd->keep_read_only) {
1290 return -EACCES;
1291 }
1292
1293 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1294 return -EBUSY;
1295 }
1296
1297 backing_drv = bs->backing_hd->drv;
1298 ro = bs->backing_hd->read_only;
1299 strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1300 open_flags = bs->backing_hd->open_flags;
1301
1302 if (ro) {
1303 /* re-open as RW */
1304 bdrv_delete(bs->backing_hd);
1305 bs->backing_hd = NULL;
1306 bs_rw = bdrv_new("");
1307 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1308 backing_drv);
1309 if (rw_ret < 0) {
1310 bdrv_delete(bs_rw);
1311 /* try to re-open read-only */
1312 bs_ro = bdrv_new("");
1313 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1314 backing_drv);
1315 if (ret < 0) {
1316 bdrv_delete(bs_ro);
1317 /* drive not functional anymore */
1318 bs->drv = NULL;
1319 return ret;
1320 }
1321 bs->backing_hd = bs_ro;
1322 return rw_ret;
1323 }
1324 bs->backing_hd = bs_rw;
1325 }
1326
1327 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1328 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1329
1330 for (sector = 0; sector < total_sectors; sector += n) {
1331 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1332
1333 if (bdrv_read(bs, sector, buf, n) != 0) {
1334 ret = -EIO;
1335 goto ro_cleanup;
1336 }
1337
1338 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1339 ret = -EIO;
1340 goto ro_cleanup;
1341 }
1342 }
1343 }
1344
1345 if (drv->bdrv_make_empty) {
1346 ret = drv->bdrv_make_empty(bs);
1347 bdrv_flush(bs);
1348 }
1349
1350 /*
1351 * Make sure all data we wrote to the backing device is actually
1352 * stable on disk.
1353 */
1354 if (bs->backing_hd)
1355 bdrv_flush(bs->backing_hd);
1356
1357 ro_cleanup:
1358 g_free(buf);
1359
1360 if (ro) {
1361 /* re-open as RO */
1362 bdrv_delete(bs->backing_hd);
1363 bs->backing_hd = NULL;
1364 bs_ro = bdrv_new("");
1365 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1366 backing_drv);
1367 if (ret < 0) {
1368 bdrv_delete(bs_ro);
1369 /* drive not functional anymore */
1370 bs->drv = NULL;
1371 return ret;
1372 }
1373 bs->backing_hd = bs_ro;
1374 bs->backing_hd->keep_read_only = 0;
1375 }
1376
1377 return ret;
1378 }
1379
1380 int bdrv_commit_all(void)
1381 {
1382 BlockDriverState *bs;
1383
1384 QTAILQ_FOREACH(bs, &bdrv_states, list) {
1385 int ret = bdrv_commit(bs);
1386 if (ret < 0) {
1387 return ret;
1388 }
1389 }
1390 return 0;
1391 }
1392
1393 struct BdrvTrackedRequest {
1394 BlockDriverState *bs;
1395 int64_t sector_num;
1396 int nb_sectors;
1397 bool is_write;
1398 QLIST_ENTRY(BdrvTrackedRequest) list;
1399 Coroutine *co; /* owner, used for deadlock detection */
1400 CoQueue wait_queue; /* coroutines blocked on this request */
1401 };
1402
1403 /**
1404 * Remove an active request from the tracked requests list
1405 *
1406 * This function should be called when a tracked request is completing.
1407 */
1408 static void tracked_request_end(BdrvTrackedRequest *req)
1409 {
1410 QLIST_REMOVE(req, list);
1411 qemu_co_queue_restart_all(&req->wait_queue);
1412 }
1413
1414 /**
1415 * Add an active request to the tracked requests list
1416 */
1417 static void tracked_request_begin(BdrvTrackedRequest *req,
1418 BlockDriverState *bs,
1419 int64_t sector_num,
1420 int nb_sectors, bool is_write)
1421 {
1422 *req = (BdrvTrackedRequest){
1423 .bs = bs,
1424 .sector_num = sector_num,
1425 .nb_sectors = nb_sectors,
1426 .is_write = is_write,
1427 .co = qemu_coroutine_self(),
1428 };
1429
1430 qemu_co_queue_init(&req->wait_queue);
1431
1432 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1433 }
1434
1435 /**
1436 * Round a region to cluster boundaries
1437 */
1438 static void round_to_clusters(BlockDriverState *bs,
1439 int64_t sector_num, int nb_sectors,
1440 int64_t *cluster_sector_num,
1441 int *cluster_nb_sectors)
1442 {
1443 BlockDriverInfo bdi;
1444
1445 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1446 *cluster_sector_num = sector_num;
1447 *cluster_nb_sectors = nb_sectors;
1448 } else {
1449 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1450 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1451 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1452 nb_sectors, c);
1453 }
1454 }
1455
1456 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1457 int64_t sector_num, int nb_sectors) {
1458 /* aaaa bbbb */
1459 if (sector_num >= req->sector_num + req->nb_sectors) {
1460 return false;
1461 }
1462 /* bbbb aaaa */
1463 if (req->sector_num >= sector_num + nb_sectors) {
1464 return false;
1465 }
1466 return true;
1467 }
1468
1469 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1470 int64_t sector_num, int nb_sectors)
1471 {
1472 BdrvTrackedRequest *req;
1473 int64_t cluster_sector_num;
1474 int cluster_nb_sectors;
1475 bool retry;
1476
1477 /* If we touch the same cluster it counts as an overlap. This guarantees
1478 * that allocating writes will be serialized and not race with each other
1479 * for the same cluster. For example, in copy-on-read it ensures that the
1480 * CoR read and write operations are atomic and guest writes cannot
1481 * interleave between them.
1482 */
1483 round_to_clusters(bs, sector_num, nb_sectors,
1484 &cluster_sector_num, &cluster_nb_sectors);
1485
1486 do {
1487 retry = false;
1488 QLIST_FOREACH(req, &bs->tracked_requests, list) {
1489 if (tracked_request_overlaps(req, cluster_sector_num,
1490 cluster_nb_sectors)) {
1491 /* Hitting this means there was a reentrant request, for
1492 * example, a block driver issuing nested requests. This must
1493 * never happen since it means deadlock.
1494 */
1495 assert(qemu_coroutine_self() != req->co);
1496
1497 qemu_co_queue_wait(&req->wait_queue);
1498 retry = true;
1499 break;
1500 }
1501 }
1502 } while (retry);
1503 }
1504
1505 /*
1506 * Return values:
1507 * 0 - success
1508 * -EINVAL - backing format specified, but no file
1509 * -ENOSPC - can't update the backing file because no space is left in the
1510 * image file header
1511 * -ENOTSUP - format driver doesn't support changing the backing file
1512 */
1513 int bdrv_change_backing_file(BlockDriverState *bs,
1514 const char *backing_file, const char *backing_fmt)
1515 {
1516 BlockDriver *drv = bs->drv;
1517 int ret;
1518
1519 /* Backing file format doesn't make sense without a backing file */
1520 if (backing_fmt && !backing_file) {
1521 return -EINVAL;
1522 }
1523
1524 if (drv->bdrv_change_backing_file != NULL) {
1525 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1526 } else {
1527 ret = -ENOTSUP;
1528 }
1529
1530 if (ret == 0) {
1531 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1532 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1533 }
1534 return ret;
1535 }
1536
1537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1538 size_t size)
1539 {
1540 int64_t len;
1541
1542 if (!bdrv_is_inserted(bs))
1543 return -ENOMEDIUM;
1544
1545 if (bs->growable)
1546 return 0;
1547
1548 len = bdrv_getlength(bs);
1549
1550 if (offset < 0)
1551 return -EIO;
1552
1553 if ((offset > len) || (len - offset < size))
1554 return -EIO;
1555
1556 return 0;
1557 }
1558
1559 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1560 int nb_sectors)
1561 {
1562 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1563 nb_sectors * BDRV_SECTOR_SIZE);
1564 }
1565
1566 typedef struct RwCo {
1567 BlockDriverState *bs;
1568 int64_t sector_num;
1569 int nb_sectors;
1570 QEMUIOVector *qiov;
1571 bool is_write;
1572 int ret;
1573 } RwCo;
1574
1575 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1576 {
1577 RwCo *rwco = opaque;
1578
1579 if (!rwco->is_write) {
1580 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1581 rwco->nb_sectors, rwco->qiov, 0);
1582 } else {
1583 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1584 rwco->nb_sectors, rwco->qiov, 0);
1585 }
1586 }
1587
1588 /*
1589 * Process a synchronous request using coroutines
1590 */
1591 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1592 int nb_sectors, bool is_write)
1593 {
1594 QEMUIOVector qiov;
1595 struct iovec iov = {
1596 .iov_base = (void *)buf,
1597 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1598 };
1599 Coroutine *co;
1600 RwCo rwco = {
1601 .bs = bs,
1602 .sector_num = sector_num,
1603 .nb_sectors = nb_sectors,
1604 .qiov = &qiov,
1605 .is_write = is_write,
1606 .ret = NOT_DONE,
1607 };
1608
1609 qemu_iovec_init_external(&qiov, &iov, 1);
1610
1611 /**
1612 * In sync call context, when the vcpu is blocked, this throttling timer
1613 * will not fire; so the I/O throttling function has to be disabled here
1614 * if it has been enabled.
1615 */
1616 if (bs->io_limits_enabled) {
1617 fprintf(stderr, "Disabling I/O throttling on '%s' due "
1618 "to synchronous I/O.\n", bdrv_get_device_name(bs));
1619 bdrv_io_limits_disable(bs);
1620 }
1621
1622 if (qemu_in_coroutine()) {
1623 /* Fast-path if already in coroutine context */
1624 bdrv_rw_co_entry(&rwco);
1625 } else {
1626 co = qemu_coroutine_create(bdrv_rw_co_entry);
1627 qemu_coroutine_enter(co, &rwco);
1628 while (rwco.ret == NOT_DONE) {
1629 qemu_aio_wait();
1630 }
1631 }
1632 return rwco.ret;
1633 }
1634
1635 /* return < 0 if error. See bdrv_write() for the return codes */
1636 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1637 uint8_t *buf, int nb_sectors)
1638 {
1639 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1640 }
1641
1642 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1643 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1644 uint8_t *buf, int nb_sectors)
1645 {
1646 bool enabled;
1647 int ret;
1648
1649 enabled = bs->io_limits_enabled;
1650 bs->io_limits_enabled = false;
1651 ret = bdrv_read(bs, 0, buf, 1);
1652 bs->io_limits_enabled = enabled;
1653 return ret;
1654 }
1655
1656 #define BITS_PER_LONG (sizeof(unsigned long) * 8)
1657
1658 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1659 int nb_sectors, int dirty)
1660 {
1661 int64_t start, end;
1662 unsigned long val, idx, bit;
1663
1664 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1665 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1666
1667 for (; start <= end; start++) {
1668 idx = start / BITS_PER_LONG;
1669 bit = start % BITS_PER_LONG;
1670 val = bs->dirty_bitmap[idx];
1671 if (dirty) {
1672 if (!(val & (1UL << bit))) {
1673 bs->dirty_count++;
1674 val |= 1UL << bit;
1675 }
1676 } else {
1677 if (val & (1UL << bit)) {
1678 bs->dirty_count--;
1679 val &= ~(1UL << bit);
1680 }
1681 }
1682 bs->dirty_bitmap[idx] = val;
1683 }
1684 }
1685
1686 /* Return < 0 if error. Important errors are:
1687 -EIO generic I/O error (may happen for all errors)
1688 -ENOMEDIUM No media inserted.
1689 -EINVAL Invalid sector number or nb_sectors
1690 -EACCES Trying to write a read-only device
1691 */
1692 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1693 const uint8_t *buf, int nb_sectors)
1694 {
1695 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1696 }
1697
1698 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1699 void *buf, int count1)
1700 {
1701 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1702 int len, nb_sectors, count;
1703 int64_t sector_num;
1704 int ret;
1705
1706 count = count1;
1707 /* first read to align to sector start */
1708 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1709 if (len > count)
1710 len = count;
1711 sector_num = offset >> BDRV_SECTOR_BITS;
1712 if (len > 0) {
1713 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1714 return ret;
1715 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1716 count -= len;
1717 if (count == 0)
1718 return count1;
1719 sector_num++;
1720 buf += len;
1721 }
1722
1723 /* read the sectors "in place" */
1724 nb_sectors = count >> BDRV_SECTOR_BITS;
1725 if (nb_sectors > 0) {
1726 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1727 return ret;
1728 sector_num += nb_sectors;
1729 len = nb_sectors << BDRV_SECTOR_BITS;
1730 buf += len;
1731 count -= len;
1732 }
1733
1734 /* add data from the last sector */
1735 if (count > 0) {
1736 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1737 return ret;
1738 memcpy(buf, tmp_buf, count);
1739 }
1740 return count1;
1741 }
1742
1743 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1744 const void *buf, int count1)
1745 {
1746 uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1747 int len, nb_sectors, count;
1748 int64_t sector_num;
1749 int ret;
1750
1751 count = count1;
1752 /* first write to align to sector start */
1753 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1754 if (len > count)
1755 len = count;
1756 sector_num = offset >> BDRV_SECTOR_BITS;
1757 if (len > 0) {
1758 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1759 return ret;
1760 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1761 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1762 return ret;
1763 count -= len;
1764 if (count == 0)
1765 return count1;
1766 sector_num++;
1767 buf += len;
1768 }
1769
1770 /* write the sectors "in place" */
1771 nb_sectors = count >> BDRV_SECTOR_BITS;
1772 if (nb_sectors > 0) {
1773 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1774 return ret;
1775 sector_num += nb_sectors;
1776 len = nb_sectors << BDRV_SECTOR_BITS;
1777 buf += len;
1778 count -= len;
1779 }
1780
1781 /* add data from the last sector */
1782 if (count > 0) {
1783 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1784 return ret;
1785 memcpy(tmp_buf, buf, count);
1786 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1787 return ret;
1788 }
1789 return count1;
1790 }
1791
1792 /*
1793 * Writes to the file and ensures that no writes are reordered across this
1794 * request (acts as a barrier)
1795 *
1796 * Returns 0 on success, -errno in error cases.
1797 */
1798 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1799 const void *buf, int count)
1800 {
1801 int ret;
1802
1803 ret = bdrv_pwrite(bs, offset, buf, count);
1804 if (ret < 0) {
1805 return ret;
1806 }
1807
1808 /* No flush needed for cache modes that already do it */
1809 if (bs->enable_write_cache) {
1810 bdrv_flush(bs);
1811 }
1812
1813 return 0;
1814 }
1815
1816 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1817 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1818 {
1819 /* Perform I/O through a temporary buffer so that users who scribble over
1820 * their read buffer while the operation is in progress do not end up
1821 * modifying the image file. This is critical for zero-copy guest I/O
1822 * where anything might happen inside guest memory.
1823 */
1824 void *bounce_buffer;
1825
1826 BlockDriver *drv = bs->drv;
1827 struct iovec iov;
1828 QEMUIOVector bounce_qiov;
1829 int64_t cluster_sector_num;
1830 int cluster_nb_sectors;
1831 size_t skip_bytes;
1832 int ret;
1833
1834 /* Cover entire cluster so no additional backing file I/O is required when
1835 * allocating cluster in the image file.
1836 */
1837 round_to_clusters(bs, sector_num, nb_sectors,
1838 &cluster_sector_num, &cluster_nb_sectors);
1839
1840 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1841 cluster_sector_num, cluster_nb_sectors);
1842
1843 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1844 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1845 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1846
1847 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1848 &bounce_qiov);
1849 if (ret < 0) {
1850 goto err;
1851 }
1852
1853 if (drv->bdrv_co_write_zeroes &&
1854 buffer_is_zero(bounce_buffer, iov.iov_len)) {
1855 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
1856 cluster_nb_sectors);
1857 } else {
1858 /* This does not change the data on the disk, it is not necessary
1859 * to flush even in cache=writethrough mode.
1860 */
1861 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1862 &bounce_qiov);
1863 }
1864
1865 if (ret < 0) {
1866 /* It might be okay to ignore write errors for guest requests. If this
1867 * is a deliberate copy-on-read then we don't want to ignore the error.
1868 * Simply report it in all cases.
1869 */
1870 goto err;
1871 }
1872
1873 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1874 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
1875 nb_sectors * BDRV_SECTOR_SIZE);
1876
1877 err:
1878 qemu_vfree(bounce_buffer);
1879 return ret;
1880 }
1881
1882 /*
1883 * Handle a read request in coroutine context
1884 */
1885 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1886 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1887 BdrvRequestFlags flags)
1888 {
1889 BlockDriver *drv = bs->drv;
1890 BdrvTrackedRequest req;
1891 int ret;
1892
1893 if (!drv) {
1894 return -ENOMEDIUM;
1895 }
1896 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1897 return -EIO;
1898 }
1899
1900 /* throttling disk read I/O */
1901 if (bs->io_limits_enabled) {
1902 bdrv_io_limits_intercept(bs, false, nb_sectors);
1903 }
1904
1905 if (bs->copy_on_read) {
1906 flags |= BDRV_REQ_COPY_ON_READ;
1907 }
1908 if (flags & BDRV_REQ_COPY_ON_READ) {
1909 bs->copy_on_read_in_flight++;
1910 }
1911
1912 if (bs->copy_on_read_in_flight) {
1913 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1914 }
1915
1916 tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1917
1918 if (flags & BDRV_REQ_COPY_ON_READ) {
1919 int pnum;
1920
1921 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1922 if (ret < 0) {
1923 goto out;
1924 }
1925
1926 if (!ret || pnum != nb_sectors) {
1927 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1928 goto out;
1929 }
1930 }
1931
1932 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1933
1934 out:
1935 tracked_request_end(&req);
1936
1937 if (flags & BDRV_REQ_COPY_ON_READ) {
1938 bs->copy_on_read_in_flight--;
1939 }
1940
1941 return ret;
1942 }
1943
1944 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1945 int nb_sectors, QEMUIOVector *qiov)
1946 {
1947 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1948
1949 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1950 }
1951
1952 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1953 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1954 {
1955 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1956
1957 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1958 BDRV_REQ_COPY_ON_READ);
1959 }
1960
1961 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1962 int64_t sector_num, int nb_sectors)
1963 {
1964 BlockDriver *drv = bs->drv;
1965 QEMUIOVector qiov;
1966 struct iovec iov;
1967 int ret;
1968
1969 /* TODO Emulate only part of misaligned requests instead of letting block
1970 * drivers return -ENOTSUP and emulate everything */
1971
1972 /* First try the efficient write zeroes operation */
1973 if (drv->bdrv_co_write_zeroes) {
1974 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1975 if (ret != -ENOTSUP) {
1976 return ret;
1977 }
1978 }
1979
1980 /* Fall back to bounce buffer if write zeroes is unsupported */
1981 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE;
1982 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1983 memset(iov.iov_base, 0, iov.iov_len);
1984 qemu_iovec_init_external(&qiov, &iov, 1);
1985
1986 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1987
1988 qemu_vfree(iov.iov_base);
1989 return ret;
1990 }
1991
1992 /*
1993 * Handle a write request in coroutine context
1994 */
1995 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1996 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1997 BdrvRequestFlags flags)
1998 {
1999 BlockDriver *drv = bs->drv;
2000 BdrvTrackedRequest req;
2001 int ret;
2002
2003 if (!bs->drv) {
2004 return -ENOMEDIUM;
2005 }
2006 if (bs->read_only) {
2007 return -EACCES;
2008 }
2009 if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2010 return -EIO;
2011 }
2012
2013 /* throttling disk write I/O */
2014 if (bs->io_limits_enabled) {
2015 bdrv_io_limits_intercept(bs, true, nb_sectors);
2016 }
2017
2018 if (bs->copy_on_read_in_flight) {
2019 wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2020 }
2021
2022 tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2023
2024 if (flags & BDRV_REQ_ZERO_WRITE) {
2025 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2026 } else {
2027 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2028 }
2029
2030 if (ret == 0 && !bs->enable_write_cache) {
2031 ret = bdrv_co_flush(bs);
2032 }
2033
2034 if (bs->dirty_bitmap) {
2035 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2036 }
2037
2038 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2039 bs->wr_highest_sector = sector_num + nb_sectors - 1;
2040 }
2041
2042 tracked_request_end(&req);
2043
2044 return ret;
2045 }
2046
2047 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2048 int nb_sectors, QEMUIOVector *qiov)
2049 {
2050 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2051
2052 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2053 }
2054
2055 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2056 int64_t sector_num, int nb_sectors)
2057 {
2058 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2059
2060 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2061 BDRV_REQ_ZERO_WRITE);
2062 }
2063
2064 /**
2065 * Truncate file to 'offset' bytes (needed only for file protocols)
2066 */
2067 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2068 {
2069 BlockDriver *drv = bs->drv;
2070 int ret;
2071 if (!drv)
2072 return -ENOMEDIUM;
2073 if (!drv->bdrv_truncate)
2074 return -ENOTSUP;
2075 if (bs->read_only)
2076 return -EACCES;
2077 if (bdrv_in_use(bs))
2078 return -EBUSY;
2079 ret = drv->bdrv_truncate(bs, offset);
2080 if (ret == 0) {
2081 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2082 bdrv_dev_resize_cb(bs);
2083 }
2084 return ret;
2085 }
2086
2087 /**
2088 * Length of a allocated file in bytes. Sparse files are counted by actual
2089 * allocated space. Return < 0 if error or unknown.
2090 */
2091 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2092 {
2093 BlockDriver *drv = bs->drv;
2094 if (!drv) {
2095 return -ENOMEDIUM;
2096 }
2097 if (drv->bdrv_get_allocated_file_size) {
2098 return drv->bdrv_get_allocated_file_size(bs);
2099 }
2100 if (bs->file) {
2101 return bdrv_get_allocated_file_size(bs->file);
2102 }
2103 return -ENOTSUP;
2104 }
2105
2106 /**
2107 * Length of a file in bytes. Return < 0 if error or unknown.
2108 */
2109 int64_t bdrv_getlength(BlockDriverState *bs)
2110 {
2111 BlockDriver *drv = bs->drv;
2112 if (!drv)
2113 return -ENOMEDIUM;
2114
2115 if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2116 if (drv->bdrv_getlength) {
2117 return drv->bdrv_getlength(bs);
2118 }
2119 }
2120 return bs->total_sectors * BDRV_SECTOR_SIZE;
2121 }
2122
2123 /* return 0 as number of sectors if no device present or error */
2124 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2125 {
2126 int64_t length;
2127 length = bdrv_getlength(bs);
2128 if (length < 0)
2129 length = 0;
2130 else
2131 length = length >> BDRV_SECTOR_BITS;
2132 *nb_sectors_ptr = length;
2133 }
2134
2135 struct partition {
2136 uint8_t boot_ind; /* 0x80 - active */
2137 uint8_t head; /* starting head */
2138 uint8_t sector; /* starting sector */
2139 uint8_t cyl; /* starting cylinder */
2140 uint8_t sys_ind; /* What partition type */
2141 uint8_t end_head; /* end head */
2142 uint8_t end_sector; /* end sector */
2143 uint8_t end_cyl; /* end cylinder */
2144 uint32_t start_sect; /* starting sector counting from 0 */
2145 uint32_t nr_sects; /* nr of sectors in partition */
2146 } QEMU_PACKED;
2147
2148 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
2149 static int guess_disk_lchs(BlockDriverState *bs,
2150 int *pcylinders, int *pheads, int *psectors)
2151 {
2152 uint8_t buf[BDRV_SECTOR_SIZE];
2153 int i, heads, sectors, cylinders;
2154 struct partition *p;
2155 uint32_t nr_sects;
2156 uint64_t nb_sectors;
2157
2158 bdrv_get_geometry(bs, &nb_sectors);
2159
2160 /**
2161 * The function will be invoked during startup not only in sync I/O mode,
2162 * but also in async I/O mode. So the I/O throttling function has to
2163 * be disabled temporarily here, not permanently.
2164 */
2165 if (bdrv_read_unthrottled(bs, 0, buf, 1) < 0) {
2166 return -1;
2167 }
2168 /* test msdos magic */
2169 if (buf[510] != 0x55 || buf[511] != 0xaa)
2170 return -1;
2171 for(i = 0; i < 4; i++) {
2172 p = ((struct partition *)(buf + 0x1be)) + i;
2173 nr_sects = le32_to_cpu(p->nr_sects);
2174 if (nr_sects && p->end_head) {
2175 /* We make the assumption that the partition terminates on
2176 a cylinder boundary */
2177 heads = p->end_head + 1;
2178 sectors = p->end_sector & 63;
2179 if (sectors == 0)
2180 continue;
2181 cylinders = nb_sectors / (heads * sectors);
2182 if (cylinders < 1 || cylinders > 16383)
2183 continue;
2184 *pheads = heads;
2185 *psectors = sectors;
2186 *pcylinders = cylinders;
2187 #if 0
2188 printf("guessed geometry: LCHS=%d %d %d\n",
2189 cylinders, heads, sectors);
2190 #endif
2191 return 0;
2192 }
2193 }
2194 return -1;
2195 }
2196
2197 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2198 {
2199 int translation, lba_detected = 0;
2200 int cylinders, heads, secs;
2201 uint64_t nb_sectors;
2202
2203 /* if a geometry hint is available, use it */
2204 bdrv_get_geometry(bs, &nb_sectors);
2205 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2206 translation = bdrv_get_translation_hint(bs);
2207 if (cylinders != 0) {
2208 *pcyls = cylinders;
2209 *pheads = heads;
2210 *psecs = secs;
2211 } else {
2212 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2213 if (heads > 16) {
2214 /* if heads > 16, it means that a BIOS LBA
2215 translation was active, so the default
2216 hardware geometry is OK */
2217 lba_detected = 1;
2218 goto default_geometry;
2219 } else {
2220 *pcyls = cylinders;
2221 *pheads = heads;
2222 *psecs = secs;
2223 /* disable any translation to be in sync with
2224 the logical geometry */
2225 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2226 bdrv_set_translation_hint(bs,
2227 BIOS_ATA_TRANSLATION_NONE);
2228 }
2229 }
2230 } else {
2231 default_geometry:
2232 /* if no geometry, use a standard physical disk geometry */
2233 cylinders = nb_sectors / (16 * 63);
2234
2235 if (cylinders > 16383)
2236 cylinders = 16383;
2237 else if (cylinders < 2)
2238 cylinders = 2;
2239 *pcyls = cylinders;
2240 *pheads = 16;
2241 *psecs = 63;
2242 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2243 if ((*pcyls * *pheads) <= 131072) {
2244 bdrv_set_translation_hint(bs,
2245 BIOS_ATA_TRANSLATION_LARGE);
2246 } else {
2247 bdrv_set_translation_hint(bs,
2248 BIOS_ATA_TRANSLATION_LBA);
2249 }
2250 }
2251 }
2252 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2253 }
2254 }
2255
2256 void bdrv_set_geometry_hint(BlockDriverState *bs,
2257 int cyls, int heads, int secs)
2258 {
2259 bs->cyls = cyls;
2260 bs->heads = heads;
2261 bs->secs = secs;
2262 }
2263
2264 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2265 {
2266 bs->translation = translation;
2267 }
2268
2269 void bdrv_get_geometry_hint(BlockDriverState *bs,
2270 int *pcyls, int *pheads, int *psecs)
2271 {
2272 *pcyls = bs->cyls;
2273 *pheads = bs->heads;
2274 *psecs = bs->secs;
2275 }
2276
2277 /* throttling disk io limits */
2278 void bdrv_set_io_limits(BlockDriverState *bs,
2279 BlockIOLimit *io_limits)
2280 {
2281 bs->io_limits = *io_limits;
2282 bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2283 }
2284
2285 /* Recognize floppy formats */
2286 typedef struct FDFormat {
2287 FDriveType drive;
2288 uint8_t last_sect;
2289 uint8_t max_track;
2290 uint8_t max_head;
2291 FDriveRate rate;
2292 } FDFormat;
2293
2294 static const FDFormat fd_formats[] = {
2295 /* First entry is default format */
2296 /* 1.44 MB 3"1/2 floppy disks */
2297 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2298 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2299 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2300 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2301 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2302 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2303 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2304 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2305 /* 2.88 MB 3"1/2 floppy disks */
2306 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2307 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2308 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2309 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2310 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2311 /* 720 kB 3"1/2 floppy disks */
2312 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, },
2313 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2314 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2315 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2316 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2317 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2318 /* 1.2 MB 5"1/4 floppy disks */
2319 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2320 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2321 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2322 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2323 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2324 /* 720 kB 5"1/4 floppy disks */
2325 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, },
2326 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2327 /* 360 kB 5"1/4 floppy disks */
2328 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, },
2329 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, },
2330 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2331 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2332 /* 320 kB 5"1/4 floppy disks */
2333 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, },
2334 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, },
2335 /* 360 kB must match 5"1/4 better than 3"1/2... */
2336 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, },
2337 /* end */
2338 { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2339 };
2340
2341 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2342 int *max_track, int *last_sect,
2343 FDriveType drive_in, FDriveType *drive,
2344 FDriveRate *rate)
2345 {
2346 const FDFormat *parse;
2347 uint64_t nb_sectors, size;
2348 int i, first_match, match;
2349
2350 bdrv_get_geometry(bs, &nb_sectors);
2351 match = -1;
2352 first_match = -1;
2353 for (i = 0; ; i++) {
2354 parse = &fd_formats[i];
2355 if (parse->drive == FDRIVE_DRV_NONE) {
2356 break;
2357 }
2358 if (drive_in == parse->drive ||
2359 drive_in == FDRIVE_DRV_NONE) {
2360 size = (parse->max_head + 1) * parse->max_track *
2361 parse->last_sect;
2362 if (nb_sectors == size) {
2363 match = i;
2364 break;
2365 }
2366 if (first_match == -1) {
2367 first_match = i;
2368 }
2369 }
2370 }
2371 if (match == -1) {
2372 if (first_match == -1) {
2373 match = 1;
2374 } else {
2375 match = first_match;
2376 }
2377 parse = &fd_formats[match];
2378 }
2379 *nb_heads = parse->max_head + 1;
2380 *max_track = parse->max_track;
2381 *last_sect = parse->last_sect;
2382 *drive = parse->drive;
2383 *rate = parse->rate;
2384 }
2385
2386 int bdrv_get_translation_hint(BlockDriverState *bs)
2387 {
2388 return bs->translation;
2389 }
2390
2391 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2392 BlockErrorAction on_write_error)
2393 {
2394 bs->on_read_error = on_read_error;
2395 bs->on_write_error = on_write_error;
2396 }
2397
2398 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2399 {
2400 return is_read ? bs->on_read_error : bs->on_write_error;
2401 }
2402
2403 int bdrv_is_read_only(BlockDriverState *bs)
2404 {
2405 return bs->read_only;
2406 }
2407
2408 int bdrv_is_sg(BlockDriverState *bs)
2409 {
2410 return bs->sg;
2411 }
2412
2413 int bdrv_enable_write_cache(BlockDriverState *bs)
2414 {
2415 return bs->enable_write_cache;
2416 }
2417
2418 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2419 {
2420 bs->enable_write_cache = wce;
2421 }
2422
2423 int bdrv_is_encrypted(BlockDriverState *bs)
2424 {
2425 if (bs->backing_hd && bs->backing_hd->encrypted)
2426 return 1;
2427 return bs->encrypted;
2428 }
2429
2430 int bdrv_key_required(BlockDriverState *bs)
2431 {
2432 BlockDriverState *backing_hd = bs->backing_hd;
2433
2434 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2435 return 1;
2436 return (bs->encrypted && !bs->valid_key);
2437 }
2438
2439 int bdrv_set_key(BlockDriverState *bs, const char *key)
2440 {
2441 int ret;
2442 if (bs->backing_hd && bs->backing_hd->encrypted) {
2443 ret = bdrv_set_key(bs->backing_hd, key);
2444 if (ret < 0)
2445 return ret;
2446 if (!bs->encrypted)
2447 return 0;
2448 }
2449 if (!bs->encrypted) {
2450 return -EINVAL;
2451 } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2452 return -ENOMEDIUM;
2453 }
2454 ret = bs->drv->bdrv_set_key(bs, key);
2455 if (ret < 0) {
2456 bs->valid_key = 0;
2457 } else if (!bs->valid_key) {
2458 bs->valid_key = 1;
2459 /* call the change callback now, we skipped it on open */
2460 bdrv_dev_change_media_cb(bs, true);
2461 }
2462 return ret;
2463 }
2464
2465 const char *bdrv_get_format_name(BlockDriverState *bs)
2466 {
2467 return bs->drv ? bs->drv->format_name : NULL;
2468 }
2469
2470 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2471 void *opaque)
2472 {
2473 BlockDriver *drv;
2474
2475 QLIST_FOREACH(drv, &bdrv_drivers, list) {
2476 it(opaque, drv->format_name);
2477 }
2478 }
2479
2480 BlockDriverState *bdrv_find(const char *name)
2481 {
2482 BlockDriverState *bs;
2483
2484 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2485 if (!strcmp(name, bs->device_name)) {
2486 return bs;
2487 }
2488 }
2489 return NULL;
2490 }
2491
2492 BlockDriverState *bdrv_next(BlockDriverState *bs)
2493 {
2494 if (!bs) {
2495 return QTAILQ_FIRST(&bdrv_states);
2496 }
2497 return QTAILQ_NEXT(bs, list);
2498 }
2499
2500 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2501 {
2502 BlockDriverState *bs;
2503
2504 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2505 it(opaque, bs);
2506 }
2507 }
2508
2509 const char *bdrv_get_device_name(BlockDriverState *bs)
2510 {
2511 return bs->device_name;
2512 }
2513
2514 int bdrv_get_flags(BlockDriverState *bs)
2515 {
2516 return bs->open_flags;
2517 }
2518
2519 void bdrv_flush_all(void)
2520 {
2521 BlockDriverState *bs;
2522
2523 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2524 bdrv_flush(bs);
2525 }
2526 }
2527
2528 int bdrv_has_zero_init(BlockDriverState *bs)
2529 {
2530 assert(bs->drv);
2531
2532 if (bs->drv->bdrv_has_zero_init) {
2533 return bs->drv->bdrv_has_zero_init(bs);
2534 }
2535
2536 return 1;
2537 }
2538
2539 typedef struct BdrvCoIsAllocatedData {
2540 BlockDriverState *bs;
2541 int64_t sector_num;
2542 int nb_sectors;
2543 int *pnum;
2544 int ret;
2545 bool done;
2546 } BdrvCoIsAllocatedData;
2547
2548 /*
2549 * Returns true iff the specified sector is present in the disk image. Drivers
2550 * not implementing the functionality are assumed to not support backing files,
2551 * hence all their sectors are reported as allocated.
2552 *
2553 * If 'sector_num' is beyond the end of the disk image the return value is 0
2554 * and 'pnum' is set to 0.
2555 *
2556 * 'pnum' is set to the number of sectors (including and immediately following
2557 * the specified sector) that are known to be in the same
2558 * allocated/unallocated state.
2559 *
2560 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
2561 * beyond the end of the disk image it will be clamped.
2562 */
2563 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2564 int nb_sectors, int *pnum)
2565 {
2566 int64_t n;
2567
2568 if (sector_num >= bs->total_sectors) {
2569 *pnum = 0;
2570 return 0;
2571 }
2572
2573 n = bs->total_sectors - sector_num;
2574 if (n < nb_sectors) {
2575 nb_sectors = n;
2576 }
2577
2578 if (!bs->drv->bdrv_co_is_allocated) {
2579 *pnum = nb_sectors;
2580 return 1;
2581 }
2582
2583 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2584 }
2585
2586 /* Coroutine wrapper for bdrv_is_allocated() */
2587 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2588 {
2589 BdrvCoIsAllocatedData *data = opaque;
2590 BlockDriverState *bs = data->bs;
2591
2592 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2593 data->pnum);
2594 data->done = true;
2595 }
2596
2597 /*
2598 * Synchronous wrapper around bdrv_co_is_allocated().
2599 *
2600 * See bdrv_co_is_allocated() for details.
2601 */
2602 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2603 int *pnum)
2604 {
2605 Coroutine *co;
2606 BdrvCoIsAllocatedData data = {
2607 .bs = bs,
2608 .sector_num = sector_num,
2609 .nb_sectors = nb_sectors,
2610 .pnum = pnum,
2611 .done = false,
2612 };
2613
2614 co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2615 qemu_coroutine_enter(co, &data);
2616 while (!data.done) {
2617 qemu_aio_wait();
2618 }
2619 return data.ret;
2620 }
2621
2622 /*
2623 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2624 *
2625 * Return true if the given sector is allocated in any image between
2626 * BASE and TOP (inclusive). BASE can be NULL to check if the given
2627 * sector is allocated in any image of the chain. Return false otherwise.
2628 *
2629 * 'pnum' is set to the number of sectors (including and immediately following
2630 * the specified sector) that are known to be in the same
2631 * allocated/unallocated state.
2632 *
2633 */
2634 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2635 BlockDriverState *base,
2636 int64_t sector_num,
2637 int nb_sectors, int *pnum)
2638 {
2639 BlockDriverState *intermediate;
2640 int ret, n = nb_sectors;
2641
2642 intermediate = top;
2643 while (intermediate && intermediate != base) {
2644 int pnum_inter;
2645 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2646 &pnum_inter);
2647 if (ret < 0) {
2648 return ret;
2649 } else if (ret) {
2650 *pnum = pnum_inter;
2651 return 1;
2652 }
2653
2654 /*
2655 * [sector_num, nb_sectors] is unallocated on top but intermediate
2656 * might have
2657 *
2658 * [sector_num+x, nr_sectors] allocated.
2659 */
2660 if (n > pnum_inter) {
2661 n = pnum_inter;
2662 }
2663
2664 intermediate = intermediate->backing_hd;
2665 }
2666
2667 *pnum = n;
2668 return 0;
2669 }
2670
2671 BlockInfoList *qmp_query_block(Error **errp)
2672 {
2673 BlockInfoList *head = NULL, *cur_item = NULL;
2674 BlockDriverState *bs;
2675
2676 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2677 BlockInfoList *info = g_malloc0(sizeof(*info));
2678
2679 info->value = g_malloc0(sizeof(*info->value));
2680 info->value->device = g_strdup(bs->device_name);
2681 info->value->type = g_strdup("unknown");
2682 info->value->locked = bdrv_dev_is_medium_locked(bs);
2683 info->value->removable = bdrv_dev_has_removable_media(bs);
2684
2685 if (bdrv_dev_has_removable_media(bs)) {
2686 info->value->has_tray_open = true;
2687 info->value->tray_open = bdrv_dev_is_tray_open(bs);
2688 }
2689
2690 if (bdrv_iostatus_is_enabled(bs)) {
2691 info->value->has_io_status = true;
2692 info->value->io_status = bs->iostatus;
2693 }
2694
2695 if (bs->drv) {
2696 info->value->has_inserted = true;
2697 info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2698 info->value->inserted->file = g_strdup(bs->filename);
2699 info->value->inserted->ro = bs->read_only;
2700 info->value->inserted->drv = g_strdup(bs->drv->format_name);
2701 info->value->inserted->encrypted = bs->encrypted;
2702 if (bs->backing_file[0]) {
2703 info->value->inserted->has_backing_file = true;
2704 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2705 }
2706
2707 if (bs->io_limits_enabled) {
2708 info->value->inserted->bps =
2709 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2710 info->value->inserted->bps_rd =
2711 bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2712 info->value->inserted->bps_wr =
2713 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2714 info->value->inserted->iops =
2715 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2716 info->value->inserted->iops_rd =
2717 bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2718 info->value->inserted->iops_wr =
2719 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2720 }
2721 }
2722
2723 /* XXX: waiting for the qapi to support GSList */
2724 if (!cur_item) {
2725 head = cur_item = info;
2726 } else {
2727 cur_item->next = info;
2728 cur_item = info;
2729 }
2730 }
2731
2732 return head;
2733 }
2734
2735 /* Consider exposing this as a full fledged QMP command */
2736 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2737 {
2738 BlockStats *s;
2739
2740 s = g_malloc0(sizeof(*s));
2741
2742 if (bs->device_name[0]) {
2743 s->has_device = true;
2744 s->device = g_strdup(bs->device_name);
2745 }
2746
2747 s->stats = g_malloc0(sizeof(*s->stats));
2748 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2749 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2750 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2751 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2752 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2753 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2754 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2755 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2756 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2757
2758 if (bs->file) {
2759 s->has_parent = true;
2760 s->parent = qmp_query_blockstat(bs->file, NULL);
2761 }
2762
2763 return s;
2764 }
2765
2766 BlockStatsList *qmp_query_blockstats(Error **errp)
2767 {
2768 BlockStatsList *head = NULL, *cur_item = NULL;
2769 BlockDriverState *bs;
2770
2771 QTAILQ_FOREACH(bs, &bdrv_states, list) {
2772 BlockStatsList *info = g_malloc0(sizeof(*info));
2773 info->value = qmp_query_blockstat(bs, NULL);
2774
2775 /* XXX: waiting for the qapi to support GSList */
2776 if (!cur_item) {
2777 head = cur_item = info;
2778 } else {
2779 cur_item->next = info;
2780 cur_item = info;
2781 }
2782 }
2783
2784 return head;
2785 }
2786
2787 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2788 {
2789 if (bs->backing_hd && bs->backing_hd->encrypted)
2790 return bs->backing_file;
2791 else if (bs->encrypted)
2792 return bs->filename;
2793 else
2794 return NULL;
2795 }
2796
2797 void bdrv_get_backing_filename(BlockDriverState *bs,
2798 char *filename, int filename_size)
2799 {
2800 pstrcpy(filename, filename_size, bs->backing_file);
2801 }
2802
2803 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2804 const uint8_t *buf, int nb_sectors)
2805 {
2806 BlockDriver *drv = bs->drv;
2807 if (!drv)
2808 return -ENOMEDIUM;
2809 if (!drv->bdrv_write_compressed)
2810 return -ENOTSUP;
2811 if (bdrv_check_request(bs, sector_num, nb_sectors))
2812 return -EIO;
2813
2814 if (bs->dirty_bitmap) {
2815 set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2816 }
2817
2818 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2819 }
2820
2821 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2822 {
2823 BlockDriver *drv = bs->drv;
2824 if (!drv)
2825 return -ENOMEDIUM;
2826 if (!drv->bdrv_get_info)
2827 return -ENOTSUP;
2828 memset(bdi, 0, sizeof(*bdi));
2829 return drv->bdrv_get_info(bs, bdi);
2830 }
2831
2832 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2833 int64_t pos, int size)
2834 {
2835 BlockDriver *drv = bs->drv;
2836 if (!drv)
2837 return -ENOMEDIUM;
2838 if (drv->bdrv_save_vmstate)
2839 return drv->bdrv_save_vmstate(bs, buf, pos, size);
2840 if (bs->file)
2841 return bdrv_save_vmstate(bs->file, buf, pos, size);
2842 return -ENOTSUP;
2843 }
2844
2845 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2846 int64_t pos, int size)
2847 {
2848 BlockDriver *drv = bs->drv;
2849 if (!drv)
2850 return -ENOMEDIUM;
2851 if (drv->bdrv_load_vmstate)
2852 return drv->bdrv_load_vmstate(bs, buf, pos, size);
2853 if (bs->file)
2854 return bdrv_load_vmstate(bs->file, buf, pos, size);
2855 return -ENOTSUP;
2856 }
2857
2858 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2859 {
2860 BlockDriver *drv = bs->drv;
2861
2862 if (!drv || !drv->bdrv_debug_event) {
2863 return;
2864 }
2865
2866 return drv->bdrv_debug_event(bs, event);
2867
2868 }
2869
2870 /**************************************************************/
2871 /* handling of snapshots */
2872
2873 int bdrv_can_snapshot(BlockDriverState *bs)
2874 {
2875 BlockDriver *drv = bs->drv;
2876 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2877 return 0;
2878 }
2879
2880 if (!drv->bdrv_snapshot_create) {
2881 if (bs->file != NULL) {
2882 return bdrv_can_snapshot(bs->file);
2883 }
2884 return 0;
2885 }
2886
2887 return 1;
2888 }
2889
2890 int bdrv_is_snapshot(BlockDriverState *bs)
2891 {
2892 return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2893 }
2894
2895 BlockDriverState *bdrv_snapshots(void)
2896 {
2897 BlockDriverState *bs;
2898
2899 if (bs_snapshots) {
2900 return bs_snapshots;
2901 }
2902
2903 bs = NULL;
2904 while ((bs = bdrv_next(bs))) {
2905 if (bdrv_can_snapshot(bs)) {
2906 bs_snapshots = bs;
2907 return bs;
2908 }
2909 }
2910 return NULL;
2911 }
2912
2913 int bdrv_snapshot_create(BlockDriverState *bs,
2914 QEMUSnapshotInfo *sn_info)
2915 {
2916 BlockDriver *drv = bs->drv;
2917 if (!drv)
2918 return -ENOMEDIUM;
2919 if (drv->bdrv_snapshot_create)
2920 return drv->bdrv_snapshot_create(bs, sn_info);
2921 if (bs->file)
2922 return bdrv_snapshot_create(bs->file, sn_info);
2923 return -ENOTSUP;
2924 }
2925
2926 int bdrv_snapshot_goto(BlockDriverState *bs,
2927 const char *snapshot_id)
2928 {
2929 BlockDriver *drv = bs->drv;
2930 int ret, open_ret;
2931
2932 if (!drv)
2933 return -ENOMEDIUM;
2934 if (drv->bdrv_snapshot_goto)
2935 return drv->bdrv_snapshot_goto(bs, snapshot_id);
2936
2937 if (bs->file) {
2938 drv->bdrv_close(bs);
2939 ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2940 open_ret = drv->bdrv_open(bs, bs->open_flags);
2941 if (open_ret < 0) {
2942 bdrv_delete(bs->file);
2943 bs->drv = NULL;
2944 return open_ret;
2945 }
2946 return ret;
2947 }
2948
2949 return -ENOTSUP;
2950 }
2951
2952 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2953 {
2954 BlockDriver *drv = bs->drv;
2955 if (!drv)
2956 return -ENOMEDIUM;
2957 if (drv->bdrv_snapshot_delete)
2958 return drv->bdrv_snapshot_delete(bs, snapshot_id);
2959 if (bs->file)
2960 return bdrv_snapshot_delete(bs->file, snapshot_id);
2961 return -ENOTSUP;
2962 }
2963
2964 int bdrv_snapshot_list(BlockDriverState *bs,
2965 QEMUSnapshotInfo **psn_info)
2966 {
2967 BlockDriver *drv = bs->drv;
2968 if (!drv)
2969 return -ENOMEDIUM;
2970 if (drv->bdrv_snapshot_list)
2971 return drv->bdrv_snapshot_list(bs, psn_info);
2972 if (bs->file)
2973 return bdrv_snapshot_list(bs->file, psn_info);
2974 return -ENOTSUP;
2975 }
2976
2977 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2978 const char *snapshot_name)
2979 {
2980 BlockDriver *drv = bs->drv;
2981 if (!drv) {
2982 return -ENOMEDIUM;
2983 }
2984 if (!bs->read_only) {
2985 return -EINVAL;
2986 }
2987 if (drv->bdrv_snapshot_load_tmp) {
2988 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2989 }
2990 return -ENOTSUP;
2991 }
2992
2993 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2994 const char *backing_file)
2995 {
2996 if (!bs->drv) {
2997 return NULL;
2998 }
2999
3000 if (bs->backing_hd) {
3001 if (strcmp(bs->backing_file, backing_file) == 0) {
3002 return bs->backing_hd;
3003 } else {
3004 return bdrv_find_backing_image(bs->backing_hd, backing_file);
3005 }
3006 }
3007
3008 return NULL;
3009 }
3010
3011 #define NB_SUFFIXES 4
3012
3013 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3014 {
3015 static const char suffixes[NB_SUFFIXES] = "KMGT";
3016 int64_t base;
3017 int i;
3018
3019 if (size <= 999) {
3020 snprintf(buf, buf_size, "%" PRId64, size);
3021 } else {
3022 base = 1024;
3023 for(i = 0; i < NB_SUFFIXES; i++) {
3024 if (size < (10 * base)) {
3025 snprintf(buf, buf_size, "%0.1f%c",
3026 (double)size / base,
3027 suffixes[i]);
3028 break;
3029 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3030 snprintf(buf, buf_size, "%" PRId64 "%c",
3031 ((size + (base >> 1)) / base),
3032 suffixes[i]);
3033 break;
3034 }
3035 base = base * 1024;
3036 }
3037 }
3038 return buf;
3039 }
3040
3041 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3042 {
3043 char buf1[128], date_buf[128], clock_buf[128];
3044 #ifdef _WIN32
3045 struct tm *ptm;
3046 #else
3047 struct tm tm;
3048 #endif
3049 time_t ti;
3050 int64_t secs;
3051
3052 if (!sn) {
3053 snprintf(buf, buf_size,
3054 "%-10s%-20s%7s%20s%15s",
3055 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3056 } else {
3057 ti = sn->date_sec;
3058 #ifdef _WIN32
3059 ptm = localtime(&ti);
3060 strftime(date_buf, sizeof(date_buf),
3061 "%Y-%m-%d %H:%M:%S", ptm);
3062 #else
3063 localtime_r(&ti, &tm);
3064 strftime(date_buf, sizeof(date_buf),
3065 "%Y-%m-%d %H:%M:%S", &tm);
3066 #endif
3067 secs = sn->vm_clock_nsec / 1000000000;
3068 snprintf(clock_buf, sizeof(clock_buf),
3069 "%02d:%02d:%02d.%03d",
3070 (int)(secs / 3600),
3071 (int)((secs / 60) % 60),
3072 (int)(secs % 60),
3073 (int)((sn->vm_clock_nsec / 1000000) % 1000));
3074 snprintf(buf, buf_size,
3075 "%-10s%-20s%7s%20s%15s",
3076 sn->id_str, sn->name,
3077 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3078 date_buf,
3079 clock_buf);
3080 }
3081 return buf;
3082 }
3083
3084 /**************************************************************/
3085 /* async I/Os */
3086
3087 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3088 QEMUIOVector *qiov, int nb_sectors,
3089 BlockDriverCompletionFunc *cb, void *opaque)
3090 {
3091 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3092
3093 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3094 cb, opaque, false);
3095 }
3096
3097 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3098 QEMUIOVector *qiov, int nb_sectors,
3099 BlockDriverCompletionFunc *cb, void *opaque)
3100 {
3101 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3102
3103 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3104 cb, opaque, true);
3105 }
3106
3107
3108 typedef struct MultiwriteCB {
3109 int error;
3110 int num_requests;
3111 int num_callbacks;
3112 struct {
3113 BlockDriverCompletionFunc *cb;
3114 void *opaque;
3115 QEMUIOVector *free_qiov;
3116 } callbacks[];
3117 } MultiwriteCB;
3118
3119 static void multiwrite_user_cb(MultiwriteCB *mcb)
3120 {
3121 int i;
3122
3123 for (i = 0; i < mcb->num_callbacks; i++) {
3124 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3125 if (mcb->callbacks[i].free_qiov) {
3126 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3127 }
3128 g_free(mcb->callbacks[i].free_qiov);
3129 }
3130 }
3131
3132 static void multiwrite_cb(void *opaque, int ret)
3133 {
3134 MultiwriteCB *mcb = opaque;
3135
3136 trace_multiwrite_cb(mcb, ret);
3137
3138 if (ret < 0 && !mcb->error) {
3139 mcb->error = ret;
3140 }
3141
3142 mcb->num_requests--;
3143 if (mcb->num_requests == 0) {
3144 multiwrite_user_cb(mcb);
3145 g_free(mcb);
3146 }
3147 }
3148
3149 static int multiwrite_req_compare(const void *a, const void *b)
3150 {
3151 const BlockRequest *req1 = a, *req2 = b;
3152
3153 /*
3154 * Note that we can't simply subtract req2->sector from req1->sector
3155 * here as that could overflow the return value.
3156 */
3157 if (req1->sector > req2->sector) {
3158 return 1;
3159 } else if (req1->sector < req2->sector) {
3160 return -1;
3161 } else {
3162 return 0;
3163 }
3164 }
3165
3166 /*
3167 * Takes a bunch of requests and tries to merge them. Returns the number of
3168 * requests that remain after merging.
3169 */
3170 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3171 int num_reqs, MultiwriteCB *mcb)
3172 {
3173 int i, outidx;
3174
3175 // Sort requests by start sector
3176 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3177
3178 // Check if adjacent requests touch the same clusters. If so, combine them,
3179 // filling up gaps with zero sectors.
3180 outidx = 0;
3181 for (i = 1; i < num_reqs; i++) {
3182 int merge = 0;
3183 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3184
3185 // Handle exactly sequential writes and overlapping writes.
3186 if (reqs[i].sector <= oldreq_last) {
3187 merge = 1;
3188 }
3189
3190 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3191 merge = 0;
3192 }
3193
3194 if (merge) {
3195 size_t size;
3196 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3197 qemu_iovec_init(qiov,
3198 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3199
3200 // Add the first request to the merged one. If the requests are
3201 // overlapping, drop the last sectors of the first request.
3202 size = (reqs[i].sector - reqs[outidx].sector) << 9;
3203 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3204
3205 // We should need to add any zeros between the two requests
3206 assert (reqs[i].sector <= oldreq_last);
3207
3208 // Add the second request
3209 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3210
3211 reqs[outidx].nb_sectors = qiov->size >> 9;
3212 reqs[outidx].qiov = qiov;
3213
3214 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3215 } else {
3216 outidx++;
3217 reqs[outidx].sector = reqs[i].sector;
3218 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3219 reqs[outidx].qiov = reqs[i].qiov;
3220 }
3221 }
3222
3223 return outidx + 1;
3224 }
3225
3226 /*
3227 * Submit multiple AIO write requests at once.
3228 *
3229 * On success, the function returns 0 and all requests in the reqs array have
3230 * been submitted. In error case this function returns -1, and any of the
3231 * requests may or may not be submitted yet. In particular, this means that the
3232 * callback will be called for some of the requests, for others it won't. The
3233 * caller must check the error field of the BlockRequest to wait for the right
3234 * callbacks (if error != 0, no callback will be called).
3235 *
3236 * The implementation may modify the contents of the reqs array, e.g. to merge
3237 * requests. However, the fields opaque and error are left unmodified as they
3238 * are used to signal failure for a single request to the caller.
3239 */
3240 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3241 {
3242 MultiwriteCB *mcb;
3243 int i;
3244
3245 /* don't submit writes if we don't have a medium */
3246 if (bs->drv == NULL) {
3247 for (i = 0; i < num_reqs; i++) {
3248 reqs[i].error = -ENOMEDIUM;
3249 }
3250 return -1;
3251 }
3252
3253 if (num_reqs == 0) {
3254 return 0;
3255 }
3256
3257 // Create MultiwriteCB structure
3258 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3259 mcb->num_requests = 0;
3260 mcb->num_callbacks = num_reqs;
3261
3262 for (i = 0; i < num_reqs; i++) {
3263 mcb->callbacks[i].cb = reqs[i].cb;
3264 mcb->callbacks[i].opaque = reqs[i].opaque;
3265 }
3266
3267 // Check for mergable requests
3268 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3269
3270 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3271
3272 /* Run the aio requests. */
3273 mcb->num_requests = num_reqs;
3274 for (i = 0; i < num_reqs; i++) {
3275 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3276 reqs[i].nb_sectors, multiwrite_cb, mcb);
3277 }
3278
3279 return 0;
3280 }
3281
3282 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3283 {
3284 acb->pool->cancel(acb);
3285 }
3286
3287 /* block I/O throttling */
3288 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3289 bool is_write, double elapsed_time, uint64_t *wait)
3290 {
3291 uint64_t bps_limit = 0;
3292 double bytes_limit, bytes_base, bytes_res;
3293 double slice_time, wait_time;
3294
3295 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3296 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3297 } else if (bs->io_limits.bps[is_write]) {
3298 bps_limit = bs->io_limits.bps[is_write];
3299 } else {
3300 if (wait) {
3301 *wait = 0;
3302 }
3303
3304 return false;
3305 }
3306
3307 slice_time = bs->slice_end - bs->slice_start;
3308 slice_time /= (NANOSECONDS_PER_SECOND);
3309 bytes_limit = bps_limit * slice_time;
3310 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3311 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3312 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3313 }
3314
3315 /* bytes_base: the bytes of data which have been read/written; and
3316 * it is obtained from the history statistic info.
3317 * bytes_res: the remaining bytes of data which need to be read/written.
3318 * (bytes_base + bytes_res) / bps_limit: used to calcuate
3319 * the total time for completing reading/writting all data.
3320 */
3321 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3322
3323 if (bytes_base + bytes_res <= bytes_limit) {
3324 if (wait) {
3325 *wait = 0;
3326 }
3327
3328 return false;
3329 }
3330
3331 /* Calc approx time to dispatch */
3332 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3333
3334 /* When the I/O rate at runtime exceeds the limits,
3335 * bs->slice_end need to be extended in order that the current statistic
3336 * info can be kept until the timer fire, so it is increased and tuned
3337 * based on the result of experiment.
3338 */
3339 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3340 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3341 if (wait) {
3342 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3343 }
3344
3345 return true;
3346 }
3347
3348 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3349 double elapsed_time, uint64_t *wait)
3350 {
3351 uint64_t iops_limit = 0;
3352 double ios_limit, ios_base;
3353 double slice_time, wait_time;
3354
3355 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3356 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3357 } else if (bs->io_limits.iops[is_write]) {
3358 iops_limit = bs->io_limits.iops[is_write];
3359 } else {
3360 if (wait) {
3361 *wait = 0;
3362 }
3363
3364 return false;
3365 }
3366
3367 slice_time = bs->slice_end - bs->slice_start;
3368 slice_time /= (NANOSECONDS_PER_SECOND);
3369 ios_limit = iops_limit * slice_time;
3370 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3371 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3372 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3373 }
3374
3375 if (ios_base + 1 <= ios_limit) {
3376 if (wait) {
3377 *wait = 0;
3378 }
3379
3380 return false;
3381 }
3382
3383 /* Calc approx time to dispatch */
3384 wait_time = (ios_base + 1) / iops_limit;
3385 if (wait_time > elapsed_time) {
3386 wait_time = wait_time - elapsed_time;
3387 } else {
3388 wait_time = 0;
3389 }
3390
3391 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3392 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3393 if (wait) {
3394 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3395 }
3396
3397 return true;
3398 }
3399
3400 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3401 bool is_write, int64_t *wait)
3402 {
3403 int64_t now, max_wait;
3404 uint64_t bps_wait = 0, iops_wait = 0;
3405 double elapsed_time;
3406 int bps_ret, iops_ret;
3407
3408 now = qemu_get_clock_ns(vm_clock);
3409 if ((bs->slice_start < now)
3410 && (bs->slice_end > now)) {
3411 bs->slice_end = now + bs->slice_time;
3412 } else {
3413 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME;
3414 bs->slice_start = now;
3415 bs->slice_end = now + bs->slice_time;
3416
3417 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write];
3418 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3419
3420 bs->io_base.ios[is_write] = bs->nr_ops[is_write];
3421 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write];
3422 }
3423
3424 elapsed_time = now - bs->slice_start;
3425 elapsed_time /= (NANOSECONDS_PER_SECOND);
3426
3427 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors,
3428 is_write, elapsed_time, &bps_wait);
3429 iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3430 elapsed_time, &iops_wait);
3431 if (bps_ret || iops_ret) {
3432 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3433 if (wait) {
3434 *wait = max_wait;
3435 }
3436
3437 now = qemu_get_clock_ns(vm_clock);
3438 if (bs->slice_end < now + max_wait) {
3439 bs->slice_end = now + max_wait;
3440 }
3441
3442 return true;
3443 }
3444
3445 if (wait) {
3446 *wait = 0;
3447 }
3448
3449 return false;
3450 }
3451
3452 /**************************************************************/
3453 /* async block device emulation */
3454
3455 typedef struct BlockDriverAIOCBSync {
3456 BlockDriverAIOCB common;
3457 QEMUBH *bh;
3458 int ret;
3459 /* vector translation state */
3460 QEMUIOVector *qiov;
3461 uint8_t *bounce;
3462 int is_write;
3463 } BlockDriverAIOCBSync;
3464
3465 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3466 {
3467 BlockDriverAIOCBSync *acb =
3468 container_of(blockacb, BlockDriverAIOCBSync, common);
3469 qemu_bh_delete(acb->bh);
3470 acb->bh = NULL;
3471 qemu_aio_release(acb);
3472 }
3473
3474 static AIOPool bdrv_em_aio_pool = {
3475 .aiocb_size = sizeof(BlockDriverAIOCBSync),
3476 .cancel = bdrv_aio_cancel_em,
3477 };
3478
3479 static void bdrv_aio_bh_cb(void *opaque)
3480 {
3481 BlockDriverAIOCBSync *acb = opaque;
3482
3483 if (!acb->is_write)
3484 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3485 qemu_vfree(acb->bounce);
3486 acb->common.cb(acb->common.opaque, acb->ret);
3487 qemu_bh_delete(acb->bh);
3488 acb->bh = NULL;
3489 qemu_aio_release(acb);
3490 }
3491
3492 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3493 int64_t sector_num,
3494 QEMUIOVector *qiov,
3495 int nb_sectors,
3496 BlockDriverCompletionFunc *cb,
3497 void *opaque,
3498 int is_write)
3499
3500 {
3501 BlockDriverAIOCBSync *acb;
3502
3503 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3504 acb->is_write = is_write;
3505 acb->qiov = qiov;
3506 acb->bounce = qemu_blockalign(bs, qiov->size);
3507 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3508
3509 if (is_write) {
3510 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3511 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3512 } else {
3513 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3514 }
3515
3516 qemu_bh_schedule(acb->bh);
3517
3518 return &acb->common;
3519 }
3520
3521 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3522 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3523 BlockDriverCompletionFunc *cb, void *opaque)
3524 {
3525 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3526 }
3527
3528 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3529 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3530 BlockDriverCompletionFunc *cb, void *opaque)
3531 {
3532 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3533 }
3534
3535
3536 typedef struct BlockDriverAIOCBCoroutine {
3537 BlockDriverAIOCB common;
3538 BlockRequest req;
3539 bool is_write;
3540 QEMUBH* bh;
3541 } BlockDriverAIOCBCoroutine;
3542
3543 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3544 {
3545 qemu_aio_flush();
3546 }
3547
3548 static AIOPool bdrv_em_co_aio_pool = {
3549 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine),
3550 .cancel = bdrv_aio_co_cancel_em,
3551 };
3552
3553 static void bdrv_co_em_bh(void *opaque)
3554 {
3555 BlockDriverAIOCBCoroutine *acb = opaque;
3556
3557 acb->common.cb(acb->common.opaque, acb->req.error);
3558 qemu_bh_delete(acb->bh);
3559 qemu_aio_release(acb);
3560 }
3561
3562 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3563 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3564 {
3565 BlockDriverAIOCBCoroutine *acb = opaque;
3566 BlockDriverState *bs = acb->common.bs;
3567
3568 if (!acb->is_write) {
3569 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3570 acb->req.nb_sectors, acb->req.qiov, 0);
3571 } else {
3572 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3573 acb->req.nb_sectors, acb->req.qiov, 0);
3574 }
3575
3576 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3577 qemu_bh_schedule(acb->bh);
3578 }
3579
3580 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3581 int64_t sector_num,
3582 QEMUIOVector *qiov,
3583 int nb_sectors,
3584 BlockDriverCompletionFunc *cb,
3585 void *opaque,
3586 bool is_write)
3587 {
3588 Coroutine *co;
3589 BlockDriverAIOCBCoroutine *acb;
3590
3591 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3592 acb->req.sector = sector_num;
3593 acb->req.nb_sectors = nb_sectors;
3594 acb->req.qiov = qiov;
3595 acb->is_write = is_write;
3596
3597 co = qemu_coroutine_create(bdrv_co_do_rw);
3598 qemu_coroutine_enter(co, acb);
3599
3600 return &acb->common;
3601 }
3602
3603 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3604 {
3605 BlockDriverAIOCBCoroutine *acb = opaque;
3606 BlockDriverState *bs = acb->common.bs;
3607
3608 acb->req.error = bdrv_co_flush(bs);
3609 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3610 qemu_bh_schedule(acb->bh);
3611 }
3612
3613 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3614 BlockDriverCompletionFunc *cb, void *opaque)
3615 {
3616 trace_bdrv_aio_flush(bs, opaque);
3617
3618 Coroutine *co;
3619 BlockDriverAIOCBCoroutine *acb;
3620
3621 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3622 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3623 qemu_coroutine_enter(co, acb);
3624
3625 return &acb->common;
3626 }
3627
3628 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3629 {
3630 BlockDriverAIOCBCoroutine *acb = opaque;
3631 BlockDriverState *bs = acb->common.bs;
3632
3633 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3634 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3635 qemu_bh_schedule(acb->bh);
3636 }
3637
3638 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3639 int64_t sector_num, int nb_sectors,
3640 BlockDriverCompletionFunc *cb, void *opaque)
3641 {
3642 Coroutine *co;
3643 BlockDriverAIOCBCoroutine *acb;
3644
3645 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3646
3647 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3648 acb->req.sector = sector_num;
3649 acb->req.nb_sectors = nb_sectors;
3650 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3651 qemu_coroutine_enter(co, acb);
3652
3653 return &acb->common;
3654 }
3655
3656 void bdrv_init(void)
3657 {
3658 module_call_init(MODULE_INIT_BLOCK);
3659 }
3660
3661 void bdrv_init_with_whitelist(void)
3662 {
3663 use_bdrv_whitelist = 1;
3664 bdrv_init();
3665 }
3666
3667 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3668 BlockDriverCompletionFunc *cb, void *opaque)
3669 {
3670 BlockDriverAIOCB *acb;
3671
3672 if (pool->free_aiocb) {
3673 acb = pool->free_aiocb;
3674 pool->free_aiocb = acb->next;
3675 } else {
3676 acb = g_malloc0(pool->aiocb_size);
3677 acb->pool = pool;
3678 }
3679 acb->bs = bs;
3680 acb->cb = cb;
3681 acb->opaque = opaque;
3682 return acb;
3683 }
3684
3685 void qemu_aio_release(void *p)
3686 {
3687 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3688 AIOPool *pool = acb->pool;
3689 acb->next = pool->free_aiocb;
3690 pool->free_aiocb = acb;
3691 }
3692
3693 /**************************************************************/
3694 /* Coroutine block device emulation */
3695
3696 typedef struct CoroutineIOCompletion {
3697 Coroutine *coroutine;
3698 int ret;
3699 } CoroutineIOCompletion;
3700
3701 static void bdrv_co_io_em_complete(void *opaque, int ret)
3702 {
3703 CoroutineIOCompletion *co = opaque;
3704
3705 co->ret = ret;
3706 qemu_coroutine_enter(co->coroutine, NULL);
3707 }
3708
3709 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3710 int nb_sectors, QEMUIOVector *iov,
3711 bool is_write)
3712 {
3713 CoroutineIOCompletion co = {
3714 .coroutine = qemu_coroutine_self(),
3715 };
3716 BlockDriverAIOCB *acb;
3717
3718 if (is_write) {
3719 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3720 bdrv_co_io_em_complete, &co);
3721 } else {
3722 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3723 bdrv_co_io_em_complete, &co);
3724 }
3725
3726 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3727 if (!acb) {
3728 return -EIO;
3729 }
3730 qemu_coroutine_yield();
3731
3732 return co.ret;
3733 }
3734
3735 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3736 int64_t sector_num, int nb_sectors,
3737 QEMUIOVector *iov)
3738 {
3739 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3740 }
3741
3742 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3743 int64_t sector_num, int nb_sectors,
3744 QEMUIOVector *iov)
3745 {
3746 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3747 }
3748
3749 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3750 {
3751 RwCo *rwco = opaque;
3752
3753 rwco->ret = bdrv_co_flush(rwco->bs);
3754 }
3755
3756 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3757 {
3758 int ret;
3759
3760 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3761 return 0;
3762 }
3763
3764 /* Write back cached data to the OS even with cache=unsafe */
3765 if (bs->drv->bdrv_co_flush_to_os) {
3766 ret = bs->drv->bdrv_co_flush_to_os(bs);
3767 if (ret < 0) {
3768 return ret;
3769 }
3770 }
3771
3772 /* But don't actually force it to the disk with cache=unsafe */
3773 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3774 return 0;
3775 }
3776
3777 if (bs->drv->bdrv_co_flush_to_disk) {
3778 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3779 } else if (bs->drv->bdrv_aio_flush) {
3780 BlockDriverAIOCB *acb;
3781 CoroutineIOCompletion co = {
3782 .coroutine = qemu_coroutine_self(),
3783 };
3784
3785 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3786 if (acb == NULL) {
3787 ret = -EIO;
3788 } else {
3789 qemu_coroutine_yield();
3790 ret = co.ret;
3791 }
3792 } else {
3793 /*
3794 * Some block drivers always operate in either writethrough or unsafe
3795 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3796 * know how the server works (because the behaviour is hardcoded or
3797 * depends on server-side configuration), so we can't ensure that
3798 * everything is safe on disk. Returning an error doesn't work because
3799 * that would break guests even if the server operates in writethrough
3800 * mode.
3801 *
3802 * Let's hope the user knows what he's doing.
3803 */
3804 ret = 0;
3805 }
3806 if (ret < 0) {
3807 return ret;
3808 }
3809
3810 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3811 * in the case of cache=unsafe, so there are no useless flushes.
3812 */
3813 return bdrv_co_flush(bs->file);
3814 }
3815
3816 void bdrv_invalidate_cache(BlockDriverState *bs)
3817 {
3818 if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3819 bs->drv->bdrv_invalidate_cache(bs);
3820 }
3821 }
3822
3823 void bdrv_invalidate_cache_all(void)
3824 {
3825 BlockDriverState *bs;
3826
3827 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3828 bdrv_invalidate_cache(bs);
3829 }
3830 }
3831
3832 void bdrv_clear_incoming_migration_all(void)
3833 {
3834 BlockDriverState *bs;
3835
3836 QTAILQ_FOREACH(bs, &bdrv_states, list) {
3837 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
3838 }
3839 }
3840
3841 int bdrv_flush(BlockDriverState *bs)
3842 {
3843 Coroutine *co;
3844 RwCo rwco = {
3845 .bs = bs,
3846 .ret = NOT_DONE,
3847 };
3848
3849 if (qemu_in_coroutine()) {
3850 /* Fast-path if already in coroutine context */
3851 bdrv_flush_co_entry(&rwco);
3852 } else {
3853 co = qemu_coroutine_create(bdrv_flush_co_entry);
3854 qemu_coroutine_enter(co, &rwco);
3855 while (rwco.ret == NOT_DONE) {
3856 qemu_aio_wait();
3857 }
3858 }
3859
3860 return rwco.ret;
3861 }
3862
3863 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3864 {
3865 RwCo *rwco = opaque;
3866
3867 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3868 }
3869
3870 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3871 int nb_sectors)
3872 {
3873 if (!bs->drv) {
3874 return -ENOMEDIUM;
3875 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3876 return -EIO;
3877 } else if (bs->read_only) {
3878 return -EROFS;
3879 } else if (bs->drv->bdrv_co_discard) {
3880 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3881 } else if (bs->drv->bdrv_aio_discard) {
3882 BlockDriverAIOCB *acb;
3883 CoroutineIOCompletion co = {
3884 .coroutine = qemu_coroutine_self(),
3885 };
3886
3887 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3888 bdrv_co_io_em_complete, &co);
3889 if (acb == NULL) {
3890 return -EIO;
3891 } else {
3892 qemu_coroutine_yield();
3893 return co.ret;
3894 }
3895 } else {
3896 return 0;
3897 }
3898 }
3899
3900 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3901 {
3902 Coroutine *co;
3903 RwCo rwco = {
3904 .bs = bs,
3905 .sector_num = sector_num,
3906 .nb_sectors = nb_sectors,
3907 .ret = NOT_DONE,
3908 };
3909
3910 if (qemu_in_coroutine()) {
3911 /* Fast-path if already in coroutine context */
3912 bdrv_discard_co_entry(&rwco);
3913 } else {
3914 co = qemu_coroutine_create(bdrv_discard_co_entry);
3915 qemu_coroutine_enter(co, &rwco);
3916 while (rwco.ret == NOT_DONE) {
3917 qemu_aio_wait();
3918 }
3919 }
3920
3921 return rwco.ret;
3922 }
3923
3924 /**************************************************************/
3925 /* removable device support */
3926
3927 /**
3928 * Return TRUE if the media is present
3929 */
3930 int bdrv_is_inserted(BlockDriverState *bs)
3931 {
3932 BlockDriver *drv = bs->drv;
3933
3934 if (!drv)
3935 return 0;
3936 if (!drv->bdrv_is_inserted)
3937 return 1;
3938 return drv->bdrv_is_inserted(bs);
3939 }
3940
3941 /**
3942 * Return whether the media changed since the last call to this
3943 * function, or -ENOTSUP if we don't know. Most drivers don't know.
3944 */
3945 int bdrv_media_changed(BlockDriverState *bs)
3946 {
3947 BlockDriver *drv = bs->drv;
3948
3949 if (drv && drv->bdrv_media_changed) {
3950 return drv->bdrv_media_changed(bs);
3951 }
3952 return -ENOTSUP;
3953 }
3954
3955 /**
3956 * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3957 */
3958 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3959 {
3960 BlockDriver *drv = bs->drv;
3961
3962 if (drv && drv->bdrv_eject) {
3963 drv->bdrv_eject(bs, eject_flag);
3964 }
3965
3966 if (bs->device_name[0] != '\0') {
3967 bdrv_emit_qmp_eject_event(bs, eject_flag);
3968 }
3969 }
3970
3971 /**
3972 * Lock or unlock the media (if it is locked, the user won't be able
3973 * to eject it manually).
3974 */
3975 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3976 {
3977 BlockDriver *drv = bs->drv;
3978
3979 trace_bdrv_lock_medium(bs, locked);
3980
3981 if (drv && drv->bdrv_lock_medium) {
3982 drv->bdrv_lock_medium(bs, locked);
3983 }
3984 }
3985
3986 /* needed for generic scsi interface */
3987
3988 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3989 {
3990 BlockDriver *drv = bs->drv;
3991
3992 if (drv && drv->bdrv_ioctl)
3993 return drv->bdrv_ioctl(bs, req, buf);
3994 return -ENOTSUP;
3995 }
3996
3997 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3998 unsigned long int req, void *buf,
3999 BlockDriverCompletionFunc *cb, void *opaque)
4000 {
4001 BlockDriver *drv = bs->drv;
4002
4003 if (drv && drv->bdrv_aio_ioctl)
4004 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4005 return NULL;
4006 }
4007
4008 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4009 {
4010 bs->buffer_alignment = align;
4011 }
4012
4013 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4014 {
4015 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4016 }
4017
4018 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4019 {
4020 int64_t bitmap_size;
4021
4022 bs->dirty_count = 0;
4023 if (enable) {
4024 if (!bs->dirty_bitmap) {
4025 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4026 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4027 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4028
4029 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4030 }
4031 } else {
4032 if (bs->dirty_bitmap) {
4033 g_free(bs->dirty_bitmap);
4034 bs->dirty_bitmap = NULL;
4035 }
4036 }
4037 }
4038
4039 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4040 {
4041 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4042
4043 if (bs->dirty_bitmap &&
4044 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4045 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4046 (1UL << (chunk % (sizeof(unsigned long) * 8))));
4047 } else {
4048 return 0;
4049 }
4050 }
4051
4052 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4053 int nr_sectors)
4054 {
4055 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4056 }
4057
4058 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4059 {
4060 return bs->dirty_count;
4061 }
4062
4063 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4064 {
4065 assert(bs->in_use != in_use);
4066 bs->in_use = in_use;
4067 }
4068
4069 int bdrv_in_use(BlockDriverState *bs)
4070 {
4071 return bs->in_use;
4072 }
4073
4074 void bdrv_iostatus_enable(BlockDriverState *bs)
4075 {
4076 bs->iostatus_enabled = true;
4077 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4078 }
4079
4080 /* The I/O status is only enabled if the drive explicitly
4081 * enables it _and_ the VM is configured to stop on errors */
4082 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4083 {
4084 return (bs->iostatus_enabled &&
4085 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
4086 bs->on_write_error == BLOCK_ERR_STOP_ANY ||
4087 bs->on_read_error == BLOCK_ERR_STOP_ANY));
4088 }
4089
4090 void bdrv_iostatus_disable(BlockDriverState *bs)
4091 {
4092 bs->iostatus_enabled = false;
4093 }
4094
4095 void bdrv_iostatus_reset(BlockDriverState *bs)
4096 {
4097 if (bdrv_iostatus_is_enabled(bs)) {
4098 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4099 }
4100 }
4101
4102 /* XXX: Today this is set by device models because it makes the implementation
4103 quite simple. However, the block layer knows about the error, so it's
4104 possible to implement this without device models being involved */
4105 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4106 {
4107 if (bdrv_iostatus_is_enabled(bs) &&
4108 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4109 assert(error >= 0);
4110 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4111 BLOCK_DEVICE_IO_STATUS_FAILED;
4112 }
4113 }
4114
4115 void
4116 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4117 enum BlockAcctType type)
4118 {
4119 assert(type < BDRV_MAX_IOTYPE);
4120
4121 cookie->bytes = bytes;
4122 cookie->start_time_ns = get_clock();
4123 cookie->type = type;
4124 }
4125
4126 void
4127 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4128 {
4129 assert(cookie->type < BDRV_MAX_IOTYPE);
4130
4131 bs->nr_bytes[cookie->type] += cookie->bytes;
4132 bs->nr_ops[cookie->type]++;
4133 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4134 }
4135
4136 int bdrv_img_create(const char *filename, const char *fmt,
4137 const char *base_filename, const char *base_fmt,
4138 char *options, uint64_t img_size, int flags)
4139 {
4140 QEMUOptionParameter *param = NULL, *create_options = NULL;
4141 QEMUOptionParameter *backing_fmt, *backing_file, *size;
4142 BlockDriverState *bs = NULL;
4143 BlockDriver *drv, *proto_drv;
4144 BlockDriver *backing_drv = NULL;
4145 int ret = 0;
4146
4147 /* Find driver and parse its options */
4148 drv = bdrv_find_format(fmt);
4149 if (!drv) {
4150 error_report("Unknown file format '%s'", fmt);
4151 ret = -EINVAL;
4152 goto out;
4153 }
4154
4155 proto_drv = bdrv_find_protocol(filename);
4156 if (!proto_drv) {
4157 error_report("Unknown protocol '%s'", filename);
4158 ret = -EINVAL;
4159 goto out;
4160 }
4161
4162 create_options = append_option_parameters(create_options,
4163 drv->create_options);
4164 create_options = append_option_parameters(create_options,
4165 proto_drv->create_options);
4166
4167 /* Create parameter list with default values */
4168 param = parse_option_parameters("", create_options, param);
4169
4170 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4171
4172 /* Parse -o options */
4173 if (options) {
4174 param = parse_option_parameters(options, create_options, param);
4175 if (param == NULL) {
4176 error_report("Invalid options for file format '%s'.", fmt);
4177 ret = -EINVAL;
4178 goto out;
4179 }
4180 }
4181
4182 if (base_filename) {
4183 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4184 base_filename)) {
4185 error_report("Backing file not supported for file format '%s'",
4186 fmt);
4187 ret = -EINVAL;
4188 goto out;
4189 }
4190 }
4191
4192 if (base_fmt) {
4193 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4194 error_report("Backing file format not supported for file "
4195 "format '%s'", fmt);
4196 ret = -EINVAL;
4197 goto out;
4198 }
4199 }
4200
4201 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4202 if (backing_file && backing_file->value.s) {
4203 if (!strcmp(filename, backing_file->value.s)) {
4204 error_report("Error: Trying to create an image with the "
4205 "same filename as the backing file");
4206 ret = -EINVAL;
4207 goto out;
4208 }
4209 }
4210
4211 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4212 if (backing_fmt && backing_fmt->value.s) {
4213 backing_drv = bdrv_find_format(backing_fmt->value.s);
4214 if (!backing_drv) {
4215 error_report("Unknown backing file format '%s'",
4216 backing_fmt->value.s);
4217 ret = -EINVAL;
4218 goto out;
4219 }
4220 }
4221
4222 // The size for the image must always be specified, with one exception:
4223 // If we are using a backing file, we can obtain the size from there
4224 size = get_option_parameter(param, BLOCK_OPT_SIZE);
4225 if (size && size->value.n == -1) {
4226 if (backing_file && backing_file->value.s) {
4227 uint64_t size;
4228 char buf[32];
4229 int back_flags;
4230
4231 /* backing files always opened read-only */
4232 back_flags =
4233 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4234
4235 bs = bdrv_new("");
4236
4237 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4238 if (ret < 0) {
4239 error_report("Could not open '%s'", backing_file->value.s);
4240 goto out;
4241 }
4242 bdrv_get_geometry(bs, &size);
4243 size *= 512;
4244
4245 snprintf(buf, sizeof(buf), "%" PRId64, size);
4246 set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4247 } else {
4248 error_report("Image creation needs a size parameter");
4249 ret = -EINVAL;
4250 goto out;
4251 }
4252 }
4253
4254 printf("Formatting '%s', fmt=%s ", filename, fmt);
4255 print_option_parameters(param);
4256 puts("");
4257
4258 ret = bdrv_create(drv, filename, param);
4259
4260 if (ret < 0) {
4261 if (ret == -ENOTSUP) {
4262 error_report("Formatting or formatting option not supported for "
4263 "file format '%s'", fmt);
4264 } else if (ret == -EFBIG) {
4265 error_report("The image size is too large for file format '%s'",
4266 fmt);
4267 } else {
4268 error_report("%s: error while creating %s: %s", filename, fmt,
4269 strerror(-ret));
4270 }
4271 }
4272
4273 out:
4274 free_option_parameters(create_options);
4275 free_option_parameters(param);
4276
4277 if (bs) {
4278 bdrv_delete(bs);
4279 }
4280
4281 return ret;
4282 }
4283
4284 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4285 int64_t speed, BlockDriverCompletionFunc *cb,
4286 void *opaque, Error **errp)
4287 {
4288 BlockJob *job;
4289
4290 if (bs->job || bdrv_in_use(bs)) {
4291 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs));
4292 return NULL;
4293 }
4294 bdrv_set_in_use(bs, 1);
4295
4296 job = g_malloc0(job_type->instance_size);
4297 job->job_type = job_type;
4298 job->bs = bs;
4299 job->cb = cb;
4300 job->opaque = opaque;
4301 job->busy = true;
4302 bs->job = job;
4303
4304 /* Only set speed when necessary to avoid NotSupported error */
4305 if (speed != 0) {
4306 Error *local_err = NULL;
4307
4308 block_job_set_speed(job, speed, &local_err);
4309 if (error_is_set(&local_err)) {
4310 bs->job = NULL;
4311 g_free(job);
4312 bdrv_set_in_use(bs, 0);
4313 error_propagate(errp, local_err);
4314 return NULL;
4315 }
4316 }
4317 return job;
4318 }
4319
4320 void block_job_complete(BlockJob *job, int ret)
4321 {
4322 BlockDriverState *bs = job->bs;
4323
4324 assert(bs->job == job);
4325 job->cb(job->opaque, ret);
4326 bs->job = NULL;
4327 g_free(job);
4328 bdrv_set_in_use(bs, 0);
4329 }
4330
4331 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp)
4332 {
4333 Error *local_err = NULL;
4334
4335 if (!job->job_type->set_speed) {
4336 error_set(errp, QERR_NOT_SUPPORTED);
4337 return;
4338 }
4339 job->job_type->set_speed(job, speed, &local_err);
4340 if (error_is_set(&local_err)) {
4341 error_propagate(errp, local_err);
4342 return;
4343 }
4344
4345 job->speed = speed;
4346 }
4347
4348 void block_job_cancel(BlockJob *job)
4349 {
4350 job->cancelled = true;
4351 if (job->co && !job->busy) {
4352 qemu_coroutine_enter(job->co, NULL);
4353 }
4354 }
4355
4356 bool block_job_is_cancelled(BlockJob *job)
4357 {
4358 return job->cancelled;
4359 }
4360
4361 struct BlockCancelData {
4362 BlockJob *job;
4363 BlockDriverCompletionFunc *cb;
4364 void *opaque;
4365 bool cancelled;
4366 int ret;
4367 };
4368
4369 static void block_job_cancel_cb(void *opaque, int ret)
4370 {
4371 struct BlockCancelData *data = opaque;
4372
4373 data->cancelled = block_job_is_cancelled(data->job);
4374 data->ret = ret;
4375 data->cb(data->opaque, ret);
4376 }
4377
4378 int block_job_cancel_sync(BlockJob *job)
4379 {
4380 struct BlockCancelData data;
4381 BlockDriverState *bs = job->bs;
4382
4383 assert(bs->job == job);
4384
4385 /* Set up our own callback to store the result and chain to
4386 * the original callback.
4387 */
4388 data.job = job;
4389 data.cb = job->cb;
4390 data.opaque = job->opaque;
4391 data.ret = -EINPROGRESS;
4392 job->cb = block_job_cancel_cb;
4393 job->opaque = &data;
4394 block_job_cancel(job);
4395 while (data.ret == -EINPROGRESS) {
4396 qemu_aio_wait();
4397 }
4398 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret;
4399 }
4400
4401 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns)
4402 {
4403 /* Check cancellation *before* setting busy = false, too! */
4404 if (!block_job_is_cancelled(job)) {
4405 job->busy = false;
4406 co_sleep_ns(clock, ns);
4407 job->busy = true;
4408 }
4409 }